WorldWideScience

Sample records for advanced water-cooled phosphoric

  1. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  2. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  3. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  4. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  5. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  6. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  7. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  8. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  9. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  10. Planar measurements of spray-induced wall cooling using phosphor thermometry

    Science.gov (United States)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  11. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  12. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    1991-05-01

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  13. IAEA'S study on advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, J.; McDonald, A.; Rao, A.; )

    2008-01-01

    About one-fifth of the world's energy consumption is used for electricity generation, with nuclear power contributing approximately 15.2% of this electricity. However; most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, and heat for industrial processes. Nuclear energy also has potential to provide a near-term, greenhouse gas free, source of energy for transportation. These applications rely on a source of heat and electricity. Nuclear energy from water-cooled reactors, of course, is not unique in this sense. Indeed, higher temperature heat can be produced by burning natural gas and coal, or through the use of other nuclear technologies such as gas-cooled or liquid-metal-cooled reactors. Water-cooled reactors, however; are being deployed today while other reactor types have had considerably less operational and regulatory experience and will take still some time to be widely accepted in the market. Both seawater desalination and district heating with nuclear energy are well proven, and new seawater desalination projects using water-cooled reactors will soon be commissioned. Provision of process heat with nuclear energy can result in less dependence on fossil fuels and contribute to reductions of greenhouse gases. Importantly, because nuclear power produces base-load electricity at stable and predictable prices, it provides a greenhouse gas free source of electricity for transportation systems (trains and subways), and for electric and plug-in hybrid vehicles, and in the longer term nuclear energy could produce hydrogen for fuel cell vehicles, as well as for other components of a hydrogen economy. These advanced applications can play an important role in enhancing public acceptance of nuclear

  14. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    1991-05-01

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  16. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs

  17. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs.

  18. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  19. Encapsulation of strontium aluminate phosphors to enhance water resistance and luminescence

    International Nuclear Information System (INIS)

    Zhu Yong; Zeng Jianghua; Li Wenyu; Xu Li; Guan Qiu; Liu Yingliang

    2009-01-01

    Strontium aluminate SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors are chemically unstable against water or even moisture. To enhance the water resistance of the phosphors, an encapsulation was performed by direct surface reactions with phosphoric acid (H 3 PO 4 ). The morphology, surface structure, surface element composition, water resistance, luminescence, and photoacoustic spectrum of the phosphors before and after encapsulation were discussed. Experimental results showed that phosphors were perfectly encapsulated by amorphous layers in nanoscale and crystalline layers in microscale under different conditions. The water resistance of phosphors was greatly enhanced by the two types of layer. More importantly, the amorphous layers enhanced the luminescence of phosphors markedly. The possible mechanism for the enhancements was also proposed.

  20. Second meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Helsinki, 6-9 June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The Second Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) was held in Helsinki, Finland, from 6-9 June 1988. The Summary Report (Part II) contains the papers which review the national programmes since the first meeting of IWGATWR in May 1987 in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of these 12 papers presented at the meeting. Figs and tabs

  1. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  2. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  3. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  4. Proceedings of the GCNEP-IAEA course on natural circulation phenomena and passive safety systems in advanced water cooled reactors. V.1

    International Nuclear Information System (INIS)

    2014-01-01

    The current status and prospect, economics, advanced designs and applications of reactors in operation and construction, safety of advanced water cooled reactors is discussed. Papers relevant to INIS are indexed separately

  5. Proceedings of the GCNEP-IAEA course on natural circulation phenomena and passive safety systems in advanced water cooled reactors. V.2

    International Nuclear Information System (INIS)

    2014-01-01

    The current status and prospect, economics, advanced designs and applications of reactors in operation and construction, safety of advanced water cooled reactors is discussed. Papers relevant to INIS are indexed separately

  6. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  7. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  8. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  9. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  10. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  11. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  12. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  13. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  14. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 1)

    International Nuclear Information System (INIS)

    1987-12-01

    The first meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. Part I of the Summary Report contains the minutes of the meeting

  15. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  17. Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, Federico J.; Corti, Horacio R. [Grupo de Pilas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Av. General Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Buera, M. Pilar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2010-10-01

    The thermal properties of phosphoric acid-doped poly[2-2'-(m-phenylene)-5-5' bi-benzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI) membranes, ionomeric materials with promising properties to be used as electrolytes in direct methanol and in high temperature polymer electrolyte membrane (PEM) fuel cells, were studied by means of differential scanning calorimetry (DSC) technique in the temperature range from -145 C to 200 C. The DSC scans of samples equilibrated in water at different relative humidities (RH) and in liquid water-methanol mixtures were analyzed in relation to glass transition, water crystallization/melting and solvent desorption in different temperature regions. The thermal relaxation observed in the very low temperature region could be ascribed to the glass transition of the H{sub 3}PO{sub 4}-H{sub 2}O mixture confined in the polymeric matrix. After cooling the samples up to -145 C, frozen water was detected in PBI and ABPBI at different RH, although at 100% RH less amount of water had crystallized than that observed in Nafion membranes under the same conditions. Even more important is the fact that the freezing degree of water is much lower in ABPBI membranes equilibrated in liquid water-methanol mixtures than that observed for PBI and, in a previous study, for Nafion. Thus, apart from other well known properties, acid-doped ABPBI emerges as an excellent ionomer for applications in direct methanol fuel cells working in cold environments. (author)

  18. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  19. Studies on the behaviour of a passive containment cooling system for the Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Chandraker, D.K.; Kakodkar, A.; Venkat Raj, V.

    2001-01-01

    A passive containment cooling system has been proposed for the advanced heavy water reactor being designed in India. This is to provide long term cooling for the reactor containment following a loss of coolant accident. The system removes energy released into the containment through immersed condensers kept in a pool of water. An important aspect of immersed condenser's working is the potential degradation of immersed condenser's performance due to the presence of noncondensable gases. An experimental programme to investigate the passive containment cooling system behaviour and performance has been undertaken in a phased manner. In the first phase, system response tests were conducted on a small scale model to understand the phenomena involved. Tests were conducted with constant energy input rate and with varying energy input rate simulating decay heat. With constant energy input rate, pressures in volume V 1 and V 2 reached almost steady value. With varying energy input rate V 1 pressure dropped below the pressure in V 2 . The system could efficiently purge air from V 1 to V 2 . The paper deals with the details of the tests conducted and the results obtained. (orig.) [de

  20. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  1. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  2. Experimental tests and qualification of analytical methods to address thermohydraulic phenomena in advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-05-01

    Worldwide there is considerable experience in nuclear power technology, especially in water cooled reactor technology. Of the operating plants, in September 1998, 346 were light water reactors (LWRs) totalling 306 GW(e) and 29 were heavy water reactors (HWRs) totalling 15 GW(e). The accumulated experience and lessons learned from these plants are being incorporated into new advanced reactor designs. Utility requirements documents have been formulated to guide these design activities by incorporating this experience, and results from research and development programmes, with the aim of reducing costs and licensing uncertainties by establishing the technical bases for the new designs. Common goals for advanced designs are high availability, user-friendly features, competitive economics and compliance with internationally recognized safety objectives. Large water cooled reactors with power outputs of 1300 MW(e) and above, which possess inherent safety characteristics (e.g. negative Doppler moderator temperature coefficients, and negative moderator void coefficient) and incorporate proven, active engineered systems to accomplish safety functions are being developed. Other designs with power outputs from, for example, 220 MW(e) up to about 1300 MW(e) which also possess inherent safety characteristics and which place more emphasis on utilization of passive safety systems are being developed. Passive systems are based on natural forces and phenomena such as natural convection and gravity, making safety functions less dependent on active systems and components like pumps and diesel generators. In some cases, further experimental tests for the thermohydraulic conditions of interest in advanced designs can provide improved understanding of the phenomena. Further, analytical methods to predict reactor thermohydraulic behaviour can be qualified for use by comparison with the experimental results. These activities should ultimately result in more economical designs. The

  3. Advanced water-cooled reactor technologies. Rationale, state of progress and outlook

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Eighty per cent of the world's power reactors are water cooled and moderated. Many improvements in their design and operation have been implemented since the first such reactor started commercial operation in 1957. This report addresses the safety, environmental and economic rationales for further improvements, as well as their relevance to currently operating water reactors

  4. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  5. Cool-Water Carbonates, SEPM Special Publication No. 56

    Science.gov (United States)

    Hallock, Pamela

    Doesn't field work on modern carbonates mean scuba diving on spectacular coral reefs in gin-clear water teeming with brightly colored fish? Not if you are one of the researchers that Jonathan Clarke of the Western Mining Corporation Ltd., in Preston, Victoria, Australia, assembled at a workshop in Geelong, Victoria, in January 1995. Their field work involves research cruises in high-latitude oceans, where mal de mer and chilling winds are constant companions. Many braved 10-m seas in modest-sized research vessels to sample shelves stripped of fine sediments by storm waves whose effects can reach to depths exceeding 200 m. Noel James of Queen's University in Kingston, Ontario, carefully lays the groundwork for the book in a paper titled, “The Cool-Water Carbonate Depositional Realm,” which will assuredly become a standard reading assignment in advanced undergraduate-and graduate-level courses in carbonate sedimentology. James skillfully shows how cool-water carbonates are part of the greater carbonate depositional spectrum. By expanding recognition of the possible range of carbonate environments, sedimentologists expand their ability to understand and interpret ancient carbonates, particularly Paleozoic limestones that often show striking similarities to modern cool-water sediments. James' paper is followed by nine papers on modern cool-water carbonates, seven on Tertiary environments, and seven examples from Mesozoic and Paleozoic limestones

  6. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  7. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  8. LOFA analyses for the water and helium cooled SEAFP reactors

    International Nuclear Information System (INIS)

    Sponton, L.; Sjoeberg, A.; Nordlinder, S.

    2001-01-01

    This study was performed in the frame of the European long-term fusion safety programme 1999 (SEAFP99). Loss of flow accidents (LOFA) have been studied for two cases, first for a helium cooled reactor with advanced dual-coolant (DUAL) blanket at 100% nominal power. The second case applies to a water-cooled reactor at 20% nominal power. Both transients were simulated with the code MELCOR 1.8.4. The results for the helium cooled reactor show that with a natural circulation flow of helium after the pump stops, the first wall temperature will stay below the temperature for excepted failure of the construction material. For the water cooled reactor, the results show that the pressurizer set point for its liquid volumetric inventory is reached before the plasma facing components attain a critical temperature. The pressurizer set point will induce a plasma shutdown

  9. Effect of grinding on photostimuable phosphors for x-ray screens

    International Nuclear Information System (INIS)

    Rao, R.B.

    1988-01-01

    Luminescence efficiency of a phosphor can be improved by minimizing the energy losses during excitation. The loss of excitation energy in the case of powdered samples is mainly due to scattering of incident radiation by the particles of phosphor. Thus, while considering the industrial applications of polycrystalline phosphors in lamps, screens, paints, etc., the effect of particle size on the light output has to be specially studied. It is very well established that the radiographic imaging with photostimuable (PS) phosphors has many advantages over conventional photographic film screens. In the new type of computer radiography, PS phosphors are to be used as memory materials for temporary storage of the x-ray image. Eu(2+) doped barium fluorohalide phosphors are most suitable for this purpose. The spatial resolution from the image plate can be improved to a certain extent with phosphors comprising fine particles. The fineness of the particles can be achieved by various means such as grinding, fast cooling after firing or incorporation of some flux materials during the firing processes. But the efficiency of the phosphor deteriorates with grinding. Fast cooling is a complicated process in the case of Eu(2+) doped phosphors. Incorporation of flux materials may change the characteristics of phosphor materials. In the present investigation, effect of grinding (ball milling) on particle size distribution, shape of the particles and luminescent properties of BaFCl phosphors have been studied

  10. Passive containment cooling water distribution device

    Science.gov (United States)

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  11. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  12. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  13. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  14. Mycobacteria in Finnish cooling tower waters.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  15. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  16. Demineralised water cooling in the LHC accelerator

    CERN Document Server

    Peón-Hernández, G

    2002-01-01

    In spite of the LHC accelerator being a cryogenic machine, it remains nevertheless a not negligible heat load to be removed by conventional water-cooling. About 24MW will be taken away by demineralised water cooled directly by primary water from the LHC cooling towers placed at the even points. This paper describes the demineralised water network in the LHC tunnel including pipe diameters, lengths, water speed, estimated friction factor, head losses and available supply and return pressures for each point. It lists all water cooled equipment, highlights the water cooled cables as the most demanding equipment followed by the radio frequency racks and cavities, and by the power converters. Their main cooling requirements and their positions in the tunnel are also presented.

  17. Thermophysical properties of materials for water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA`s International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs.

  18. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  19. 18 CFR 420.44 - Cooling water.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  20. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-06-01

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  1. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  2. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  3. Evolutionary water cooled reactors: Strategic issues, technologies and economic viability. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Symposium on evolutionary water cooled reactors: Strategic issues, technologies and economic viability was intended for managers in utilities, reactor design organizations and hardware manufacturing companies and for government decision makers who need to understand technological advances and the potential of evolutionary water cooled reactors to contribute to near and medium term energy demands. The topics addressed include: strategic issues (global energy outlook, the role of nuclear power in sustainable energy strategies, power generation costs, financing of nuclear plant projects, socio-political factors and nuclear safety requirements); technological advances (instrumentation and control, means od improving prevention and mitigation of severe accidents, development of passive safety systems); keys to economic viability (simplification, standardization, advances in construction and project management, feedback of experience from utilities into new designs, and effective management of plant operation)

  4. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  5. A directly cooled grating substrate for ALS [Advanced Light Source] undulator beam lines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    Design analyses using finite element methods are presented for thermal distortion of water-cooled diffraction grating substrates for a potential application at the LBL Advanced Light Source, demonstrating that refinements in cooling channel configuration and heat flux distribution can significantly reduce optical surface distortion with high heat loads. Using an existing grating substrate design, sensitivity of tangential slope errors due to thermal distortion is evaluated for a variety of thermal boundary conditions, including coolant flow rate and heat transfer film coefficients, surface illumination area and heat distribution profile, and location of the convection cooling surfaces adjacent to the heated region. 1 ref., 5 figs., 2 tabs

  6. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E

    2011-01-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  7. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  8. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  9. Desalting a process cooling water using nanofiltration

    NARCIS (Netherlands)

    Radier, R.G.J.; van Oers, C.W.; Steenbergen, A.; Wessling, Matthias

    2001-01-01

    The cooling water system of a chemical plant of Akzo Nobel is a partly open system. The site is located at the North Sea. The air in contact with the cooling water contains seawater droplets dissolving and increasing the chloride concentration. The cooling water contains chromate to protect the

  10. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  11. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  12. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  13. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  14. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  15. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  16. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  17. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  18. Johnson screen for cooling water intakes

    International Nuclear Information System (INIS)

    Cook, L.E.

    1978-01-01

    Johnson surface-water screens provide an alternative to vertical traveling screens for power plant cooling water intakes. In this paper, flow field modeling is discussed, and a series of case studies is presented. The hydraulic information obtained is discussed as it applies to the exclusion of biota and debris from cooling water intake systems

  19. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  20. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  1. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Science.gov (United States)

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat

  2. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  3. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  4. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  5. Legionella confirmation in cooling tower water

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A.; Al-Ali, Haidar H.; Al-Ghamdi, Abdullah S.; Al-Hamaqi, Ghadeer M.; Maan, Hawraa S.; Al-Mahfoodh, Zainab A.; Al-Seba, Hussain Z.

    2018-01-01

    Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods. PMID:29436561

  6. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  7. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  8. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  9. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  10. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  11. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  12. General description of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Kakodkar, A.; Sinha, R.K.; Dhawan, M.L.

    1999-01-01

    Advanced Heavy Water Reactor is a boiling light water cooled, heavy water moderated and vertical pressure tube type reactor with its design optimised for utilisation of thorium for power generation. The core consists of (Th-U 233 )O 2 and (Th-Pu)O 2 fuel with a discharge burn up of 20,000 MWd/Te. This reactor incorporates several features to simplify the design, which eliminate certain systems and components. AHWR design is also optimised for easy replaceability of coolant channels, facilitation of in-service inspection and maintenance and ease of erection. The AHWR design also incorporates several passive systems for performing safety-related functions in the event of an accident. In case of LOCA, emergency coolant is injected through 4 accumulators of 260 m 3 capacity directly into the core. Gravity driven water pool of capacity 6000 m 3 serves to cool the core for 3 days without operator's intervention. Core submergence, passive containment isolation and passive containment cooling are the added features in AHWR. The paper describes the various process systems, core and fuel design, primary components and safety concepts of AHWR. Plant layout and technical data are also presented. The conceptual design of the reactor has been completed, and the detailed design and development is scheduled for completion in the year 2002. (author)

  13. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  14. WGOTHIC analysis of AP1000 passive containment cooling water

    International Nuclear Information System (INIS)

    Ye Cheng; Wang Yong; Zheng Mingguang; Wang Guodong; Zhang Di; Ni Chenxiao; Wang Minglu

    2013-01-01

    The WGOTHIC code was used to analyze the influence of the containment cooling water inventory to containment safety for different cases. The results show that if passive containment cooling system fails, the pressure in containment is beyond design limit after 1000 s; if cooling water can't be supplied after 72 h, the pressure in containment is beyond design limit after 0.9 d; if cooling water can't be supplied after 19.6 d, the pressure in containment is beyond design limit but less than the breakdown pressure; if cooling water is supplied for 30 d, the air cooling can remove the decay heat without any aid. It is a reference for making emergency plan and improving containment design. (authors)

  15. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  16. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  17. Advanced Fuel Pellet Materials and Fuel Rod Design for Water Cooled Reactors. Proceedings of a Technical Committee Meeting

    International Nuclear Information System (INIS)

    2010-10-01

    The economics of current nuclear power plants have improved through increased fuel burnup and longer fuel cycles, i.e. increasing the effective time that fuel remains in the reactor core and the amount of energy it generates. Efficient consumption of fissile material in the fuel element before it is discharged from the reactor means that less fuel is required over the reactor's life cycle, which results in lower amounts of fresh fuel, lower spent fuel storage costs, and less waste for ultimate disposal. Better utilization of fissile nuclear materials, as well as more flexible power manoeuvring, place challenging operational demands on materials used in reactor components, and first of all, on fuel and cladding materials. It entails increased attention to measures ensuring desired in-pile fuel performance parameters that require adequate improvements in fuel material properties and fuel rod designs. These are the main reasons that motivated the IAEA Technical Working Group on Fuel Performance and Technology (TWG-FPT) to recommend the organization of a Technical Committee Meeting on Advanced Fuel Pellet Materials and Fuel Rod Designs for Power Reactors. The proposal was supported by the IAEA TWGs on Advanced Technologies for Light and Heavy Water-Cooled Reactors (TWG-LWR and TWG-HWR), and the meeting was held at the invitation of the Government of Switzerland at the Paul Scherrer Institute in Villigen, from 23 to 26 November 2009. This was the third IAEA meeting on these subjects (the first was held in 1996 in Tokyo, Japan, and the second in 2003 in Brussels, Belgium), which reflects the continuous interest in the above issues among Member States. The purpose of the meeting was to review the current status in the development of fuel pellet materials and to explore recent improvements in fuel rod designs for light and heavy water cooled power reactors. The meeting was attended by 45 specialists representing fuel vendors, nuclear utilities, research and development

  18. The design of a new coaxial water cooling structure for APS high power BM front end photon shutters

    International Nuclear Information System (INIS)

    Chang, J.; Shu, D.; Collins, J.; Ryding, D.; Kuzay, T.

    1993-01-01

    A new UHV compatible coaxial water cooling structure has been designed for Advanced Photon Source (APS) high power bending magnet front end photon shutters. Laser-beam-thermal-simulation test results show that this new cooling structure can provide more than 1.56 kW total power cooling capacity with 12.3 W/mm 2 maximum surface heat flux. The maximum surface temperature will be lower than 116 degree C

  19. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  20. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  1. Gas-cooled reactors for advanced terrestrial applications

    International Nuclear Information System (INIS)

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  2. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  3. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    International Nuclear Information System (INIS)

    Doyle, R.E.

    1989-01-01

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems

  4. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  5. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  6. Membrane distillation of industrial cooling tower blowdown water

    Directory of Open Access Journals (Sweden)

    N.E. Koeman-Stein

    2016-06-01

    Full Text Available The potential of membrane distillation for desalination of cooling tower blowdown water (CTBD is investigated. Technical feasibility is tested on laboratory and pilot scale using real cooling tower blowdown water from Dow Benelux in Terneuzen (Netherlands. Two types of membranes, polytetrafluorethylene and polyethylene showed good performance regarding distillate quality and fouling behavior. Concentrating CTBD by a factor 4.5 while maintaining a flux of around 2 l/m2*h was possible with a water recovery of 78% available for reuse. Higher concentration factors lead to severe decrease in flux which was caused by scaling. Membrane distillation could use the thermal energy that would otherwise be discharged of in a cooling tower and function as a heat exchanger. This reduces the need for cooling capacity and could lead to a total reduction of 37% water intake for make-up water, as well as reduced energy and chemicals demands and greenhouse gas emissions.

  7. The Water Quality Control of the Secondary Cooling Water under a Normal Operation of 30 MWth in HANARO

    International Nuclear Information System (INIS)

    Park, Young Chul; Lee, Young Sub; Lim, Rag Yong

    2008-01-01

    HANARO, a multi-purpose research reactor, a 30 MWth open-tank-in-pool type, has been under a full power operation since 2005. The heat generated by the core of HANARO is transferred to the primary cooling water. And the cooling water transfers the heat to the secondary cooling water through the primary cooling heat exchanger. The heat absorbed by the secondary cooling water is removed through a cooling tower. The quality of the secondary cooling water is deteriorated by a temperature variation of the cooling water and a foreign material flowing over the cooling water through the cooling tower fan for a cooling. From these, a corrosion reduces the life time of a system, a scale degrades the heat transfer effect and a sludge and slime induces a local corrosion. For reducing these impacts, the quality of the secondary cooling water is treated by a high ca-hardness water quality program by maintaining a super saturated condition of ions, 12 of a ca-hardness concentration. After an overhaul maintenance of a secondary cooling tower composed of a secondary cooling system in 2007, a secondary cooling water stored in the cooling tower basin was replaced with a fresh city water. In this year, a water quality deterioration test has been performed under a full power operation and a mode of a twenty three day operation and twelve day maintenance for setting a beginning control limit of the secondary cooling water. This paper describes the water quality deterioration test for the secondary cooling system under a full power operation of 30 MWth including a test method, a test requirement and a test result

  8. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  9. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  10. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  11. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  12. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  13. Dissociation constants of phosphoric acid in dimethylformamide-water mixtures at 298.15 K

    Science.gov (United States)

    Safonova, L. P.; Fadeeva, Yu. A.; Pryakhin, A. A.

    2009-10-01

    The dissociation constants of phosphoric acid (p K 1 and p K 2) in water-dimethylformamide (DMFA) mixtures (0-0.65 mole fractions of DMFA) were determined at 298.15 K by potentiometric titration. The extrapolation of these data to pure DMFA and the comparative calculation method were used to estimate the dissociation constants of the acid in DMFA.

  14. International conference on opportunities and challenges for water cooled reactors in the 21. century. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    Water Cooled Reactors have been the keystone of the nuclear industry in the 20th Century. As we move into the 21st Century and face new challenges such as the threat of climate change or the large growth in world energy demand, nuclear energy has been singled out as one of the sources that could substantially and sustainably contribute to power the world. As the nuclear community worldwide looks into the future with the development of advanced and innovative reactor designs and fuel cycles, it becomes important to explore the role Water Cooled Reactors (WCRs) will play in this future. To support the future role of WCRs, substantial design and development programmes are underway in a number of Member States to incorporate additional technology improvements into advanced nuclear power plants (NPPs) designs. One of the key features of advanced nuclear reactor designs is their improved safety due to a reduction in the probability and consequences of accidents and to an increase in the operator time allowed to better assess and properly react to abnormal events. A systematic approach and the experience of many years of successful operation have allowed designers to focus their design efforts and develop safer, more efficient and more reliable designs, and to optimize plant availability and cost through improved maintenance programs and simpler operation and inspection practices. Because many of these advanced WCR designs will be built in countries with no previous nuclear experience, it is also important to establish a forum to facilitate the exchange of information on the infrastructure and technical issues associated with the sustainable deployment of advanced nuclear reactors and its application for the optimization of maintenance of operating nuclear power plants. This international conference seeks to be all-inclusive, bringing together the policy, economic and technical decision-makers and the stakeholders in the nuclear industry such as operators, suppliers

  15. Corrosion induced clogging and plugging in water-cooled generator cooling circuit

    International Nuclear Information System (INIS)

    Park, B.G.; Hwang, I.S.; Rhee, I.H.; Kim, K.T.; Chung, H.S.

    2002-01-01

    Water-cooled electrical generators have been experienced corrosion-related problems that are restriction of flow through water strainers caused by collection of excessive amounts of copper corrosion products (''clogging''), and restriction of flow through the copper strands in the stator bars caused by growth or deposition of corrosion products on the walls of the hollow strands (''plugging''). These phenomena result in unscheduled shutdowns that would be a major concern because of the associated loss in generating capacity. Water-cooled generators are operated in one of two modes. They are cooled either with aerated water (dissolved oxygen >2 ppm) or with deaerated water (dissolved oxygen <50 ppb). Both modes maintain corrosion rates at satisfactorily low levels as long as the correct oxygen concentrations are maintained. However, it is generally believed that very much higher copper corrosion rates result at the intermediate oxygen concentrations of 100-1000 ppb. Clogging and plugging are thought to be associated with these intermediate concentrations, and many operators have suggested that the period of change from high-to-low or from low-to-high oxygen concentration is particularly damaging. In order to understand the detailed mechanism(s) of the copper oxide formation, release and deposition and to identify susceptible conditions in the domain of operating variables, a large-scale experiments are conducted using six hollow strands of full length connected with physico-chemically scaled generator cooling water circuit. To ensure a close simulation of thermal-hydraulic conditions in a generator stator, strands of the loop will be ohmically heated using AC power supply. Experiments is conducted to cover oxygen excursions in both high dissolved oxygen and low dissolved oxygen conditions that correspond to two representative operating condition at fields. A thermal upset condition is also simulated to examine the impact of thermal stress. During experiments

  16. The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, A.P.M.; Previdello, B.A.F.; Varela, H.; Gonzalez, E.R. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970 Sao Carlos, SP (Brazil)

    2010-01-15

    The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (author)

  17. Influence of detergents on water drift in cooling towers

    Science.gov (United States)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  18. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  19. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  20. Influence of detergents on water drift in cooling towers

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2017-01-01

    Full Text Available An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  1. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    Okubo, T.; Iwamura, T.; Takeda, R.; Yamamoto, K.; Okada, H.

    2001-01-01

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  2. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  3. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  4. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Vine, Gary

    2010-01-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes 'Best Technology Available' for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant's steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R and D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  5. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  6. Environmental compatible cooling water treatment chemicals; Umweltvertraegliche Chemikalien in der Kuehlwasserkonditionierung

    Energy Technology Data Exchange (ETDEWEB)

    Gartiser, S; Urich, E

    2002-02-01

    In Germany about 32 billion m{sup 3}/a cooling water are discharged from industrial plants and power industry. These are conditioned partly with biocides, scaling and corrosion inhibitors. Within the research project the significance of cooling water chemicals was evaluated, identifying the chemicals from product information, calculating their loads from consumption data of more than 180 cooling plants and investigating the basic data needed for an environmental hazard assessment. Additionally the effects of cooling water samples and products were determined in biological test systems. Batch tests were performed under defined conditions in order to measure the inactivation of cooling water biocides. (orig.)

  7. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract

  8. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract Refs, figs, tabs

  9. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  10. Asbestos in cooling-tower waters. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1979-03-01

    Water discharges from cooling towers constructed with asbestos fill were found to contain chrysotile--asbestos fibers at concentrations as high as 10 8 fibers/liter. The major source of these fibers, appears to be the components of the towers rather than the air drawn through the towers or the makeup water taken into the towers. Suggested mechanisms for the release of chrysotile fibers from cooling-tower fill include freeze-thaw cycles and dissolution of the cement due to acidic components of the circulating water. Ash- or other material-settling ponds were found to reduce asbestos-fiber concentrations in cooling-tower effluent. The literature reviewed did not support the case for a causal relationship between adverse human health effects and drinking water containing on the order of 10 6 chrysotile--asbestos fibers/liter; for this and other reasons, it is not presently suggested that the use of asbestos fill be discontinued. However, caution and surveillance are dictated by the uncertainties in the epidemiological studies, the absence of evidence for a safe threshold concentration in water, and the conclusive evidence for adverse effects from occupational exposure. It is recommended that monitoring programs be carried out at sites where asbestos fill is used; data from such programs can be used to determine whether any mitigative measures should be taken. On the basis of estimates made in this study, monitoring for asbestos in drift from cooling towers does not appear to be warranted

  11. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010

    International Nuclear Information System (INIS)

    Pimblott, S.M.

    2000-01-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. The aim of this project is to develop an experiment-and-theory based model for the radiolysis of nonstandard aqueous systems like those that will be encountered in the Advance Light Water reactor. Three aspects of the radiation chemistry of aqueous systems at elevated temperatures are considered in the project: the radiation-induced reaction within the primary track and with additives, the homogeneous production of H 2 O 2 at high radiation doses, and the heterogeneous reaction of the radiation-induced species escaping the track. The goals outlined for Phase 1 of the program were: the compilation of information on the radiation chemistry of water at elevated temperatures, the simulation of existing experimental data on the escape yields of e aq - , OH, H 2 and H 2 O 2 in γ radiolysis at elevated temperatures, the measurement of low LET and high LET production of H 2 O 2 at room temperature, the compilation of information on the radiation chemistry of water-(metal) oxide interfaces, and the synthesis and characterization the heterogeneous water-oxide systems of interest

  12. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  13. Thermal calculations for water cooled research reactors

    International Nuclear Information System (INIS)

    Fabrega, S.

    1979-01-01

    The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics

  14. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  15. Proceedings (slides) of the OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies

    International Nuclear Information System (INIS)

    Spiler, Joze; Kim, Sang-Baik; ); Feron, Fabien; Jaervinen, Marja-Leena; Husse, Julien; ); Ferraro, Giovanni; Bertels, Frank; Denk, Wolfgang; Tuomisto, Harri; Golay, Michael; Buongiorno, J.; Todreas, N.; Adams, E.; Briccetti, A.; Jurewicz, J.; Kindfuller, V.; Srinivasan, G.; Strother, M.; Minelli, P.; Fasil, E.; Zhang, J.; Genzman, G.; Epinois, Bertrand de l'; Kim, Shin Whan; Laaksonen, Jukka; Maltsev, Mikhail; Yu, CHongxing; Powell, David; Gorgemans, Julie; Hopwood, Jerry; Bylov, Igor; Bakhmetyev, Alexander M.; Lepekhin, Andrey N.; Fadeev, Yuriy P.; Bruna, Giovanni; Gulliford, Jim; ); Ham-Su, Rosaura; Thevenot, Caroline; GAUTIER, Guy-Marie; MARSAULT, Philippe; PIGNATEL, Jean-Francois; White, Andrew; )

    2015-02-01

    New technologies and solutions have been developed over more than thirty years to improve the safety, performance and economics of nuclear power plants. Particular efforts were made in designing systems to prevent or mitigate nuclear accidents and, greatly limit or even avoid any offsite release of radioactivity. Reactor designs developed in the 1980's and later are often referred to as Generation III (Gen III) reactors. They offer enhanced safety compared to earlier Generation II (Gen II) designs, as well as improved performance and economics. Examples of Gen III safety design features include solutions for corium localisation, advanced containment structures, improved emergency core-cooling systems, filtered venting systems, hydrogen risk management solutions, etc. Some of these solutions have also been back-fitted or partially adapted to existing reactors, based on recommendations from regulators or modernisation efforts by the utilities operating these reactors, to bring their level of safety to levels approaching those of the more modern designs. Other innovations found in the latest water-cooled reactor designs include the use of passive safety systems, and often associated with those, a simplification in the design of the reactor. Gen III reactors also feature better economics, for example increased design lifetime up to 60 years, ability to use 100% MOX fuel and operate with higher flexibility, higher thermal efficiencies and reduced staff requirements. Modularity is often quoted as a feature of some Gen III designs as a way of reducing the construction times and simplifying the decommissioning of the plant. The scope of the Workshop includes, inter alia: - Evolution of regulatory and design requirements for commercial water-cooled reactors; - Innovations in water-cooled reactor technologies that allowed significant improvement in the level of safety, with a discussion on advantages and challenges of active vs. passive safety systems; - Innovations under

  16. Improving Safety, Economic, Substantiality, and Security of Nuclear Energy with Canadian Super-Critical Water-cooled Reactor Concept

    International Nuclear Information System (INIS)

    Hamilton, Holly; Pencer, Jeremy; Yetisir, Metin; Leung, Laurence

    2012-01-01

    Super-Critical Water-cooled Reactor is one of the six design concepts being developed under the Generation IV International Forum. It is the only concept evolving from the water-cooled reactors and taking advantages of the balance-of-plant design and operation experience of the fossil-power plants. Canada is developing the SCR concept from the well-established pressure-tube reactor technology. The Canadian SCWR maintains modular design approach using relative small fuel channels with the separation of coolant and moderator. It is equipped with an advanced fuel channel design that is capable to transfer decay heat from the fuel to the moderator under the long-term cooling stage. Coupled with the advanced passive-moderator cooling system, cooling of fuel and fuel channel is continuous even without external power or operator intervention. The Canadian SCWR is operating at a pressure of 25 MPa with a core outlet temperature of 625 deg. C. This has led to a drastic increase in thermal efficiency to 48% from 34% of the current fleet of reactors (a 40% rise in relative efficiency). With the high core outlet temperature, a direct thermal cycle has been adopted and has led to simplification in plant design attributing to the cost reduction compared to the current reactor designs. The Canadian SCWR adopts the advanced Thorium fuel cycle to enhance the substantiality, economic, and security. than uranium in the world (estimated to be three times more). This provides the long-term fuel supply. Thorium's price is stable compared to uranium and is consistently lower than uranium. This would maintain the predictability and economic of fuel supply. Thorium itself is a non-fissile material and once irradiated requires special handling. This improves proliferative resistance. The objective of this paper is to highlight these improvements in generating nuclear energy with the Canadian SCWR

  17. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  18. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  19. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  20. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  1. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  2. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  3. The potential for the recovery and reuse of cooling water in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)

    1999-04-01

    The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a

  4. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)

    2018-02-13

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.

  5. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  6. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  7. Challenges in licensing a sodium-cooled advanced recycling reactor

    International Nuclear Information System (INIS)

    Levin, Alan E.

    2008-01-01

    As part of the Global Nuclear Energy Partnership (GNEP), the U.S. Department of Energy (DOE) has focused on the use of sodium-cooled fast reactors (SFRs) for the destruction of minor actinides derived from used reactor fuel. This approach engenders an array of challenges with respect to the licensing of the reactor: the U.S. Nuclear Regulatory Commission (NRC) has never completed the review of an application for an operating license for a sodium-cooled reactor. Moreover, the current U.S. regulatory structure has been developed to deal almost exclusively with light-water reactor (LWR) designs. Consequently, the NRC must either (1) develop a new regulatory process for SFRs, or (2) reinterpret the existing regulations to apply them, as appropriate, to SFR designs. During the 1980s and 1990s, the NRC conducted preliminary safety assessments of the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Innovative Small Module (PRISM) designs, and in that context, began to consider how to apply LWR-based regulations to SFR designs. This paper builds on that work to consider the challenges, from the reactor designer's point of view, associated with licensing an SFR today, considering (1) the evolution of SFR designs, (2) the particular requirements of reactor designs to meet GNEP objectives, and (3) the evolution of NRC regulations since the conclusion of the SAFR and PRISM reviews. (author)

  8. The constructional design of cooling water discharge structures on German rivers

    International Nuclear Information System (INIS)

    Geldner, P.; Zimmermann, C.

    1975-11-01

    The present compilation of structures for discharging cooling water from power stations into rivers is an attempt to make evident developments in the constructional design of such structures and to give reasons for special structure shapes. A complete collection of all structures built in Germany, however, is difficult to realize because of the large number of power stations. For conventionally heated power stations therefore only a selection was made, while nuclear power stations in operation or under construction could almost completely be taken into account. For want of sufficient quantities of water for river water cooling, projected power stations are now almost exclusively designed for closed-circuit cooling so that the required discharge structures for elutrition water from the cooling towers as well as for the emergency and secondary cooling circuits have to be designed only for small amounts of water. (orig./HP) [de

  9. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  10. Auxiliary equipment for cooling water in a reactor

    International Nuclear Information System (INIS)

    Konno, Yasuhiro; Sakairi, Toshiaki.

    1975-01-01

    Object: To effectively make use of pressure energy of reactor water, which has heretofore been discarded, to enable supply of emergency power supply of high reliability and to prevent spreading of environmental contamination. Structure: Sea water pumped by a sea water supply pump is fed to a heat exchanger. Reactor water carried through piping on the side to be cooled is removed in heat by the heat exchanger to be cooled and returned, and then again returned to the reactor. On the other hand, sea water heated by the heat exchanger is fed to a water wheel to drive the water wheel, after which it is discharged into a discharging path. A generator may be directly connected to the water wheel to use the electricity generated by the generator as the emergency power source. (Kamimura, M.)

  11. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  12. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Science.gov (United States)

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  13. An improved water cooled nuclear reactor and pressuriser assembly

    International Nuclear Information System (INIS)

    Gardner, F.J.; Strong, R.

    1991-01-01

    A water cooled nuclear reactor is described which comprises a reactor core, a primary water coolant circuit and a pressuriser arranged as an integral unit in a pressure vessel. The pressure vessel is divided into an upper and a lower chamber by a casing. The reactor core and primary water coolant circuit are arranged in the lower chamber and the pressuriser is arranged in the upper chamber. A plurality of spray pipes interconnect a steam space of the pressuriser with the downcomer of the primary water coolant circuit below a heat exchanger. A plurality of surge ports interconnect a water space of the pressuriser with the primary water coolant circuit. The surge ports have hydraulic diodes so that there is a low flow resistance for water from the water space of the pressuriser to the primary water coolant circuit and high flow resistance in the opposite direction. The spray pipes provide a desuperheating spray of cooled water into the pressuriser during positive volume surges of the primary water coolant. The pressuriser arrangement may also be applied to integral water cooled reactors with separate pressurisers and to dispersed pressurised water reactors. The surge ports also allow water to flow by gravity to the core in an emergency. (author)

  14. Development of advanced boiling water reactor for medium capacity

    International Nuclear Information System (INIS)

    Kazuo Hisajima; Yutaka Asanuma

    2005-01-01

    This paper describes a result of development of an Advanced Boiling Water Reactor for medium capacity. 1000 MWe was selected as the reference. The features of the current Advanced Boiling Water Reactors, such as a Reactor Internal Pump, a Fine Motion Control Rod Drive, a Reinforced Concrete Containment Vessel, and three-divisionalized Emergency Core Cooling System are maintained. In addition, optimization for 1000 MWe has been investigated. Reduction in thermal power and application of the latest fuel reduced the number of fuel assemblies, Control Rods and Control Rod Drives, Reactor Internal Pumps, and Safety Relief Valves. The number of Main Steam lines was reduced from four to two. As for the engineered safety features, the Flammability Control System was removed. Special efforts were made to realize a compact Turbine Building, such as application of an in line Moisture Separator, reduction in the number of pumps in the Condensate and Feedwater System, and change from a Turbine-Driven Reactor Feedwater Pump to a Motor-Driven Reactor Feedwater Pump. 31% reduction in the volume of the Turbine Building is expected in comparison with the current Advanced Boiling Water Reactors. (authors)

  15. Water experiments on thermal striping in reactor vessel of advanced sodium-cooled fast reactor. Influence of flow collector of backup CR guide tube

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Ezure, Toshiki; Tanaka, Masaaki; Kamide, Hideki

    2016-01-01

    Design study of an advanced large-scale sodium-cooled fast reactor (SFR) has been conducted in JAEA. In the region between the bottom of the Upper Internal Structure (UIS) and the core outlet, the hot sodium from the fuel subassembly mixes with the cold sodium from the neighbor control rod (CR) channel. Therefore, temperature fluctuation due to mixing fluids at different temperatures may cause high cycle thermal fatigue at the bottom of the UIS. In the advanced design, installation of a flow guide structure named Flow-Collector (FC) to the backup control rod (BCR) guide tube is considered to enhance reliable operation of self-actuated shutdown system (SASS) and to ensure reactor shutdown operation. Previously, water experiments without the FC model had been examined in JAEA to investigate effective countermeasures to the significant temperature fluctuation generation at the bottom of the UIS. Since the FC may affect the thermal mixing behavior at the bottom of the UIS, influence of the FC on characteristics of the temperature fluctuation around the BCR channels was investigated using a water experimental facility with structure model of the FC. Through the experiment, small influence of the FC on the temperature fluctuation distribution at the bottom of the UIS was indicated. (author)

  16. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  17. Estimation of the amount of surface contamination of a water cooled nuclear reactor by cooling water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, G. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)]. E-mail: nagyg@sunserv.kfki.hu; Somogyi, A. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary); Patek, G. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Pinter, T. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Schiller, R. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)

    2007-06-15

    Calculations, based upon on-the-spot measurements, were performed to estimate the contamination of NPP primary circuit and spent fuel storage pool solid surfaces via the composition of the cooling water in connection with a non-nuclear incident in the Paks NPP. Thirty partially burnt-up fuel element bundles were damaged during a cleaning process, an incident which resulted in the presence of fission products in the cooling water of the cleaning tank (CT) situated in a separate pool (P1). Since this medium was in contact for an extended period of time with undamaged fuel elements to be used later and also with other structural materials of the spent fuel storage pool (SP), it was imperative to assess the surface contamination of these latter ones with a particular view to the amount of fission material. In want of direct methods, one was restricted to indirect information which rested mainly on the chemical and radiochemical data of the cooling water. It was found that (i) the most important contaminants were uranium, plutonium, cesium and cerium; (ii) after the isolation of P1 and SP and an extended period of filtering the only important contaminants were uranium and plutonium; (iii) the surface contamination of the primary circuit (PC) was much lower than that of either SP or P1; (iv) some 99% of the contamination was removed from the water by the end of the filtering process.

  18. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  19. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  20. An operational experience with cooling tower water system in chilling plant

    International Nuclear Information System (INIS)

    Rajan, Manju B.; Roy, Ankan; Ravi, K.V.

    2015-01-01

    Cooling towers are popular in industries as a very effective evaporative cooling technology for air conditioning. Supply of chilled water to air conditioning equipments of various plant buildings and cooling tower water to important equipments for heat removal is the purpose of chilling plant at PRPD. The cooling medium used is raw water available at site. Water chemistry is maintained by make-up and blowdown. In this paper, various observations made during plant operation and equipment maintenance are discussed. The issues observed was scaling and algal growth affecting the heat transfer and availability of the equipment. Corrosion related issues were observed to be less significant. Scaling indices were calculated to predict the behavior. (author)

  1. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  2. Forward osmosis applied to evaporative cooling make-up water

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Peter; Thompson, Neil; Gray, Victoria [Modern Water plc, Guildford (United Kingdom)

    2012-11-15

    Modern Water is in the process of developing a number of forward osmosis based technologies, ranging from desalination to power generation. This paper outlines the progress made to date on the development and commercial deployment of a forward osmosis based process for the production of evaporative cooling tower make-up water from impaired water sources, including seawater. Evaporative cooling requires significant amounts of good quality water to replace the water lost by evaporation, drift and blowdown. This water can be provided by conventional desalination processes or by the use of tertiary treated sewage effluent. The conventional processes are well documented and understood in terms of operation and power consumption. A new process has been successfully developed and demonstrated that provides make-up water directly, using a core platform 'forward osmosis' technology. This new technology shows significant promise in allowing various raw water sources, such as seawater, to be used directly in the forward osmosis step, thus releasing the use of scarce and valuable high grade water for other more important uses. The paper presents theoretical and operational results for the process, where it is shown that the process can produce make-up water at a fraction of the operational expenditure when compared to conventional processes, in particular regarding power consumption, which in some cases may be as low as 15 % compared to competing processes. Chemical additives to the cooling water (osmotic agent) are retained within the process, thus reducing their overall consumption. Furthermore the chemistry of the cooling water does not support the growth of Legionella pneumophila. Corrosion results are also reported. (orig.)

  3. Improving economics and safety of water cooled reactors. Proven means and new approaches

    International Nuclear Information System (INIS)

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  4. Improving economics and safety of water cooled reactors. Proven means and new approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  5. Preparation of high purification and food grade phosphoric acid from technical grade phosphoric acid by liquid-liquid detraction method

    International Nuclear Information System (INIS)

    Alimoradi, M.; Borji, F.; Kishani, A.

    2002-01-01

    Pay attention to increasing consumption of high purification and food grade phosphoric acid in various industries and food industries and on in on hand and lack of preparation between production and distribution of this products its purification is so vital. In this article of liquid-liquid extraction method with normal hexane-mixture of ammonia and acetone-diisopropyl alcohol and normal butanol solvents and these determination of distribution coefficient each one with ph-me try titration we can evaluate effectiveness and sufficiency each one. Because of proper coefficient distribution and its local production of normal butanol solvent and low price is the best solvent. To phosphoric acid modifying coefficient distribution for extraction of phosphoric acid we can add a little value sulfuric acid to the mixture and to remove flouride impurity we add a little Na 2 O. After extraction stage extracted phosphoric acid in the normal strips by evaluating with distilled water and then by passing the carbon active bed and following passes of cationic resine column and concentrated with vacuum distillation. Conclusion of this article is produce of phosphoric acid 85% w/w and food grade from impure phosphoric acid 52% w/w with technical grade

  6. Review on Water Distribution of Cooling Tower in Power Station

    Science.gov (United States)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  7. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  8. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  9. Water spray cooling technique applied on a photovoltaic panel: The performance response

    International Nuclear Information System (INIS)

    Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F.

    2016-01-01

    Highlights: • An experimental study was conducted on a monocrystalline photovoltaic panel (PV). • A water spray cooling technique was implemented to determine PV panel response. • The experimental results showed favorable cooling effect on the panel performance. • A feasibility aspect of the water spray cooling technique was also proven. - Abstract: This paper presents an alternative cooling technique for photovoltaic (PV) panels that includes a water spray application over panel surfaces. An alternative cooling technique in the sense that both sides of the PV panel were cooled simultaneously, to investigate the total water spray cooling effect on the PV panel performance in circumstances of peak solar irradiation levels. A specific experimental setup was elaborated in detail and the developed cooling system for the PV panel was tested in a geographical location with a typical Mediterranean climate. The experimental result shows that it is possible to achieve a maximal total increase of 16.3% (effective 7.7%) in electric power output and a total increase of 14.1% (effective 5.9%) in PV panel electrical efficiency by using the proposed cooling technique in circumstances of peak solar irradiation. Furthermore, it was also possible to decrease panel temperature from an average 54 °C (non-cooled PV panel) to 24 °C in the case of simultaneous front and backside PV panel cooling. Economic feasibility was also determined for of the proposed water spray cooling technique, where the main advantage of the analyzed cooling technique is regarding the PV panel’s surface and its self-cleaning effect, which additionally acts as a booster to the average delivered electricity.

  10. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy

  11. Evaluation of a Design Concept for the Combined Air-water Passive Cooling PAFS+

    International Nuclear Information System (INIS)

    Bae, Sung Won; Kwon, Taesoon

    2014-01-01

    The APR+ system provides the Passive Auxiliary Feed-water System (PAFS) for the passive cooling capability. However, the current design requirement for working time for the PAFS is about 8 hours only. Thus, current working time of PAFS can not meet the required 72 hours cooling capability for the long term SBO situation. To meet the 72 hours cooling, the pool capacity should be almost 3∼4 times larger than that of current water cooling tank. In order to continue the PAFS operation for 72 hours, a new passive air-water combined cooling system is proposed. This paper provides the feasibility study on the combined passive air-water cooling system. Figure 1 and 2 show the conceptual difference of the PAFS and combined passive air-water cooling system, respectively. Simple performance evaluation of the passive air cooling heat exchanger has been conducted by the MARS calculation. For the postulated FLB scenario, 4800 heat exchanger tubes and 5 m/s air velocity are not sufficient to sustain the PCCT pool level for 72 hour cooling. Further works on the system design and performance enhancing plan are required to fulfill the 72 hours long term passive cooling

  12. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  13. Passive cooling applications for nuclear power plants using pulsating steam-water heat pipes

    International Nuclear Information System (INIS)

    Aparna, J.; Chandraker, D.K.

    2015-01-01

    Gen IV reactors incorporate passive principles in their system design as an important safety philosophy. Passive safety systems use inherent physical phenomena for delivering the desired safe action without any external inputs or intrusion. The accidents in Fukushima have renewed the focus on passive self-manageable systems capable of unattended operation, for long hours even in extended station blackout (SBO) and severe accident conditions. Generally, advanced reactors use water or atmospheric air as their ultimate heat sink and employ passive principles in design for enhanced safety. This paper would be discussing the experimental results on pulsating steam water heat-pipe devices and their applications in passive cooling. (author)

  14. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  15. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  16. Radionuclides behaviour in the silts-water system of a cooling pond

    International Nuclear Information System (INIS)

    Ol'khovik, Yu.A.; Kostyuchenko, N.G.; Koromyslichenko, T.I.

    1989-01-01

    As a result of the Chernobyl' accident a considerable amount of radioisotopes (1-5x10 5 Ci) concentrated in a cooling pond. A year later the accident a level of water contamination decreased by 2 orders, whereas the radionuclide distribution changed perceptibly. Processes of water self-decontamination in the cooling pond were considered. A forecast of water radiactivity level in the cooling pond in the summer of 1988 was made. 3 refs.; 1 refs.; 2 tabs

  17. Pavement-Watering for Cooling the Built Environment: A Review

    OpenAIRE

    Hendel , Martin

    2016-01-01

    Pavement-watering is being considered by decision-makers in many cities as a means of cooling the built environment and of adapting to rising extreme heat events due to climate change. In this article we review the existing literature on the topic of pavement-watering. We first focus on the methodological choices made in the literature, including study approach and scale, watering methods used as well as how results are analyzed. We then discuss the cooling effects reported, separating micro-...

  18. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  19. Cooling tower make-up water processing for nuclear power plants: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Andres, O; Flunkert, F; Hampel, G; Schiffers, A [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Essen (Germany, F.R.)

    1977-01-01

    In water-cooled nuclear power plants, 1 to 2% of the total investment costs go to cooling tower make-up water processing. The crude water taken from rivers or stationary waters for cooling must be sufficiently purified regarding its content of solids, carbonate hardness and corrosive components so as to guarantee an operation free of disturbances. At the same time, the processing methods must be selected for operational-economic reasons in such a manner that waste water and waste problems are kept small regarding environmental protection. The various parameters described have a decisive influence on the processing methods of the crude water, individual processes (filtration, sedimentation, decarbonization) are described, circuit possibilities for cooling water systems are compared and the various processes are analyzed and compared with regard to profitableness and environmental compatability.

  20. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  1. Phosphors

    International Nuclear Information System (INIS)

    1975-01-01

    This invention relates to phosphors that can be used in fluorescent lamps and display devices. The phosphor is comprised of a halophosphate of calcium and/or strontium of apatite crystal structure activated with trivalent cerium and trivalent terbium. The phosphor can further include manganese. Preferably, the phosphor includes up to 10% by weight of one or more of the alkali metals lithium, sodium and potassium in the form of a compound or compounds thereof. The emissions appear as a number of fairly narrow discrete bands. The temperature of preparation is 1000degC (as opposed to the usual 1450degC), therefore reducing costs (less energy is needed, more crucibles are readily obtainable and there is no need for special conditions to enable crucibles to overcome thermal shock)

  2. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  3. Simulation study of air and water cooled photovoltaic panel using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  4. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  5. Cooling tower water conditioning study. [using ozone

    Science.gov (United States)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  6. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  7. Increasing photovoltaic panel power through water cooling technique

    Directory of Open Access Journals (Sweden)

    Calebe Abrenhosa Matias

    2017-02-01

    Full Text Available This paper presents the development of a cooling apparatus using water in a commercial photovoltaic panel in order to analyze the increased efficiency through decreased operating temperature. The system enables the application of reuse water flow, at ambient temperature, on the front surface of PV panel and is composed of an inclined plane support, a perforated aluminum profile and a water gutter. A luminaire was specially developed to simulate the solar radiation over the module under test in a closed room, free from the influence of external climatic conditions, to carry out the repetition of the experiment in controlled situations. The panel was submitted to different rates of water flow. The best water flow rate was of 0.6 L/min and net energy of 77.41Wh. Gain of 22.69% compared to the panel without the cooling system.

  8. White Light Emitting MZr4(PO4)6:Dy3+ (M = Ca, Sr, Ba) Phosphors for WLEDs.

    Science.gov (United States)

    Nair, Govind B; Dhoble, S J

    2017-03-01

    A series of MZr 4 (PO 4 ) 6 :Dy 3+ (M = Ca, Sr, Ba) phosphors were prepared by the solid state diffusion method. Confirmation of the phase formation and morphological studies were performed by X-ray powder diffraction (XRD) measurements and scanning electron microscopy, respectively. Photoluminescence (PL) properties of these phosphors were thoroughly analyzed and the characteristic emissions of Dy 3+ ions were found to arise from them at an excitation wavelength of 351 nm. The PL emission spectra of the three phosphors were analyzed and compared. The CIE chromaticity coordinates assured that the phosphors produced cool white-light emission and hence, they are potential candidates for UV excited white-LEDs (WLEDs). Graphical Abstract ᅟ.

  9. Reduction of Langelier index of cooling water by electrolytic ...

    African Journals Online (AJOL)

    LSI) of the cooling water from a cooling tower of a textile industry was investigated. Sacrificial anodes were employed which prevent obnoxious chlorine generation. A series of batch experiments using stainless steel electrodes were conducted ...

  10. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    Science.gov (United States)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  11. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  12. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  13. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  14. Creating prototypes for cooling urban water bodies

    NARCIS (Netherlands)

    Cortesoao, Joao; Klok, E.J.; Lenzholzer, Sanda; Jacobs, C.M.J.; Kluck, J.

    2017-01-01

    Abstract When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e

  15. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  16. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  17. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  18. Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.

    Science.gov (United States)

    Alkhader, Asad M F; Abu Rayyan, Azmi M

    2013-01-01

    A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.

  19. Distinct difference of flaA genotypes of Legionella pneumophila between isolates from bath water and cooling tower water.

    Science.gov (United States)

    Amemura-Maekawa, Junko; Kura, Fumiaki; Chang, Bin; Suzuki-Hashimoto, Atsuko; Ichinose, Masayuki; Endo, Takuro; Watanabe, Haruo

    2008-09-01

    To investigate the genetic difference of Legionella pneumophila in human-made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.

  20. District cool water distribution; Reseau urbain et distribution d`eau glacee

    Energy Technology Data Exchange (ETDEWEB)

    Schabaillie, D. [Ste Climespace (France)

    1997-12-31

    The city of Paris has developed several district cool water distribution networks (Climespace) for air conditioning purposes, one in the Halles district (central Paris) linked with the Louvre museum, one in the Opera district (with large department stores) and one in the east of paris (Bercy). Each of these networks has a cool water production plant, the one at the Halles producing also hot water and safety electric power. The characteristics of the equipment (heat pumps, refrigerating machinery, storage...) are described. The pipes are laid in the city sewage network, and the cool carrier is water. The various networks are centrally supervised at the Halles center

  1. [Removal and Recycle of Phosphor from Water Using Magnetic Core/Shell Structured Fe₃O₄ @ SiO₂Nanoparticles Functionalized with Hydrous Aluminum Oxide].

    Science.gov (United States)

    Lai, Li; Xie, Qiang; Fang, Wen-kan; Xing, Ming-chao; Wu, De-yi

    2016-04-15

    A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12.90 mg · g⁻¹ and nearly 96% phosphor could be rapidly removed within a contact time of 40 mm. Adsorption of phosphor on Fe₃O₄@ SiO₂@ Al₂O₃ · nH₂O was highly dependent on pH condition, and the favored pH range was 5-9 in which the phosphor removal rate was above 90%. In the treatment of sewage water, the recommended dosage was 1.25 kg · t⁻¹. In 5 cycles of adsorption-regeneration-desorption experiment, over 90% of the adsorbed phosphor could be desorbed with 1 mol · L⁻¹ NaOH, and Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O could be reused after regeneration by pH adjustment with slightly decreased phosphor removal rate with increasing recycling number, which proved the recyclability of Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O and thereby its potential in recycling of phosphor resources.

  2. Numerical study of coupled heat and mass transfer in geothermal water cooling tower

    International Nuclear Information System (INIS)

    Bourouni, K.; Bassem, M.M.; Chaibi, M.T.

    2008-01-01

    Cross flow mechanical cooling towers, widely spreads all over the south region of Tunisia are used for cooling geothermal water for agriculture and domestic ends. These towers are sized empirically and present several problems in regard to operation and electrical energy consumption. This work aims to study the thermal behaviour of this type of cooling towers through a developed mathematical model considering the variation of the water mass flow rate inside the tower. The analysis of the water and air temperatures distribution along the cooling tower had underlined the negative convection phenomenon at a certain height of the tower. This analysis has shown also that the difference in water temperature between the inlet and the outlet of the tower is much higher than the one of air due to the dominance of the evaporative potential compared to the convective one. In addition, the variations of the air humidity along the cooling tower and the quantity of evaporated water have been investigated. The loss of water by evaporation is found to be 5.1% of the total quantity of water feeding the cooling tower. Interesting future prospects are expected for validation of the developed model to optimize the operating of the cooling tower

  3. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  4. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  5. Improving the understanding of thermal-hydraulics and heat transfer for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, S.; Aksan, N.

    2010-01-01

    Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)

  6. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  7. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  8. Self-adaptive phosphor coating technology for wafer-level scale chip packaging

    International Nuclear Information System (INIS)

    Zhou Linsong; Rao Haibo; Wang Wei; Wan Xianlong; Liao Junyuan; Wang Xuemei; Zhou Da; Lei Qiaolin

    2013-01-01

    A new self-adaptive phosphor coating technology has been successfully developed, which adopted a slurry method combined with a self-exposure process. A phosphor suspension in the water-soluble photoresist was applied and exposed to LED blue light itself and developed to form a conformal phosphor coating with self-adaptability to the angular distribution of intensity of blue light and better-performing spatial color uniformity. The self-adaptive phosphor coating technology had been successfully adopted in the wafer surface to realize a wafer-level scale phosphor conformal coating. The first-stage experiments show satisfying results and give an adequate demonstration of the flexibility of self-adaptive coating technology on application of WLSCP. (semiconductor devices)

  9. The determinants of thermal comfort in cool water.

    Science.gov (United States)

    Guéritée, J; House, J R; Redortier, B; Tipton, M J

    2015-10-01

    Water-based activities may result in the loss of thermal comfort (TC). We hypothesized that in cooling water, the hands and feet would be responsible. Supine immersions were conducted in up to five clothing conditions (exposing various regions), as well as investigations to determine if a "reference" skin temperature (Tsk) distribution in thermoneutral air would help interpret our findings. After 10 min in 34.5 °C water, the temperature was decreased to 19.5 °C over 20 min; eight resting or exercising volunteers reported when they no longer felt comfortable and which region was responsible. TC, rectal temperature, and Tsk were measured. Rather than the extremities, the lower back and chest caused the loss of overall TC. At this point, mean (SD) chest Tsk was 3.3 (1.7) °C lower than the reference temperature (P = 0.005), and 3.8 (1.5) °C lower for the back (P = 0.002). Finger Tsk was 3.1 (2.7) °C higher than the reference temperature (P = 0.037). In cool and cooling water, hands and feet, already adapted to colder air temperatures, will not cause discomfort. Contrarily, more discomfort may arise from the chest and lower back, as these regions cool by more than normal. Thus, Tsk distribution in thermoneutral air may help understand variations in TC responses across the body. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Bonal, J.P.; Puma, A. Li; Michel, B.; Sardain, P.; Salavy, J.F.

    2005-01-01

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 o C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m 2 . Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials

  11. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)]. E-mail: luciano.giancarli@cea.fr; Bonal, J.P. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Puma, A. Li [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Michel, B. [CEA Cadarache, Direction de l' Energie Nucleaire, F-13108 St. Paul-les-Durances (France); Sardain, P. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Salavy, J.F. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)

    2005-11-15

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 {sup o}C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m{sup 2}. Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials.

  12. Fluid Induced Vibration Analysis of a Cooling Water Pipeline for the HANARO CNS

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Lee, Young Sub; Kim, Ik Soo; Kim, Young Ki

    2007-01-01

    CNS is the initial of Cold Neutron Source and the CNS facility system consists of hydrogen, a vacuum, a gas blanketing, a helium refrigeration and a cooling water supply system. Out of these subsystems, the helium refrigeration system has the function of removal of heat from a thermal neutron under reactor operation. Therefore, HRS (helium refrigeration system) must be under normal operation for the production of cold neutron. HRS is mainly made up of a helium compressor and a coldbox. This equipment is in need of cooling water to get rid of heat generation under stable operation and a cooling water system is essential to maintain the normal operation of a helium compressor and a coldbox. The main problem for the cooling water system is the vibration issue in the middle of operation due to a water flow in a pipeline. In order to suppress the vibration problem for a pipeline, the characteristics of a pipeline and fluid flow must be analyzed in detail. In this paper, fluid induced vibration of a cooling water pipe is analyzed numerically and the stability of the cooling water pipeline is investigated by using pipe dynamic theory

  13. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  14. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  15. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  16. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  17. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  18. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  19. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    Science.gov (United States)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  20. Practical applications of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescen...

  1. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  2. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Science.gov (United States)

    2010-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  3. Thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  4. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  5. Device for preventing cooling water from flowing out of reactor

    International Nuclear Information System (INIS)

    Chinen, Masanori; Kotani, Koichi; Murase, Michio.

    1976-01-01

    Object: To provide emergency cooling system, which can prevent cooling water bearing radioactivity from flowing to the outside of the reactor at the time of breakage of feedwater pipe, thus eliminating the possibility of exposure of the fuel rod to provide high reliability and also reducing the possibility of causing radioactive pollution. Structure: The device for preventing cooling water from flowing out from the reactor features a jet nozzle inserted in a feedwater pipe adjacent to the inlet or outlet thereof immediately before the reactor container. The nozzle outlet is provided in the vicinity of the reactor wall and in a direction opposite to the direction of out-flow, and water supplied from a high pressure pump is jetted from it. (Nakamura, S.)

  6. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  7. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    International Nuclear Information System (INIS)

    Jolley, R.L.; Cumming, R.B.; Pitt, W.W.; Taylor, F.G.; Thompson, J.E.; Hartmann, S.J.

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity

  8. Advanced Pumps and Cold Plates for Two-Phase Cooling Loops, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced instruments used for earth science missions require improved cooling systems to remove heat from high power electronic components and maintain tight...

  9. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    Energy Technology Data Exchange (ETDEWEB)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to

  10. The cooling water from Ringhals

    International Nuclear Information System (INIS)

    1980-10-01

    The Ringhals Nuclear Power Plant is situated on the Swedish west coast about 70 km south of Gothenburg. At present two units operate at a total maximum power level of 1580 MWE and their once-through cooling system requires 80 m 3 /sec sea water. The temperature of the cooling water increases approximately 10 deg C. This study assesses the spreading of the discharged cooling water in the ambient sea and is based on field data sampled since the end of 1974. About 50 thermal mappings were made in the area by boat or in some cases by aeroplane. Several continously recording current and temperature instruments were used. Water samples analysed for salinity, oxygen and turbidity were collected most of the time. Through the thermal mappings four main directions of the thermal plume were distinguished: northward along the coast (class 1A), northward further out (class 1B), westward and reversing plumes (class 2) and southward (class 3). The changing of the plume hour by hour between these main directions was measured by the recording temperature instruments. Data from almost one year gave the following statistics: 40 percent class 1A + 1B, 15 percent class 2, 25 percent class 3 and 20 percent undefined directions. Furthermore, available data showed that the direction of the ambient current mostly gave the plume direction. The wind, on the other hand, was more uncertain as an indicator of the plume direction. Owing to the varying ambient currents the plume changed its direction more than once a day. Measurable excess temperatures were found within a few kilometers wide zone from Stavder in the north to Norra Horta in the south. The largest measured area with excess temperatures of more than 1 deg C was 6 km 2 . Usually, however, the plume covered about 2.5 km 2 at full production at the power plant. As for the downward spreading, the bottom of the plume normally registrated down to 3-7 m, but occasionally it reached the 10 - 12 m level. The tendency of deep penetration

  11. Using containment analysis to improve component cooling water heat exchanger limits

    International Nuclear Information System (INIS)

    Da Silva, H.C.; Tajbakhsh, A.

    1995-01-01

    The Comanche Peak Steam Electric Station design requires that exit temperatures from the Component Cooling Water Heat Exchanger remain below 330.37 K during the Emergency Core Cooling System recirculation stage, following a hypothetical Loss of Coolant Accident (LOCA). Due to measurements indicating a higher than expected combination of: (a) high fouling factor in the Component Cooling Water Heat Exchanger with (b) high ultimate heat sink temperatures, that might lead to temperatures in excess of the 330.37 K limit, if a LOCA were to occur, TUElectric adjusted key flow rates in the Component Cooling Water network. This solution could only be implemented with improvements to the containment analysis methodology of record. The new method builds upon the CONTEMPT-LT/028 code by: (a) coupling the long term post-LOCA thermohydraulics with a more detailed analytical model for the complex Component Cooling Water Heat Exchanger network and (b) changing the way mass and energy releases are calculated after core reflood and steam generator energy is dumped to the containment. In addition, a simple code to calculate normal cooldowns was developed to confirm RHR design bases were met with the improved limits

  12. Improving of the photovoltaic / thermal system performance using water cooling technique

    International Nuclear Information System (INIS)

    Hussien, Hashim A; Numan, Ali H; Abdulmunem, Abdulmunem R

    2015-01-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%). (paper)

  13. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  14. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  15. On the substantion of permissible concentrations of plutonium isotopes in the water of fresh water and sea water NPP cooling reservoirs

    International Nuclear Information System (INIS)

    Grachev, M.I.; Gusev, D.I.; Stepanova, V.D.

    1985-01-01

    Substantiation of maximum permissible concentration (PC) of plutonium isotopes ( 238 Pu, 239 Pu, 240 Pu) in fresh and sea water cooling reservoirs of NPP with fast neutron reactors is given. The main criterion when calculating permissible plutonium content in water of surface reservoirs is the requirement not to exceed the established limits for radiation doses to persons resulted from water use. Data on coefficients of plutonium concentration in sea and fresh water hydrobionts are presented as well as on plutonium PC in water of fresh and sea water cooling reservoirs and bottom sediments of sea water cooling reservoirs. It is shown that doses to critical groups of population doesn't exceed potentially hazardous levels due to plutonium intake through food chains. But the calculation being carried out further should be corrected

  16. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  17. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  18. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  19. Corrosion evaluation of cooling-water treatments for gas centrifuge facilities

    International Nuclear Information System (INIS)

    Schmidt, C.R.; Meredith, P.F.

    1980-01-01

    The corrosion resistance of six different types of weighted metal coupons was evaluated at 29 0 C (84 0 F) in flowing water containing nitrite-borate-silicate corrosion inhibitors. The question for evaluation was whether it would be more advantageous: (1) to drain the treated cooling water from the centrifuge machine and to expose them to moisture-laden air over an assumed shop downtime and repair perid of 1 month; or (2) to let the treated cooling water remain stagnant in the machines during this downtime. The moisture-laden-air exposure was more detrimental

  20. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  1. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    Science.gov (United States)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P glucose and triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but plasma cortisol and thyroxine (T4) levels tended to be lower in non-cooled animals. This study suggests that low cooling temperature accompanied by high humidity influences a galactopoietic effect, in part through increases in ECF, blood volume and plasma volume in association with an increase in DMI, which partitions the distribution of nutrients to the mammary gland for milk synthesis. Cooled animals were unable to maintain high milk yield as lactation advances even though a high level of body fluids was maintained during long-term cooled exposure. The decline in milk yield, coinciding with a decrease in net energy for lactation as lactation advances, could be attributed to a local change within the mammary gland.

  2. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  3. IAEA coordinated research programme on heat transfer behavior and thermo-hydraulics code testing for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, Sama; Aksan, Nusret

    2009-01-01

    One of the key roles of the IAEA is to foster the collaboration among Member States on the development of advances in technology for advanced nuclear power plants. There is high international interest, both in developing and industrialized countries, in innovative supercritical water-cooled reactors (SCWRs), primarily because such concepts will achieve high thermal efficiencies (44-45%) and promise improved economic competitiveness utilizing and building upon the recent developments for highly efficient fossil power plants. The SCWR has been selected as one of the promising concepts for development by the Generation-IV International Forum. Following the advice of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA has recently started a Coordinated Research Programme (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The first Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna, Austria in July 2008. This paper summarizes the current status of the CRP, including the Integrated Research Plan and the general schedule for the CRP. (author)

  4. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  5. Passive safety systems and natural circulation in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2009-11-01

    Nuclear power produces 15% of the world's electricity. Many countries are planning to either introduce nuclear energy or expand their nuclear generating capacity. Design organizations are incorporating both proven means and new approaches for reducing the capital costs of their advanced designs. In the future most new nuclear plants will be of evolutionary design, often pursuing economies of scale. In the longer term, innovative designs could help to promote a new era of nuclear power. Since the mid-1980s it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially improve economics of new nuclear power plant designs. The IAEA Conference on The Safety of Nuclear Power: Strategy for the Future, which was convened in 1991, noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Some new designs also utilize natural circulation as a means to remove core power during normal operation. The use of passive systems can eliminate the costs associated with the installation, maintenance, and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are conducted in several IAEA Member States with advanced reactor development programmes. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, the IAEA

  6. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  7. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  8. Economic competitiveness requirements for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Hudson, C.R.; Bertel, E.; Paik, K.H.; Roh, J.H.; Tort, V.

    1999-01-01

    This paper analyses the necessary economic conditions for evolutionary water cooled reactors to be competitive. Utilising recent national cost data for fossil-fired base load plants expected to be commissioned by 2005 -2010, target costs for nuclear power plants are discussed. Factors that could contribute to the achievement of those targets by evolutionary water cooled reactors are addressed. The feed-back from experience acquired in implementing nuclear programmes is illustrated by some examples from France and the Republic of Korea. The paper discusses the impacts on nuclear power competitiveness of globalisation and deregulation of the electricity market and privatisation of the electricity sector. In addition, issues related to external cost internalisation are considered. (author)

  9. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  10. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  11. Structural integrity investigation for RPV with various cooling water levels under pressurized melting pool

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-03-01

    Full Text Available The strategy denoted as in-vessel retention (IVR is widely used in severe accident (SA management by most advanced nuclear power plants. The essence of IVR mitigation is to provide long-term external water cooling in maintaining the reactor pressure vessel (RPV integrity. Actually, the traditional IVR concept assumed that RPV was fully submerged into the water flooding, and the melting pool was depressurized during the SA. The above assumptions weren't seriously challenged until the occurrence of Fukushima accident on 2011, suggesting the structural behavior had not been appropriately assessed. Therefore, the paper tries to address the structure-related issue on determining whether RPV safety can be maintained or not with the effect of various water levels and internal pressures created from core meltdown accident. In achieving it, the RPV structural behaviors are numerically investigated in terms of several field parameters, such as temperature, deformation, stress, plastic strain, creep strain, and total damage. Due to the presence of high temperature melt on the inside and water cooling on the outside, the RPV failure is governed by the failure mechanisms of creep, thermal-plasticity and plasticity. The creep and plastic damages are interacted with each other, which further accelerate the failure process. Through detailed investigation, it is found that the internal pressure as well as water levels plays an important role in determining the RPV failure time, mode and site.

  12. Design measures in evolutionary water cooled reactors to optimize for economic viability

    International Nuclear Information System (INIS)

    Oh, S.J.; Yu, S.K.W.; Appell, B.

    1999-01-01

    Since the mid 1980s, there have been various efforts to develop evolutionary water cooled reactors based on the current operating plant experience. To sustain and improve the economic viability, particular attention has been paid to the following aspects in developing evolutionary water cooled reactors: design simplification and increased operating margins, standardization in design as well as construction and operation, integration of operating plant insights, and consideration of safety, operability and constructability during the design stage. This paper reviews each item and discusses several examples from some of the evolutionary water cooled reactors being developed. (author)

  13. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  14. Engineering and economic evaluation of wet/dry cooling towers for water conservation

    International Nuclear Information System (INIS)

    Hu, M.C.

    1976-11-01

    The results are presented of a design and cost study for wet/dry tower systems used in conjunction with 1000 MWe nuclear power plants to reject waste heat while conserving water. Design and cost information for wet/dry tower systems are presented, and these cooling system alternatives are compared with wet and dry tower systems to determine whether the wet/dry tower concept is an economically viable alternative. The wet/dry cooling tower concept investigated is one which combines physically separated wet towers and dry towers into an operational unit. In designing the wet/dry tower, a dry cooling tower is sized to carry the plant heat load at low ambient temperatures, and a separate wet tower is added to augment the heat rejection of the dry tower at higher ambient temperatures. These wet/dry towers are designed to operate with a conventional low back pressure turbine commercially available today. The component wet and dry towers are state-of-the-art designs. From this study it was concluded that: wet/dry cooling systems can be designed to provide a significant economic advantage over dry cooling yet closely matching the dry tower's ability to conserve water, a wet/dry system which saves as much as 99 percent of the make-up water required by a wet tower can maintain that economic advantage, and therefore, for power plant sites where water is in short supply, wet/dry cooling is the economic choice over dry cooling

  15. COGNITIVE AND PHYSIOLOGICAL INITIAL RESPONSES DURING COOL WATER IMMERSION

    Directory of Open Access Journals (Sweden)

    Alex Buoite Stella

    2014-12-01

    Full Text Available The initial responses during water immersion are the first mechanisms reacting to a strong stimulation of superficial nervous cold receptors. Cold shock induces tachycardia, hypertension, tachypnea, hyperventilation, and reduced end-tidal carbon dioxide fraction. These initial responses are observed immediately after the immersion, they last for about 3 min and have been also reported in water temperatures up to 25 °C. the aim of the present study was to observe cognitive and physiological functions during immersion in water at cool temperature. Oxygen consumption, ventilation, respiratory frequency, heart rate and expired fraction of oxygen were measured during the experiment. A code substitution test was used to evaluate executive functions and, specifically, working memory. This cognitive test was repeated consecutively 6 times, for a total duration of 5 minutes. Healthy volunteers (n = 9 performed the test twice in a random order, once in a dry thermoneutral environment and once while immersed head-out in 18 °C water. The results indicated that all the physiological parameters were increased during cool water immersion when compared with the dry thermoneutral condition (p < 0.05. Cognitive performance was reduced during the cool water immersion when compared to the control condition only during the first 2 min (p < 0.05. Our results suggest that planning the best rescue strategy could be partially impaired not only because of panic, but also because of the cold shock.

  16. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  17. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  18. Development in cooling water intake and outfall systems for atomic or steam power stations

    International Nuclear Information System (INIS)

    Wada, Akira

    1987-01-01

    The condenser cooling water channel, in its functional aspects, is an important structure for securing a stable supply of cooling water. In its design it is necessary to give a thorough-going study to a reduction of ranges affected by discharged warm water and minimizing the effect of discharged water on navigating ships, and in its functional aspects as a structure for power generation, avoiding the recirculation of discharged warm water as well as to maintaining the operation of power stations in case of abnormalities (concentration of dirts owing to typhoons and floods, outbreak of a large amount of jellyfishes, etc.), and all these aspects must be reflected in the design of cooling water channel systems. In this paper, the present situation relating to the design of cooling water intake and outfall systems in Japan is discussed. (author). 10 figs

  19. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  20. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  1. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  2. Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Greuner, Henri [Max Planck Institute for Plasma Physics, Garching, Germany; Ehrke, Gunnar [Max Planck Institute of Plasma Physics, Greifswald, Germany; Boeswirth, Bernd [Max Planck Institute for Plasma Physics, Garching, Germany; Wang, Zhongwei [Max Planck Institute for Plasma Physics, Garching, Germany; Clark, Emily [The University of Tennessee, Knoxville; Lumsdaine, Arnold [ORNL; Tretter, Jorg [Max Planck Institute for Plasma Physics, Garching, Germany; Junghanns, Patrick [Max Planck Institute for Plasma Physics, Garching, Germany; Stadler, Reinhold [Max Planck Institute for Plasma Physics, Garching, Germany; McGinnis, William Dean [ORNL; Lore, Jeremy D. [ORNL; Team, W7-X [Max-Planck-Institut fur Plasmaphysik, Griefswald, Germany

    2018-04-01

    Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipes of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.

  3. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    Science.gov (United States)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  4. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  5. Fluoride removal performance of phosphoric acid treated lime ...

    African Journals Online (AJOL)

    Fluoride in drinking water above permissible levels is responsible for dental and skeletal fluorosis. In this study, removal of fluoride ions from water using phosphoric acid treated lime was investigated in continuous and point-of-use system operations. In the continuous column operations, fluoride removal performance was ...

  6. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  7. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.

    Science.gov (United States)

    McDermott, Brendon P; Casa, Douglas J; Ganio, Matthew S; Lopez, Rebecca M; Yeargin, Susan W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.

  8. A water-cooling solution for PC-racks of the LHC experiments

    CERN Document Server

    Vannerem, P

    2004-01-01

    With ever increasing power consumption and heat dissipation of todays CPUs, cooling of rack-mounted PCs is an issue for the future online farms of the LHC experiments. In order to investigate the viability of a water-cooling solution, a prototype PC-farm rack has been equipped with a commercially available retrofitted heat exchanger. The project has been carried out as a collaboration of the four LHC experiments and the PH-ESS group . This note reports on the results of a series of cooling and power measurements of the prototype rack with configurations of 30 to 48 PCs. The cooling performance of the rack-cooler is found to be adequate; it extracts the heat dissipated by the CPUs efficiently into the cooling water. Hence, the closed PC rack transfers almost no heat into the room. The measurements and the failure tests show that the rack-cooler concept is a viable solution for the future PC farms of the LHC experiments.

  9. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  10. Oxidizer in phosphoric reactors

    International Nuclear Information System (INIS)

    Santos Benedetto, J. dos

    1985-01-01

    Oxidation during the manufacture of wet-process phosphoric acid affected the distribution of uranium and impurities between phosphoric acid and gypsum, by decreasing the uranium loss to gypsum and the impurities solubilization in phosphoric acid. (Author) [pt

  11. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshd@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarty, Aranyak [School of Nuclear Studies and Application, Jadavpur University, Kolkata 700032 (India); Nayak, A.K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Prasad, Hari; Gopika, V. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-10-15

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components.

  12. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Chakravarty, Aranyak; Nayak, A.K.; Prasad, Hari; Gopika, V.

    2014-01-01

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components

  13. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  14. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  15. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  16. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  17. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  18. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  19. Study of phosphoric acid crystallization using a focused beam reflectance measurement method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yong [School of Chemistry and Resource Environment, Linyi Normal University, Linyi Shandong 276005 (China); Chen, Kui; Wu, Yanyang; Zhu, Jiawen [Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237 (China); Sheng, Yong [SINOCHEN Fuling Chemical Industrial Co., Ltd, Chongqing 226005 (China)

    2010-10-15

    A way for restoring the crystal size distributions (CSD) from measured chord length distributions (CLD) was reported in this paper. The kinetics of phosphoric acid crystallization process was investigated in cooling mode using focused beam reflectance measurement (FBRM) and digital photo technique. In order to restore the CSD from measured CLD and verify the reliability of FBRM data, digital photo technique in real time and optical microscope were applied in large crystal size and small range, respectively. Results indicated a converting constant A existed between CLD and CSD when crystal growth follows size-independent growth (Mcabe's {delta}L law) law. It was verified by Malvern particles size analysis method. The converting constant A varied with crystal morphology. The crystal growth order increased with the stirring increasing speed during phosphoric acid crystallization process. The trend was especially notable at higher speed situations. It can illustrate that the state of phosphoric acid hemihydrate crystal growth was controlled by both diffusion and surface-integration with the increasing stirring speed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Indiana State University Graduates to Advanced Plastic Cooling Towers

    Science.gov (United States)

    Sullivan, Ed

    2012-01-01

    Perhaps more than many other industries, today's universities and colleges are beset by dramatically rising costs on every front. One of the areas where overhead can be contained or reduced is in the operation of the chilled water systems that support air conditioning throughout college campuses, specifically the cooling towers. Like many…

  1. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  2. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  3. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Seokho H.; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  4. Releases from the cooling water system in the Waste Tank Farm

    International Nuclear Information System (INIS)

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases

  5. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  6. Minimization of radioactive material deposition in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Ruiz, C.P.; Blaies, D.M.

    1988-01-01

    This patent describes the method for inhibiting the deposition of radioactive cobalt in a water-bearing vessel of a water-cooled nuclear reactor which comprises adding zinc ion to water entering the water-bearing vessel. The improvement contains a substantially lower proportion of the /sup 64/Zn isotope than naturally occurring zinc

  7. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  8. Effect of horizontal flow on the cooling of the moderator brick in the advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    Ganesan, P.; He, S.; Hamad, F.; Gotts, J.

    2011-01-01

    The paper reports an investigation of the effect of the horizontal cross flow on the temperature of the moderator brick in UK Advanced Gas-cooled Reactor (AGR) using computational fluid dynamics (CFD) with a conjugate heat transfer model for the solid and fluid. The commercial software package of ANSYS Fluent is used for this purpose. The CFD model comprises the full axial length of one-half of a typical fuel channel (assuming symmetry) and part of neighbouring channels on either side. Two sets of simulations have been carried out, namely, one with cross flow and one without cross flow. The effect of cross flow has subsequently been derived by comparing the results from the two groups of simulations. The study shows that a small cross flow can have a significant effect on the cooling of the graphite brick, causing the peak temperature of the brick to reduce significantly. Two mechanisms are identified to be responsible for this. Firstly, the small cross flow causes a significant redistribution of the main axial downward flow and this leads to an enhancement of heat transfer in some of the small clearances, and an impairment in others although overall, the enhancement is dominant leading to a better cooling. Secondly, the cross flow makes effective use of the small clearances between the key/keyway connections which increases the effective heat transfer area, hence increasing the cooling. Under the conditions of no cross flow, these areas remain largely inactive in heat transfer. The study shows that the cooling of the moderator is significantly enhanced by the cross flow perpendicular to the main cooling flow. (author)

  9. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    Science.gov (United States)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  10. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  11. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  12. Material System Engineering for Advanced Electrocaloric Cooling Technology

    Science.gov (United States)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  13. Some aspects of cooling water discharges and environmental enhancement

    International Nuclear Information System (INIS)

    Grimaas, U.

    1976-01-01

    As a consequence of the effects of cooling water discharge on the environment, the siting of nuclear power plants is approached with cautiousness. The pros and cons are discussed of siting near bodies of good quality water or in more densely populated or industrial areas. Properties and effects of thermal discharges are elaborated. The effects of heat on the activity of individual organisms, on the accumulation of organic material, on the mineralization rate of organic matter and on the transport of oxygen all have influences on recipient water bodies. Examples of siting Swedish thermal power stations are described and these indicate some negative effects. However, the results do not repudiate the possibility of good effects from the design of new cooling water intake and discharge systems that would speed up the mineralization of organic matters by addition of heat and oxygen. It is concluded that, when choosing between possible sites, areas should be selected where the available energy of the discharge can be used to improve water quality. (author)

  14. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    Science.gov (United States)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  15. Development of an improved two-cycle process for recovering uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Chen, H.M.; Chen, H.J.; Tsai, Y.M.; Lee, T.W.; Ting, G.

    1987-01-01

    An improved two-cycle separation process for the recovery of uranium from wet-process phosphoric acid by extraction with bis(2-ethylhexyl)phosphoric acid (D2EHPA) plus dibutyl butylphosphonate (DBBP) in kerosene has been developed and demonstrated successfully in bench-scale, continuous mixer-settler tests. The sulfuric acid and water scrubbing steps for the recycled extraction in the second cycle solve the problems of the contamination and dilution of the phosphoric acid by the ammonium ion and water and also avoid the formation of undesirable phosphatic precipitates during the subsequent extraction of uranium by recycled organic extractant

  16. The cryogenic cooling program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80 degrees. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 μrad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ''thin'' crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K

  17. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  18. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  19. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  20. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    International Nuclear Information System (INIS)

    Goodarzi, Mohsen; Amooie, Hossein

    2016-01-01

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  1. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Iftikhar, A.; Mir, N.

    2010-01-01

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  2. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  3. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  4. Calculating the evaporated water flow in a wet cooling tower

    International Nuclear Information System (INIS)

    Grange, J.L.

    1994-04-01

    On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs

  5. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  6. Feasibility analysis of the modified ATHLET code for supercritical water cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chong, E-mail: ch.zhou@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany); Yang Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cheng Xu [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Modification of system code ATHLET for supercritical water application. Black-Right-Pointing-Pointer Development and assessment of a heat transfer package for supercritical water. Black-Right-Pointing-Pointer Validation of the modified code at supercritical pressures with the theoretical point-hydraulics model and the SASC code. Black-Right-Pointing-Pointer Application of the modified code to LOCA analysis of a supercritical water cooled in-pile fuel qualification test loop. - Abstract: Since the existing thermal-hydraulic computer codes for light water reactors are not applicable to supercritical water cooled reactors (SCWRs) owing to the limitation of physical models and numerical treatments, the development of a reliable thermal-hydraulic computer code is very important to design analysis and safety assessment of SCWRs. Based on earlier modification of ATHLET for SCWR, a general interface is implemented to the code, which serves as the platform for information exchange between ATHLET and the external independent physical modules. A heat transfer package containing five correlations for supercritical water is connected to the ATHLET code through the interface. The correlations are assessed with experimental data. To verify the modified ATHLET code, the Edwards-O'Brian blow-down test is simulated. As first validation at supercritical pressures, a simplified supercritical water cooled loop is modeled and its stability behavior is analyzed. Results are compared with that of the theoretical model and SASC code in the reference and show good agreement. To evaluate its feasibility, the modified ATHLET code is applied to a supercritical water cooled in-pile fuel qualification test loop. Loss of coolant accidents (LOCAs) due to break of coolant supply lines are calculated for the loop. Sensitivity analysis of some safety system parameters is performed to get further knowledge about their influence on the function of the

  7. Fuel cycles and advanced core designs for the Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Simon, R.H.; Hamilton, C.J.; Hunter, R.S.

    1982-01-01

    Studies indicate that a 1200 MW(e) Gas-Cooled Fast Breeder Reactor could achieve compound system doubling times of under ten years when using advanced oxide or carbide fuels. In addition, when thorium is used in the breeding blankets, enough U-233 can be generated in each GCFR to supply several advanced converter reactors with fissionable material and this symbiotic relationship could provide energy for the world for centuries. (author)

  8. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    Science.gov (United States)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  9. A water-cooled x-ray monochromator for using off-axis undulator beam

    International Nuclear Information System (INIS)

    Khounsary, A.; Maser, J.

    2000-01-01

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided

  10. The Advancement of Cool Roof Standards in China from 2010 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  11. The key design features of the Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sinha, R.K.; Kakodkar, A.; Anand, A.K.; Venkat Raj, V.; Balakrishnan, K.

    1999-01-01

    The 235 MWe Indian Advanced Heavy Water Reactor (AHWR) is a vertical, pressure tube type, boiling light water cooled reactor. The three key specific features of design of the AHWR, having a large impact on its viability, safety and economics, relate to its reactor physics, coolant channel, and passive safety features. The reactor physics design is tuned for maximising use of thorium based fuel, and achieving a slightly negative void coefficient of reactivity. The fulfilment of these requirements has been possible through use of PuO 2 -ThO 2 MOX, and ThO 2 -U 233 O 2 MOX in different pins of the same fuel cluster, and use of a heterogeneous moderator consisting of pyrolytic carbon and heavy water in 80%-20% volume ratio. The coolant channels of AHWR are designed for easy replaceability of pressure tubes, during normal maintenance shutdowns. The removal of pressure tube along with bottom end-fitting, using rolled joint detachment technology, can be done in AHWR coolant channels without disturbing the top end-fitting, tail pipe and feeder connections, and all other appendages of the coolant channel. The AHWR incorporates several passive safety features. These include core heat removal through natural circulation, direct injection of Emergency Core Coolant System (ECCS) water in fuel, passive systems for containment cooling and isolation, and availability of a large inventory of borated water in overhead Gravity Driven Water Pool (GDWP) to facilitate sustenance of core decay heat removal, ECCS injection, and containment cooling for three days without invoking any active systems or operator action. Incorporation of these features has been done together with considerable design simplifications, and elimination of several reactor grade equipment. A rigorous evaluation of feasibility of AHWR design concept has been completed. The economy enhancing aspects of its key design features are expected to compensate for relative complexity of the thorium fuel cycle activities

  12. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  13. Microbial speciation and biofouling potential of cooling water used by Ontario Hydro

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-02-01

    The cooling water composition and microbial components of biofilms attached to stainless steel wafers submerged in three lake water types were evaluated to determine whether their biofouling potential differed in a predictable manner. The composition of the lake waters was different which affected biofilm composition, where the predominance of specific microbial groups varied between test systems and with time. Some prediction of biofouling potential was possible, and it was concluded that the cooling water in the vicinity of Bruce NGS had the lowest biofouling potential whereas greater biofouling could be expected in the Pickering and Nanticoke stations

  14. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  15. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  17. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon S.; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC

  18. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  19. Process engineering challenges of uranium extraction from phosphoric acid on industrial scale

    International Nuclear Information System (INIS)

    Mouriya, Govind; Singh, Dhirendra; Nath, A.K.; Majumdar, D.

    2014-01-01

    Heavy Water Board (HWB) is a constituent unit of the Department of Atomic Energy. One of the diversified activities undertaken by HWB is pursuing exploitation of non-conventional resources for recovery of uranium from wet phosphoric acid being the most prominent one. Amongst the feasible processes for recovery of uranium from phosphoric acid is solvent extraction. Use of in-house solvent produced by HWB, is another key driver. To garner necessary information for developing the industrial scale facilities, the process has been studied in the laboratory scale, mini scale, bench scale at Heavy Water Plant, Talcher. The process was subsequently scaled up to an industrial prototype scale unit and was set up as a Technology Demonstration Plant coupled with a commercial phosphoric acid plant. The plant has successfully processed more than 2 lakh m 3 of wet phosphoric acid and all the parameters including the product, Yellow Cake have been qualified. No adverse effect has been observed in the fertilizer produced. The main characteristics of the process and subsequent process innovations are discussed in this paper. These innovations have been carried out to overcome hurdles faced during commissioning and subsequent operations of the Plant. The innovations include improved pretreatment of the wet phosphoric acid for feeding to the extraction cycle, improved control of the first cycle chemical environment, reducing the strength of the phosphoric acid used for stripping, reducing the number of equipment and machineries, alteration in solvent composition used in the first and second cycle in the solvent extraction units of the plant. (author)

  20. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    International Nuclear Information System (INIS)

    Novakova, A.A.; Pargamotnikas, S.A.; Taseva, V.; Dobbrevsky, I.; Nenov, V.; Bonev, B.

    1998-01-01

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  1. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  2. Natural circulation data and methods for advanced water cooled nuclear power plant designs. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The complex set of physical phenomena that occur in a gravity environment when a geometrically distinct heat sink and heat source are connected by a fluid flow path can be identified as natural circulation (NC). No external sources of mechanical energy for the fluid motion are involved when NC is established. Within the present context, natural convection is used to identify the phenomena that occur when a heat source is put in contact with a fluid. Therefore, natural convection characterizes a heat transfer regime that constitutes a subset of NC phenomena. This report provides the presented papers and summarizes the discussions at an IAEA Technical Committee Meeting (TCM) on Natural Circulation Data and Methods for innovative Nuclear Power Plant Design. While the planned scope of the TCM involved all types of reactor designs (light water reactors, heavy water reactors, gas-cooled reactors and liquid metal-cooled reactors), the meeting participants and papers addressed only light water reactors (LWRs) and heavy water reactors (HWRs). Furthermore, the papers and discussion addressed both evolutionary and innovative water cooled reactors, as defined by the IAEA. The accomplishment of the objectives of achieving a high safety level and reducing the cost through the reliance on NC mechanisms, requires a thorough understanding of those mechanisms. Natural circulation systems are usually characterized by smaller driving forces with respect to the systems that use an external source of energy for the fluid motion. For instance, pressure drops caused by vertical bends and siphons in a given piping system, or heat losses to environment are a secondary design consideration when a pump is installed and drives the flow. On the contrary, a significant influence upon the overall system performance may be expected due to the same pressure drops and thermal power release to the environment when natural circulation produces the coolant flow. Therefore, the level of knowledge for

  3. Natural circulation data and methods for advanced water cooled nuclear power plant designs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-04-01

    The complex set of physical phenomena that occur in a gravity environment when a geometrically distinct heat sink and heat source are connected by a fluid flow path can be identified as natural circulation (NC). No external sources of mechanical energy for the fluid motion are involved when NC is established. Within the present context, natural convection is used to identify the phenomena that occur when a heat source is put in contact with a fluid. Therefore, natural convection characterizes a heat transfer regime that constitutes a subset of NC phenomena. This report provides the presented papers and summarizes the discussions at an IAEA Technical Committee Meeting (TCM) on Natural Circulation Data and Methods for innovative Nuclear Power Plant Design. While the planned scope of the TCM involved all types of reactor designs (light water reactors, heavy water reactors, gas-cooled reactors and liquid metal-cooled reactors), the meeting participants and papers addressed only light water reactors (LWRs) and heavy water reactors (HWRs). Furthermore, the papers and discussion addressed both evolutionary and innovative water cooled reactors, as defined by the IAEA. The accomplishment of the objectives of achieving a high safety level and reducing the cost through the reliance on NC mechanisms, requires a thorough understanding of those mechanisms. Natural circulation systems are usually characterized by smaller driving forces with respect to the systems that use an external source of energy for the fluid motion. For instance, pressure drops caused by vertical bends and siphons in a given piping system, or heat losses to environment are a secondary design consideration when a pump is installed and drives the flow. On the contrary, a significant influence upon the overall system performance may be expected due to the same pressure drops and thermal power release to the environment when natural circulation produces the coolant flow. Therefore, the level of knowledge for

  4. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  5. Study on neutronics performance of flower shape advanced supercritical water cooled fast reactor with different solid moderators

    International Nuclear Information System (INIS)

    Yu Tao; Li Zhifeng; Xie Jinsen; Peng Honghua

    2015-01-01

    The supercritical water cooled fast reactors worked at such harsh condition with high temperature and high pressure, huge hydrogen balance pressure and thermal shock can result in a great loss of hydrogen. The released hydrogen would be out of control under accident situations. K_e_f_f, conversion ratio, moderator temperature effect, Doppler effect and void effect of different material such as ZrH_1_._7, Bp, BeO, C and SiC are discussed. BeO and SiC hold better integrated performance among these materials. Besides, moderators have less effect on the Doppler effect of fuel. (authors)

  6. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Mikhaj, V.I.

    1985-01-01

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  7. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  8. Technologies for improving the availability and reliability of current and future water cooled nuclear power plants. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    One of the activities of the IAEA is to provide all Member States with an international source of balanced, objective information on advanced in technology for water cooled reactors. Since the global nuclear industry has a common interest in improving plant availability and reliability to assure specific individual plant and country perspective as well as to have an image of well managed competitive industry, the IAEA held a Technical Committee Meeting on Technologies for Improving the Availability and Reliability of Current and Future Water Cooled Nuclear Power Plants in September 1997. The basic aim to was to identify, review and exchange information on international developments in technologies for achieving high availability and reliability and to suggest areas where further technical advances could contribute to improvement of performance. Designs for future plants were presented in the context of how they can accommodate both the organizational and technical means for reaching even higher levels of performance. This proceedings contains the contributed papers presented at this Meeting each with a separate abstract. Four sessions were concerned with: policies, practices and procedures for achieving high reliability and availability; improving availability and reliability through better use of today`s technologies; recent advances in technologies for improving availability and reliability; achieving high availability for new plants Refs, figs, tabs

  9. Technologies for improving the availability and reliability of current and future water cooled nuclear power plants. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-11-01

    One of the activities of the IAEA is to provide all Member States with an international source of balanced, objective information on advanced in technology for water cooled reactors. Since the global nuclear industry has a common interest in improving plant availability and reliability to assure specific individual plant and country perspective as well as to have an image of well managed competitive industry, the IAEA held a Technical Committee Meeting on Technologies for Improving the Availability and Reliability of Current and Future Water Cooled Nuclear Power Plants in September 1997. The basic aim to was to identify, review and exchange information on international developments in technologies for achieving high availability and reliability and to suggest areas where further technical advances could contribute to improvement of performance. Designs for future plants were presented in the context of how they can accommodate both the organizational and technical means for reaching even higher levels of performance. This proceedings contains the contributed papers presented at this Meeting each with a separate abstract. Four sessions were concerned with: policies, practices and procedures for achieving high reliability and availability; improving availability and reliability through better use of today's technologies; recent advances in technologies for improving availability and reliability; achieving high availability for new plants

  10. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  11. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  12. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  13. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...... air an improvement of 37% was achieved. The cooling demand should be minimized in the design phase as a priority and then the resulting cooling load should be addressed with the most energy efficient cooling strategy. The floor cooling coupled with a ground heat exchanger was shown to be an effective...

  15. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  16. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  17. PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    Duo You

    2016-03-01

    Full Text Available Phosphorous slag is an industrial waste which potentially pollutes environments. The aim of the present work is to use phosphorous slag as a raw material to produce alkali-activated cement. The influence of mix proportion of phosphorous slag and fly ash, alkali content and modulus of water glass on the properties of alkali-activated phosphorous slag and fly ash cement (AA-PS-FA-C was studied. The results show that AA-PS-FA-C with normal setting performance and desirable mechanical properties can be prepared using water glass as the activator. Changing the fly ash content in the range of 0-40 wt% has only a small influence on the setting time of AA-PS-FA-C. The strengths significantly decrease when the fly ash content exceeds 30 wt%. The carbonation resistance of AA-PS-FA-C is similar to that of ordinary Portland cement (OPC, while the frost resistance is much better. The hardened paste of AA-PS-FA-C is much more compact than OPC paste.

  18. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  19. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  20. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  1. Structure and thermal analysis of the water cooling mask at NSRL front end

    International Nuclear Information System (INIS)

    Zhao Feiyun; Xu Chaoyin; Wang Qiuping; Wang Naxiu

    2003-01-01

    A water cooling mask is an important part of the front end, usually used for absorbing high power density synchrotron radiation to protect the apparatus from being destroyed by heat load. This paper presents the structure of the water cooling mask and the thermal analysis results of the mask block at NSRL using Program ANSYS5.5

  2. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  3. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  4. Heat dissipation research on the water-cooling channel of HL-2M in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J., E-mail: jiangjiaming@swip.ac.cn; Liu, Y.; Chen, Q.; Ji, X.Q.

    2017-04-15

    Highlights: • The joule heat of in-vessel coils is very difficult to dissipate inside HL-2M vacuum vessel. • Heat dissipation model of the coil includes the joule heat model, the heat conduction model and the heat transfer model. • The CFD analysis has been done for the coil-water cooling, with comparison with the date of theoretical analysis and experiment. • The result shows water-cooling channel is good for the joule heat transfer and taken away. - Abstract: HL-2M in-vessel coils are positioned in high vacuum circumstance, and they will generate joule heat when they carry 15 kA electrical current, but joule heat is very difficult to dissipate in vacuum, so a hollow cable with 8 mm inner diameter is design as water-cooling channel for heat convection. By using the methods of the theoretical derivation, together with CFD numeric simulation method and the experiment of the heat transfer, the water channel of HL-2M in-vessel coils has been studied, and the temperature of HL-2M in-vessel coils under different cooling water flow rates is obtained and acceptable. Simultaneously, the external cooling water supply system parameters for the water-cooling channel of the coils are estimated. Three methods’ results are in good agreement; the theoretical model is verified and could be popularized for predicting the temperature rise of HL-2M in-vessel coils.

  5. A simpler, safer, higher performance cooling system arrangement for water cooled divertors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Kothmann, R.E.; Green, L.; Zhan, N.J.; Stefani, F.; Roidt, R.M.

    1994-01-01

    A cooling system arrangement is presented which is specifically designed for high heat flux water cooled divertors. The motivation behind the proposed open-quotes unichannelclose quotes configuration is to provide maximum safety; this design eliminates flow instabilities liable to occur in parallel channel designs, it eliminates total blockage, it promotes cross flow to counteract the effects of partial blockage and/or local hot spots, and it is much more tolerant to the effects of debonding between the beryllium armor and the copper substrate. Added degrees of freedom allow optimization of the design, including the possibility of operating at very high heat transfer coefficients associated with nucleate boiling, while at the same time providing ample margin against departure from nucleate boiling. Projected pressure drop, pumping power, and maximum operating temperatures are lower than for conventional parallel channel designs

  6. Influence of the cooling circulation water on the efficiency of a thermonuclear plant

    International Nuclear Information System (INIS)

    Ganan, J.; Rahman Al-Kassir, A.; Gonzalez, J.F.; Macias, A.; Diaz, M.A.

    2005-01-01

    In the present study, the feasibility of intercalating two cooling towers in the present circulation water system used at Almaraz Nuclear Power Plant, located at Campo Aranuelo district (SW Spain), has been technically evaluated in order to increase the efficiency of the thermodynamic cycle used at present. Thus, the working cycle has been analyzed, the power produced by the turbines being calculated as a function of the cooling circulation water temperature. Next, two natural convection counterflow cooling towers have been calculated in order to be installed in parallel with the present cooling system (Lake Arrocampo). The power obtained in the turbines provided with the new system has been estimated. Finally, a system combining both the cooling towers and the Lake Arrocampo has been proposed, the increment in power using one system or the other according to the weather conditions being calculated

  7. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  8. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  9. Experimental Flow Performance Evaluation of novel miniaturized Advanced Piezoelectric Dual Cooling Jet

    International Nuclear Information System (INIS)

    De Bock, H P J; Whalen, B P; Chamarthy, P; Jackson, J L

    2012-01-01

    In recent years, electronics systems have significantly reduced in size at maintained or increased functionality. This trend has led to an increased demand for smaller and more capable thermal management. However, miniaturization of conventional fan and heat sink cooling systems introduce significant size, weight and efficiency challenges. In this study the flow performance of a novel alternative thin form-factor cooling solution, the advanced piezoelectric dual cooling jet(DCJ), is evaluated. A DCJ is a system where two piezoelectric actuators are excited to produce air flow. The total height of the device is about 1mm. The design of the experimental method for evaluating the equivalent fan-curve of the DCJ device is described in detail. Experimental results in comparison to conventional fan solutions are provided. The DCJ is expected to be a good candidate for thermal management in next generation thin profile consumer electronics.

  10. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  11. Performance Optimization of the Water Cooling System for Resonance Frequency Control of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, K. Y.; Kim, H. K.; Kim, H. S.; Yoon, J. C.; Sohn, Y. K.; Kweon, S. J.; Park, J.; Kim, K. S.

    2010-03-01

    The objective of in this research project is prototype cooling water skid of separated closed loop in order to supply and withdraw low conductivity deionized water in drift tube of drift tube linac as core components of proton accelerates. This report is dealt with design specification of J-PARC 400 MeV Linac cooling water system, PEFP DTL cooling system, specification of RCCS21-24, RCCS101 with pump, loss coefficient for DTL2 modeling, pressure drop with flow rate of heat exchanger.

  12. Factors Stimulating Propagation of Legionellae in Cooling Tower Water

    OpenAIRE

    Yamamoto, Hiroyuki; Sugiura, Minoru; Kusunoki, Shinji; Ezaki, Takayuki; Ikedo, Masanari; Yabuuchi, Eiko

    1992-01-01

    Our survey of cooling tower water demonstrated that the highest density of legionellae, ≥104 CFU/100 ml, appeared in water containing protozoa, ≥102 MPN/100 ml, and heterotrophic bacteria, ≥106 CFU/100 ml, at water temperatures between 25 and 35°C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 105 CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not w...

  13. Method for Measuring Cooling Efficiency of Water Droplets Impinging onto Hot Metal Discs

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2018-06-01

    Full Text Available The present work outlines a method for measuring the cooling efficiency of droplets impinging onto hot metal discs in the temperature range of 85 °C to 400 °C, i.e., covering the boiling regimes experienced when applying water to heated objects in fires. Stainless steel and aluminum test discs (with 50-mm diameter, 10-mm thickness, and a surface roughness of Ra 0.4 or Ra 3 were suspended horizontally by four thermocouples that were used to record disc temperatures. The discs were heated by a laboratory burner prior to the experiments, and left to cool with and without applying 2.4-mm diameter water droplets to the discs while the disc temperatures were recorded. The droplets were generated by the acceleration of gravity from a hypodermic injection needle, and hit the disc center at a speed of 2.2 m/s and a rate of 0.02 g/s, i.e., about three droplets per second. Based on the recorded rate of the temperature change, as well as disc mass and disc heat capacity, the absolute droplet cooling effect and the relative cooling efficiency relative to complete droplet evaporation were obtained. There were significant differences in the cooling efficiency as a function of temperature for the two metals investigated, but there was no statistically significant difference with respect to whether the surface roughness was Ra 0.4 or Ra 3. Aluminum showed a higher cooling efficiency in the temperature range of 110 °C to 140 °C, and a lower cooling efficiency in the temperature range of 180 °C to 300 °C compared to stainless steel. Both metals gave a maximum cooling efficiency in the range of 75% to 85%. A minimum of 5% cooling efficiency was experienced for the aluminum disc at 235 °C, i.e., the observed Leidenfrost point. However, stainless steel did not give a clear minimum in cooling efficiency, which was about 12–14% for disc temperatures above 300 °C. This simple and straightforward technique is well suited for assessing the cooling efficiency of

  14. Effect of water treatment on the comparative costs of evaporative and dry cooled power plants

    International Nuclear Information System (INIS)

    Gold, H.; Goldstein, D.J.; Yung, D.

    1976-07-01

    The report presents the results of a study on the relative cost of energy from a nominal 1000 Mwe nuclear steam electric generating plant using either dry or evaporative cooling at four sites in the United States: Rochester, New York; Sheridan, Wyoming; Gallup, New Mexico and Dallas, Texas. Previous studies have shown that because of lower efficiencies the total annual evaluated costs for dry cooling systems exceeds the total annual evaluated costs of evaporative cooling systems, not including the cost of water. The cost of water comprises the cost of supplying the makeup water, the cost of treatment of the makeup and/or the circulating water in the tower, and the cost of treatment and disposal of the blowdown in an environmentally acceptable manner. The purpose of the study is to show the effect of water costs on the comparative costs of dry and evaporative cooled towers

  15. Plugging inaccessible leaks in cooling water pipework in nuclear power plants

    International Nuclear Information System (INIS)

    Powell, A.B.; May, R.; Down, M.G.

    1988-01-01

    The manifestation of initially small leaks in ancilliary reactor cooling water systems is not an unusual event. Often these leaks are in virtually inaccessible locations - for example, buried in thick concrete shielding or situated in cramped and highly radioactive vaults. Such leaks may ultimately prejudice the availability of the entire nuclear system. Continued operation without repair can result in the leak becoming larger, and the leaking water can cause further corrosion problems and interfere with instrumentation. In addition, the water may increase the volume of radwaste. In short, initially trivial leaks may cause significant operating problems. This paper describes the sealing of such leaks in the biological shield cooling system of Ontario Hydro's Pickering nuclear generating station CANDU reactors

  16. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  17. Influence of Stern Shaft Inclination on the Cooling Performance of Water-Lubricated Bearing

    Directory of Open Access Journals (Sweden)

    Zou Li

    2016-01-01

    Full Text Available The water film model of the marine water-lubricated stern bearing was established by FLUENT. The influence law of water flow rate on the cooling performance of water-lubricated bearing was studied in consideration of the stern shaft inclination. It will be helpful to improve the performance of marine water-lubricated stern bearing and both security and reliability of propulsion system. The simulation results show that the increase of cooling water flow rate in a certain range can effectively reduce bearing temperature. The bearing temperature rises sharply with thinning of water film thickness which is caused by the increase of inclination angle. Larger inclination angle can deteriorate the operating reliability of bearing.

  18. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  19. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, M.A.; Bielak, B.; Deffain, J.P.; Giancarli, L.; Li Puma, A.; Salavy, J.F.; Szczepanski, J. [CEA Saclay, Gif-sur-Yvette (France). FDRN/DMT/SERMA; Dellis, C. [CEA Grenoble, DTA-CEREM/SGM, Grenoble (France); Nardi, C. [ENEA Frascati, ERG-FUS-TECN-MEC, Frascati (Italy); Schleisiek, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit

    1998-09-01

    In 1996, the European Community started the development of a water-cooled Pb17Li blanket test module for ITER. First tests are currently scheduled to start with the beginning of the basic performance phase prior to D-T operation. The test module is designed to be a representative for a DEMO breeding blanket and relies on the liquid alloy Pb-17Li as both tritium breeder and neutron multiplier material, and water at PWR pressure and temperature as coolant. The structural material is martensitic steel. The straight, box-like structure of this blanket confines a pool of liquid Pb-17Li which is slowly circulated for ex-situ tritium extraction and lithium adjustment. The box and the Pb-17Li pool are separately cooled, the former with toroido-radial tubes, the latter with a bundle of double-walled U-tubes, equally made of martensitic steel and equipped with a permeation barrier. This paper presents the latest design and three manufacturing schemes with different degrees of technology. Advanced techniques such as solid or powder HIP are proposed to provide design flexibility. With a 3D neutronics analysis, the power and tritium generation were determined. (orig.) 11 refs.

  20. New Estimation of the Dosage of Scale Inhibitor in the Cooling Water System

    Directory of Open Access Journals (Sweden)

    Jiang Jiaomei

    2011-01-01

    Full Text Available In the cooling water system, excessive use of organic phosphate scale inhibitors is harmful to environment. Reducing the dosage of the organic phosphate scale inhibitor is important. A self-made jacketed crystallizer was used in this experiment. The critical pH values have been determined in cooling water systems with series of Ca2+ concentrations by adding different concentration of the scale inhibitor ATMP (Amino Trimethylene Phosphonic Acid according to the calcium carbonate Metastable zone theory. A model equation at 45 °C and pH=9 was proposed to estimate the lowest dose of the scale inhibitor ATMP. The measured pH value was approximate to the expected pH value in two cooling water systems through verification test.

  1. Cooling water in the study of nuclear power plants sites

    International Nuclear Information System (INIS)

    Martinez, J.J.C.

    1990-01-01

    The location of an electric power plant has its limitations as regards the availability of apt sites. The radiosanitary risk, seismic risk and the overload capacity of the ground can be generically enumerated, being the cooling water availability for an electric power plant a basic requirement. Diverse cooling systems may be employed but the aim must always be that thermal contamination in the immediate environment be the least possible. (Author) [es

  2. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  3. Method and plant to remote tritium from the cooling water of a nuclear reactor

    International Nuclear Information System (INIS)

    O'Brien, C.J.

    1976-01-01

    A method is proposed for the extraction of tritium from the cooling water of a nuclear reactor, based on the principle of concentrating the tritium by a multi-stage transfer process. The cooling water is brought into contact in each stage with basic, labile, hydrogen-containing material with high pH value, whereby the tritium is transfered into an intermediate solid product and can be separated off. The technical details of the plant are described. Cellulose materials, such as cotton and wood as well as protein-containing material, such as muscle tissue are mentioned as examples of materials with a high affinity to tritium, greater than the affinity of water to tritium. They extract tritium from the cooling water. (HK) [de

  4. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... comments were received. A companion guide, DG-1277, ``Initial Test Program of Emergency Core Cooling... NUCLEAR REGULATORY COMMISSION [NRC-2011-0129] Preoperational Testing of Emergency Core Cooling... (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors...

  5. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  6. Method of avoiding hazards resulting from accidents in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Dorner, S.; Schretzmann, K.; Schumacher, G.

    1984-01-01

    In water-cooled reactors, e.g. BWRs and PWRs, elemental hydrogen is released by hydrolysis (in-leakage). In case of an accident in these reactors or at emergency cooling of e.g., a gas-cooled reactor with water additional hydrogen is produced by chemical reactions of the water with the cladding material. In order to prevent hydrogen pressurizing and the formation of a detonating gas mixture, dry powder containers are provided for in the endangered compartments of the reactor. In case of danger powdered CuO, MnO 2 , Fe 2 O 3 , or CdO, the oxygen content of which recombines with the hydrogen, is ejected from them. In addition, an extinguishing substance with an anticatalytic resp. inhibition effect and/or an inert gas of the group N 2 , He, Ar, CO 2 may be admixed to the powder resp. powder mixture. (orig./PW)

  7. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  8. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    This report presents the results from the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) collaborative project (CP) on Advanced Water Cooled Reactor Case Studies in Support of Passive Safety Systems (AWCR), undertaken under the INPRO Programme Area C. INPRO was launched in 2000 - on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21) - to ensure that nuclear energy is available in the 21st century in a sustainable manner, and it seeks to bring together all interested Member States to consider actions to achieve innovation. An important objective of nuclear energy system assessments is to identify 'gaps' in the various technologies and corresponding research and development (R and D) needs. This programme area fosters collaboration among INPRO Member States on selected innovative nuclear technologies to bridge technology gaps. Public concern about nuclear reactor safety has increased after the Fukushima Daiichi nuclear power plant accident caused by the loss of power to pump water for removing residual heat in the core. As a consequence, there has been an increasing interest in designing safety systems for new and advanced reactors that are passive in nature. Compared to active systems, passive safety features do not require operator intervention, active controls, or an external energy source. Passive systems rely only on physical phenomena such as natural circulation, thermal convection, gravity and self-pressurization. Passive safety features, therefore, are increasingly recognized as an essential component of the next-generation advanced reactors. A high level of safety and improved competitiveness are common goals for designing advanced nuclear power plants. Many of these systems incorporate several passive design concepts aimed at improving safety and reliability. The advantages of passive safety systems include simplicity, and avoidance of human intervention, external power or signals. For these reasons, most

  9. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  10. A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners. (author)

  11. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  12. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  13. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  14. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  15. Reflooding phase after loss of coolant of an advanced pressurized water reactor with high conversion ratio

    International Nuclear Information System (INIS)

    Schumann, S.

    1984-01-01

    The emergency core cooling behaviour of an advanced pressurized water reactor (APWR) during the reflooding phase of the LOCA with double-ended break is analysed and compared to a common pressurized water reactor (PWR). The code FLUT-BS, its models and correlations are explained in detail and have been verified by numerous PWR-reflood experiments with large parameter range. The influence of core-design on ECC-behaviour as well as the influences of initial and boundary values are examined. The results show the essential differences of ECC-behaviour between PWR and APWR. (orig.) [de

  16. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  17. Pilot scale evaluation of mine water (MW) as a cooling medium

    African Journals Online (AJOL)

    driniev

    Water and Environmental Technology, Sasol Technology R&D, PO Box 1, SASOL One, Sasolburg 1947, South Africa. Abstract. Sasol One abstracts large volumes of water from various sources, such as the Zuikerbosch & Vaal River for various applications including make-up to the cooling water systems. In an attempt to ...

  18. 137Cs and 90Sr in the water of the ChNPP cooling pond

    Directory of Open Access Journals (Sweden)

    V. V. Kanivets

    2014-12-01

    Full Text Available Results of long-term observations on 137Cs and 90Sr concentration in water mass of the ChNPP Cooling Pond are presented. Drastic transformation of the intrinsic trend in changes with time of averaged radionuclides con-tent in water is clearly demonstrated alongside with the spatial heterogeneity of radioactive contamination of water body. The cycling character of seasonal changes of 137Cs activity concentration in water is being linked to hydrochemical, temperature and oxygen regimes of the Cooling Pond.

  19. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  20. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  1. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  2. Recent advances in cooled-semen technology.

    Science.gov (United States)

    Aurich, Christine

    2008-09-01

    The majority of horse registries approve the use of artificial insemination, and horse breeding has widely taken benefit from the use of cooled-stored semen. New insights into cooled-semen technology open possibilities to reduce problems such as impaired semen quality after cooled-storage in individual stallions. The stallion itself has major impacts on quality and fertility of cooled-stored semen. Dietary supplementation of antioxidants and polyunsaturated fatty acids improves semen quality in a variety of species, but only few studies on this topic exist in the horse. Proper semen collection and handling is the main key to the maintenance of semen quality during cooled-storage. Semen collection should be achieved by minimal sexual stimulation with a single mount; this results in high sperm concentration, low content of seminal plasma and minimal contamination with bacteria. Milk-based semen extenders are most popular for semen processing and storage. The development of more defined extenders containing only the beneficial milk ingredients has made extender quality more constant and reliable. Semen is often centrifuged to decrease the seminal plasma content. Centrifugation results in a recovery rate of only 75% of spermatozoa in the semen pellet. Recovery rates after centrifugation may be improved with use of a "cushion technique" allowing higher centrifugation force and duration. However, this is not routinely used in cooled-semen technology. After slow-cooling, semen-storage and shipping is best performed at 5 degrees C, maintaining semen motility, membrane integrity and DNA integrity for up to 40 h after collection. Shipping containers created from Styrofoam boxes provide maintenance of semen quality at low cost.

  3. Safety system consideration of a supercritical-water cooled fast reactor with simplified PSA

    International Nuclear Information System (INIS)

    Lee, J.H.; Oka, Y.; Koshizuka, S.

    1999-01-01

    The probabilistic safety of the supercritical-water cooled fast reactor (SCFR) is evaluated with the simplified probabilistic safety assessment (PSA) methodology. SCFR has a once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure. There are no recirculation loops in the once-through direct cycle system, which is the most important difference from the current light water reactor (LWR). The main objective of the present study is to assess the effect of this difference on the safety in the stage of conceptual design study. A safety system configuration similar to the advanced boiling water reactor (ABWR) is employed. At loss of flow events, no natural recirculation occurs. Thus, emergency core flow should be quickly supplied before the completion of the feedwater pump coastdown at a loss of flow accident. The motor-driven high pressure coolant injection (MD-HPCI) system cannot be used for the quick core cooling due to the delay of the emergency diesel generator (D/G) start-up. Accordingly, an MD-HPCI system in an ABWR is substituted by a turbine-driven (TD-) HPCI system for the SCFR. The calculated core damage frequency (CDF) is a little higher than that of the Japanese ABWR and a little lower than that of the Japanese BWR when Japanese data are employed for initiating event frequencies. Four alternatives to the safety system configurations are also examined as a sensitivity analysis. This shows that the balance of the safety systems designed here is adequate. Consequently, though the SCFR has a once-through coolant system, the CDF is not high due to the diversity of feedwater systems as the direct cycle characteristics

  4. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  5. Safety design features for current UK advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  6. Safety design features for current UK advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  7. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  8. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy; Amit Jain Han Sang Kim; Vishisht Gupta; Jonathan Pitt

    2006-01-01

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  9. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  10. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  11. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  12. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  13. Device for automatically operating cooling mode of water in a pressure suppression chamber

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1975-01-01

    Object: To provide a system for removing residual heat in a reactor safety system, which can automatically cool water in a pressure suppression chamber when a load on a generator is cut off, so as not to scram the reactor. Structure: When a load cut-off signal is generated by means of rapid closure of a turbine regulating valve or due to the load unbalance relay of generator output, or the like, a sea water pump is started to fully open an outlet valve for the sea water pump, a heat exchanging inlet valve and a minimum crow valve and to fully close a heat exchanging bypass valve. In this manner, cooling water for the heat exchanger is secured to start the pump in the system for removing residual heat, and when the pump discharge pressure is in normal condition, the inlet valve in pressure suppression chamber and the spray valve in the pressure suppression chamber are fully opened to automatically cool water in the pressure suppression chamber. (Hanada, M.)

  14. A device for emergency cooling visualization

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Ladeira, Luiz Carlos Duarte

    1995-01-01

    A test facility for rewetting experiments, Emergency Cooling Visualization Device, has been erected at CDTN, with the objective of Emergency Cooling visualization device performing visual observations of basic phenomena that occur during the reflood phase of a Loss of Coolant Accident (LOCA), in a Pressurised Water Reactor (PWR), utilizing annular test sections. It permits to film or photograph the advance of a wetting front and the flow and heat transfer conditions. Then it is possible to observe the heat transfer regions and flow zones: steam convection, fog cooling, film boiling, nucleate boiling and fluid convection. Finally, this facility is the first test facility, in the Thermohydraulics Laboratory of CDTN, that uses a indirectly heated fuel rod simulator. (author). 3 refs, 5 figs

  15. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  16. Mitigation of inside surface residual stress of type 304 stainless steel pipe welds by inside water cooling method

    International Nuclear Information System (INIS)

    Sasaki, R.

    1980-01-01

    The weld residual stress distributions, macro- and microstructures of heat affected zone and IGSCC susceptibility of Type 304 stainless steel pipe welds by natural and inside water cooling methods have been investigated. The residual stresses of pipe welds by the natural cooling method are high tensile on both the inside and the outside surface. While the residual stresses on the inside surface of pipe welds by the inside water cooling method are compressive in both axial and circumferential directions for each pipe size from 2 to 24 inch diameter. The sensitized zones of welds by the inside water cooling method are closer to the fusion line, much narrower and milder than those by the natural cooling method. According to the constant extension rate test results for specimens taken from the inside surface of pipe welds, the inside water cooled welds are more resistant to IGSCC than naturally cooled ones

  17. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  18. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  19. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  20. White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view

    International Nuclear Information System (INIS)

    Sommer, Christian; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Wenzl, Franz P.

    2012-01-01

    Highlights: ► We discuss the impact of the optical properties of a phosphor for colour temperature constancy in solid state lighting. ► Quantitative evaluation of permissible variations of the optical properties for batch-to-batch reproducibility. ► Quantitative evaluation of permissible variations of the optical properties upon temperature increase. ► Quantitative evaluation of permissible variations of the optical properties upon materials degradation. - Abstract: For a systematic approach to improve the white light quality of phosphor converted LEDs and to fulfil the demands for colour temperature reproducibility and constancy, it is imperative to understand how variations of the extinction coefficient and the quantum efficiency of the phosphor particles as well as variations of the excitation wavelength of the blue LED die affect the correlated colour temperature of the white LED source. Based on optical ray tracing of a phosphor converted white LED package we deduce permissible values for the variation of a given extinction coefficient and a given quantum efficiency of a phosphor material in order to maintain acceptable colour variations. These quantitative valuations of the required constancy of the optical properties of the phosphors will in particular provide some benchmarks for the synthesis of improved phosphor materials aiming at solid state lighting applications.

  1. 244-AR vault cooling water stream-specific report

    International Nuclear Information System (INIS)

    1990-08-01

    The proposed wastestream designation for the 244-AR Vault cooling water wastestream is that this stream is not a dangerous waste, pursuant to the Washington (State) Administration Code (WAC) 173-303, Dangerous Waste Regulations. A combination of process knowledge and sampling data was used to make this determination. 21 refs., 6 figs., 7 tabs

  2. Water quality analysis and its relation to the scaling and corrosion tendency in an open water cooling system

    International Nuclear Information System (INIS)

    Zaini Hamzah; Halimah Abdul Ghani; Masitah Alias

    2008-01-01

    The problem of scaling and corrosion are common phenomena in a water cooling system especially the open cooling system. This study was carried out in Temenggor dam with an objective to check the water quality at the intake and tailrace of the hydro power plant. In-situ measurement and laboratory analysis on the water samples were carried out. Seven parameters were measured in-situ for example temperature, pH, specific conductivity, dissolved oxygen (DO), total dissolved solid (TDS), turbidity, and chlorine concentration. The water samples were collected using water sampler at three locations near the intake area at surface, and at the interval of one meter up to three meter depth. Two locations at the tailrace also were collected in the same pattern. These samples were brought back to the laboratory in UiTM, Shah Alam for further analysis. Laboratory analysis includes alkalinity, Ca 2+ , Mg 2+ and Fe 2+ concentrations, and total suspended solid (TSS). From the results, the LSI, RSI and PSI were calculated to predict the scaling and corrosion tendency. The index shows strong tendency for corrosion to take place in the cooling system as the related factors supported it. (author)

  3. Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ratnesh, E-mail: 31rati@gmail.com [Department of Physics, Bhilai Institute of Technology, Raipur, 493661 (India); Chopra, Seema [Department Physics, G.D Goenka Public School (India)

    2016-05-06

    The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er{sup 3+} (1 mol%) doped CaZrO{sub 3} phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.

  4. Chemical process for recovery of uranium values contained in phosphoric mineral lixivia

    International Nuclear Information System (INIS)

    Conceicao, E.L.H. da; Awwal, M.A.; Coelho, S. V.

    1980-01-01

    A recovery process of uranium values from phosporic mineral lixivia for obtaining uranio oxide concentrate adjusted to specifications of purity for its commercialization the process consists of the adjustment of electromotive force of lixiviem to suitable values for uranium extraction, extraction with organic solvent containing phosphoric acid ester and oxidant reextraction from this solvent with phosphoric acid solution, suggesting a new solvent extraction containing synergetic mixture of di-2-ethyl hexyl phosphoric acid and tri-octyl phosphine, leaching this solvent with water and re-extraction/precipitation with ammonium carbonate solution, resulting in the formation of uranyl tricarbonate and ammonium, that by drying and calcination gives the uranium oxide with purity degree for commercialization. (M.C.K.) [pt

  5. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  6. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  7. Optimization of regional water - power systems under cooling constraints and climate change

    DEFF Research Database (Denmark)

    Payet-burin, Raphaël; Bertoni, Federica; Davidsen, Claus

    2018-01-01

    Thermo-electric generation represents 70% of Europe's electricity production and 43% of water withdrawals, and is therefore a key element of the water-energy nexus. In 2003, 2006 and 2009, several thermal power plants had to be switched off in Europe because of heat waves, showing the need...... to assess the impact of climate change on cooling constraints of thermal power plants. An integrated water-power model of the Iberian Peninsula was developed in this study. It includes a physical hydrologic representation, spatially and temporally resolved water demands, management of water infrastructure...... and a simple power system model. The system was evaluated under present and future climatic conditions using different climate change scenarios. The cost of cooling constraints is found to increase by 220–640 million €/year, for the period 2046–2065 depending on the climate change scenario. Average available...

  8. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  9. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  10. Radioluminescent nuclear batteries with different phosphor layers

    International Nuclear Information System (INIS)

    Hong, Liang; Tang, Xiao-Bin; Xu, Zhi-Heng; Liu, Yun-Peng; Chen, Da

    2014-01-01

    Highlights: • We present and test the electrical properties of the nuclear battery. • The best thickness range for ZnS:Cu phosphor layer is 12–14 mg cm −2 for 147 Pm radioisotope. • The best thickness range for Y 2 O 2 S:Eu phosphor layer is 17–21 mg cm −2147 Pm radioisotope. • The battery with ZnS:Cu phosphor layer can provide higher energy conversion efficiency. • The mechanism affecting the nuclear battery output performance is revealed. - Abstract: A radioluminescent nuclear battery based on the beta radioluminescence of phosphors is presented, and which consists of 147 Pm radioisotope, phosphor layers, and GaAs photovoltaic cell. ZnS:Cu and Y 2 O 2 S:Eu phosphor layers for various thickness were fabricated. To investigate the effect of phosphor layer parameters on the battery, the electrical properties were measured. Results indicate that the optimal thickness ranges for the ZnS:Cu and Y 2 O 2 S:Eu phosphor layers are 12 mg cm −2 to 14 mg cm −2 and 17 mg cm −2 to 21 mg cm −2 , respectively. ZnS:Cu phosphor layer exhibits higher fluorescence efficiency compared with the Y 2 O 2 S:Eu phosphor layer. Its spectrum properly matches the spectral response of GaAs photovoltaic cell. As a result, the battery with ZnS:Cu phosphor layer indicates higher energy conversion efficiency than that with Y 2 O 2 S:Eu phosphor layer. Additionally, the mechanism of the phosphor layer parameters that influence the output performance of the battery is discussed through the Monte Carlo method and transmissivity test

  11. Systems design of direct-cycle supercritical-water-cooled fast reactors

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP

  12. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant

    International Nuclear Information System (INIS)

    Zhang Kai; Liu Hezhou; Wu Yating; Hu Wenbin

    2008-01-01

    YAG:Ce precursors were co-precipitated using ammonia water and ammonium hydrogen carbonate as precipitants, respectively. Phase transition of the precursors during sintering was compared between the two precipitants. The precursors synthesized with ammonia water transformed to YAG at about 1000 deg. C via YAlO 3 phase. The precursors synthesized with ammonium hydrogen carbonate directly converted to pure YAG at about 900 deg. C. Comparing the powders produced with the two precipitants, the powders produced with ammonia hydrogen carbonate showed good dispersity. When sintered at 1600 deg. C, aggregation of the powders synthesized with the two precipitants both became severe. With increase the sintering temperature, the maximum wavelength of excitation and emission spectra of the phosphors synthesized with ammonium water hardly varied. While the maximum wavelength of excitation spectra of the phosphors synthesized with ammonium hydrogen carbonate unchanged, and the emission spectra showed red shift. Because of size effect and higher loss of cerium content, the emission intensity of phosphors prepared with ammonium hydrogen carbonate was lower than the phosphors prepared with ammonium water, when sintered at the same temperature

  13. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  14. Water supply rates for recirculating evaporative cooling systems in poultry housing

    Science.gov (United States)

    Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...

  15. Procedure for operating a heavy water cooled power reactor

    International Nuclear Information System (INIS)

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  16. Low-pressure water-cooled inductively coupled plasma torch

    Science.gov (United States)

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  17. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  18. Recolonization of reactor cooling water system by the Asiatic clam Corbicula fluminea

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1978-01-01

    Recolonization rates for the Asiatic clam Corbicula fluminea ranged from 3.0 to 5.6 metric tons per year in cooling water basins for a nuclear production reactor at the Savannah River Plant. However, a 10-month cleaning cycle for each basin (flow area, 6100 m 2 ) keeps the depth of the silt/clam layer low. With this cleaning frequency, Corbicula are not reaching heat exchangers at sufficient size or in sufficient numbers to restrict flow. Data are presented on the size/age distribution for clams recolonizing cooling water basins between cleanings

  19. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    Science.gov (United States)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  20. Use of bromine as biocide in cooling waters (Preprint No. CA-19)

    Energy Technology Data Exchange (ETDEWEB)

    Sriraman, A K [Bhabha Atomic Research Centre, Bombay (India). Water Chemistry Div.

    1989-04-01

    In all fresh water circuits, the slime forming bacteria develop an insulating layer on the condenser surfaces. If these bacteria are not controlled, they induce bacterial promoted corrosion of the materials in contact with cooling water. Chlorination is effective against slime forming bacteria, fungi and algae. The algistatic nature of the chlorine is partly compensated by the use of other non-oxidisable biocides. Amongst the various alternative biocides such as bromine, methyl bis-isocyanate, sodium pentachlorophenate etc, bromine is the most simple biocide, which is being increasingly used in cooling water systems. In this context, the chemistry of bromination and its bactericidal properties is examined along with those of chlorination. (author). 7 refs., 3 tabs., 2 figs.

  1. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi

  2. Phosphor blends for high-CRI fluorescent lamps

    Science.gov (United States)

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  3. Treating cooling pond water for Wabamun Lake level mitigation project in Alberta

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Dealing with the challenge of recharging Wabamun Lake by treating nearby cooling pond water, fed by the North Saskatchewan River, and returning it to the lake, is discussed. To deal with the problem, TransAlta Utilities constructed a treatment plant in 1997 next to the 2,029 MW Sundance power plant to mitigate the effect the power plant's ongoing and historical effect on the lake's water level. The objective of the treatment plant is to treat cooling pond water and return it to the lake to raise water levels there, which have been significantly reduced over the last 25 years mostly by power plant intake, but also by lack of rainfall, surface runoff, and natural evaporation. At the Treatment Facility the water to be treated is first chlorinated to kill zooplankton, algae and bacteria, followed by adjusting the pH using sulfuric acid. Alum coagulant is used to destabilize colour, particles and colloids. The next step is feeding the water to the Actiflo clarifiers which use microsand to provide increased surface area for floc attachment, and to act as ballast. Clarified water from the Actiflo system is then fed to to the Dusenflo filters to remove the largest particles of suspended solids, and through a finer sand media to remove the remaining turbidity, colour and bacteria. Thiosulfate is used in the ozonation system to inactivate any remaining bacteria and zooplankton in the filtered water, before discharging it to the lake. The cooling towers, which are part of the system, ensure that the treated water returned to the lake is kept at a constant temperature, varying no more than three degrees C from the lake water temperature. 3 figs

  4. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  5. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  6. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  7. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  8. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Hatchressian, J.C.; Gargiulo, L.; Samaille, F.; Soler, B.

    2005-01-01

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  9. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  10. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  11. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  12. The Effect of Topaz Irradiation to the Quality of Cooling Water Reactor GA Siwabessy

    International Nuclear Information System (INIS)

    Elisabeth Ratnawati; Kawkab Mustofa; Arif Hidayat

    2012-01-01

    Topaz irradiation which applied both inside and outside the reactor core is one utilization of the reactor GA Siwabessy. Topaz consists of silicon clusters containing a combination of aluminum, fluorine and hydroxyl, and impurities. The results of the qualitative analysis of the topaz before irradiation detected europium (Eu-152), potassium (K-40) and sodium (Na-24). While the post-irradiation of topaz detected europium (Eu), cobalt (Co), cesium (Cs), tantalum (Ta), scandium (Sc), iron (Fe), Selenium (Se) and potassium (K). These elements might affect the quality of the cooling water. But the results of the qualitative analysis that were carried out to the primary cooling water did not reveal any elements similar to the elements contained in topaz impurities. Most likely this is because most impurities have been caught by the resin trap in purification systems, because of the results of the analysis of the dirt on the resin trap contained elements similar to the impurities Fe and Co topaz. The purification system makes quality primary cooling water is maintained. From the result shows that chemically the quality of primary cooling water is not affected by the topaz irradiation. (author)

  13. Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Waqidi Falicoff

    2008-09-15

    similar light bulbs. In Phase II several new reflective remote phosphor systems were developed and patents applied for. This research included the development of reflective systems in which the short-pass filter operated at a nominal incidence angle of 15{sup o}, a major advancement of this technology. Another goal of the project was to show that it is possible to align multiple optics to multiple LEDs (spaced apart for better thermal management) to within an accuracy in the z-direction of 10 microns or less. This goal was achieved. A further goal was to show it is possible to combine and homogenize the output from multiple LEDs without any flux loss or significant increase in etendue. This goal also was achieved. The following color-coded computer drawing of the Phase 2 reflective remote phosphor prototype gives an idea of the accuracy challenges encountered in such an assembly. The actual setup has less functional clarity due to the numerous items of auxiliary equipment involved. Not only did 10 degrees of freedoms alignment have to be supplied to the LEDs and component prisms as well, but there were also micro-titrating glue dispensers and vacuum hoses. The project also utilized a recently introduced high-index glass, available in small customized prisms. This prototype also embodies a significant advance in thin-film design, by which an unprecedented 98% single-pass efficiency was attained over a 30 degree range of incidence angle (Patents Pending). Such high efficiency is especially important since it applies to the blue light going to the phosphor and then again to the phosphor's light, so that the 'system' efficiency associated with short-pass filter was 95.5%. Other losses have to be kept equally small, towards which a new type of ultra-clear injection-moldable acrylic was discovered and used to make ultra-transparent CPC optics. Several transmissive remote phosphor prototypes were manufactured that could replace screw-in type incandescent bulbs

  14. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  15. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  16. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Tikadar, Amitav, E-mail: amitav453@gmail.com; Hossain, Md. Mahamudul; Morshed, A. K. M. M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000 (Bangladesh)

    2016-07-12

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advanced heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.

  17. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  18. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  19. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xi

    2016-07-15

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  20. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    International Nuclear Information System (INIS)

    Huang, Xi

    2016-07-01

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  1. Process for recovery of uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Wiewiorowski, T.K.; Thornsberry, W.L. Jr.

    1978-01-01

    Process is claimed for the recovery of uranium from wet process phosphoric acid solution in which an organic extractant, containing uranium values and dissolved iron impurities and comprising a dialkylphosphoric acid and a trialkylphosphine oxide dissolved in a water immiscible organic solvent, is contacted with a substantially iron-free dilute aqueous phosphoric acid to remove said iron impurities. The removed impurities are bled from the system by feeding the resulting iron-loaded phosphoric acid to a secondary countercurrent uranium extraction operation from which they leave as part of the uranium-depleted acid raffinate. Also, process for recovering uranium in which the extractant, after it has been stripped of uranium values by aqueous ammonium carbonate, is contacted with a dilute aqueous acid selected from the group consisting of H 2 SO 4 , HCl, HNO 3 and iron-free H 3 PO 4 to improve the extraction efficiency of the organic extractant

  2. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Noriya Okutsu

    2015-12-01

    Full Text Available The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxohexanoyl-l-homoserine lactone (3-oxo-C6-HSL, and N-(3-oxooctanoyl-l-homoserine lactone (3-oxo-C8-HSL. AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10-HSL. This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  3. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  4. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  5. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sinhmar, S., E-mail: sinhmarsunil88@gmail.com; Dwivedi, D.K.

    2017-01-27

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  6. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    International Nuclear Information System (INIS)

    Sinhmar, S.; Dwivedi, D.K.

    2017-01-01

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  7. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  8. 46 CFR 151.50-23 - Phosphoric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions of...

  9. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  10. Applying water cooled air conditioners in residential buildings in Hong Kong

    International Nuclear Information System (INIS)

    Chen Hua; Lee, W.L.; Yik, F.W.H.

    2008-01-01

    The objective of this study is to conduct a realistic prediction of the potential energy saving for using water cooled air conditioners in residential buildings in Hong Kong. A split type air conditioner with air cooled (AAC) and water cooled (WAC) options was set up for experimental study at different indoor and outdoor conditions. The cooling output, power consumption and coefficient of performance (COP) of the two options were measured and calculated for comparison. The experimental results showed that the COP of the WAC is, on average, 17.4% higher than that of the AAC. The results were used to validate the mathematical models formulated for predicting the performance of WACs and AACs at different operating conditions and load characteristics. While the development of the mathematical models for WACs was reported in an earlier paper, this paper focuses on the experimental works for the AAC. The mathematical models were further used to predict the potential energy saving for application of WACs in residential buildings in Hong Kong. The predictions were based on actual building developments and realistic operating characteristics. The overall energy savings were estimated to be around 8.7% of the total electricity consumption for residential buildings in Hong Kong. Wider use of WACs in subtropical cities is, therefore, recommended

  11. Water pollution of ammonia cooling installations; Verontreiniging met water van ammoniak-koelinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    Skaerbaek Nielsen, P. [Danfoss Industrial Refrigeration, Hasselager (Denmark)

    2001-09-01

    Danfoss Industrial Refrigeration claims to have the knowledge to help businesses and industry in saving energy and to decrease maintenance cost of cooling systems. Part of its knowledge and experiences in this field is laid down in a technical document 'Effects of Water Contamination in Ammonia Refrigeration Systems'. A summary of the document is presented in this article. 2 refs.

  12. THE SOLUTION TO THE PROBLEM OF USING GROUND WATER TO COOL LIVESTOCK BUILDINGS

    Directory of Open Access Journals (Sweden)

    Thay Ngok Shon

    2017-01-01

    Full Text Available Ambient temperature in the central part of Vietnam in summer can reach 32–35°C; in some places it can be more than 42°C. Hot climate strongly affects the animal organism alongside with the animal weight reduction and reduction the quantity of egg-laying in poultry. Therefore, air conditioning in livestock buildings is necessary. There are several ways to cool the temperature in such buildings, and each one has its own advantages and disadvantages. We propose to use underground water at the temperature of 24–25°C for this purpose. One of the methods of cooling sheds for livestock is sprinkler irrigation of water on the roof. For calculating the amount of heat, removed from the indoor air in the shed to the cooling water, in the first approximation specialists believe in some cases that an appropriate amount of heat being removed is determined mainly by heat transfer from the air inside the shed to the cooling water through the surface of the roof, represented by the lower part of the wave that form the surface of a metal tile, neglecting the influence of heat conduction on top of the wave of the tile surface. Consequentially, such a simplification leads to possible errors. Therefore, the authors solved the problem of cooling shed by irrigation of water on the roof by an analytical method. Specifically, we solved the problem of heat conductivity of the fin of the finite length of constant cross section, wherein different sides of the fin are conjugate with different environments. Additionally, the calculation considered the effect of solar radiation. For this purpose, the authors have created a heat balance equation at steady state for any infinitesimal element of the fin, and solved the differential equation afterwards. The authors applied the results for calculating practical problem of ground water irrigation of a roof of a livestock shed made of metal areas tiles. 

  13. Radioactive pollution of the Chernobyl cooling pond bottom sediments. I. Water-physical properties, chemical compound and radioactive pollution of pore water

    Directory of Open Access Journals (Sweden)

    L. S. Pirnach

    2011-03-01

    Full Text Available First results of complex research of the Chernobyl cooling pond bottom sediments are presented. The general problematic is considered. Information about vertical distribution of bottom sediments water-physical properties, and also ionic compound and radioactive pollution 137Cs and 90Sr of pore water is received. The inventory of bottom sediments pore water activity is calculated. Strong correlations between concentration in pore water 137Cs, K +, NH4 + within the selected sediments columns are found out. Results of researches are intended for the forecast of radioecological situation change in the cooling pond water-soil complex during drying-up.

  14. Methods for combating microorganisms in cooling water systems - a literature study and a market inventory

    International Nuclear Information System (INIS)

    Thierry, D.

    1989-01-01

    One of the greatest current problems in both closed and open cooling water systems is that of micro- and macro-organisms. In view of the environmental effects associated with the discharge of chemicals, the range of biocides and alternative methods for combating micro-organisms has increased during recent years. This report presents a brief description of the organisms which contribute to corrosion problems and the mechanisms associated with microbial corrosion. Thereafter descriptions are given of 15 different biocides which are used in both open and closed cooling systems. In each case, details are given of their chemical compositions and mode of action and of their effects on metals and on the environment. Finally, alternative methods of combating micro-organisms in cooling water systems are briefly described. The report also includes a survey of the biocides for cooling water systems which are available on the Swedish market. (author)

  15. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    International Nuclear Information System (INIS)

    Kim, Yoon Hwa; Arunkumar, Paulraj; Park, Seung Hyok; Yoon, Ho Shin; Im, Won Bin

    2015-01-01

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce 3+ at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr 3 MgSi 2 O 8 :Eu 2+ blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce 3+ white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED

  16. Materials challenges for the supercritical water-cooled reactor (SCWR)

    International Nuclear Information System (INIS)

    Baindur, S.

    2008-01-01

    This paper discusses the materials requirements of the Supercritical Water-cooled Reactor (SCWR) which arise from its severe expected operating conditions: (i) Outlet Temperature (to 650 C); (ii) Pressure of 25 MPa for the coolant containment, (iii) Thermochemical stress in the presence of supercritical water, and (iv) Radiative damage (up to 150 dpa for the fast spectrum variant). These operating conditions are reviewed; the phenomenology of materials in the supercritical water environment that create the materials challenges is discussed; knowledge gaps are identified, and efforts to understand material behaviour under the operating conditions expected in the SCWR are described. (author)

  17. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  18. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  19. Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics

    Science.gov (United States)

    Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui

    A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.

  20. 21 CFR 182.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  2. Brackish groundwater as an alternative source of cooling water for nuclear power plants in Israel

    International Nuclear Information System (INIS)

    Arad, A.; Olshina, A.

    1984-01-01

    The western Negev is being considered as a potential site for the location of a nuclear powerplant. Since this part of Israel has no surface water, the only alternatives for cooling water are piped-in water, Mediterranean water and local, brackish groundwater. The Judea Group aquifer was examined for its potential to provide the required amount of cooling water over the lifetime of the plant, without causing a drastic lowering of the regional water table. The salinity of the water tends to increase from east to west. Flow within the aquifer is in the direction of Beer Sheva, where the extraction rate is 32 to 35 million cu m/yr. This has resulted in a salinity creep of 5-10 mg Cl per year in the Beer Sheva area, which poses a danger of deterioration of its water supply in the long term. Given the assumed range of aquifer properties, extraction of brackish water for cooling purposes will not result in large changes in the regional water table. Exploitation of the more saline water to the southwest of Beer Sheva could preserve the quality of Beer Sheva's water supply, at the expense of an increase in the depth from which it must be pumped. 2 references, 7 figures, 2 tables

  3. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector

    International Nuclear Information System (INIS)

    Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.

    2008-01-01

    Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m 2 , which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy

  4. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  5. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain.

    Science.gov (United States)

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18 th -month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  6. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Directory of Open Access Journals (Sweden)

    Binay Kumar Biswas

    2016-01-01

    Full Text Available Sacroiliac (SI joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10 with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10 on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  7. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  8. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  9. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  10. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  11. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  12. Fuel element replacement and cooling water radioactivity at the Musashi reactor

    International Nuclear Information System (INIS)

    Nozaki, T.; Honda, T.; Horiuchi, N.; Aizawa, O.; Sato, T.

    1988-01-01

    The Musashi reactor (TRIGA-II, 100kW) has been operated without any serious troubles since 1963. In 1985 the old Al-cladded fuel elements were replaced with new stainless cladded ones in order to insure a long and safe operation. By using a semi-automatic equipment the old fuel elements have been transferred into the bulk-shielding experimental pool, which was remodelled for the spent-fuel storage. In order to reduce the exposure during the transfer work, the old fuel elements were cooled in the core tank for 3 months. After the replacement, the radioactivities in the cooling water have been drastically changed. The activity of Na-24 decreased about one decade, and the activities of Cr-51, Mn-54, Mn-56, Co-58 and Co-60 increased about two decades. At this conference we will report on the following points: (1) semi-automatic equipment for the transportation of the Al-cladded spent fuel, (2) structure of spent-fuel storage pool, and (3) radioactivity change in the cooling water. (author)

  13. Fuel element replacement and cooling water activity at the musashi reactor

    International Nuclear Information System (INIS)

    Nozaki, Tetsuya; Honda, Teruyuki; Horiuchi, Norikazu; Aizawa, Otohiko; Sato, Tadashi

    1989-01-01

    The Musashi Institute of Technology Research Reactor (TRIGA 11, 100 kW) has been operated without serious problems since 1963. However, because there is no more spare fuel element, it was necessary to decide how to solve the problem. In the end, it was decided to obtain many stainless steel-clad fuel elements and operate with those fuel elements only, under the auspices of the Ministry of Education, Science and Culture. The bulk shielding experimental pool was remodeled as the storage for spent fuel elements, where the neutrons from the thermalizing column were shielded with cadmium and boron polyethylene plates. The equipment for transferring spent fuel elements was built and temporarily set up between the core tank and the new storage. These works were started in 1983, and finished in 1985. After the reactor was restarted, the count rate of the conventional cooling water monitor which was set in the cooling system using a GM counter drastically decreased. The spent fuel storage, the equipment and the works for fuel transfer, and the radioactivity of cooling water are reported. (K.I.)

  14. The insitu lining of cooling water piping

    International Nuclear Information System (INIS)

    Vaughan, W.K.; Oxner, K.B.

    1994-01-01

    The internal corrosion of cooling water piping as well as other industrial piping is becoming an increasing problem to system reliability. There are various alternatives being offered as solutions to the problem including water treatment, coatings, and piping replacement. The in-place lining of these pipes is becoming increasingly popular as a cost-effective method to control corrosion. A cured-in-place plastic composite system can be installed with minimal dismantling or excavation. This paper will examine case histories of the installations of this lining system in power plants at three (3) locations in the United States and one in France. It will also summarize testing that has been performed on the lining system and tests that are currently being performed

  15. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  16. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  17. Optimization of advanced gas-cooled reactor fuel performance by a stochastic method

    International Nuclear Information System (INIS)

    Parks, G.T.

    1987-01-01

    A brief description is presented of a model representing the in-core behaviour of a single advanced gas-cooled reactor fuel channel, developed specifically for optimization studies. The performances of the only suitable Numerical Algorithms Group (NAG) library package and a Metropolis algorithm routine on this problem are discussed and contrasted. It is concluded that, for the problem in question, the stochastic Metropolis algorithm has distinct advantages over the deterministic NAG routine. (author)

  18. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  19. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  20. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  1. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  2. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christopher L. [Univ. of Oklahoma, Norman, OK (United States); Pavlish, John H. [Univ. of Oklahoma, Norman, OK (United States)

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  3. A passive emergency heat sink for water cooled reactors with particular application to CANDU reg-sign reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU reg-sign moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners

  4. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  5. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  6. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  7. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  8. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain te