WorldWideScience

Sample records for advanced wastewater treatment

  1. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...... emphasis on the sustainable aspects, on green accounting and on the health aspects. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  2. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  3. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2008-01-01

    with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances......As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand...

  4. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  5. Sustainability assessment of advanced wastewater treatment technologies.

    Science.gov (United States)

    Høibye, L; Clauson-Kaas, J; Wenzel, H; Larsen, H F; Jacobsen, B N; Dalgaard, O

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals.

  6. Electrocatalysis in wastewater treatment: recent mechanism advances

    OpenAIRE

    Carlos A. Martínez-Huitle; Leonardo S. Andrade

    2011-01-01

    Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models fo...

  7. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  8. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  9. Dairy farm wastewater treatment by an advanced pond system.

    Science.gov (United States)

    Craggs, R J; Tanner, C C; Sukias, J P S; Davies-Colley, R J

    2003-01-01

    Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m(-3), TSS: 64 and 220 g m(-3), NH4-N: 8 and 29 g m(-3), DRP: 13 and 17 g m(-3), and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

  10. ADVANCED OXIDATION PROCESSES (AOPs) APPLIED FOR WASTEWATER AND DRINKING WATER TREATMENT. ELIMINATION OF PHARMACEUTICALS

    OpenAIRE

    Petrovic, Mira; Radjenovic, Jelena; Barcelo, Damia

    2011-01-01

    Due to their insufficient removal in conventional wastewater treatments, advanced drinking and wastewater treatment options should be considered for the removal of pharmaceutically active compounds (PhACs) from urban, hospital and industrial wastewaters. This paper summarizes the current state-of-the-art in two often applied advanced oxidation processes (AOPs), namely TiO2 assisted photocatalysis and photo-Fenton process. Their possibilities in removing PhACs are discussed, giving examples fo...

  11. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  12. Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment

    OpenAIRE

    M. Muruganandham; Suri, R. P. S.; Sh. Jafari; M. Sillanpää; Gang-Juan Lee; Wu, J J; M. Swaminathan

    2014-01-01

    This paper reports on recent developments in homogeneous Advanced Oxidation Processes (AOPs) for the treatment of water and wastewater. It has already been established that AOPs are very efficient compared to conventional treatment methods for degradation and mineralization of recalcitrant pollutants present in water and wastewater. AOPs generate a powerful oxidizing agent, hydroxyl radical, which can react with most of the pollutants present in wastewater. Therefore, it is important to dis...

  13. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  14. Advanced Oxidation Technologies/Photocatalytic Treatment of Wastewater.

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusionsThe last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despit

  15. Advances in chemical technologies for water and wastewater treatment: preface

    Institute of Scientific and Technical Information of China (English)

    Xiaochang WANG

    2009-01-01

    @@ Chemical technologies have been applied for water and wastewater treatment since more than 150 year ago, and are still playing the leading role in this field. With the fast development of sciences and technologies especially in the last two decades, chemical technologies which are applicable for solving water quality and water environmental problems underwent a great development not only in traditional areas such as coagulation, solid/liquid separation, oxidation, adsorption etc., but also in the emerging multidisciplinary fields. Nowadays, an increasing number of chemists and chemical engineers has broadened research interests. Biochemical/biological technologies, ecological technologies and process modeling and simulation have become important branches of chemical technologies. Such a tendency has been well reflected in the activities of the Group of Chemists for Water and Wastewater Treatment (GCWWT), a subdivision of Chinese Chemical Society (CCS).

  16. Advanced Oxidation Technologies/Photocatalytic Treatment of Wastewater.

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusionsThe last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocatalysts, ne...

  17. Photochemical treatment as an alternative to improve the quality of wastewater after advanced primary treatment.

    Directory of Open Access Journals (Sweden)

    Hernández Fernando

    2014-12-01

    Full Text Available The present research contains the photochemical treatment (PCT of residual wastewater effluent derived from an advanced primary treatment process (APT. The application employed an ultraviolet light system, hydrogen peroxide and ozone as a free hydroxyl’s radicals generator; strong oxidants for the organic contaminants mineralization which affects the water quality. The aliquots of the APT and PCT were analyzed by determination of the parameters as the color, turbidity, electric conductivity, COD, UV-Vis spectrometry, anion and cation techniques, enabling the determination of the photo-oxidative wastewater treatment efficiency. The microbiological assays denote the one hundred percent photo-oxidative effectiveness for the removal of undesirable microorganisms. After the treatment, the water is suitable for its reuse, commercialization or spill into a body receptor without any risk for the environment or the health.

  18. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  19. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    Science.gov (United States)

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (Pwater bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  20. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible?

    Institute of Scientific and Technical Information of China (English)

    LI Jie; XIONG Bi-yong; ZHANG Shu-de; YANG Hong; ZHANG Jie

    2005-01-01

    Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation(ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2- -N:NH4 + -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.

  1. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.

    Science.gov (United States)

    Zhang, Chunhui; Lin, Hui; Chen, Jun; Zhang, Wenwen

    2013-01-01

    Electrochemical oxidation is a promising technology for the treatment ofbio-refractory wastewater. In this research, advanced treatment of coking wastewater which had previously undergone A/O (anaerobic-aerobic biological) treatment was investigated over Ti/RuO2 x IrO2 anode, stainless steel cathode and coke powder particle electrodes which were packed into the electrodes in a bipolar three-dimensional electrode reactor (BTDR). The results showed that the removal efficiency of COD and ammonia nitrogen increased with applied current density. The main influencing factors of BTDR were evaluated by an orthogonal test, including reaction time, plate distance, current density, plate amounts and aeration flow rate. With reaction time of 60 min, plate distance of 1.0 cm, current density of 20 mA/cm2 and plate amounts of four pairs, most of the contaminants in coking wastewater can be remediated by BTDR, which can then meet the discharge limit for coking wastewater in China. For organic pollutants, 12 kinds of organic pollutants can be completely removed, and the removal efficiencies of 11 kinds of organic pollutants are between 13.3 and 70.3% by advanced treatment with BTDR. We conclude that there is great potential for BTDR in engineering applications as a final treatment for coking wastewater. PMID:24350493

  2. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    Science.gov (United States)

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p treatment (p advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  4. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  5. Xenobiotic organic micropollutants in urban wastewater : levels, distribution patterns and the impact of advanced treatment technologies on their presence in wastewater from different sources

    OpenAIRE

    Kraus, Uta R.

    2014-01-01

    This study investigated the occurrence of 52 xenobiotic micropollutants – pharmaceuticals, metabolites, transformation products, and organophosphorus compounds (OPs) – in hospital and municipal wastewater. It aimed to characterise the xenobiotic fingerprint in raw wastewater from different sources and the impact of different advanced treatment technologies on concentration levels and distribution patterns of xenobiotic micropollutants. Thus, temporal concentration profiles of the influent and...

  6. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    OpenAIRE

    Gong Cheng; Jing Lin; Jian Lu; Xi Zhao; Zhengqing Cai; Jie Fu

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well desc...

  7. Advanced wastewater treatment by nanofiltration and activated carbon for high quality water reuse

    OpenAIRE

    Kazner, Christian

    2012-01-01

    Hybrid processes combining activated carbon and nanofiltration have been studied to identify the optimum solution for advanced wastewater treatment in high quality water reclamation and reuse. With a focus on the removal of bulk and trace organic compounds the investigation identified three promising process combinations, namely powdered activated carbon followed by nanofiltration (PAC/NF), granular activated carbon followed by nanofiltration (GAC/NF) and nanofiltration followed by granular a...

  8. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  9. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    Science.gov (United States)

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances.

  10. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  11. Wetlands for Wastewater Treatment.

    Science.gov (United States)

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  12. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  13. Pilot Test of Advanced Treatments Combination of Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    成徐洲; 杨磊; 吴天宝; 甘一苹; 胡俊

    2002-01-01

    To solve the water shortage problem, an artificial groundwater recharge system will be constructed in Beijing for wastewater reuse as a demonstration and training center. Design and operating experience for the demonstration plant was gained through pilot tests of advanced treatment technologies with soil infiltration of well treated secondary effluent. The test results showed that the selected treatment technology meets the recommended water quality criteria for groundwater recharge and the gas chromatography-mass spectrometer (GC/MS) analysis results showed significantly improved water quality.

  14. Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. Muruganandham

    2014-01-01

    Full Text Available This paper reports on recent developments in homogeneous Advanced Oxidation Processes (AOPs for the treatment of water and wastewater. It has already been established that AOPs are very efficient compared to conventional treatment methods for degradation and mineralization of recalcitrant pollutants present in water and wastewater. AOPs generate a powerful oxidizing agent, hydroxyl radical, which can react with most of the pollutants present in wastewater. Therefore, it is important to discuss recent developments in AOPs. The homogeneous AOPs such as O3, UV/O3, UV/O3/H2O2, and UV/H2O2, Fe2+/H2O2, UV/Fe2+/H2O2 on the degradation of pollutants are discussed in this paper. The influence on the process efficiency of various experimental parameters such as solution pH, temperature, oxidant concentration, and the dosage of the light source is discussed. A list of contaminants used for degradation by various AOPs and the experimental conditions used for the treatment are discussed in detail.

  15. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment.

    Science.gov (United States)

    Rizzo, Luigi

    2011-10-01

    Advanced oxidation processes (AOPs) have been widely used in water and wastewater treatment for the removal of organic and inorganic contaminants as well as to improve biodegradability of industrial wastewater. Unfortunately, the partial oxidation of organic contaminants may result in the formation of intermediates more toxic than parent compounds. In order to avoid this drawback, AOPs are expected to be carefully operated and monitored, and toxicity tests have been used to evaluate whether effluent detoxification takes place. In the present work, the effect of AOPs on the toxicity of aqueous solutions of different classes of contaminants as well as actual aqueous matrices are critically reviewed. The dualism toxicity-biodegradability when AOPs are used as pre-treatment step to improve industrial wastewater biodegradability is also discussed. The main conclusions/remarks include the followings: (i) bioassays are a really useful tool to evaluate the dangerousness of AOPs as well as to set up the proper operative conditions, (ii) target organisms for bioassays should be chosen according to the final use of the treated water matrix, (iii) acute toxicity tests may be not suitable to evaluate toxicity in the presence of low/realistic concentrations of target contaminants, so studies on chronic effects should be further developed, (iv) some toxicity tests may be not useful to evaluate biodegradability potential, in this case more suitable tests should be applied (e.g., activated sludge bioassays, respirometry). PMID:21722938

  16. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.

    Science.gov (United States)

    Zheng, Lei; Deng, Yang

    2016-04-15

    Ferrate(VI) as an emerging water treatment agent has recently recaptured interests for advanced wastewater treatment. A large number of studies were published to report ferrate(VI)-driven oxidation for various water contaminants. In contrast, very few efforts were made to characterize ferrate(VI) resultant particles in water and wastewater. In this study, jar tests were performed to examine the settleability and characteristics of ferrate(VI)-induced iron oxide particles, particularly the non-settable fraction of these particles, after ferrate(VI) reduction in a biologically treated municipal wastewater. The particle settleability was evaluated through the measurement of turbidity and particulate iron concentration in the supernatant with the settling time. Results showed that a majority of ferrate(VI)-induced iron oxide aggregates remained suspended and caused an increased turbidity. For example, at a Fe(VI) dose of 5.0 mg/L and pH 7.50, 82% of the added iron remained in the supernatant and the turbidity was 8.97 NTU against the untreated sample turbidity (2.33 NTU) after 72-h settling. The poor settling property of these particles suggested that coagulation and flocculation did not perform well in the ferrate(VI) treatment. Particle size analysis and transmission electron microscopy (TEM) revealed that nano-scale particles were produced after ferrate(VI) decomposition, and gradually aggregated to form micro-scale larger particles in the secondary effluent. Zeta potentials of the non-settable ferrate(VI) resultant aggregates varied between -7.36 and -8.01 mV at pH 7.50 during the 72-h settling. The negative surface charges made the aggregates to be relatively stable in the wastewater matrix.

  17. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.

    Science.gov (United States)

    Zheng, Lei; Deng, Yang

    2016-04-15

    Ferrate(VI) as an emerging water treatment agent has recently recaptured interests for advanced wastewater treatment. A large number of studies were published to report ferrate(VI)-driven oxidation for various water contaminants. In contrast, very few efforts were made to characterize ferrate(VI) resultant particles in water and wastewater. In this study, jar tests were performed to examine the settleability and characteristics of ferrate(VI)-induced iron oxide particles, particularly the non-settable fraction of these particles, after ferrate(VI) reduction in a biologically treated municipal wastewater. The particle settleability was evaluated through the measurement of turbidity and particulate iron concentration in the supernatant with the settling time. Results showed that a majority of ferrate(VI)-induced iron oxide aggregates remained suspended and caused an increased turbidity. For example, at a Fe(VI) dose of 5.0 mg/L and pH 7.50, 82% of the added iron remained in the supernatant and the turbidity was 8.97 NTU against the untreated sample turbidity (2.33 NTU) after 72-h settling. The poor settling property of these particles suggested that coagulation and flocculation did not perform well in the ferrate(VI) treatment. Particle size analysis and transmission electron microscopy (TEM) revealed that nano-scale particles were produced after ferrate(VI) decomposition, and gradually aggregated to form micro-scale larger particles in the secondary effluent. Zeta potentials of the non-settable ferrate(VI) resultant aggregates varied between -7.36 and -8.01 mV at pH 7.50 during the 72-h settling. The negative surface charges made the aggregates to be relatively stable in the wastewater matrix. PMID:26900976

  18. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

  19. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2015-01-01

    Full Text Available The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  20. An Overview of the Integration of Advanced Oxidation Technologies And Other Processes For Water And Wastewater Treatment

    OpenAIRE

    Farhad Ein-Mozaffari; Masroor Mohajerani; Mehrab Mehrvar

    2009-01-01

    Integration of advanced oxidation technologies and other traditional wastewater treatment processes has been proven to be more effective for treating polluted sources of drinking water and industrial wastewater economically. The way of selecting the methods depends on the characteristics of the waste stream, environmental regulations, and cost. Reviewing the experimental works on this area and discussing about their effectiveness as well as modeling of their works would be helpful for decidin...

  1. Use of solar advanced oxidation processes for wastewater treatment : follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity

    OpenAIRE

    Brienza, M.; Ahmed, M.M; Escande, A; Plantard, G.; Scrano, L.; Chiron, Serge; Bufo, S. A.; Goetz, V.

    2016-01-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5-/Fe2+) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic conta...

  2. A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    PI Yun-zheng; WANG Jian-long

    2006-01-01

    Field studies were conducted to investigate the advanced treatment of the municipal secondary effluent and a subsequent artificial groundwater recharge at Gaobeidian Wastewater Treatment Plant, Beijing. To improve the secondary effluent quality, the combined process of powdered activated carbon adsorption, flocculation and rapid sand filtration was applied, which could remove about 40% dissolved organic carbon (DOC) and 70% adsorbable organic halogens. The results of liquid size exclusion chromatography indicate that in the adsorption unit the removed organic fiaction was mainly low molecular weight compounds. The fiactions removed by the flocculation unit were polysaccharides and high molecular weight compounds. The retention of water in summer in the open recharge basins resulted in a growth of algae. Consequently, DOC increased in the polysaccharide and high molecular weight humic substances fiaction. The majority of the DOC removal during soil passage took place in the unsaturated area.A limited reduction of DOC was observed in the aquifer zone.

  3. Advanced treatment of swine wastewater using an agent synthesized from amorphous silica and hydrated lime.

    Science.gov (United States)

    Tanaka, Yasuo; Hasegawa, Teruaki; Sugimoto, Kiyomi; Miura, Keiichi; Aketo, Tsuyoshi; Minowa, Nobutaka; Toda, Masaya; Kinoshita, Katsumi; Yamashita, Takahiro; Ogino, Akifumi

    2014-01-01

    Advanced treatment using an agent synthesized from amorphous silica and hydrated lime (M-CSH-lime) was developed and applied to swine wastewater treatment. Biologically treated wastewater and M-CSH-lime (approximately 6 w/v% slurry) were fed continuously into a column-shaped reactor from its bottom. Accumulated M-CSH-lime gradually formed a bed layer. The influent permeated this layer and contacted the M-CSH-lime, and the treatment reaction progressed. Treated liquid overflowing from the top of the reactor was neutralized with CO₂gas bubbling. The colour removal rate approximately exceeded 50% with M-CSH-lime addition rates of > 0.15 w/v%. The removal rate of PO(3⁻)(4) exceeded 80% with the addition of>0.03 w/v% of M-CSH-lime. The removal rates of coliform bacteria and Escherichia coli exceeded 99.9% with > 0.1 w/v%. Accumulated M-CSH-lime in the reactor was periodically withdrawn from the upper part of the bed layer. The content of citric-acid-soluble P₂O₅ in the recovered matter was>15% when the weight ratio of influent PO(3⁻)(4) -P to added M-CSH-lime was > 0.15. This content was comparable with commercial phosphorus fertilizer. The inhibitory effect of recovered M-CSH-lime on germination and growth of leafy vegetable komatsuna (Brassica rapa var. perviridis) was evaluated by an experiment using the Neubauer's pot. The recovered M-CSH-lime had no negative effect on germination and growth. These results suggest that advanced water treatment with M-CSH-lime was effective for simultaneous removal of colour, [Formula: see text] and coliform bacteria at an addition rate of 0.03-0.15 w/v%, and that the recovered M-CSH-lime would be suitable as phosphorus fertilizer. PMID:25189846

  4. Wastewater treatment pilot

    OpenAIRE

    Paraskevopoulos, Christos Alkiviadis

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  5. Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes.

    Science.gov (United States)

    Chen, Ke-Yong; Zhang, Xiao-Bing; Li, Jun

    2016-10-01

    In this study, advanced treatment of heavily polluted oilfield production wastewater (OPW) was investigated employing the combination of coagulation/dissolved air flotation, heterogeneous catalytic ozonation and sequencing batch reactor (SBR) processes. Two SBR reactors were separately set up before and after the ozonation unit. The results show that microbubble flotation was more efficient than macrobubble flotation in pollutant removal. Catalytic ozonation with the prepared Fe/activated carbon catalyst significantly enhanced pollutant removal in the second SBR by improving wastewater biodegradability and reducing wastewater microtoxicity. The treatment technique decreased oil, chemical oxygen demand and NH3-N by about 97%, 88% and 91%, respectively, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real OPW. PMID:26936286

  6. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  7. Application of advanced oxidation processes (AOPs) for the treatment of a particular industrial wastewater

    International Nuclear Information System (INIS)

    The present paper refers about the use of some advanced oxidation processes for the treatment of a particular industrial wastewater polluted by organic acids and solvents. Such waste is generated during the electrodeposition of paint in cathodic technological systems (cataphoresis). The AOPs studied were the following: H2O2-UV, O3 in strongly alkaline media and Fe(met)-H2O2. The latter which represents a derivation of the Fenton process gave the best results in terms of reaction times, costs in management and reduction rate of organic matter. Its efficiency was also confirmed by some laboratory tests made on synthetic samples. The reactors used to perform the experiments with ozone and H2O2-UV were especially created. The degradation of the organic compounds was quantified by monitoring the COD parameter and in some cases by detecting the concentration of each individual pollutant

  8. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes.

    Science.gov (United States)

    Soares, Petrick A; Silva, Tânia F C V; Manenti, Diego R; Souza, Selene M A G U; Boaventura, Rui A R; Vilar, Vítor J P

    2014-01-01

    Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH = 8.2), moderate organic content (DOC = 152 mg C L(-1), COD = 684 mg O2 L(-1)) and low-moderate biodegradability (40 % after 28 days in Zahn-Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 98.5% decolorization and 85.5% mineralization after less than 0.1 and 5.8 kJUV L(-1), respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L(-1) (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L(-1), consuming 7.5 mM hydrogen peroxide, resulting in 58.4% of mineralization [Formula: see text].

  9. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes;

    2008-01-01

    Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further ...

  10. Additional treatment of wastewater reduces endocrine disruption in wild fish--a comparative study of tertiary and advanced treatments.

    Science.gov (United States)

    Baynes, Alice; Green, Christopher; Nicol, Elizabeth; Beresford, Nicola; Kanda, Rakesh; Henshaw, Alan; Churchley, John; Jobling, Susan

    2012-05-15

    Steroid estrogens are thought to be the major cause of feminization (intersex) in wild fish. Widely used wastewater treatment technologies are not effective at removing these contaminants to concentrations thought to be required to protect aquatic wildlife. A number of advanced treatment processes have been proposed to reduce the concentrations of estrogens entering the environment. Before investment is made in such processes, it is imperative that we compare their efficacy in terms of removal of steroid estrogens and their feminizing effects with other treatment options. This study assessed both steroid removal and intersex induction in adult and early life stage fish (roach, Rutilus rutilus). Roach were exposed directly to either secondary (activated sludge process (ASP)), tertiary (sand filtrated (SF)), or advanced (chlorine dioxide (ClO(2)), granular activated charcoal (GAC)) treated effluents for six months. Surprisingly, both the advanced GAC and tertiary SF treatments (but not the ClO(2) treatment) significantly removed the intersex induction associated with the ASP effluent; this was not predicted by the steroid estrogen measurements, which were higher in the tertiary SF than either the GAC or the ClO(2). Therefore our study highlights the importance of using both biological and chemical analysis when assessing new treatment technologies.

  11. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  12. Influencing Factors of Limestone Sorption and its Usage in Advanced Wastewater Treatment for Phosphorus Removal

    Science.gov (United States)

    Li, Linyong; Zhang, Hua; Wang, Dunqiu

    2012-01-01

    Phosphorus (P) is one of the main triggering nutrients responsible for eutrophication which troubles many waters in China. This study was to investigate the influencing factors of limestone (LS) adsorption and establish the parameter of constructed wetland (CW) using LS as the main substrate when treating effluent from a municipal wastewater treatment plant (MWTP) for P removal. First, a series of batch experiments were conducted to study the influencing factors of LS adsorption. Consequently, the P removal efficiency increased with the temperature and was high during the initial 3 h; the efficiency was over 75% even at initial P content 50 mg/L; under 2 mm small LS particle size enhanced the adsorption but the difference was not significant; the efficiency was over 90% when initial pH was below 6.37 and decreased sharply at pH above 8.15; sodium chloride as background electrolyte decreased the adsorption; organic acids including tartaric acid, oxalic acid and citric acid all suppressed the adsorption, and citric acid demonstrated the strongest effect. Then column experiment was conducted to evaluate the effect of the continuous vertical-flow LS bed treating effluent from a MWTP with varying hydraulic retention time (HRT). Over 80 days, the effluent pH was between 7 and 9, and effective running time increased with HRT during which the effluent total P content was below 0.5 mg/L. Short HRT such as 1 h or 1.5 h was recommended for dynamic LS adsorption. It showed that LS was suitable for the substrate in CW for P removal in wastewater advanced treatment.

  13. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    Science.gov (United States)

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater. PMID:26846248

  14. Effects of advanced wastewater treatment on the quality of White River, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1991-01-01

    In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and Southport Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978-1980) and post- (1983-1988) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.

  15. A Model to Predict Nitrogen Losses in Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Morales, I.; Cooper, J.; Loomis, G.; Kalen, D.; Amador, J.; Boving, T. B.

    2014-12-01

    Most of the non-point source Nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds are considered environmental pollutants because they deplete the oxygen availability in water bodies and produce eutrophication. The objective of this study was to simulate the fate and transport of Nitrogen in OWTS. The commercially-available 2D/3D HYDRUS software was used to develop a transport and fate model. Experimental data from a laboratory meso-cosm study included the soil moisture content, NH4 and NO3- data. That data set was used to calibrate the model. Three types of OWTS were simulated: (1) pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (SND) and (3) Geomat (GEO), a variation of SND. To better understand the nitrogen removal mechanism and the performance of OWTS technologies, replicate (n = 3) intact soil mesocosms were used with 15N-labelled nitrogen inputs. As a result, it was estimated that N removal by denitrification was predominant in P&S. However, it is suggested that N was removed by nitrification in SND and GEO. The calibrated model was used to estimate Nitrogen fluxes for both conventional and advanced OWTS. Also, the model predicted the N losses from nitrification and denitrification in all OWTS. These findings help to provide practitioners with guidelines to estimate N removal efficiencies for OWTS, and predict N loads and spatial distribution for identifying non-point sources.

  16. Behaviour of pharmaceuticals and psychotic drugs in conventional and advanced wastewater treatments

    International Nuclear Information System (INIS)

    The occurrence of various pharmaceuticals and psychotic drugs in wastewater and their removal rates in a conventional wastewater treatment plant has been investigated. The psychoactive drugs are poorly removed in the biological step. However, most pharmaceuticals except of carbamazepine, are significantly biodegraded depending the removal degree on the type of compound and on the sludge retention time of the biological treatment. Also, the removal efficiency of conventional tertiary treatments and ultrafiltration and nano filtration membranes using two pilot plants was examined. the effects of retaining pharmaceuticals with ultrafiltration and nano filtration membranes do not greatly differ despite the difference in their pore size. (Author) 25 refs.

  17. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.

  18. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse. PMID:27508363

  19. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    Science.gov (United States)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  20. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  1. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  2. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes;

    2008-01-01

    -pollutants being: heavy metals (Cd, Pb, Ni), endocrine disruptors (E2 and EE2), PAH, DEHP, and detergents (LAS & NPE). It was found, in some of the studied scenarios, that more environmental impact may be induced than removed by the advanced treatment. The study showed that for the 3 technologies, sand filtration......Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further...

  3. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    OpenAIRE

    Parneet Paul; Franck Anderson Jones

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the...

  4. Electrocoagulation in Wastewater Treatment

    OpenAIRE

    Mohammed Suleiman Al Ahmad; Ruth Yu-Li Yeh; Yung-Tse Hung; Erick Butler

    2011-01-01

    A review of the literature published in from 2008 to 2010 on topics related to electrochemical treatment within wastewater was presented. The review included several sections such as optimization, modeling, various wastewater treatment techniques, analytical and instrumentation, and comparison with other treatment methods.

  5. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2015-09-15

    A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent.

  6. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes;

    2007-01-01

    -off was investigated using Life Cycle Assessment (LCA) methodology and based on a literature review of advanced treatment performance. The LCA evaluation comprised sand filtration, ozonation and MBRs and assessed the effect of extending existing tertiary treatment with these technologies on a variety of micro......-pollutants being: heavy metals (Cd, Pb, Ni), endocrine disruptors (E2 and EE2), PAH, DEHP, and detergents (LAS & NPE). It was found, in some of the studied scenarios, that more environmental impact may be induced than removed by the advanced treatment. The study showed that for the 3 technologies, sand filtration......Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further...

  7. An Overview of the Integration of Advanced Oxidation Technologies And Other Processes For Water And Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Farhad Ein-Mozaffari

    2009-05-01

    Full Text Available Integration of advanced oxidation technologies and other traditional wastewater treatment processes has been proven to be more effective for treating polluted sources of drinking water and industrial wastewater economically. The way of selecting the methods depends on the characteristics of the waste stream, environmental regulations, and cost. Reviewing the experimental works on this area and discussing about their effectiveness as well as modeling of their works would be helpful for deciding whether the integrated process is effective to fulfill the annually restricted legislations with lower investment. Therefore, optimization of each process should be done based on different aspects such as operation time, operating cost, and energy consumption. In this review, recent achievements, developments and trends (2003-2009 on the integration of advanced oxidation technologies and other remediation methods have been studied.

  8. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2015-12-30

    In the present study, parabens, p-hydroxybenzoic acid (PHBA) and chlorinated derivatives, were simultaneously determined in wastewater and sludge samples along the whole process in an advanced wastewater treatment plant (WWTP). Nine target compounds were detected in this WWTP, and methylparaben and PHBA were the dominant compounds in these samples. It is noteworthy that octylparaben with longer chain was firstly detected in this work. Mass balance results showed that 91.8% of the initial parabens mass loading was lost mainly due to degradation, while the contribution of sorption and output of primary and excess sludge was much less (7.5%), indicating that biodegradation played a significant role in the removal of parabens during the conventional treatment process. Specifically, parabens were mainly degraded in the anaerobic tank, and PHBA could be effectively removed at high rates after the advanced treatment. However, both biodegradation and adsorption accounted for minor contribution to the removal of chlorinated parabens during conventional treatment process, and they were only scantly removed by conventional treatment (33.9-40.7%) and partially removed by advanced treatment (59.2-82.8%). Risk assessment indicated that parabens and their chlorinated derivatives in second and tertiary effluent are not likely to produce biological effects on aquatic ecosystems.

  9. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination...

  10. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    Science.gov (United States)

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. PMID:26841289

  11. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    Science.gov (United States)

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  12. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    Science.gov (United States)

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater. PMID:26856870

  13. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    Science.gov (United States)

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-01

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination. PMID:27269411

  14. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  15. [Variation of pollutants along the height of two media BAF during advanced treatment of dyeing wastewater].

    Science.gov (United States)

    Liu, Jun-Feng; Fan, Ju-Hong; Liu, Rui; Chen, Lü-Jun; Zhang, Yong-Ming

    2014-12-01

    A pilot-scale process with the capacity of 15 t x d(-1) was applied for treatment of the secondary biological effluent from a dyeing industrial park wastewater treatment plant. We studied the variation of pollutants along the height of two media biological aerated filter (BAF), investigated the feasibility of the cheaper and lighter suspended media to substitute activated carbon. The results showed that while the influent average COD and color were 50.2 mg x L(-1) and 58 times, the effluent average COD and color of activated carbon and suspended media BAF were 35.0 mg x L(-1), 18 times and 44.3 mg x L(-1), 26 times, and both of the effluent met the first level A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002), while it met the first level A criteria at the height of 2 400 mm in suspended media BAF, higher than the height of 1 800 mm in activated carbon BAF. The removal variation of color, TN and ammonia along the height of suspended media BAF is similar to the activated carbon BAF, but with a low removal efficiency of COD, mainly related to its less biomass. Therefore, suspended media to substitute activated carbon is feasible to the wastewater treatment plant, but the size and material of the media still need to be optimized, and to enhance the biomass, the hybrid process of suspended media with activated carbon BAF may be used to reduce the cost if it is necessary. PMID:25826930

  16. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems

    NARCIS (Netherlands)

    Rulkens, W.H.

    2008-01-01

    The awareness of the problem of the scarcity of water of high quality has strongly changed the approach of wastewater treatment. Currently, there is an increasing need for the beneficial reuse of treated wastewater and to recover valuable products and energy from the wastewater. Because microbiologi

  17. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  18. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    International Nuclear Information System (INIS)

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  19. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Science.gov (United States)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  20. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  1. Comparative and integrative environmental assessment of advanced wastewater treatment processes based on an average removal of pharmaceuticals.

    Science.gov (United States)

    Igos, Elorri; Benetto, Enrico; Venditti, Silvia; Köhler, Christian; Cornelissen, Alex

    2013-01-01

    Pharmaceuticals are normally barely removed by conventional wastewater treatments. Advanced technologies as a post-treatment, could prevent these pollutants reaching the environment and could be included in a centralized treatment plant or, alternatively, at the primary point source, e.g. hospitals. In this study, the environmental impacts of different options, as a function of several advanced treatments as well as the centralized/decentralized implementation options, have been evaluated using Life Cycle Assessment (LCA) methodology. In previous publications, the characterization of the toxicity of pharmaceuticals within LCA suffers from high uncertainties. In our study, LCA was therefore only used to quantify the generated impacts (electricity, chemicals, etc.) of different treatment scenarios. These impacts are then weighted by the average removal rate of pharmaceuticals using a new Eco-efficiency Indicator EFI. This new way of comparing the scenarios shows significant advantages of upgrading a centralized plant with ozonation as the post-treatment. The decentralized treatment option reveals no significant improvement on the avoided environmental impact, due to the comparatively small pollutant load coming from the hospital and the uncertainties in the average removal of the decentralized scenarios. When comparing the post-treatment technologies, UV radiation has a lower performance than both ozonation and activated carbon adsorption.

  2. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems

    Institute of Scientific and Technical Information of China (English)

    Wim RULKENS

    2008-01-01

    The awareness of the problem of the scarcity of water of high quality has strongly changed the approach of wastewater treatment. Currently, there is an increasing need for the beneficial reuse of treated wastewater and to recover valuable products and energy from the wastewater. Because microbiological treatment methods are, only to a limited part, able to satisfy these needs, the role and significance of physical/chemical pro-cesses in wastewater treatment are gaining more and more interest. The specific future role and aim of the various physical/chemical treatment processes can be categorized in five groups: improvement of the perform-ance of microbiological treatment processes, achieve-ment of the high quality required for reuse of the effluent, recovery of valuable components and energy from the wastewater for beneficial reuse, desalination of brackish water and seawater, and treatment of con-centrated liquid or solid waste residues produced in a wastewater treatment process. Development of more environmentally sustainable wastewater treatment chains in which physical/chemical processes play a cru-cial role, also requires application of process control and modeling strategies. This is briefly introduced by the elaboration of treatment scenarios for three specific wastewaters.

  3. A simulation benchmark to evaluate the performance of advanced control techniques in biological wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Sotomayor O.A.Z.

    2001-01-01

    Full Text Available Wastewater treatment plants (WWTP are complex systems that incorporate a large number of biological, physicochemical and biochemical processes. They are large and nonlinear systems subject to great disturbances in incoming loads. The primary goal of a WWTP is to reduce pollutants and the second goal is disturbance rejection, in order to obtain good effluent quality. Modeling and computer simulations are key tools in the achievement of these two goals. They are essential to describe, predict and control the complicated interactions of the processes. Numerous control techniques (algorithms and control strategies (structures have been suggested to regulate WWTP; however, it is difficult to make a discerning performance evaluation due to the nonuniformity of the simulated plants used. The main objective of this paper is to present a benchmark of an entire biological wastewater treatment plant in order to evaluate, through simulations, different control techniques. This benchmark plays the role of an activated sludge process used for removal of organic matter and nitrogen from domestic effluents. The development of this simulator is based on models widely accepted by the international community and is implemented in Matlab/Simulink (The MathWorks, Inc. platform. The benchmark considers plant layout and the effects of influent characteristics. It also includes a test protocol for analyzing the open and closed-loop responses of the plant. Examples of control applications in the benchmark are implemented employing conventional PI controllers. The following common control strategies are tested: dissolved oxygen (DO concentration-based control, respirometry-based control and nitrate concentration-based control.

  4. 焦化废水深度处理技术%Advanced treatment technology of coking wastewater

    Institute of Scientific and Technical Information of China (English)

    孟冠华; 刘鹏; 邱菲; 方玲; 司晨浩

    2015-01-01

    焦化废水含有大量有机污染物和有毒无机物,成分十分复杂,污染物色度高,属较难降解的高浓度有机工业废水.经预处理和生化处理后的焦化废水存在COD、氨氮、总氮及氰化物不达标的问题.通过高级氧化法、混凝沉淀法、吸附法、膜分离法、生物化学法以及组合工艺等深度处理方法可以使出水满足新标准的要求.介绍了目前国内焦化废水深度处理的工艺现状以及展望.%The coking-plant wastewater contains lots of organic contaminants and toxic inorganic contaminants. This kind of highly concentrated organic industrial wastewater is hard to be biodegraded due to its complex components and high chroma. COD,NH3-N,total nitrogen and the contents of cyanide can not meet the standard after pretreated and bio-chemical treatment. Advanced oxidation process,coagulation sedimentation method,adsorption method,membrane sepa-ration method,biological chemical method and their combined process can make the effluent meet the requirements of the new standard. In addition,the present status of advanced treatment processes of coking wastewater in China are described and prospected.

  5. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment.

    Science.gov (United States)

    Rahman, Sheikh M; Eckelman, Matthew J; Onnis-Hayden, Annalisa; Gu, April Z

    2016-03-15

    Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential. PMID:26871301

  6. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  7. Enhanced phosphorus removal in the DAF process by flotation scum recycling for advanced treatment of municipal wastewater.

    Science.gov (United States)

    Kwak, Dong-Heui; Lee, Ki-Cheol

    2015-01-01

    To remove phosphorus (P) from municipal wastewater, various types of advanced treatment processes are being actively applied. However, there is commonly a space limit in municipal wastewater treatment plants (MWTPs). For that reason, the dissolved air flotation (DAF), which is well known for small space and flexible application process, is preferred as an additive process to enhance the removal of P. A series of experiments were conducted to investigate the feasibility of flotation scum recycling for effective P removal from a MWTP using a DAF pilot plant over 1 year. The average increases in the removal efficiencies due to flotation scum recycling were 22.6% for total phosphorus (T-P) and 18.3% for PO4-P. A higher removal efficiency of T-P was induced by recycling the flotation scum because a significant amount of Al components remained in the flotation scum. The increase in T-P removal efficiency, due to the recycling of flotation scum, shifted from the boundary of the stoichiometric precipitate to the equilibrium control region. Flotation scum recycling may contribute to improving the quality of treated water and reducing treatment costs by minimizing the coagulant dosage required.

  8. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Z. A. Bhatti

    2014-09-01

    Full Text Available The present study was done to shorten the start-up time of up-flow anaerobic sludge blanket (UASB reactor. Two different nutrients were used during the UASB start-up period, which was designed to decrease the hydraulic retention time (HRT from 48 to 24 and 12 to 6 hrs at average temperatures of 25-34 ºC. In the first stage, start-up was with glucose for 14 days and then the reactor was also fed with macro- and micronutrients as a synthetic nutrient influent (SNI from 15 to 45 days as the second stage. For the control, a second reactor was kept on glucose feeding from day 1 to 45. The removal efficiencies of the chemical oxygen demand (COD were 80% and 98% on the 6th and 32nd day of the first and second stage, respectively. The maximum substrate removal rate of 0.08 mg COD mg-1 VSS d-1 was observed for glucose and synthetic nutrient influent (SNI on the 8th and 40th days, respectively. When the reactor reached the maximum COD removal efficiency it was then shifted to municipal wastewater (MWW mixed with industrial wastewater. The HRT was reduced gradually with a one week gap while treating MWW. For further cleaning, the UASB effluent was treated with 40% waste hydrogen peroxide. The whole integrated treatment process was successful to reduce the COD by 99%, total suspended solids (TSS by 73%, total nitrogen (TN by 84% and turbidity by 67%.

  9. 焦化废水深度处理技术及工艺现状%Advanced treatment technology of coking wastewater and its present status

    Institute of Scientific and Technical Information of China (English)

    曲余玲; 毛艳丽; 翟晓东

    2015-01-01

    焦化废水的处理对于钢铁企业减少污水排放量和新水用量,提高废水循环利用率具有重要的意义。介绍了几种常用的焦化废水深度处理技术,如混凝沉淀法、吸附法、生物化学法、高级氧化法、膜分离法等,并对目前国内外的焦化废水处理工艺现状进行了描述,展望了焦化废水深度处理技术的发展方向。%The treatment of coking wastewater has great significance for the reduction of effluent discharge and the consumption of fresh water,as well as for the improvement of wastewater recycling rate. In this paper,some advanced treatment technologies of coking wastewater,such as coagulation sedimentation,adsorption,biochemical,advanced oxidation,membrane separation,are introduced. In addition,the present status of advanced treatment processes of coking wastewater in China and abroad are described. At the end ,the developing direction of advanced treatment of coking wastewater is forecast.

  10. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... alternative could be to use small and simple biogas plants, followed by dewatering of the degassed biomass, either by utilizing possible surplus of energy from the biogas plant or natural freezing, which might be a more cost-effective way. After dewatering the liquid part can be treated by filtration...

  11. 焦化废水深度处理研究进展%Research and Progress in advanced Treatment of Coking-plant Wastewater

    Institute of Scientific and Technical Information of China (English)

    肖林波; 曲鹏飞; 张建孝

    2012-01-01

      This article introduces several advanced treatment methods of coking-plant wastewater and their development status, explains their characteristics and points out that combined processing method is the developing direction of coking-plant wastewater advanced treatment for the future.%  介绍了焦化废水几种深度处理的方法及其发展现状,说明了其特点,并指出联合处理方法是今后焦化废水深度处理技术的重点发展方向。

  12. The Performance of Advanced Sequencing Batch Reactor in Wastewater Treatment Plant to Remove Organic Materials and Linear Alkyl Benzene Sulfonates

    Directory of Open Access Journals (Sweden)

    Eslami

    2015-07-01

    Full Text Available Background Linear alkyl benzene sulfonates (LAS are the most important ionic detergents that produce negative ions in the environment. These compounds enter surface waters through domestic and industrial wastewaters and cause environmental hazards. Objectives The present study was aimed at assessing the performance of advanced sequencing batch reactor (SBR in wastewater treatment plant of Yazd, Iran, to remove organic materials and detergents. Materials and Methods The present research was a descriptive longitudinal study conducted on 96 input and output samples of SBR system over eight months from October 2012 to June 2013. The studied parameters were biochemical oxygen demand 5 (BOD5, chemical oxygen demand (COD, and detergents (LAS, which were assessed through standard methods. Finally, the study data were analyzed through analysis of variance (ANOVA using software package for statistical analysis (SPSS. Results The mean inputs of BOD5, COD, and LAS to the SBR system were 292.40 ± 45.28, 597.15 ± 97.30, and 3.29 ± 0.92 mg/L, and the mean outputs were 20.59 ± 3.54, 59.34 ± 9.47, and 0.606 ± 0.09 mg/L, respectively. The removal efficiency of BOD5, COD and LAS were respectively 92.95%, 90.06% and 81.6%. The results of ANOVA indicated that there was a significant relationship between the mean inputs and outputs of BOD5, COD, and the detergents (P ≤ 0.001. Conclusions With the proper operation of wastewater the treatment plant and increasing the retention time, the removal efficiency of the detergents increased. In addition, according to the environmental standards for BOD5, COD and the detergents, the results of the present study indicated that the outputs of these parameters from the SBR system were appropriate for agricultural irrigation.

  13. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    Science.gov (United States)

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found. PMID:26405842

  14. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    Science.gov (United States)

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found.

  15. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  16. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  17. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  18. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. PMID:27593269

  19. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  20. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    Science.gov (United States)

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  1. Effects of advanced treatment of municipal wastewater on the White River near Indianapolis, Indiana; trends in water quality, 1978-86

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1993-01-01

    The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the

  2. Advanced treatment of oil recovery wastewater from polymer flooding by UV/H2O2/O3 and fine filtration

    Institute of Scientific and Technical Information of China (English)

    REN Guang-meng; SUN De-zhi; Jong Shik CHUNK

    2006-01-01

    In order to purify oil recovery wastewater from polymer flooding (ORWPF) in tertiary oil recovery in oil fields, advanced treatment of UV/H2O2/O3 and fine filtration were investigated. The experimental results showed that polyacrylamide and oil remaining in ORWPF after the conventional treatment process could be effectively removed by UV/H2O2/O3 process. Fine filtration gave a high performance in eliminating suspended solids. The treated ORWPF can meet the quality requirement of the wastewater-bearing polymer injection in oilfield and be safely re-injected into oil reservoirs for oil recovery.

  3. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    Full Text Available Most of the non-point source nitrogen (N load in rural areas is attributed to onsite wastewater treatment systems (OWTS. Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+ and nitrate (NO3- concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1 a pipe-and-stone (P&S, (2 advanced soil drainfields, pressurized shallow narrow drainfield (PSND and (3 Geomat (GEO, a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide

  4. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Science.gov (United States)

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  5. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  6. Recovery of benthic-invertebrate communities in the White River near Indianapolis, Indiana, USA, following implementation of advanced treatment of municipal wastewater

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1992-01-01

    The City of Indianapolis, Indiana, USA, completed construction of advanced-wastewater-treatment systems to enlarge and upgrade existing secondary-treatment processes at the City’s two municipal wastewater-treatment plants in 1983. These plants discharge their effluent to the White River. A study was begun in 1981 to evaluate the effects of municipal wastewater on the quality of the White River near Indianapolis. As part of this study, benthic-invertebrate samples were collected from one riffle upstream and two riffles downstream from the treatment plants annually from 1981 through 1987 (2 times before and 5 times after the plant improvements became operational). Samples were collected during periods of late-summer or early-fall low streamflow with a Surber sampler. Upstream from the wastewater-treatment plants, mayflies and caddisflies were the predominant organisms in the benthic-invertebrate community (from 32 to 93 percent of all organisms; median value is 67 percent) with other insects and mollusks also present. Before implementation of advanced wastewater-treatment, the benthic-invertebrate community downstream from the wastewater treatment plants was predominantly chironomids and oligochaetes (more than 98 percent of all organisms)-organisms that generally are tolerant of organic wastes. Few intolerant species, such as mayflies or caddisflies were found. Following implementation of advanced wastewater treatment, mayflies and caddisflies became numerically dominant in samples collected downstream from the plants. By 1986, these organisms accounted for more than 90 percent of all organisms found at the two downstream sites. The diversity of benthic invertebrates found in these samples resembled that at the upstream site. The improvement in the quality of municipal wastewater effluent resulted in significant improvements in the water quality of the White River downstream from Indianapolis. These changes in river quality, in turn, have resulted in a shift from

  7. Mechanistic Determination of Nitrogen Removal By Advanced Soil-Based Wastewater Treatment Systems Using 15n Isotopes

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2014-12-01

    Current levels of nitrogen removal by onsite wastewater treatment systems (OWTS) are inadequate, with release of N from OWTS contributing to environmental N pollution, especially in coastal zones where aquatic ecosystems are sensitive to eutrophication. Current mechanistic understand of N removal are limited and mainly attributed to denitrification in the drainfield. Loss of N from N2O production during nitrification, a sparsely researched topic, may be a significant mechanism in advanced OWTS systems that enhance O2 diffusion by sand filter pre-treatment, shallow placement of infiltrative areas and timed dosing controls to prevent drainfield saturation. Replicate (n=3) intact soil mesocosms were used with 15N isotope to evaluate the effectiveness and mechanisms of N removal in drainfields with a conventional wastewater delivery (pipe-and-stone, P&S) compared to two advanced types of drainfields, pressurized shallow narrow drainfield (SND) and Geomat (GEO), a variation of a SND drainfield. Over the 11 day experiment, dissolved O2 was 1.6 mg/L for P&S and 3.0 mg/L for SND and GEO. Removal of total N was 13.5% for P&S, 4.8% for SND and 5.4% for GEO. 15NH4 labeled nitrogen inputs to drainfields were transformed primarily to 15NO3 in all outputs. Consistent low 15N2O levels were present in P&S, with increasing levels of N2 peaking 48h after 15NH4 injection, suggesting denitrification dominated N removal. By contrast, SND and GEO 15N2O levels rose quickly, peaking 8h after 15NH4 injection, suggesting N loss by nitrification. When the whole system is considered, including sand filter removal, 26 - 27% of total N was removed by the SND and GEO systems, whereas 14% of total N was removed in the P&S system. Our results suggest the SND and GEO systems as a whole are capable of removing a greater mass of N than the P&S system.

  8. A Discussion on Advanced Wastewater Treatment Process for Sintering Flue Gas Desulfurization Wastewater%烧结湿法烟气脱硫废水深度处理流程探讨

    Institute of Scientific and Technical Information of China (English)

    潘莉; 陈亮; 董进

    2016-01-01

    钢铁企业烧结湿法烟气脱硫废水成分复杂,废水处理典型的工艺流程废水经处理后不能完全达标外排,也不能作为烟气脱硫系统的回用水,探讨烧结湿法烟气脱硫废水深度处理流程,势在必行.%As the composition of sintering wet flue gas desulfurization wastewater in steel enterprises is complicated, the treated wastewater by typical treatment processes cannot fully meet discharge standard, nor can it be used as reuse water in the flue gas desulfuriza-tion system. The necessity of advanced treatment process for sintering flue gas desulfurization wastewater is discussed.

  9. Enriched Oxygen BAC Method in Advanced Treatment of Textile Dyeing-printing & Alkali-peeling Wastewater

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel Pressurized Enriched Oxygen Biological Activated Carbon (PRBAC) method in treating secondary effluent of textile dying-printing & alkali peeling wastewater was configured. The PRBAC reactor simply increased reactor pressure to create an enriched dissolved oxygen (DO) environment to stimulate the bioactivities of microbes on GAC surface for removing refractory organic matter. Rapid SmallScaled Column Test (RSSCT) was carried out to evaluate the adsorption characteristics of target stream constituents, and over 80% COD components were poorly adsorbable while about 82.5% color inducing matter and 85% UV254 surrogated matter were readily adsorbable. Compared with performances of normal BAC reactor under conventional DO condition, PRBAC achieved 20%, 10% and 50% more removal in COD, color and NH3-N abatement.

  10. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    Science.gov (United States)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  11. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  12. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  13. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  14. Integrated biological and advanced oxidation based treatment of hexamine bearing wastewater: Effect of cow-dung as a co-substrate.

    Science.gov (United States)

    Gupta, Mandeep Kumar; Mittal, Atul K

    2016-05-01

    This work examines the treatment of hexamethylenetetramine (HMT) bearing effluent from N, N-dinitroso pentamethylene tetra-mine producing industrial plants in India. Chemical treatment using Fenton's reagent and aerobic treatment using batch reactors with co-substrate were investigated. Aerobic batch reactors integrated with advanced oxidation process of Fenton's reagent provides effective treatment of HMT effluents. Influence of Fenton's reagent dose reaction/contact and effect of varying co-substrate with effluent initial concentration was observed. Higher dose 100 mL of Fenton's reagent with higher reaction time 20 h resulted better degradation (34.88%) of wastewater. HMT hydrolyzes in acidic environment to ammonia and formaldehyde. Formaldehyde under normal conditions is toxic for biological treatment processes. When hydrolysis and acidification in the reactors are accompanied by low pH, aerobic batch reactors with use of co-substrates glucose, sucrose, and cow-dung extract separately in different proportion to wastewater ranging from 0.67 to 4.00, degraded wastewater effectively. Higher proportion of co-substrate to wastewater resulted better degradation. The relationships between nitrate, pH, turbidity and COD are discussed. PMID:26855186

  15. A novel technology for advanced treatment of ammonium nitrate wastewater%硝酸铵废水深度处理技术

    Institute of Scientific and Technical Information of China (English)

    王方; 王明亚; 王明太

    2012-01-01

    针对目前用电渗析法处理硝酸铵废水的现象,提出以电去离子处理作为硝酸铵废水深度处理,弥补现有电渗析处理的不足,达到硝酸铵废水处理系统“零排放”,做到废水资源化利用,硝酸铵和水全部回收.这种改良型电渗析处理方法,除可使浓水中氨氮的质量分数达10%以上外,系统出水氨氮的质量浓度小于或等于5mg,/L.%In view of the problems existing in the treatment of ammonium nitrate wastewater by electro-dialysis, electrodeionization technology was proposed to be used for the advanced treatment of the said kind of wastewater for the purpose of making up the shortcomings of the electrodialysis, realizing wastewater zero-discharge of the system, achieving resource utilization of wastewater and complete recovery of ammonium nitrate and effluent water. It was indicated that, using the said modified electrodialysis method to treat ammonium nitrate wastewater, the mass fraction of ammonia nitrogen in the concentrated water reached above 10% and the mass concentration of ammonia nitrogen in the effluent water was no higher than 5 mg/L.

  16. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  17. Advanced Treatment of Cold-rolling Wastewater from Laiwu Steel Group and Reuse Engineering%冷轧废水深度处理及回用工程

    Institute of Scientific and Technical Information of China (English)

    张金平; 周欢; 张章; 赵文禹

    2012-01-01

    将冷轧过程产生的含油废水、脱脂平整废水、酸碱废水、生活污水、循环水排污水分流处理后收集,采用电催化氧化/MBR/反渗透进行深度处理并回用,处理水量为50 m3/h.工程实践表明,在实施有效预处理的条件下,出水水质优于《钢铁工业给水排水设计手册》中工业新水水质指标,废水处理成本为3.47元/m3,出水全部回用到循环水系统中,可节约工业新水消耗量为17×104 m3/a.%After the oily wastewater, degreasing leveling wastewater, acid-base wastewater, sewage and circulating water discharge produced during cold-rolling are respectively treated and collected, the combined process of electric catalytic oxidation, MBR and RO is used for advanced treatment and reuse. The treatment capacity is 50 mVh. The engineering practice shows that after the effective pretreat-ment, the effluent quality from the advanced treatment is better than the industrial new water quality index in Design Manual for Steel Industrial Water Supply and Wastewater. The wastewater treatment cost is 3.47 yuan/ra3, all the effluent is reused in the circulating water system, and the industrial new water consumption of 17 × 104 mVa is saved.

  18. Thermal Treatment of Industrial Wastewater

    OpenAIRE

    Vysokomornaya Olga V.; Balakhnina Julia E.; Shikhman M. V.

    2015-01-01

    The paper provides an overview on the major methods of thermal wastewater treatment in the power industry. Here, we present the main advantages and disadvantages of methods based on the concentration of inorganic substances (evaporation or distillation) or the burning of organic compounds (combustion neutralization). The study suggests the possible future directions for the development of thermal wastewater treatment.

  19. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment Plants."…

  20. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  1. 分散式污水处理技术研究进展%Advances of Decentralized Wastewater Treatment Technologies

    Institute of Scientific and Technical Information of China (English)

    王阳; 石玉敏

    2015-01-01

    The rate of wastewater treatment was only 3%among 580 000 villages of China in 2008 and only reached 8%in 2012.The total amount of untreated decentralized wastewater was as 1.5 times as centralized sewage treatment in the cities and counties.Therefore, the environmental pollution problem of decentralized wastewater has become more and more serious and needs urgently to resolve.The concept and components of decentralized wastewater treatment were described and it was pointed out that biological treatment was mainly used for decentralized wastewater treatment.The research developments, principles and advantages and disadvantages of various wastewater treatment technologies were analyzed from 3 aspects of anaerobic, aerobic and natural biological treatment.Wetland, stabilization pond, earthworm eco-filter, eco-toilets and other natural biological treatment technologies have many advantages with low construction cost, low environmental impact, being suitable for local conditions and flexible, etc, and have become new, economical, environmental friendly and dominant technologies for decentralized wastewater treatment. Finally the research direction of decentralized wastewater treatment technologies was put forward.%2008年我国58万个自然村中污水处理率仅为3%,2012年也仅达8%,未处理的污水总量是城市和县城采用集中式污水处理总量的1.5倍,分散式污水污染控制成为亟待解决的环境问题。阐述了分散式污水处理的概念和系统组成,指出分散式污水处理主要采用生物处理技术。从厌氧生物处理、好氧生物处理和自然生物处理3个方面分析了各种分散式污水处理技术的研究进展、技术原理及优缺点,其中人工湿地、稳定塘、浮床、蚯蚓生态滤池、生态厕所等自然生物处理技术,具有建设费用低、环境影响小、因地制宜、灵活多样等优点,已成为新型、经济、环保的分散式污水处理主导技术

  2. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  3. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    OpenAIRE

    Tong Zhang; Xiaoguang Wang; Xiwang Zhang

    2014-01-01

    The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs). We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In t...

  4. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  5. Biological wastewater treatment in brewhouses

    OpenAIRE

    Voronov Yuriy Viktorovich; Bertsun Svetlana Petrovna

    2014-01-01

    In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste wate...

  6. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    Science.gov (United States)

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  7. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    Science.gov (United States)

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2. PMID:24737016

  8. Advanced Treatment of Wastewater from UASB Reactor by Microfiltration Membrane Associated With Disinfection by Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André Aguiar Battistelli

    2016-03-01

    Full Text Available The low efficiency of UASB bioreactors, regarding the removal of nutrient, organic matter and pathogens, makes it necessary to carry out a post treatment, in order to improve the quality of the effluent. Accordingly, this research has examined the use of microfiltration associated to the disinfection by the ultraviolet radiation, as an option to this post treatment. For so, were collected samples of UASB reactors’ effluent, in order to carry out some tests on a pilot microfiltration system, using in one of the samples pre-coagulation with vegetable tannin. After, all the microfiltrated samples were inserted in a UV reactor, applying different radiation doses, ranging from 43.8 to 194.9 mWs.cm-2, to simulate the disinfection. The system used showed good results in terms of turbidity removal, apparent color, true color, phosphorus, nitrogen, total solids, total suspended solids and COD, reaching in the best operating condition, the following values: 1.90 uT, 15 uC, 10 uC, 0.94 mg/L, 17.64 mg/L, 123 mg/L, 0 mg/L and 10 mg/L, respectively, which represent the following removal percentages: 91.3%, 93.6%, 82.0%, 55.1%, 26.3%, 35% and 86.1%. The inactivation obtained for E. coli, total coliforms, colifagos and Clostridium perfrigens was satisfactory, achieving a higher inactivation than the detection limit of the method used, when submitted to the highests tested radiation doses. The average permeate flux ranged from 55.2 to 133.6 L.m-2.h-1.

  9. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis.

    Science.gov (United States)

    Li, Kun; Wang, Jianxing; Liu, Jibao; Wei, Yuansong; Chen, Meixue

    2016-05-01

    Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure=12bar, pH=4 and flow rate=8L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment. PMID:27155415

  10. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  11. Effects of advanced treatment of municipal wastewater on the white river near Indianapolis, Indiana: Trends in water quality, 1978-86. Geological Survey water supply paper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.G.; Wangsness, D.J.

    1994-01-01

    The report describes changes in the water quality of the White River that occurred after the implementation of Advanced Wastwater Treatment (AWT). The report includes analyses of data collected from three locations on the White River between 1978 and 1986 by the City of Indianapolis, Department of Public Works, and by the USGS and data from one location on the White River collected by the Indiana State Board of Health between 1958 and 1986. The report also includes analyses of daily effluent data from the Belmont and Southport municipal wastewater-treatment plants from 1978 through 1986.

  12. Wastewater Mass Rates as a Sustainable Wastewater Treatment Plant Indicator

    OpenAIRE

    Neilands, R; Govša, J; Gjunsburgs, B

    2012-01-01

    his article presents a methodology for wastewater treatment plant sustainability consideration and process evaluation in to the selection of wastewater treatment process improvement options. For illustration, the indicator approach is applied to a case study of the Jurmala town wastewater treatment plant in Latvia.

  13. Advanced Treatment of Coking Wastewater with Practical Photocatalytic Oxidation Wastewater Treatment Device%实用型光催化氧化水处理器深度处理焦化废水

    Institute of Scientific and Technical Information of China (English)

    刘猛; 魏宏斌; 邹平; 陈良才; 曾敏福

    2013-01-01

    One of the keys to promote photocatalytic oxidation technique is to solve the separation problem of photocatalyst and effluent. The continuous real-time separation type photocatalytic reactor, a new-style practical photocatalytic wastewater treatment device, was feasible for advanced treatment of coking wastewater under appropriate reaction time, TiO2 dosage, irradiation intensity and initial pH. Then, a study on the effect of advanced treatment of coking wastewater with enhanced photocatalytic oxidation by H2O2 or Fenton reagent as oxidant was carried out. The results showed that adding H2O2 or Fenton reagent into the UV/TiO2 oxidation system could markedly improve the removal rates of COD and color. Under the optimal reaction conditions, oxidation systems listed in order of their photocatalytic oxidation rates were: UV/TiO2/Fenton >UV/TiO2/H2O2 > UV/TiO2.%解决光催化剂与废水的即时分离问题是光催化氧化技术走向实际的关键之一.采用新型的实用型光催化水处理器——连续流即时分离型光催化反应器深度处理焦化废水,发现在适宜的反应时间、TiO2投加量、光辐照强度和初始pH值下是完全可行的.然后在此基础上选用H2O2和Fenton试剂为外加氧化剂,研究了氧化剂强化光催化深度处理焦化废水的效果.结果表明,在UV/TiO2氧化体系中投加H2O2或Fenton氧化剂,可显著提高光催化氧化对COD和色度的去除率;在最佳反应条件下,不同氧化体系对焦化废水的深度处理效果排序为:UV/TiO2/Fenton>UV/TiO2/H2O2>UV/TiO2.

  14. Applicability of Advanced Oxidation Processes to wastewater treatment from different industrial sectors; Aplicacion de procesos de oxidacion avanzada al tratamiento de efluentes de diferentes sectores industriales

    Energy Technology Data Exchange (ETDEWEB)

    Urkiaga Guinea, A.; Gomex Resa, L.; Gutierrez Ruiz, M.; Fuentes de las Intxausti, L.

    2000-07-01

    The treatment of wastewater polluted with toxic and/or hardly biodegradable compounds by Advanced Oxidation Processes (AOPs) appears as an adequate and highly promising method for this purpose in a short term. Amongst the processes with higher potential out stands photo-oxidation in its two varieties: photolysis and both homogeneous (UV-H{sub 2}O{sub 2}, photoFenton, UV-O{sub 3}...) and heterogeneous (UV-TiO{sub 2}...) photocatalysis. In the present work the results obtained in GAIKER after the application of different types of AOPs (photolysis, both homogeneous and heterogeneous photocatalysis and ozonization) to four industrial wastewaters coming from three different industrial sectors (organic synthesis, phenolic resins manufacturing and rubber pieces production) are described. (Author) 17 refs.

  15. Engineering Example of Advanced Treatment of Cassava Alcohol Wastewater%木薯酒精废水的深度处理工程实例

    Institute of Scientific and Technical Information of China (English)

    夏晨娇; 周宗远; 何锐

    2016-01-01

    For a company's emission of cassava ethanol wastewater, the comprehensive treatment process of "high temperature anaerobic&secondary intermediate temperature anaerobic&aerobic&air flotation"was used. With the increase of the discharge requirements, now"fenton oxidation&coagulation sedimentation"advanced treatment process was introduced. Engineering practice showed that the advanced treatment technique could significantly reduce the cassava alcohol wastewater's non-biodegradable pollutants content and total phosphorus content. The effluent quality could meet the takeover standard of wastewater treatment plant in local economic development zone (ρ(COD)≤500 mg/L,ρ(TP)≤3 mg/L).And this process had the advantages of good treatment effect, easy to operate and so.%针对某公司排放的木薯酒精废水,原采用“一级高温厌氧+二级中温厌氧+好氧+气浮”综合处理工艺,随着排放要求的提高,现增加“芬顿氧化+混凝沉淀”深度处理工艺。工程实践表明,该深度处理工艺可大幅降低木薯酒精废水中不可生化降解的污染物含量和TP含量,出水水质达到当地经济开发区污水处理厂的接管标准(ρ(COD)≤500 mg/L,ρ(TP)≤3 mg/L),具有处理效果好、运行操作简便等优点。

  16. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. PMID:25934578

  17. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW.

  18. MBR深度处理农药工艺废水的应用%Application of MBR Technology in the Advanced Treatment of Wastewater from Pesticide Production

    Institute of Scientific and Technical Information of China (English)

    李嘉俊

    2016-01-01

    Pretreatment and MBR technology were applied in the treatment of wastewater from pyrethroids pesticide production. Through the advanced treatment, COD of the final effluent was 28 mg/L, P ( NH3-N) was 0. 1 mg/L and SS was 0. 08 mg/L, which came up the primary standard of integrated discharge of the wastewater. The MBR advanced treatment system was run more than two months, and its operation was stabled, and indexes of the final effluent met the requirements of the recovered reusing water. The cost of recovered reusing water, which produced by the pretreatment and MBR technology applied in the treatment of wastewater and were used as the filling water of water cooling system in screw compression refrigeration unit, was 1. 79 yuan/ton, and it was less than the current water fee (2. 2 yuan/ton) .%采用预处理-超滤膜工艺深度处理某农药化工厂拟除虫菊酯类农药生产工艺废水。经过深度处理出水 COD 为28 mg/L, P( NH3-N)为0.1 mg/L, SS为0.08 mg/L,完全达到污水综合排放一级标准要求。 MBR深度处理系统连续运行两个月以上,运行过程稳定,出水水质检测合符回用要求。采用预处理-超滤膜工艺产水回用于螺杆压缩制冷机组水冷却系统补水的成本为每吨产水1.79元,低于现行的自来水每吨2.2元的费用。

  19. 高级氧化技术处理造纸废水的应用研究%Application of Advanced Oxidation Processes in Papermaking Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    杨德敏; 王兵

    2011-01-01

    The advanced oxidation processes has attracted more and more extensive attention due to its higher ability to remove the refractory organic materials in wastewater. The mechanism and the application development in papermaking wastewater treatment of the advanced oxidation processes, such as Fenton reagent oxidation, supercritical water oxidation, photocatalytic oxidation, ultrasonic oxidation, electrocatalytic oxidation, ozone oxidization and wet oxidation, are summarized. The characteristic and existing problems as well as the developing tendency of different advanced oxidation processes are analyzed.%介绍了Fenton类氧化法、超临界水氧化法、光催化氧化法、超声氧化法、电催化氧化法、臭氧氧化法和湿式氧化法等高级氧化技术的作用机理及其在造纸废水处理中的应用进展,分析并指出了各种高级氧化技术的特点以及存在的问题和今后的主要发展方向.

  20. Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process (IZVI) combined with anaerobic filter and biological aerated filter (AF/BAF)

    Institute of Scientific and Technical Information of China (English)

    潘碌亭; 韩悦; 吴锦峰

    2015-01-01

    Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process (IZVI) and anaerobic filter and biological aerated filter (AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total nitrogen (TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum (GC/MS) and gel permeation chromatography (GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.

  1. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  2. Evaluating the efficiency of advanced wastewater treatment: target analysis of organic contaminants and (geno-)toxicity assessment tell a different story.

    Science.gov (United States)

    Magdeburg, Axel; Stalter, Daniel; Schlüsener, Michael; Ternes, Thomas; Oehlmann, Jörg

    2014-03-01

    At a pilot scale wastewater treatment plant ozonation and powdered activated carbon filtration were assessed for their efficacy to remove trace organic contaminants from secondary treated effluents. A chemical analysis of 16 organic compounds was accompanied by a comprehensive suite of in vitro and in vivo bioassays with the focus on genotoxicity to account for the potential formation of reactive oxidation products. In vitro experiments were performed with solid phase extracted water samples, in vivo experiments with native wastewater in a flow through test system on site at the treatment plant. The chemical evaluation revealed an efficient oxidation of about half of the selected compounds by more than 90% at an ozone dose of 0.7 g/g DOC. A lower oxidizing efficiency was observed for the iodinated X-ray contrast media (49-55%). Activated carbon treatment (20 mg/L) was less effective for the removal of most pharmaceuticals monitored. The umuC assay on genotoxicity delivered results with about 90% decrease of the effects by ozonation and slightly lower efficiency for PAC treatment. However, the Ames test on mutagenicity with the strain YG7108 revealed a consistent and ozone-dose dependent increase of mutagenicity after wastewater ozonation compared to secondary treatment. Sand filtration as post treatment step reduced the ozone induced mutagenicity only partly. Also the fish early life stage toxicity test revealed an increase in mortality after ozonation and a reduced effect after sand filtration. Only activated carbon treatment reduced the fish mortality compared to conventional treatment on control level. Likewise the in vivo genotoxicity detected with the comet assay using fish erythrocytes confirmed an increased (geno-)toxicity after ozonation, an effect decrease after sand-filtration and no toxic effects after activated carbon treatment. This study demonstrates the need for a cautious selection of methods for the evaluation of advanced (oxidative

  3. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    Science.gov (United States)

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  4. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  5. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  6. Sustainability of wastewater treatment technologies.

    Science.gov (United States)

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology. PMID:17467148

  7. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  8. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  9. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  10. Disinfection of a wastewater flow treated by advanced primary treatment using O₃, UV and O₃/UV combinations.

    Science.gov (United States)

    Bustos, Yaneth A; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2010-11-01

    This study was conducted to evaluate the ozone, UV and O₃/UV processes for the reuse of sewage treatment plant effluent (Universidad Autonoma Metropolitana Azcapotzalco wastewater treatment plant). The ozone/UV process was compared to individual ozone and the UV processes and control parameters were total and fecal coliforms. Different ozone concentrations (6-12 mg O₃/min) and different UV fluencies (6.7-20.12 mJ/cm²) were tested. It is possible to conclude than none of the processes achieved the disinfection levels required to comply with the Mexican standard NOM-003-SEMARNAT-1997. The continuous ozone process offered the lower total and fecal coliforms reductions, while UV light resulted a disinfection agent with higher germicide power than ozone. The maximum logarithmic reduction achieved due to the combined ozone/UV process was of 2.04 for fecal coliforms and of 2.17 for total coliforms. The next 8 combinations showed lower removal efficiencies, but always higher than those obtained with the single ozone or UV processes. The ozone/UV process was highly effective for the disinfection and a synergistic effect was observed.

  11. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki Sebastian; Zietzschmann, Frederik; Jekel, Martin

    2014-05-15

    Organic micropollutants (OMPs) may occur ubiquitously in the aquatic environment. In order to protect the ecosystem and drinking water sources from potentially toxic effects, discharges of an increasing number of OMPs are being regulated. OMP removal from wastewater treatment plant (WWTP) effluents as a point source is a preferred option with removal by adsorption onto powdered activated carbon (PAC) and OMP transformation to presumably harmless compounds by ozonation as the most promising techniques. In this study, effluents of four WWTPs were treated with PAC and ozone in bench-scale experiments to compare the removal efficiencies of seven relevant OMPs. Concentrations of carbamazepine and diclofenac were reduced by more than 90% with 20 mg/L PAC or 5-7 mg/L ozone (0.5 mg O3 per mg dissolved organic carbon (DOC)). Comparing typical doses for practical applications ozonation proved to be more efficient for abatement of sulfamethoxazole, while removal of benzotriazole and iomeprol was comparatively more efficient with activated carbon. While well known for ozonation, DOC-normalized doses were also applied to PAC and correlated better to relative OMP removal than volume proportional PAC addition. Furthermore, OMP removal efficiencies corresponded well with the reduction of ultraviolet light absorption at 254 nm for both treatment options.

  12. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki Sebastian; Zietzschmann, Frederik; Jekel, Martin

    2014-05-15

    Organic micropollutants (OMPs) may occur ubiquitously in the aquatic environment. In order to protect the ecosystem and drinking water sources from potentially toxic effects, discharges of an increasing number of OMPs are being regulated. OMP removal from wastewater treatment plant (WWTP) effluents as a point source is a preferred option with removal by adsorption onto powdered activated carbon (PAC) and OMP transformation to presumably harmless compounds by ozonation as the most promising techniques. In this study, effluents of four WWTPs were treated with PAC and ozone in bench-scale experiments to compare the removal efficiencies of seven relevant OMPs. Concentrations of carbamazepine and diclofenac were reduced by more than 90% with 20 mg/L PAC or 5-7 mg/L ozone (0.5 mg O3 per mg dissolved organic carbon (DOC)). Comparing typical doses for practical applications ozonation proved to be more efficient for abatement of sulfamethoxazole, while removal of benzotriazole and iomeprol was comparatively more efficient with activated carbon. While well known for ozonation, DOC-normalized doses were also applied to PAC and correlated better to relative OMP removal than volume proportional PAC addition. Furthermore, OMP removal efficiencies corresponded well with the reduction of ultraviolet light absorption at 254 nm for both treatment options. PMID:24607314

  13. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  14. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  15. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to eval

  16. 国内外高级氧化技术降解含酚废水的研究进展%Advances in the treatment of phenol-containing wastewater by advanced oxidation technologies in China and abroad

    Institute of Scientific and Technical Information of China (English)

    高超; 王启山; 夏海燕

    2011-01-01

    酚类化合物的毒性高、难降解,其处理工艺受到研究者的普遍关注.阐述了高级氧化技术降解含酚废水的作用机理,对湿式氧化、光催化氧化、电催化氧化、超声波氧化等除酚工艺的国内外研究进展和发展趋势进行了介绍,并分析了各工艺的特点与优势,最后对高级氧化工艺处理含酚废水的应用前景进行展望.%Due to its high toxicity and refractory degradation,phenol-containing wastewater treatment has been prevalently concerned by researchers. The mechanisms of the degradation of phenol-containing wastewater by advanced oxidation technologies are expounded. The research progress in and developing trends of the phenol removing technologies in China and abroad,such as wet air oxidation,photocatalytic oxidation,electro-catalysis oxidation, ultrasonic wave oxidation and so on are introduced. The characteristics and superiority of every technology is analyzed. At the end, the application prospect of advanced oxidation technologies for phenol-containing wastewater treatment is forecast.

  17. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk.

  18. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. PMID:27403873

  19. Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters.

    Science.gov (United States)

    Amaral-Silva, Nuno; Martins, Rui C; Castro-Silva, Sérgio; Quinta-Ferreira, Rosa M

    2016-10-01

    A complete industrial treatment system (involving the integration of coagulation/flocculation and Fenton processes) to depurate real wastewaters coming from two-phase olive oil production mills has been studied. The experimental results indicated that at the end of this combined strategy, involving a primary physical separation stage followed by Fenton's chemical oxidation, chemical oxygen demand (COD) is reduced up to 90% and total polyphenols' concentration is decreased up to 92%. The treated stream biodegradability (BOD5/COD) reached 0.52 and the Total Suspended Solids (TSSs) and Total Dissolved Solids (TDSs) decreased up to 95% and 69%, respectively. Fenton's procedure was optimized bearing in mind the pH adjustment step, different procedures for hydrogen peroxide addition and the use of coagulants instead of the chemical precipitation (by raising pH) to promote iron sludge settling. Our results demonstrated that pH (3.0 ± 0.1) control during the oxidation reaction improves the oxidation efficiency. Moreover, the final NaOH addition is essential to a better sludge formation and consequent precipitation of the residual iron removing also some organic matter. PMID:26878594

  20. 制药废水深度处理技术的研究现状及进展%The Present Situation and Research Progress in the Advanced Treatment of Pharmaceutical Wastewater

    Institute of Scientific and Technical Information of China (English)

    宋鑫; 任立人; 吴丹; 相凤欣; 孙春宝

    2012-01-01

    随着新制药工业水污染物排放标准的全面强制实施,为了使制药废水达标排放,制药废水深度处理技术的开发已经刻不容缓。文章综述了混凝、活性炭吸附、膜分离、高级氧化及生物处理等用于深度处理制药废水的技术,分析了这些技术的特点、研究进展及制药废水深度处理的现状,并展望了我国制药废水深度处理的发展前景。%With the overall enforcement of the new discharge standard of water pollutants for pharmaceutical industry,the development of the advanced treatment technology of pharmaceutical wastewater was urgent.The technologies for advanced treatment of pharmaceutical wastewater,including coagulation,activated carbon adsorption,membrane separation,advanced oxidation,biological treatment,etc.,were rewiewed.Characteristics,research progress,and the present situation of each pharmaceutical wastewater treatment technology were also discussed.Moreover,the development trends on the advanced treatment of pharmaceutical wastewater was prospected.

  1. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  2. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  3. 高级氧化技术与含酚废水处理%Advanced oxidation processes and treatment of phenolic wastewater

    Institute of Scientific and Technical Information of China (English)

    焦庆周; 柴多里; 鲍远志

    2013-01-01

    Advanced oxidation processes ( AOP) , which utilize the strong oxidation of hydroxyl radicals, can degrade phenolic chemicals in the wastewater. AOP can avoid secondary pollution and is a green technology in phenolic wastewater treatment. The current status of AOP research is summarized,including processes of Fenton,Fenton-like,O3/ H2O2,03/UV,H2O2/UV,corona discharge,hydrodynamic cavitation enhancement,and so on.%高级氧化技术是利用羟基自由基强氧化作用,降解废水中的酚类化学物,可以避免废水处理过程中二次污染的发生,是含酚废水处理的理想绿色技术.介绍了羟基自由基的性质、制备方法以及在废水处理方面的应用,综述了Fenton、类Fenton、O3/H2O2、O3/UV、H2O2/UV、电晕放电、水力空化强化等高级氧化技术的研究现状.

  4. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. PMID:27568982

  5. 乳制品废水处理技术研究进展%Advances in Research of Dairy Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    洪和琪

    2016-01-01

    在分析乳制品废水污染现状、水质特点及其环境影响的基础上,介绍国内外对于此种废水的处理技术,旨在为处理乳制品废水提供参考。%The domestic and international treatment technologies for dairy wastewater are introduced, on the basis of analyzing the present situation of dairy wastewater pollution,the characteristics of water quality and its environmental impact,which is to provide reference for the treatment of dairy wastewater.

  6. Fate of Radionuclides in Wastewater Treatment Plants

    OpenAIRE

    Shabani Samgh Abadi, Farzaneh

    2013-01-01

    In the western United States and in many arid regions, wastewater reclamation is becoming a common way of increasing water supplies. More and more wastewater is being reclaimed for non-potable uses such as irrigation, but reclamation for potable use is also being practiced. One of the concerns for wastewater reclamation is the distribution of contaminants that are not removed by either the wastewater treatment plant or the water treatment plant in the case of potable reclamation. The recent a...

  7. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids. PMID:27620110

  8. Occurrence and treatment of wastewater-derived organic nitrogen.

    Science.gov (United States)

    Chen, Baiyang; Kim, Youngil; Westerhoff, Paul

    2011-10-01

    Dissolved organic nitrogen (DON) derived from wastewater effluent can participate in reactions that lead to formation of nitrogenous chlorination by-products, membrane fouling, eutrophication, and nitrification issues, so management of DON is important for both wastewater reuse applications and nutrient-sensitive watersheds that receive discharges from treated wastewater. This study documents DON occurrence in full-scale water/wastewater (W/WW) treatment plant effluents and assesses the removal of wastewater-derived DON by several processes (biodegradation, coagulation, softening, and powdered activated carbon [PAC] adsorption) used for advanced treatment in wastewater reuse applications. After varying levels of wastewater treatment, the dominant aqueous nitrogenous species shifts from ammonia to nitrate after aerobic processes and nitrate to DON in tertiary treatment effluents. The fraction of DON in total dissolved nitrogen (TDN) accounts for at most 52% in tertiary treated effluents (median=13%) and 54% in surface waters impacted by upstream wastewater discharges (median=31%). The 5-day biodegradability/bioavailability of DON (39%) was higher, on average, than that of dissolved organic carbon (DOC, 26%); however, upon chlorination, the DON removal (3%) decreased significantly. Alum coagulation (with ≥8 mg/L alum per mg/L DOC) and lime softening (with pH 11.3-11.5) removedPAC adsorption preferentially removed more DOC than DON by 10% on average. The results provided herein hence shed light on approaches for reducing organic nitrogen content in treated wastewater. PMID:21741064

  9. 海上油田污水处理技术研究进展%Advances of technologies for offshore oilfield wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    杜春安; 潘永强; 吴晓玲

    2012-01-01

    In this paper, the advances and applications of treatment technologies for offshore oilfield wastewater were summarized. The seawater treatment technologies for injection, such asincluding sulphate removal from injection water, and subsea raw seawater injection are introduced. Re-injection and discharged wastewater treatment technologies are also discussed, among which flotation cyclone separation, filtration, extraction and oxidation technologies are especially addressed. The development trend of improvement and optimum combination of existing technologies were put forward.%阐述了国内外海上油田污水处理新技术的研究进展和应用情况,包括海上油田注水水源及水质处理技术、海水中硫酸盐去除技术及海底海水处理和就地注入工艺技术等。同时阐述了采出水回注和达标排放处理技术,重点论述了气浮技术、旋流分离技术、萃取技术、过滤技术、氧化技术及生化处理技术等在海上油田的研究进展及应用现状。最后展望了海上油田污水处理技术发展趋势,其重点是对现有技术的优化改进以及工艺的优化组合,以提高处理效率。

  10. Application of Rotary-wing Shaped Fiber Filtration Technology in Advanced Wastewater Treatment%旋翼式纤维过滤技术在污水深度处理工程中的应用

    Institute of Scientific and Technical Information of China (English)

    陈晓安

    2011-01-01

    南浔振浔污水处理厂污水深度处理工程属于太湖流域治理的重点项目之一,需将尾水排放标准由(GB 18918-2002)的一级B标准提高为一级A标准.污水深度处理采用以旋翼式纤维过滤技术为核心的混凝、沉淀/过滤/消毒工艺,出水水质稳定达标.介绍了采用旋翼式纤维过滤技术进行污水深度处理的工艺流程、设计参数、处理效果、技术特性,以期将其更广泛地应用于污水深度处理工程.%The advanced wastewater treatment project in Nanxun Zhenxun Sewage Treatment Plant is one of the key projects for Taihu Basin regulation, and its objective is to upgrade the discharge standard from the first level B criteria to the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918 - 2002 ) . The advanced wastewater treatment adopts the rotary-wing shaped fiber filtration technology as the core of the coagulation sedimentation/filtration/disinfection process. The effluent meets the discharge standard. The process flow, design parameters, treatment effect and technical characteristics of the rotary-wing shaped fiber filtration technology for advanced wastewater treatment are introduced with a view to make it more widely used in advanced wastewater treatment projects.

  11. Wastewater Treatment and Reuse: Past, Present, and Future

    OpenAIRE

    Andreas N. Angelakis; Snyder, Shane A.

    2015-01-01

    This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Colle...

  12. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  13. Research and Application of Advanced Treatment Technology for Coking Wastewater%焦化废水深度处理技术研究与应用

    Institute of Scientific and Technical Information of China (English)

    高漫春

    2014-01-01

    对焦化蒸氨废水生化处理工艺优化及深度处理技术进行研究,结合原有生化处理系统工艺特点和生产条件,制定实施优化改造项目方案,并对工程应用情况进行跟踪,分析水处理系统进出水水质达标提升结果。%Research was carried out on the optimization of biochemical treatment process and advanced treatment technology for ammonia distill wastewater of coking plant. According to the characteristics of the original biochemical treatment system process and production conditions, an optimization and modification program was drawn up and implemented and the application results of the project were tracked. Analysis of water at both entry and exit of the treatment system showed that the water quality has reached requirement.

  14. 浸没式超滤膜用于污水处理厂深度处理的试验%A pilot study on submerged ultrafiltration membrane for advanced treatment of wastewater in wastewater treatment plants

    Institute of Scientific and Technical Information of China (English)

    操家顺; 陆晓光; 方芳

    2013-01-01

    A pilot study was carried out using ultrafiltration (UF) equipment with a treatment scale of 31.2 m3/d for the advanced treatment of the effluent from the secondary settling tank in a wastewater treatment plant in Jiangsu Province.Using UF,the removal efficiencies of the turbidity,suspended solids (SS),chemical oxygen demand (COD),total phosphorus (TP),and fecal coliforms were investigated.The results show the following:(1) the pretreatment technique of adding flocculants improved the removal efficiencies of pollutants and reduced the increase of transmembrane pressure,and the effluent met the water quality requirement when 2 mg/L to 4 mg/L of aluminum sulfate was added; and (2) high removal rates of the turbidity,SS,COD,TP,and fecal coliform were obtained:0.33 NTU,0.9 mg/L,5.3 mg/L,0.32 mg/L,and 0 cells/L,respectively.UF performs better than the original advanced treatment technique,through the following process:micro-flocculation to sand filtration to ozonation to chlorination.The water quality of UF effluent meets the requirement for the circulation cooling water in The Reuse of Urban Recycling Water-Water Quality Standard for Industrial Uses (GB/T 19923-2005).%采用处理规模为31.2 m3/d的超滤中试装置,对江苏省某污水处理厂二沉池出水进行深度处理,着重考察超滤对浑浊度、SS、COD、TP、粪大肠菌群等的去除效果.结果表明:①将投加絮凝剂作为前处理手段可提高超滤时污染物的去除效果并降低跨膜压差增量,投加的硫酸铝质量浓度为2~4mg/L即可满足出水水质要求;②超滤对浑浊度、SS、COD、TP、粪大肠菌群等去除效果较好,出水中这些指标的值分别为0.33 NTU、0.9mg/L、5.3mg/L、0.32 mg/L和0个/L,出水水质优于污水处理厂原深度处理工艺“微絮凝→砂滤→臭氧→氯消毒”的出水水质,满足GB/T 19923-2005《城市污水再生利用工业用水水质》规定的回用作循环冷却水的水质要求.

  15. Experimental study on the advanced treatment of bio-chemically treated coking wastewater by the advanced Fenton oxidation process%Fenton高级氧化法深度处理焦化生化废水的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨水莲; 田晓媛; 吴滨; 王威燕; 杨运泉

    2014-01-01

    The Fenton reagent used was made from ferrous sulphate and hydrogen peroxide. It is used in the advanced treatment of coking wastewater which was bio-chemically treated. The effects of the initial pH ,and dosages of FeSO4·7H2O,H2O2 and PAM on the treatment effectiveness of the bio-chemically treated coking wastewater have been investigated. The results show that using the advanced Fenton oxidation process can effectively remove the COD,NH3-N and chroma from this kind of coking wastewater. For bio-chemically treated coking wastewater with moderate concentration,the optimum conditions for Fenton oxidation process are as follows:the initial pH of waste-water is 8-10,dosage of FeSO4·7H2O 500 mg/L,dosage of H2O2 3.5 mL/L,and dosage of PAM 4.0 mg/L. Under these conditions,the removing rates of COD,NH3-N and Chroma can reach 85.9%,97.3%and 84.6%,respectively.%采用硫酸亚铁和过氧化氢所构成的Fenton试剂,对经生化处理后的焦化废水进行Fenton高级氧化深度处理,重点考察了废水初始pH,FeSO4·7H2O、H2O2及PAM投加量对焦化生化废水处理效果的影响。结果表明,采用Fenton高级氧化法可使经生化处理后的焦化废水中的COD、NH3-N和色度得到进一步有效去除。对于中等浓度的焦化生化废水,较适宜的Fenton氧化工艺条件:废水初始pH为8~10,FeSO4·7H2O投加量为500 mg/L,H2O2投加量为3.5 mL/L,PAM投加量为4.0 mg/L。在此条件下, COD、NH3-N和色度的去除率分别可达85.9%、97.3%和84.6%。

  16. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon?

    OpenAIRE

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoys; Weil, Mirco; Rossi, Luca; de Alencastro, Felippe; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael; Barry, David Andrew

    2013-01-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand ...

  17. 污水深度处理系统水质结垢问题及治理方法研究%Research on the scaling problems in the advanced wastewater treatment system and their treatment methods

    Institute of Scientific and Technical Information of China (English)

    吕慧; 马俊峰

    2012-01-01

    通过对微滤-反渗透污水深度处理系统垢样进行成分分析,确定该系统所结垢为碳酸盐类污垢,采用了加酸方法解决结垢问题.运行结果表明:加酸后,pH降至7.8,朗格利尔(LSI)饱和指数与调节前相比显著降低,系统结垢倾向得到了有效抑制,延长了污水深度处理系统的运行周期.%The operation status of the advanced wastewater treatment system in PetroChina Dushanzi Ethylene Co. is introduced. According to the component analysis of the scaling in the MF-RO system,it is found that the main ingredient of the scaling is calcium carbonate. The problem can be solved by adding acid into the wastewater treatment system. The operation results show that the pH has been decreased to 7.8,and Langelier saturation index (LSI) has been declined significantly,compared with the original value before pH adjustment. The scaling tendency of the system is efficiently inhibited,and the operation cycles of the wastewater treatment system are extended.

  18. Livestock wastewater treatment: ammonia removal

    International Nuclear Information System (INIS)

    Livestock wastewater contains high concentration of ammonia. Removal of this inorganic species of nitrogen could be achieved through nitrification and de-nitrification. Nitrification process was conducted in the laboratory using activated sludge process with HRT of three and five days. After wastewater undergone nitrification process at Livestock Wastewater Treatment Plant the concentration of influent for N-NH4+ reduced from 400 mg/l to 0 mg/l and concentration of N-NO3- increased from 11 mg/l to 300 mg/l. Nitrification using lab-scale activated sludge process also recorded similar result. Concentration of N-NH4+ reduced from 400 mg/l to 2 mg/l and 380 mg/l to 1.1 mg/l for HRT=5 days and HRT=3 days respectively. N-NO3- was increased from 11 mg/l to 398 mg/l and 14 mg/l to 394 mg/l for HRT=5 days and HRT=3 days, respectively. However changes of N-NH4+ and N=NO3- were not observed using gamma irradiation. The combination of gamma irradiation with activated sludge process indicated difference and its contribution is still investigated

  19. Behaviour of pharmaceuticals and psychotic drugs in conventional and advanced wastewater treatments; Comportamiento de medicamentos y psicofarmacos en tratamaientos de depuracion convencionales y terciarios

    Energy Technology Data Exchange (ETDEWEB)

    Cortacans Torre, J. A.; Castillo Gonzalez, I. del; Hernandez Lehmann, A.; Hernandez Munoz, A.; Rodriguez Barrera, X.

    2009-07-01

    The occurrence of various pharmaceuticals and psychotic drugs in wastewater and their removal rates in a conventional wastewater treatment plant has been investigated. The psychoactive drugs are poorly removed in the biological step. However, most pharmaceuticals except of carbamazepine, are significantly biodegraded depending the removal degree on the type of compound and on the sludge retention time of the biological treatment. Also, the removal efficiency of conventional tertiary treatments and ultrafiltration and nano filtration membranes using two pilot plants was examined. the effects of retaining pharmaceuticals with ultrafiltration and nano filtration membranes do not greatly differ despite the difference in their pore size. (Author) 25 refs.

  20. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  1. Evaluation of disinfection techniques in the treatment of advanced primary treated wastewater for Ciudad Juárez, México.

    Science.gov (United States)

    Carrasco, Leirad; Turner, Charles D

    2006-01-01

    The purpose of this study was to develop and evaluate the effectiveness of alternative disinfection techniques at the bench-scale level using wastewater from Ciudad Juarez, Mexico, as model feed. This paper presents findings on the effectiveness of UV radiation, peracetic acid (PAA), chlorine dioxide (ClO2), and hypochlorous acid (HOCl) as disinfectants for advanced primary treatment (APT) plant effluent. Wastewater samples for bench-scale testing were collected from an agua negra ("black water") ditch that is part of the combined sewer system in Ciudad Juarez. Bench-scale simulations of the APT process used in Ciudad Juarez were run using a jar test apparatus and aluminum sulfate [Al2(SO4)3] as the coagulant. Jar test effluent from the bench system was used for disinfection testing. The Mexican discharge quality standard for total coliforms is 10 000/100 mL. Ultraviolet radiation met this standard at a dose of 47.5 mW-s/cm2. Ultraviolet disinfection proved reliable and effective despite the presence of suspended solids, and UV dose effectiveness expressed as a total coliforms survival ratio was best explained by a linear regression model. The ClO2 dose ranged from 10 to 20 mg/L and was only effective under ambient temperature conditions found during the winter months; PAA disinfection never met Mexican standards. Chlorine disinfection was effective at a dose range of 8 to 10 mg/L on samples collected at low temperature conditions. Since the completion of this research, Ciudad Juarez has discontinued the use of chlorine disinfection because of its high cost and ineffectiveness.

  2. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  3. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    Science.gov (United States)

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  4. Response surface method for the optimisation of micropollutant removal in municipal wastewater treatment plant effluent with the UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Schulze-Hennings, U; Pinnekamp, J

    2013-01-01

    Experiments with the ultraviolet (UV)/H2O2 advanced oxidation process (AOP) were conducted to investigate the abatement of micropollutants in wastewater treatment plant effluent. The fluence and the starting concentration of H2O2 in a bench-scale batch reactor were varied according to response surface method (RSM) to examine their influence on the treatment efficiency. It was shown that the investigated AOP is very effective for the abatement of micropollutants with conversion rates typically higher than 90%. Empirical relationships between fluence, H2O2 dosage and the resulting concentration of micropollutants were established by RSM. By this means it was shown that X-ray-contrast media had been degraded only by UV light. Nevertheless, most substances were degraded by the combination of UV irradiation and H2O2. Based on RSM an optimisation of multiple responses was conducted to find the minimal fluence and H2O2 dosage that are needed to reach an efficient abatement of micropollutants. PMID:23656952

  5. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment. PMID:22105133

  6. Advanced Treatment of Dyeing Wastewater for Reuse by Electrochemical Oxidation%印染废水的电化学深度处理及回用研究

    Institute of Scientific and Technical Information of China (English)

    陈飞翔; 杨初引; 周明明; 王家德

    2013-01-01

    In response to the characteristics of dye wastewater,the electrochemical oxidation of effluents from the biochemical process of dyeing wastewater was studied in the electrochemical reactor using PbO2/Ti electrode as the anode and stainless steel plate as the cathode.The results revealed that the electrochemical oxidation could simultaneously remove the Chemical Oxygen Demand (COD),ammonia and chromaticity.At the residence time of 60 min and current density of 10 mA ·cm-2,the COD,ammonia,chromaticity,concentration of chloride ion and pH values could meet the water standards for "the reuse of urban recycling water-water quality standard for industrial use" (GB/T 19923-2005) with the current efficiency of 45.6%.The energy consumption was 4.1 kW· h for advanced treatment of per ton wastewater.%针对印染废水水质特性,在PbO2/Ti阳极、不锈钢板阴极的电解反应器中研究了电化学氧化对印染废水生化出水的处理效果.试验结果表明,电氧化工艺可以实现化学需氧量(Chemical Oxygen Demand,COD)、氨氮和色度的同步去除.在电流密度10 mA·cm-2时电解60 min,废水中COD、氨氮、色度、氯离子浓度以及pH值等指标均可达到GB/T19923-2005《城市污水再生利用工业用水水质》中工艺与产品用水标准,电流效率达45.6%,吨水能耗4.1 kW·h.

  7. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  8. Photochemical Wastewater Treatment for Potential Agricultural Use

    Directory of Open Access Journals (Sweden)

    Sandra García

    2014-12-01

    Full Text Available The urban wastewaters after advanced primary treatment (APT are again discharged into the river without any use. In the present research in a soilless culture system where maize seedlings were tested three different treatments were planted: 1. Obtained from the effluent water of an APT, 2. Photochemically treated wastewater (PCT and 3. Urban water network (UW. A block randomly distributed design was tested, with five repetitions where the experimental unit was formed by a 36 cavities filled with Peat Moss and the useful plot was considered by 16 central plants for each experimental unit. Irrigations were scheduled since the first time of the planting, employed 27 mL/cavity. The removal of the organic contaminants present into the water was conducted by the employment of a Batch photoreactor, adapted with a recirculation system (UV/H2O2/O3, evaluated to determine UV-Vis spectra, pH, color and turbidity parameters initial and final samples. Measurements of height and percentage of germination in plants, where is determined that the seedlings irrigated with water PCT were reached the highest average compared to APT and UW irrigated; After the 50 cm growing plant, a determination of the presence of heavy metal, via atomic absorption method, were carried on analyzing the leaves, roots and stalks of the samples. Concluding that the presences of heavy metals into the APT were higher than PCT treatments, it can be an impediment for the normal growing of the plants. Therefore, the application of the photochemical treatment using (UV/H2O2/O3 system, represent a viable alternative for the wastewater treatment after the APT process to possible use of irrigation.

  9. A Primer on Wastewater Treatment, July 1976 Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This general information pamphlet is concerned with the types of wastewater treatment systems, the need for further treatment, and advanced methods of treating waste. Current methods are described, illustrated and evaluated. Pollution problems from oxygen-demanding wastes, disease-causing agents, plant nutrients, synthetic chemicals, inorganic…

  10. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  11. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  12. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique

  13. Wastewater treatment after reactive printing

    OpenAIRE

    Šostar-Turk, Sonja; Simonič, Marjana; Petrinić, Irena

    2012-01-01

    Membrane filtration of wastewater after textile printing with reactive dyes isdescribed. The wastewater from a Slovenian factory, whose output is approx. 80% reactive dyes printed and dyed on cotton, was studied. In particular, the presence of urea, sodium alginate, oxidation agent and reactive dyes, used forthe printing paste preparation, in the wastewater was studied. Chemical analyses of actual, non-purified, wastewater showed that many Slovenian regulations were exceeded. The study of mem...

  14. Application of Double-membrane Method in Advanced Treatment of Wastewater%双膜法在安钢污水深度处理中的应用

    Institute of Scientific and Technical Information of China (English)

    柳民涛; 王聪; 李龙飞; 张书帅

    2014-01-01

    Double membrane method was used in advanced treatment of industrial wastewater to reach national secondary discharged water standard. Through the process of pretreatment, ultrafiltration, reverse osmosis and mixed bed, qualified desalinated water was produced with water conductivity at exit smaller than 10 μS/cm and SiO2 content lower than 0.1 mg/L. The process is not only environment friendly but also energy saving.%工业废水水处理达到国家二级排放标准的外排水,采用双膜法进行深度处理,经过预处理、超滤、反渗透、混床产出合格的脱盐水,出水水质电导率小于10μS/cm,二氧化硅含量小于0.1 mg/L,该工艺环保又节能。

  15. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward. PMID:24015572

  16. 纺织印染废水深度处理与回用实例%Instance of advanced treatment and reuse of textile and dyeing wastewater

    Institute of Scientific and Technical Information of China (English)

    何耀忠; 汪晓军; 徐金玲; 葛启龙; 颜金利; 邱孝群

    2013-01-01

    For the purpose of water reuse with a capacity of 5 000 m3/d, a combined process of integrated ozonation biological aerated filter and biological aerated filter (BAF) has been used for the pretreatment of textile and dyeing wastewater. Then, membrane filtration has been used for achieving water reuse. Under designed operating conditions,the optimal ozone dosage for integrated ozonation biological aerated filter is 20-30 mg/L,pretreatment effluent COD<40 mg/L,BOD<10 mg/L,SS<10 mg/L,and chroma<4 times. The water produced by RO system could be reused in dyeing process, and membrane filtration concentrate could be discharged under local regulations. It has been proved by practical application that the combined process could guarantee stable advanced treatment and reclaimation of textile and dyeing wastewater with high quality,and solve the problem of membrane filtration concentrate treatment, showing its broad popularization and application value.%采用“一体臭氧曝气生物滤池+曝气生物滤池(BAF)”组合工艺,对纺织印染废水进行预处理,联合后续膜分离工艺以实现中水回用,处理水量为5 000 m3/d.设计运行条件下,臭氧曝气生物滤池最佳臭氧投加量为20~30mg/L,预处理系统出水COD<40 mg/L、BOD<10 mg/L、SS<10 mg/L、色度<4倍;反渗透产水可作为染整工艺用水,膜滤浓缩液可达标排放.工程实践证明.该联合工艺可实现对纺织印染废水的深度处理与高质回用,并解决了膜滤浓缩液的处理难题,具有推广应用价值.

  17. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to 20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater

  18. Electron beam treatment of textile dyeing wastewater

    International Nuclear Information System (INIS)

    A pilot plant with e-beam for treating 1,000m3/day of dyeing wastewater were constructed and started in operation from 1998, together with the biological treatment facility. The wastewater from various stages of the existing purification process can be treated with electron beam in this plant, and it will give rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam treatment results in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Commercial plants for treating over 10,000m3/day each, based upon this pilot experimental result, will start in construction from 2001 by the support of IAEA and Korean Government. (author)

  19. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m3/day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  20. Advanced Waste Treatment, Wastewater Technology: A Two-Year Post High School Instructional Program. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs. Volume VI.

    Science.gov (United States)

    Gearheart, Robert A.; And Others

    This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and functions of the process units in a wastewater treatment plant. The modules are arranged in order appropriate for teaching students with no experience. The modules can also be rearranged and…

  1. 钻石型滤布滤池在污水处理厂深度处理中的应用%Application of diamond layout cloth-media filter in the advanced treatment of the wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    姚枝良

    2012-01-01

    Diamond layout cloth-media filter is mainly applied for the advanced treatment in wastewater treatment plant and is also a new type of equipment for suspended solids (SS) removal in secondary effluent. Taking Qingdao Loushanhe Wastewater Treatment Plant as a case study, and introduced the principles and design methods of the diamond layout cloth-media filter. This paper emphasized operation type and design parameters selection, and listed the practical operation effects, which would offer references for similar engineering projects design.%钻石型滤布滤池主要应用于污水处理厂的深度处理工程,是去除二级出水中SS的一种新型设备.以青岛娄山河污水处理厂升级改造工程为例,阐述了钻石型滤布滤池的工作原理和设计方法,重点分析其运行方式及设计参数选择,并列出实际运行效果,可为同类工程的设计提供参考.

  2. Investigation on Advanced Oxidation-Biological Processes in Pharmaceutical Wastewater Treatment%高级氧化与生物联用技术处理制药废水的研究

    Institute of Scientific and Technical Information of China (English)

    申晓辉; 申婷婷; 李小明; 岳秀; 柳娴; 唐玉芳

    2011-01-01

    制药工业废水成分复杂,有机污染物种类多,难于降解,毒性大。高级氧化技术处理制药废水尚处于实验研究阶段,然而将其与生物法联合具有良好的应用前景。重点介绍了各类高级氧化技术的原理和特点,讨论了高级氧化及生物联用技术运用于制药废水的处理现状、存在的问题及未来发展方向。%Pharmaceutical industrial wastewater contained high concentration of organic matters and was characterized by extremely poor biodegradability and toxicity.Although advanced oxidation processes(AOPs) used in the pharmaceutical wastewater treatment was generally at the batch experiment stage,yet it had bright application prospect in combining with biological treatment.The elaboration of the principle and characteristics of various advanced oxidation processes as well as the present situation were focused on,and the existing problems and future development direction of advanced oxidation-biological processes in pharmaceutical wastewater treatment were discussed.

  3. MF-RO深度处理印染废水及效果分析%Advanced treatment of printing and dyeing wastewater by MF-RO process

    Institute of Scientific and Technical Information of China (English)

    邹勇斌; 颜幼平; 陈师楚; 陈志星; 陈鹏

    2013-01-01

    采用预处理-微滤(MF)-反渗透(RO)双膜技术深度处理印染废水.通过改变废水的温度、pH值、回用率和RO的操作压力,探讨其对CODCr去除率、脱盐效果的影响及原因.试验表明:最佳运行工况是操作压力为1.8 Mpa、水温为35℃、pH值为6.0~ 10.0、回收率为80%;此条件下,双膜法对CODCr的去除率和脱盐率分别达到97.4%和97.2%,浊度去除率接近100%,出水水质满足印染工艺回用要求.%MF-RO was used for the advanced treatment of the printing and dyeing wastewater after pre-treatment. Through changing the temperature, pH value, recycle rate and operating pressure of reverse osmosis, how and why those related factors affected the removal rate of CODCr and desalination effect were discussed and analyzed. The results of the test showed that, the optimal operating condition was: the pressure was 1.8 Mpa, the water temperature was 35℃, the pH value was 6.0 - 10.0, and the recovery rate was 80%. Under the above condition, the removal rates of CODCr and salinity reached 97.4% and 97.2% respectively, the removal rate of turbidity was close to 100%, the effluent water quality could meet the requirement for the process of printing and dyeing.

  4. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  5. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    Science.gov (United States)

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively). PMID:22571523

  6. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  7. Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes

    OpenAIRE

    Tony, Maha A.; Purcell, Patrick J.; Zhao, Y. Q.

    2012-01-01

    The objective of this study was to investigate the application of advanced oxidation processes (AOPs) to the treatment of wastewaters contaminated with hydrocarbon oil. Three different oil-contaminated wastewaters were examined and compared: (i) a ‘real’ hydrocarbon wastewater collected from an oil refinery (Conoco-Phillips Whitegate refinery, County Cork, Ireland); (ii) a ‘real’ hydrocarbon wastewater collected from a car-wash facility located at a petroleum filling station; and (iii) a ‘syn...

  8. Nitrification Processes in Tehran Wastewater Treatment Plant

    OpenAIRE

    S. A. Sadrnejad

    2011-01-01

    A wastewater treatment plant is designed to daily treat 450000 m3 of wastewater collected from the city of Tehran. The wastewater treatment plant is located at the south of Shahr-Ray in southern Tehran with the area of 110 hectares. The treatment plant effluent will be transferred to Varamin agricultural lands to be used for the irrigation of crops. A conventional activated sludge for carbon removal and a high-rate trickling filter for nitrification of ammonia to nitrate are designed and cons...

  9. Supernatant Sludge Treatment on the Ljubljana Wastewater Treatment Plant

    OpenAIRE

    Vrbančič, Mojca

    2013-01-01

    Supernatant, generated from mechanical compaction previously anaerobically stabilized sludge at the wastewater treatment plant, is heavily loaded with ammonium nitrogen. Usually is leaded to an inflow of wastewater treatment plant and represents approximately 30 % of the additional nitrogen load in the biological treatment stage. To avoid this problem and due to increasingly stringent regulations, which has in recent years heavily limited emissions of nitrogen in the effluent from wastewater...

  10. Degradation of organic matter from wastewater using advanced primary treatment by O3 and O3/UV in a pilot plant

    Science.gov (United States)

    Bustos-Terrones, Yaneth; Rangel-Peraza, Jesús Gabriel; Sanhouse, Antonio; Bandala, Erick R.; Torres, Luis G.

    2016-02-01

    The oxidation of organic matter from wastewater using ozone, ultraviolet radiation and ozone/UV oxidation was evaluated in a pilot plant, applying a continuous effluent arising from the Autonomous Metropolitan University wastewater treatment plant. The oxidation was measured as the efficiency to remove organic load, measured as chemical oxygen demand. The use of ozone and UV was evaluated separately and in combination through a continuous process. Three different ozone doses (0.6-1.2 mg O3/L) and three different UV radiation fluencies (6.7-20.12 mJ/cm2) were assessed. A synergistic effect of the combined process ozone/UV was demonstrated, and a maximal chemical oxygen demand reduction was achieved both processes. Due to residence times used (less than 1 min), 36% of chemical oxygen demand reduction was obtained when ozone treatment was evaluate separately and only 9% using ultraviolet radiation.

  11. Life Cycle Assessment as a tool for green Chemistry: Application to different advanced oxidation processes for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ortiz, I.; Domenech Antunez, X.; Malato Rodriguez, S.

    2006-07-01

    The development of chemistry during the twentieth century has changed our lives. In fact, chemistry and chemicals surrounds US in our daily activities, due to the huge supply of products aimed at improving our quality of life. Chemistry has resulted in the medical revolution of the past century, in which drugs as antibiotics have been used to cure diseases that affected mankind for centuries. These advances have led to the rise in the average life expectancy from 47 in 1900, to 75 years in the 1990s (Breslow 1997). On the other hand, the world's food supply has seen an explosive expansion because of the development of pesticides as well as fertilisers that protect crops and improve their productivity. Other common chemicals are those related to hygiene, such as soaps, detergents, disinfectants, toothpaste, etc. Therefore, there is practically no facet in material life-transportation communication, clothing, shelter, office- in which chemistry does not play an important role, either to supply consumer products or to improve services addressed to society in general (Domenech 2005). In spite of all these clear benefits, the chemical industry is often viewed by the general public as causing more harm than good (Lancaster 2002). A major reason for this is that the industry is perceived as being polluting and causing significant environmental damage. Indeed, the manufacture, use and disposal of chemicals consume large amounts of resources, and originates emissions of pollutants to all environmental compartments, not to mention the numerous accidents and disasters in which the chemical industry has been involved in the recent past. (Author)

  12. Effect of advanced oxidation processes (AOPs) on the biodegradability of municipal wastewater for its reuse in the textile industry

    OpenAIRE

    Jarni, Klara; Kompare, Boris; Drev, Darko; Griessler Bulc, Tjaša; Krivograd-Klemenčič, Aleksandra

    2013-01-01

    Reuse of treated municipal wastewater to supplement part of fresh water is becoming more and more important. However, treated water can contain some pollutants that cannot be successfully removed with classical biological wastewater treatment processes. Aim of the study presented was to assess whether advanced oxidation processes (AOPs) and special enzymes enhance biodegradation of municipal wastewater and if treated municipal wastewater can be reused in the production process of ...

  13. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  14. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  15. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  16. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  17. Biological Hazards in Sewage and Wastewater Treatment Plants

    Science.gov (United States)

    Biological Hazards in Sewage and Wastewater Treatment Plants Hazard Alert During construction and maintenance of sewage and wastewater plants, workers may be killed by drowning, trench collapses, falls, ...

  18. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). PMID:25600300

  19. 屠宰废水深度处理工程调试及异常情况处置%Commissioning of Slaughterhouse Wastewater Advanced Treatment Project and Treatment of Abnormal Phenomena

    Institute of Scientific and Technical Information of China (English)

    张强; 宋安坤; 韩璐

    2012-01-01

    Biological contact oxidation/sedimentation/air flotation process was used for slaughterhouse wastewater advanced treatment. The process could enhance ammonia nitrogen and TP removal, and enabled the effluent quality to meet the second class criteria specified in the Integrated Wastewater Discharge Standard ( GB 8978 - 1996) . The cause of abnormal phenomenon in the commissioning was analyzed , and the handle scheme was provided. It was proposed that the time-varying rule of dissolved oxygen in biological contact oxidation tanks and SV value at the outlet served as a criterion of biological section maturation.%采用接触氧化/沉淀/气浮工艺对屠宰废水进行深度处理.该工艺可以强化对氨氮和总磷的去除,使出水水质达到《污水综合排放标准》(GB 8978-1996)的二级标准.分析了调试中异常情况出现的原因,找出了处置方案,并提出以进水后接触氧化池内溶解氧随时间的变化规律和接触氧化池出口处的SV值作为判断生化工段成熟的标准.

  20. Advance and Utilization of Treatment Technology on Wastewater from Piggery%猪场废水处理技术研究进展与应用

    Institute of Scientific and Technical Information of China (English)

    潘霞; 李双来; 胡诚; 陈云峰; 乔艳

    2011-01-01

    随着人们生活水平的提高,猪场废水排放的危害越来越引起人们的重视.介绍了猪场废水的产生、危害,并从自然生物处理法、厌氧生物处理法、好氧生物处理法、厌氧-好氧联合处理法等方面阐述了猪场废水的处理技术;并进行了沼气、人工湿地与氧化塘组合处理的研究,结果表明污水经组合处理后,出水达到排放标准,并能够循环利用.%The harm of wastewater from piggery was attracting more people's attention with the increasing of living standard.The generationa and damage of wastewater from piggery were introduced and some treatment technologies on wastewater from piggery such as natural bioremediation. aerobic bioremediation. anaerobic bioremediation and aerobic-anaerobic combination bioremediation etc. were elaborated. The treatment effects of combined technology with methane,artificial wetlands, oxidation pond were studied. The water treated by combined technology could meet the sewage discharge standard and could be reused.

  1. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative

    OpenAIRE

    Regmi, Shakil

    2013-01-01

    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...

  2. Sustainable wastewater treatment: how might microbial fuel cells contribute.

    Science.gov (United States)

    Oh, Sung T; Kim, Jung Rae; Premier, Giuliano C; Lee, Tae Ho; Kim, Changwon; Sloan, William T

    2010-01-01

    The need for cost-effective low-energy wastewater treatment has never been greater. Clean water for our expanding and predominantly urban global population will be expensive to deliver, eats into our diminishing carbon-based energy reserves and consequently contributes to green house gases in the atmosphere and climate change. Thus every potential cost and energy cutting measure for wastewater treatment should be explored. Microbial fuel cells (MFCs) could potentially yield such savings but, to achieve this, requires significant advances in our understanding in a few critical areas and in our designs of the overall systems. Here we review the research which might accelerate our progress towards sustainable wastewater treatment using MFCs: system control and modelling and the understanding of the ecology of the microbial communities that catalyse the generation of electricity. PMID:20688144

  3. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  4. 电渗析深度处理炼化废水回用试验研究%Experimental research on the advanced treatment of refining wastewater and reuse by electrodialysis process

    Institute of Scientific and Technical Information of China (English)

    朱安民; 李亮; 滕厚开; 张艳芳; 李超

    2015-01-01

    In order to reduce fresh water consumption and wastewater emission,experimental researches on the ad-vanced treatment of refining wastewater by electrodialysis process,through engineering approaches and application have been developed.After a 3-month continuous operation of the 20 t/h electrodialysis desalination device,the fea-sibility of the advanced treatment of refining wastewater by electrodialysis desalination is discussed,the operation pa-rameters of the device are optimized,and continuously stable operation capacities are investigated.The experimental results provide reference for the engineering popularization and application of this technology.%为降低炼化企业新鲜水消耗量及污水排放量,开展了电渗析脱盐深度处理炼化废水的工程化应用试验研究.通过20 t/h电渗析脱盐中试装置的3个月连续运行,探讨了电渗析脱盐深度处理炼化废水回用于循环水补水的可行性,并优化电渗析脱盐装置运行参数,考察装置连续稳定运行性能,为该技术的工程化推广应用提供参考.

  5. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. PMID:25113994

  6. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m3/day of wastewater from 80,000m3/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  7. Computing the resilience of a wastewater treatment bioreactor

    OpenAIRE

    Mabrouk, N.; Mathias, J.D.; Deffuant, G.

    2010-01-01

    International audience Biological wastewater treatment reactor are designed to reduce the pollutant content of a wastewater to an acceptable level often fixed by wastewater discharge regulations. The reactor design is often based on average wastewater flow and composition patterns. However, industrial wastewater treatment reactors are often subject to unexpected perturbations (variations in wastewater flow, composition or shift in the microbial communities). Hence the capacity of the react...

  8. Inter-municipal cooperation for wastewater treatment: Case studies from Israel

    NARCIS (Netherlands)

    Hophmayer-Tokich, Sharon; Kliot, Nurit

    2008-01-01

    Since the beginning of the 1990s, local authorities in Israel have been engaged in promoting advanced Wastewater Treatment Plant (WWTP) projects throughout the country, resulting in the “wastewater treatment revolution” of the 1990s. These achievements are extremely important in the water-scarce cou

  9. Latest Research Advance in Dye Wastewater Treatment with Adsorbent%吸附剂处理印染废水最新应用研究进展

    Institute of Scientific and Technical Information of China (English)

    汤晓欢; 毛勇; 靳菁; 徐娜; 李青

    2013-01-01

    Dye wastewater is one of the main harmful and hardly -biodegraded industrial wastewaters in China at present .As one of dye wastewater treatment materials , adsorbent has some characteristics , such as wide application scope , high efficiency and repeated application.The paper introduced the structure and properties of activated carbon , cellulose, chitosan, sponge iron and other types of adsorbents, focused on the researches and applications of the modified adsorbents , and discussed the application pros-pects of the modified adsorbents .%  印染废水是我国目前主要有害、难处理的工业废水之一。利用吸附剂处理印染废水具有应用范围广、处理效果好、可重复使用等特性。介绍了在活性炭、纤维素、壳聚糖、海绵铁等不同类型吸附剂结构和性质的基础上,着重讨论了对其改性的研究和应用,并对改性吸附剂的应用前景作了进一步的展望。

  10. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  11. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  12. Selection of technologies for municipal wastewater treatment

    OpenAIRE

    Juan Pablo Rodríguez Miranda; César Augusto García Ubaque; Janneth Pardo Pinzón

    2015-01-01

    In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, econom...

  13. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  14. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed. PMID:24730286

  15. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  16. Study on coagulation-Fenton reagent method in advanced treatment of pharmaceutical wastewater%混凝-Fenton法在制药废水生化处理后出水深度处理中的研究

    Institute of Scientific and Technical Information of China (English)

    王晴

    2011-01-01

    采用混凝-Fenton试剂法对制药废水生化处理后的出水进行深度处理,通过正交试验研究了FeSO4·7H2O试剂、H2O2用量和反应时间等因素对COD去除率的影响,在最佳处理条件下,脱色效果较好,为制药废水生化处理后出水的深度处理提供了一种可行的方法.%Coagulation-Fenton process was chosen for the advanced treatment of pharmaceutical wastewater. Orthogonal experiment was used to study the influence of the amount of FeSO4 · 7 H2O and H2O2 and the reaction time on the COD removal rate. By analyzing the data of orthogonal experiment, the best treatment conditions is determined, ard the removal rate of chromaticity is relatively high. A feasible method for advanced treatment of pharmaceutical wastewater is provided by this study.

  17. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    Science.gov (United States)

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  18. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  19. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  20. Testing Ballast Water Treatment at a Municipal Wastewater Treatment Plant

    OpenAIRE

    Cohen, Andrew N.

    2001-01-01

    The main goal of the project was to investigate the feasibility of treating ships' ballast water in existing municipal wastewater treatment plants (= publicly-owned treatment works or POTWs). The main objectives included identifying and characterizing the limiting factors that could restrict the volume of ballast water that can be treated at POTWs; and test, in a series of laboratory experiments, the effectiveness of standard municipal wastewater treatment in removing or killing ballast water...

  1. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  2. Domestic wastewater treatment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Duncan

    2004-09-15

    Details methods of domestic wastewater treatment that are especially suitable in developing countries. The emphasis is on low-cost, low-energy, low-maintenance, high-performance systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds (WSPs), wastewater storage and treatment reservoirs, constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. (Author)

  3. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model......This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation of a...

  4. 膜处理工艺在焦化废水深度处理中的应用%On the membrane treatment of coking wastewater as an advanced treatment

    Institute of Scientific and Technical Information of China (English)

    李国忠; 葛丰华; 杜连喜

    2014-01-01

    Coke-plant wastewater , contaminated by various pollutants , consists of complex compo-nents,and it lacks biodegradability .The discharging water after the advanced treatments of hyper-fil-tration and nanofiltration membrane can be used for recycled water .The factors that will influence the running of the membrane treatment system such as the inlet water quality ,operation mode and mem-brane cleaning are summarized .%针对焦化废水生化处理后出水成分复杂、污染物种类多、可生化性差等特点,应用超滤、纳滤膜处理工艺对其进行深度处理,出水可回用于循环水。从进水水质、运行方式及膜清洗方面对影响膜处理系统运行的因素进行了总结。

  5. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    OpenAIRE

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater treatment plants (WWTPs). Activated carbon adsorption and advanced oxidation are regarded as the most promising technologies to attenuate micro-pollutant concentration in the treated wastewater (i.e. the...

  6. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m3/d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, .OH and HO2. radicals and hydrogen peroxide H2O2 and H2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10-3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to achieve

  7. Application of Ultrasonic Technology for Water and Wastewater Treatment

    OpenAIRE

    AH Mahvi

    2009-01-01

    "nUltrasonic technology as an innovative technology may be used for water and wastewater treatment for pollution removal. This technology acts as an advanced oxidation process. Application of this technology leads to the decomposition of many com­plex organic compounds to much simpler compounds during physical and chemical compounds during cavitation proc­ess. In this article review, some applications of this valuable technology are presented.

  8. Effectiveness of Urban Wastewater Treatment Policies in Selected Countries

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Smith, Carey; Kristensen, Peter;

    This pilot study examines the effectiveness of wastewater policies and measures in six Member States in order to identify and understand the reasons for both the successes and the shortfalls in implementation. Two of these countries have almost fully implemented the directive, two have yet to do ......-effectiveness. The report focuses on the extension of sewage plants with appropriate levels of treatment (biological or advanced) and trends in discharges to surface waters....

  9. 污水厌氧生物处理监控技术研究进展%Research advance of monitoring technologies of anaerobic biological treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    常佳; 费学宁; 郝亚超; 李彤鲜; 朱慧芳

    2013-01-01

      在厌氧生物处理技术中,通过对各类厌氧菌在工艺运行期间的形态变化及其在污泥中的分布的实时监控,合理把握厌氧工艺进程,充分发挥厌氧菌的各自优势,对废水处理效率的提高具有重要意义。本文介绍了厌氧工艺进程实时监控技术的研究进展,从反应器启动运行中常规指标监测、菌群形态学监测方法及分子生物学监测技术三方面对监控技术加以论述;归纳比较了各方法在监测准确度和灵敏度上的差异,并在此基础上提出了将传统监测方法和分子生物学技术进行结合、将荧光探针标记靶点转移到细胞膜表面等建议,展望了分子生物学技术在污水厌氧生物处理监控领域的应用前景。%  In anaerobic biological treatment of wastewater,real-time monitoring of anaerobic bacteria morphologic change and distribution in the sludge,and process control are important to increase wastewater treatment efficiency. This paper presented the developments of monitoring technologies processing this area. Determination of conventional indicators of reactor start-up,monitoring methods of bacterial communities’ morphology and molecular biology monitoring technologies were stated. The differences in accuracy and sensitivity among the three methods were summarized and compared. Combining the traditional monitoring methods with molecular biology techniques and transferring the target of fluorescent probe to the surface of cell membrane were also suggested as possible improvements. Furthermore,the application prospects of molecular biology techniques in the monitoring fields of anaerobic biological treatment of wastewater were proposed.

  10. Electrochemical oxidation as a final treatment of synthetic tannery wastewater.

    Science.gov (United States)

    Panizza, Marco; Cerisola, Giacomo

    2004-10-15

    Vegetable tannery wastewaters contain high concentrations of organics and other chemicals that inhibit the activity of microorganisms during biological oxidations, so biorefractory organics that are not removed by biological treatment must be eliminated by a tertiary or advanced wastewater treatment. In this paper, the applicability of electrochemical oxidation as a tertiary treatment of a vegetable tannery wastewater was investigated by performing galvanostatic electrolysis using lead dioxide (Ti/PbO2) and mixed titanium and ruthenium oxide (Ti/TiRuO2) as anodes under different experimental conditions. The experimental results showed that both the electrodes performed complete mineralization of the wastewater. In particular, the oxidation took place on the PbO2 anode by direct electron transfer and indirect oxidation mediated by active chlorine, while it occurred on the Ti/TiRuO2 anode only by indirect oxidation. Furthermore, the Ti/PbO2 gave a somewhat higher oxidation rate than that observed for the Ti/TiRuO2 anode. Although the Ti/TiRuO2 required almost the same energy consumption for complete COD removal, it was more stable and did not release toxic ions, so it was the best candidate for industrial applications. With the Ti/TiRuO2 anode, the rate of tannery wastewater oxidation increased with the current density, pH, and temperature of the solution. These results strongly indicate that electrochemical methods can be applied effectively as a final treatment of vegetable tannery wastewater allowing the complete removal of COD, tannin, and ammonium and decolorization. PMID:15543753

  11. 高级氧化技术在废水处理中的应用研究进展%Application and Progress of Advanced Oxidation Processes inWastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    钟理; 詹怀宇

    2000-01-01

    探讨了高级氧化技术(Advanced Oxidation Processes,即AOPs)如:O3/H2O2,Fenton试剂均相湿式催化氧化;H2O2/UV、O3/UV、O3/H2O2/UV均相光催化氧化;多相湿式催化氧化,多相光催化氧化,多相催化和生化氧化等过程处理废水及其反应机理,论述了AOPs技术在工业废水处理方面的研究进展。%The wastewater treatment and reaction mechanism by Advanced Oxidation Processes such as homogeneous wet catalytic oxidation of O3/H2O2 and Fenton agent, homogeneous photocatalytic oxidation of H2O2/UV,O3/UV and O2/H2O2/UV, and heterogeneous wet catalytic oxidation, heterogeneous photocatalytic oxidation, heterogeneous catalytic and biochemical oxidation were explored. The investigation and progress of AOPs technique in industrial wastewater treatment were overviewed.

  12. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  13. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  14. Reduction of organic trace compounds and fresh water consumption by recovery of advanced oxidation processes treated industrial wastewater.

    Science.gov (United States)

    Bierbaum, S; Öller, H-J; Kersten, A; Klemenčič, A Krivograd

    2014-01-01

    Ozone (O(3)) has been used successfully in advanced wastewater treatment in paper mills, other sectors and municipalities. To solve the water problems of regions lacking fresh water, wastewater treated by advanced oxidation processes (AOPs) can substitute fresh water in highly water-consuming industries. Results of this study have shown that paper strength properties are not impaired and whiteness is slightly impaired only when reusing paper mill wastewater. Furthermore, organic trace compounds are becoming an issue in the German paper industry. The results of this study have shown that AOPs are capable of improving wastewater quality by reducing organic load, colour and organic trace compounds.

  15. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  16. Combined biological fluidized bed-advanced catalytic oxidation process used for pharmacy wastewater treatment%生物流化床—高级催化氧化工艺处理制药废水

    Institute of Scientific and Technical Information of China (English)

    杜家绪; 买文宁; 王敏; 唐启

    2016-01-01

    采用生物流化床—高级催化氧化工艺处理制药废水,介绍了制药废水处理工程的工艺流程、工艺设计、调试方法、处理效果和工程效益.运行结果表明,该系统处理效果好且运行稳定,出水水质满足《混装制剂类制药工业水污染物排放标准》(GB 21908—2008)表2标准.%The combined biological fluidized bed-advanced catalytic oxidation process has been designed for the treatment of pharmacy wastewater. The process flow,process design,debugging methods,treatment effect and engi-neering benefit of the pharmacy wastewater treatment project are introduced. The running results show that the treat-ment effect of the system is good,it runs steadily,and the effluent quality meets the requirements specified in Tab. 2 of the Discharge Standards of Water Pollutants for Pharmaceutical Industry Mixing/Compounding and Formulati on Category(GB 21908—2008).

  17. Efficiency of domestic wastewater treatment plant for agricultural reuse

    OpenAIRE

    Claudinei Fonseca Souza; Reinaldo Gaspar Bastos; Marcus Paulo de Moraes Gomes; André Arashiro Pulschen

    2015-01-01

    The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP) physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic ...

  18. Practice of Advanced Treatment Process for Coking Wastewater in Bayuquan Company of Ansteel%鞍钢鲅鱼圈焦化废水深度处理工艺实践

    Institute of Scientific and Technical Information of China (English)

    张勇; 赵恒波; 杨大立; 孙大鹏

    2015-01-01

    针对鞍钢股份有限公司鲅鱼圈钢铁分公司焦化废水A2/O生物系统处理后出水COD、总氰及氨氮仍很难达标,生物处理段处理效果不好等问题,对臭氧催化氧化及电絮凝焦化废水深度处理工艺进行了研究。工业实践表明,将原A2/O生物系统出水经臭氧催化氧化深度处理后,COD和总氰化物去除率分别达到66%和84%,出水指标达到设计要求,环境效益显著。%The advanced treatment processes for coking wastewater based on the catalytic ozonation method and the electric coagulation method were studied with regard to the problems that the content of COD, total cyanide and ammonia nitrogen in effluent water obtained by the A2/O biological treatment system for coking wastewater in Bayuquan Iron &Steel Subsidiary Company of Angang Steel Co., Ltd. was far away from meeting the standard values and the treatment efficiency in biological treatment stage was not favorable. The practice shows that the removal rates of COD and total cyanide of effluent water which was obtained by the A2/O biological treatment system retreated by the advanced treatment process based on catalytic ozonation method were improved to 66% and 84% respectively and therefore indexes of effluent water can meet the values required by design standards while the environmental benefits are remarkable.

  19. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  20. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding are

  1. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  2. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m3 day-1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  3. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    T Lotti

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  4. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  5. Research on the advanced treatment of refinery wastewater%炼油污水深度处理试验研究

    Institute of Scientific and Technical Information of China (English)

    龚小芝

    2013-01-01

    The effluent water from secondary settling tank in the wastewater treatment plant of a refinery,as the water source,has been treated by the combined process of pretreatment-ultrafiltration-reverse osmosis.The water produced by this combined process can be reused as make-up water for the desalted water plant.The said pretreatment process includes the processes of efficient fiber filter,biological activated carbon and electrocoagulation.The experimental results show that the combined process of efficient fiber filter-biological activated carbon-electrocoagula-tion-ultrafiltration-reverse osmosis is feasible and effective.After the refinery wastewater is treated by this process,the oil,CODMn,and NH3-N contained in the effluent would be less than 1 mg/L,1 mg/L,and 1 mg/L,respectively,meeting the requirements for ion exchange resin influent water in the refinery.%以某炼油厂的污水场二沉池外排污水为水源,经预处理+超滤+反渗透工艺处理后产水回用于脱盐水站补水.其中预处理包括高效纤维过滤、生物活性炭和电絮凝.试验结果表明,高效纤维过滤+生物活性炭+电絮凝+超滤+反渗透工艺可行,炼油废水经过该工艺处理后,出水中油≤1 mg/L、CODMn≤1 mg/L、氨氮≤l mg/L,达到了该厂对离子交换树脂进水要求.

  6. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  7. SELF-DESIGNED WASTEWATER TREATMENT SYSTEM FOR DOMESTIC WASTEWATER : Wastewater treatment in areas outside sewer networks in Kokkola

    OpenAIRE

    Xiao, Yao

    2012-01-01

    This thesis is related to the Finnish government decree on treating domestic wastewater in areas outside sewer networks (542/2003). The aim of this thesis was to design a simple, cheap and effective domestic wastewater treatment system and build its model. The thesis includes not only the theoretical explanations of methods for removing nitrogen, phosphorus and BOD7, engineering designed and building processes of model, but also the experimental processes of running the model and results...

  8. 混凝-碳化污泥吸附深度处理城市污水%Advanced treatment of municipal wastewater using coagulation aided with adsorption on a sludge-derived-carbon

    Institute of Scientific and Technical Information of China (English)

    李振华; 杨开; 吴艳华

    2012-01-01

    针对混凝-碳化污泥吸附对城市污水深度处理的实验研究,结果表明,由城市污水厂剩余污泥经脱水、干化和碳化后所制得的碳化污泥,可通过三氯化铁混凝-碳化污泥吸附联合应用于城市污水深度处理中,处理效果明显优于仅使用碳化污泥吸附或单一采用三氯化铁絮凝剂混凝时的效果,出水各污染物指标可达到一级A标准(GB 18918-2002),其最佳投药量为三氯化铁15 mg/L,碳化污泥5 g/L。%This pilot study was designed to investigate advanced treatment of municipal wastewater using coagulation aided with adsorption on a sludge-derived-carbon. The sludge-derived-carbon was developed from sewage sludge' s dehydration, dryness and carbonization. The results show that the contaminants were more effi- ciently removed when the Ferric chloride coagulation was preceded by the sludge-derived-carbon adsorption than when the two processes were run separately. And the contaminants concentrations of the advanced treatment ef- fluent satisfied the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant, China (GB 18918-2002). The optimal dosages are determined as follows: 15 mg/L of ferric chloride, 5 g/L of Sludge-derived-carbon.

  9. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  10. STUDY ON THE ADVANCED TREATMENT OF LINCOMYCIN WASTEWATER AND ENGINEERING APPLICATION%洁霉素废水深度处理研究与工程应用

    Institute of Scientific and Technical Information of China (English)

    王宗华; 郑伟花; 贾虎

    2013-01-01

    利用ABR-A-O组合工艺对洁霉素处理后的出水进行深度处理,对工程设计参数进行探索.结果表明,ABR、A、O停留时间分别为8、6、20h,经混凝脱色后出水色度、悬浮物等指标均能达到发酵类制药工业水污染物排放标准(GB 21903-2008),COD、NH3-N达到当地环保部门补充要求,且运行效果稳定,费用较低.%A combination process of ABR-A-O bioreactor for lincomycin wastewater treatment was described to get an exploration of engineering design parameters.The results show that after the flocculation decolorization process,all of the indexes,such as colourity,suspended solid,can reach the requirement of the discharge stardard of water pollutants for pharmaceutical industry-fermentation products category (GB 21903-2008).COD and NH3-N can reach supplemental requirements of the local environmental protection department.In addition,this process has stable operation effect and low cost.

  11. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  12. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  13. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  14. Constructed Rapid Infiltration/Hybrid Constructed Wetland for Advanced Treatment of Tail Water from Chemical Wastewater Treatment Plant%人工快渗/复合人工湿地工艺处理园区污水厂尾水

    Institute of Scientific and Technical Information of China (English)

    曹明利; 崔康平; 许为义; 洪天求

    2012-01-01

    A combined process of constructed rapid infiltration, two-stage horizontal subsurface flow wetland, surface flow wetland, oxidation pond and tertiary horizontal subsurface flow wetland was designed for advanced treatment of tail water from chemical wastewater treatment plant in an industrial park. The performance of the combined process was investigated in trial operation for a year. The results showed that the whole treatment system had stable performance in treatment of tail water. The average removal rates of COD, NH3 - N and TP were 78. 8% , 86. 9% and 76. 4% respectively. The concentrations of COD, NH3 - N and TP in the effluent all reached the V criteria specified in the Environmental Quality Standards for Surface Water ( GB 3838 - 2002). The combined process had advantages such as low operation cost and convenient operation.%针对某工业园区混合化工污水厂尾水的水质特点,设计了基于水资源循环利用的人工快渗/两级水平潜流湿地/表面流湿地/氧化塘/三级水平潜流湿地组合工艺对其进行深度处理,考察了该工艺运行一年多来对COD、NH3 -N和TP的去除效果.结果表明,该工艺对混合化工污水厂尾水的处理效果较好,对COD、NH3 -N和TP的平均去除率分别为78.8%、86.9%和76.4%,出水COD、NH3-N和TP浓度达到《地表水环境质量标准》(GB 3838-2002)的V类标准,并具有运行费用低、操作方便等优点.

  15. Advances in Alcoholism Treatment

    OpenAIRE

    Huebner, Robert B.; Kantor, Lori Wolfgang

    2011-01-01

    Researchers are working on numerous and varied approaches to improving the accessibility, quality, effectiveness, and cost-effectiveness of treatment for alcohol use disorders (AUDs). This overview article summarizes the approaches reviewed in this issue, including potential future developments for alcoholism treatment, such as medications development, behavioral therapy, advances in technology that are being used to improve treatment, integrated care of patients with AUDs and co-occurring di...

  16. A Research and Discussion on UHR Process in Advanced Treatment of Coking Wastewater%UHR工艺在深度处理焦化废水中的研究与探讨

    Institute of Scientific and Technical Information of China (English)

    龙泽勇

    2016-01-01

    The UHR process flow, characteristics and technical research on UHR advanced treatment of coking wastewater are introduced. Research results showed that UHR system operates very stably with good water quality, which fully meets national secondary discharge standard, and low COD and ammonia nitrogen content in the reverse osmosis concentrated water, which can satisfy the requirements of casting slag.%介绍了UHR工艺流程、特点及在深度处理焦化废水中的技术研究。研究表明:UHR系统运行十分稳定,出水水质良好,完全达到国家二级排放标准;反渗透浓水COD和氨氮含量小,能够满足浇渣的要求。

  17. Study on Advanced Treatment of Printed Circuit Board Wastewater By MBR Process%MBR工艺深度处理印刷电路板废水的研究

    Institute of Scientific and Technical Information of China (English)

    聂凯; 黄伊丕; 潘涌璋; 叶林顺

    2014-01-01

    分别采用陶瓷膜和超滤膜生物反应器对某印刷电路板(PCB)厂现有废水处理厂出水进行深度处理研究。结果表明:在进水COD 191.2〜270.4 mg/L,氨氮30〜50 mg/L,MLSS 6500 mg/L,DO 4〜8 mg/L,反应时间为5 h的条件下,两种膜生物反应器出水COD和氨氮的浓度分别低于99.2 mg/L和0.759 mg/L,达到《污水综合排放标准》(GB8978-1996)中的一级排放标准。%The ceramic and hollow fiber ultrafiltration membrane bioreactors were separately applied for advanced treatment of the printed circuit board (PCB) wastewater. The results show that ,when concentration of dissolved oxygen (DO) is 4.0~8.0 mg/L , hydrodynamic retention time (HRT) is 5 h, MLSS is 6500 mg/L , COD and ammonia nitrogen are 191.2~270.4 mg/L and 30.0~50.0 mg/L respectively, COD and ammonia nitrogen in the effluent from membrane bioreactors are less 99.2 mg/L and 0.759 mg/L respectively;The quality of treated wastewater can meet the first grade of Integrated Wastewater Discharge Standard GB8978-1996.

  18. A Study of Advanced Treatment for Coking Wastewater by Ultrafiltration Membrane and Reverse Osmosis Technology%双膜法深度处理焦化废水中试研究

    Institute of Scientific and Technical Information of China (English)

    高爱华

    2012-01-01

    A study was made on advanced treatment of coking wastewater by UF(ultrafiltration menbrane) and RO(reverse osmosis).The results showed that the removal efficiency of SS could reach as high as reach 98.8% by UF,and the average removal efficiency of COD,NH3-N,total hardness and Cl-could be obtained as 94.6%,75.9%,98.3% and 98.6% respectively,andby RO with the recovery ratio as 70%.Besides,the whole system run steadily with high-throughput for UF and long cycle of chemical washing for RO.The study shows that the application of UF and RO for advanced treatment of coking wastewater can ensure the water quality meeting the standard of reused water.%采用超滤+反渗透组合技术对某焦化厂焦化废水进行了深度处理试验研究,结果表明浸没式超滤单元对悬浮物去除效果明显,平均去除率达98.8%;反渗透装置在70%回收率的条件下,对水中COD、氨氮、总硬度及Cl-的平均去除率分别达到94.6%,75.9%,98.3%和98.6%.超滤膜产水通量及运行情况稳定,反渗透膜系统运行稳定,化学清洗周期较长.结论表明采用"超滤+反渗透双膜工艺对焦化废水进行深度处理,可以保证出水水质达到回用水标准.

  19. 流化床三维电极电催化氧化深度处理焦化废水%Advanced treatment of coking wastewater using three-dimensional fluid bed electrode reactor

    Institute of Scientific and Technical Information of China (English)

    张垒; 段爱民; 王丽娜; 付本全; 刘霞; 吴高明

    2012-01-01

    研究了以焦粒为粒子电极的流化床三维电极反应器对二级生化处理后的焦化废水进行深度处理.结果表明:采用以焦粒为粒子电极的流化床三维电极反应器能有效降解废水中的有机物,COD去除率依赖于粒子投加量、电流密度、电导率、pH值、曝气量等操作参数的影响.在电导率(以S计)为7.1m·cm-1,曝气量为160 L·h-1,电流密度(以A计)为48 m·cm-2,pH值为5.0,投加量30 g·L-1时,电解30 min,COD的去除率超过60%,表明流化床三维电极反应器在焦化废水深度处理中有很好工程应用前景.%Advanced treatment of secondary bio-treatment coking wastewater by three-dimensional fluid electrode using coking particles was studied. The experimental results showed that the refractory organics in coking wastewater can be effectively removed by this process, and COD removal rate was affected by the operating parameters, such as coking doze quantity, current density, supporting electrolyte, initial pH, aeration amount. For electrolyses under the conditions of supporting electrolyte: 7.1 mScm-1, aeration amount: 160 L-h-1, current density: 48 mAcm-2, initial pH: 5.0, and coking doze quantity: 30 g-L-1, the electrochemical reactor could have a COD removal rate of more than 60%, which revealed great potential of three-dimensional fluid bed electrode reactor in engineering application as an advanced treatment of coking wastewater.

  20. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  1. Study on the advanced treatment of synthesis pharmaceutical wastewater by fluidized bed fenton%流体化床Fenton深度处理合成制药废水研究

    Institute of Scientific and Technical Information of China (English)

    王付超; 梅荣武; 刘俊

    2012-01-01

    The fluidized-bed Fenton reactor was employed for advanced treatment of synthesis pharmaceutical wastewater.Through orthogonal tests,the best reaction conditions for synthesis pharmaceutical wastewater treatment were determined as 20 min of HRT,4.0 of initial pH value,4.0 of H2O2/CODcr mass ratio and 15 of H2O2/Fe2+ Moore ratio.Under those optimum conditions,CODcr concentration of the effluent was detected stably below 80 mg/L,which complies with the Class A of Integrated Wastewater Discharge Standard(GB8978-1996).Comparing to the standard Fenton oxidation,the application of fluidized-bed Fenton reactor resulted in an improvement of over 13% on CODcr removal efficiency,as well as a reduction of 70% on sludge yield.Accordingly,the operating costs can be reduced by 28%,which could be controlled within 3.0 yuan/tons wastewater in stable conditions.%采用流体化床Fenton装置深度处理合成制药废水,通过正交试验确定了处理合成制药废水的最佳条件是HRT为20min,初始pH值为4.0,H2O2/CODcr(质量比)为4.0,H2O2/Fe2+(摩尔比)为15,且在最佳条件下出水CODcr稳定在80mg/L以下,可以达到《污水综合排放标准》(GB8979-1996)一级标准。同时将其与标准Fenton氧化法进行对比试验,结果显示流体化床FentonCODcr去除率可提高13%以上,污泥产生量可降低70%,运行成本可减低28%,稳定运行成本可以控制在3.0元/吨废水以内。

  2. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  3. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  4. Kinetic study for aerobic treatment of phenolic wastewater

    OpenAIRE

    Athar Hussain; Shashi Kant Dubey; Vinay Kumar

    2015-01-01

    Conventional physico-chemical treatment of industrial wastewater containing compounds such as phenol encounters difficulties due to low substrate level, additional use of chemicals, and generation of hazardous by products along with increased process cost. Biological treatment appears to be a solution for treatment of such industrial wastewater. In the present study an aerobic sequential batch reactor (SBR) has been used for treatment of synthetic wastewater containing phenol. The effects of ...

  5. Commissioning of a Small-Scale Wastewater Treatment Plant

    OpenAIRE

    Shunova, Kristina

    2016-01-01

    The thesis is dedicated to the wastewater treatment process study, while providing commissioning of a small-scale wastewater treatment plant on the territory of a national park in Sochi, Russia. The objective of the study was to conduct a commissioning as well as research ways to increase the oxidation capacity of the wastewater treatment facility. The effluent quality from the treatment facility was to correspond with standards issued by Russian authorities. Research was based on ...

  6. Optimization of Conditions for Advanced Wastewater Treatment with Coagulation and Sedimentation Processes%混凝沉淀法污水深度处理条件优化

    Institute of Scientific and Technical Information of China (English)

    韩玉珠; 马青兰

    2011-01-01

    Secondary sedimentation tank effluent was treated by flocculation, which could remove organics, phosphorus and bacteria further from wastewater, pH, total phosphorus(rP), COD and bacterial index were analyzed through addition of hydrated lime, polyaluminum chloride and FeCl3, and optimum reagent and dosage were researched.The results indicate the optimum dosage only with hydrated lime is 500 mg/L.Considering treatment effect and cost, combination addition of 500 mg/L hydrated lime and 15 mg/L FeCl3 is optimum, which makes effluent quality meet the water standard of landscape environment (GB/T 1981-2002).%采用混凝沉淀法处理二沉池出水,进一步去除水样中的有机物、磷和细菌.通过投加消石灰、聚合氯化铝(PAC)、三氯化铁等试剂,分析了pH值、总磷(TP)、化学需氧量(COD)和细菌指标,找到最佳的处理试剂及其投加量.结果表明:单独投加消石灰的最佳投加量为500 mg/L,综合考虑处理效果和经济因素投加量为500 mg/L的消石灰与15 mg/L的三氯化铁联合投加为最佳.经过处理出水水质达到了景观环境用水水质(GB/T 18921-2002)的标准.

  7. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  8. Advanced Treatment of Electroplating Wastewater by Biological Aerated Filter%曝气生物滤池用于电镀废水深度处理的研究

    Institute of Scientific and Technical Information of China (English)

    左鸣; 汪晓军; 李达宁

    2011-01-01

    Quality of electroplating wastewater from industrial park in Qingyuan City, Guangdong Province is complex, and wastewater quantity increases continuously, which is more than the original design value, resulting in the effluent quality can not meet the discharge standards. The biological aerated filter ( B AF) process was applied in advanced treatment of electroplating wastewater. The results show that when the ratio of air to water is 5 : 1 and the working volume of the reactor is 3 L, the optimum influent flow rate is 2 L/h namely the hydraulic retention time (HRT) of BAF is 1. 5 h. Under the conditions of that HRT, the removal rates of CN " and COD are more than 80% and about 60% respectively. When the influent concentrations of CN ~ and COD are equal to or less than 1.5 mg/L and 200 mg/L respectively , the effluent quality can reach the Emission Standard of Pollutants for Electroplating ( GB 21900 -2008). Based on the small-scale test, two sets of BAF are added after the existing process. Since the BAF system is put into operation for 2 months, it has stable treatment effect of the electroplating wastewater. The average removal rates of COD and CN" are 50% and 75% respectively. The cost of wastewater treatment is about 0. 3 yuan/m3. The BAF system has very wide application prospect in thetreatment of the electroplating wastewater.%广东省清远市某电镀工业园排放的废水水质复杂,且水量不断增加,较原设计值超出很多,导致处理后的出水水质达不到相关标准的要求.为此,采用曝气生物滤池(BAF)工艺对现有设施出水进行深度处理.试验结果表明,当气水比为5:1,BAF的有效容积为3L时,最佳的进水流量为2 L/h,即水力停留时间为1.5 h.在此条件下,对CN一的去除率达到80%左右,对COD的去除率稳定在60%左右,当进水CN-浓度≦1.5 mg/L、COD≦200 mg/L时,均可保证出水水质达到(GB 21900-2008).在小试的基础上于现有工艺后增加了2组BAF,工程正常运行2

  9. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    OpenAIRE

    Georg Neugebauer; Florian Kretschmer; René Kollmann; Michael Narodoslawsky; Thomas Ertl; Gernot Stoeglehner

    2015-01-01

    Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy ca...

  10. Performance intensification of Prague wastewater treatment plant.

    Science.gov (United States)

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  11. Measurement of triclosan in wastewater treatment systems.

    Science.gov (United States)

    McAvoy, Drew C; Schatowitz, Bert; Jacob, Martin; Hauk, Armin; Eckhoff, William S

    2002-07-01

    The objective of this study was to investigate the fate and removal of triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol), an antimicrobial agent used in a variety of household and personal-care products, in wastewater treatment systems. This objective was accomplished by monitoring the environmental concentrations of TCS, higher chlorinated derivatives of TCS (4,5-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra II]; 5,6-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra III]; and 4,5,6-trichloro-2-(2,4-dichloro-phenoxy)-phenol [penta]), and a potential biotransformation by-product of TCS (5-chloro-2-[2,4-dicholoro-phenoxy]-anisole [TCS-OMe]) during wastewater treatment. These analytes were isolated from wastewater by using a C18 solid-phase extraction column and from sludge with supercritical fluid CO2. Once the analytes were isolated, they were derivatized to form trimethylsilylethers before quantitation by gas chromatography-mass spectrometry. Recovery of TCS from laboratory-spiked wastewater samples ranged from 79 to 88% for influent, 36 to 87% for final effluent, and 70 to 109% for primary sludge. Field concentrations of TCS in influent wastewater ranged from 3.8 to 16.6 microg/L and concentrations for final effluent ranged from 0.2 to 2.7 microg/L. Removal of TCS by activated-sludge treatment was approximately 96%, whereas removal by trickling-filter treatment ranged from 58 to 86%. The higher chlorinated tetra-II, tetra-III, and penta closans were below quantitation in all of the final effluent samples, except for one sampling event. Digested sludge concentrations of TCS ranged from 0.5 to 15.6 microg/g (dry wt), where the lowest value was from an aerobic digestion process and the highest value was from an anaerobic digestion process. Analysis of these results suggests that TCS is readily biodegradable under aerobic conditions, but not under anaerobic conditions. The higher chlorinated closans were near or below the limit of quantitation in all of the

  12. Effects of Micronutrient Niacin on Treatment Efficiency of Textile Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIANG Wei; HU Hongying; GU Xin; CHE Yuling; WANG Hui; GUO Yufeng; SONG Yudong

    2006-01-01

    Textile wastewater is well known as one of the wastewaters to be most difficultly treated. The effects of niacin on textile wastewater niacin, the physical and chemical indexes of the water samples, such as COD, ammonia and dehydrogenase activities, were analyzed every day with standard methods, and obvious improvement in wastewater treatcould improve the COD removal efficiency signifcantly with removal rates mental condition, addition of niacin had almost no effect on the removal of ase by 130%. It proved that the biological treatment performance of textile wastewater treatment system probably could be optimized through micronutrient niacin supplement.

  13. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  14. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  15. Advanced Wastewater Photo-oxidation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  16. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    OpenAIRE

    Basim Yalda; Farzadkia Mahdi; Jaafarzadeh Nematollah; Hendrickx Tim

    2012-01-01

    Abstract Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahva...

  17. Nanofiltration for water and wastewater treatment – a mini review

    OpenAIRE

    Shon, H. K.; S. Phuntsho; D. S. Chaudhary; Vigneswaran, S.; Cho, J.

    2013-01-01

    The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF) is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO) membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment inclu...

  18. Elimination of micropollutants in wastewater treatment plants : Ozonation or activated carbon? Conclusions of a one-year pilot project

    OpenAIRE

    Margot, Jonas; Magnet, Anoys; Thonney, Denis; Chèvre Rossi, Nathalie; de Alencastro, Felippe; Kienle, Cornelia; Abegglen, Christian; Barry, David Andrew; Rossi, Luca

    2011-01-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTP). To reduce the release of these substances into the aquatic environment, advanced treatments are necessary and may be soon mandatory in Switzerland. Two advanced treatments were tested in pilot systems over more than one year at the municipal WWTP of Lausanne, Switzerland. The first pilot involves the ozonation of the effluent to oxi...

  19. Nanoparticles in Constanta-North Wastewater Treatment Plant

    Science.gov (United States)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  20. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques. PMID:23033705

  1. Application of Membrane Bioreactor in Advanced Treatment of Pharmaceutical Wastewater%膜-生物反应器在制药废水深度处理中的应用

    Institute of Scientific and Technical Information of China (English)

    李振红; 徐洪斌; 王磊; 刘琛

    2011-01-01

    由于国家颁布了新的发酵类制药工业水污染物排放标准,COD排放标准由300mg/L降至120 mg/L,以肌苷生产为主的制药厂原有污水处理工艺不能满足排放要求.在原污水处理工艺后采用浸没一体式MBR工艺对制药废水进行深度处理中试试验,考察处理效果.试验结果表明,浸没一体式MBR工艺在DO质量浓度分别为2,4,6 mg/L时,出水COD去除率分别为63%,75%,80%,出水NH3-N的去除率分别为88.5%,93.6%和94%.%The new discharge standards of water pollutants for pharmaceutical industry in fermentation products category has been issued and the discharge standard of COD is reduced from 300 mg/L to 120 mg/L. The original wastewater treatment process for the pharmaceutical factory mainly in inosine production can not meet the discharge requirements. The pilot test of following the original sewage treating technology for the advanced treatment of pharmaceutical wastewater was carried out. The test results showed that with the integrated and submerged membrane bioreactor process, when DO was kept at 2,4 and 6 mg/L, the effluent COD removal rates were 63%, 75% and 80% and ammonia nitrogen removal rate were 88.5%, 93.6% and 94% respectively.

  2. Chemical water and wastewater treatment II

    International Nuclear Information System (INIS)

    An analysis of the present situation in water supply, wastewater disposal, and pollution control shows that due to a high population density in many areas environmental quality is endangered. Therefore, nearly all countries face the problem of developing and/or improving control strategies, i.e. building new treatment plants, upgrading overloaded or outdated installations and designing new operating and controlling measures for improved plant performance. In view of limited resources and stringent timing requirements there is a great need for concepts that allow stepwise realisation. (orig./UT)

  3. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  4. The Use of Ozone in Hospital Wastewater Treatment

    OpenAIRE

    DASTAN, Seyed Amir Mohammad; MASOODI, Hossein

    2015-01-01

    Abstract.The wastewater produced in municipal and industrial sources is a desalted water which may be used in agriculture if purified and refined well. In many countries, the treated wastewater is reused for irrigation and aquaculture. The most important issue in using municipal wastewater for irrigation is to ensure about the efficiency of process of waste water disinfection to decrease pathogenic microorganisms. Ozonation is an environment friendly and advanced technology with high efficien...

  5. Halonitromethanes formation in wastewater treatment plant effluents.

    Science.gov (United States)

    Song, Hocheol; Addison, Jesse W; Hu, Jia; Karanfil, Tanju

    2010-03-01

    Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination > ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.

  6. Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    OpenAIRE

    TORA GRAU, MIRIAM; Soler Cabezas, José Luis; Vincent Vela, Maria Cinta; Mendoza Roca, José Antonio; Martínez Francisco, Francisco Juan

    2015-01-01

    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants co...

  7. Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment

    OpenAIRE

    F. J. Borges; H. Roux-de Balmann; R. Guardani

    2010-01-01

    Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correl...

  8. Thermophilic anaerobic digestion for waste and wastewater treatment.

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning thermophil

  9. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  10. Emergy evaluations for constructed wetland and conventional wastewater treatments

    Science.gov (United States)

    Zhou, J. B.; Jiang, M. M.; Chen, B.; Chen, G. Q.

    2009-04-01

    Based on emergy synthesis, this study presents a comparative study on constructed wetland (CW) and conventional wastewater treatments with three representative cases in Beijing. Accounting the environmental and economic inputs and treated wastewater output based on emergy, different characteristics of two kinds of wastewater treatments are revealed. The results show that CWs are environment-benign, less energy-intensive despite the relatively low ecological waste removal efficiency (EWRE), and less cost in construction, operation and maintenance compared with the conventional wastewater treatment plants. In addition, manifested by the emergy analysis, the cyclic activated sludge system (CASS) has the merit of higher ecological waste elimination efficiency.

  11. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries.

  12. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. PMID:23735721

  13. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    OpenAIRE

    Alshabab Mary Shick; Andrianova Maria; Alsalloum Dergham

    2016-01-01

    Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times) dosages of reagents (acidifier, coagulant, flocculant) in several actual stages of treatment (acidificatio...

  14. DEVELOPMENT OF TECHNOLOGY OF MODERNIZATION OF BIOLOGICAL WASTEWATER TREATMENT PLANTS

    OpenAIRE

    Gogina Elena Sergeevna; Kulakov Artem Alekseevich

    2012-01-01

    This paper addresses the biological treatment of wastewater associated with removal of nitrogen. Results of laboratory experiments that involve nitrification and denitrification are also presented and analyzed in the paper. Discharges of inadequately treated and untreated wastewater have a negative impact on the aquatic ecosystem. The biological treatment of the wastewater that includes denitrification is strongly influenced by external factors. They need thorough research at t...

  15. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    OpenAIRE

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solutio...

  16. Treatment of Wastewater from Backwashing Process Sand Filters

    OpenAIRE

    Miletić, S.; Panjkret, V.; Zečević, N.

    2011-01-01

    In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the...

  17. Nanofiltration for water and wastewater treatment – a mini review

    OpenAIRE

    Shon, H. K.; S. Phuntsho; D. S. Chaudhary; Vigneswaran, S.; Cho, J.

    2013-01-01

    The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF) is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO) membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewat...

  18. Membrane-based treatment for tanning wastewaters 

    OpenAIRE

    Catarino, Justina; Mendonça, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria

    2013-01-01

    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  19. Indigenous microalgae-activated sludge cultivation system for wastewater treatment

    OpenAIRE

    Anbalagan, Anbarasan

    2016-01-01

    The municipal wastewater is mainly composed of water containing anthropogenic wastes that are rich in nutrients such as carbon, nitrogen and phosphorous. The cost for biological treatment of wastewater is increasing globally due to the population growth in urban cities. In general, the activated sludge (AS) process is a biological nutrient removal process used in wastewater treatment plants (WWTPs). The AS is composed of different microorganisms in which bacteria play a crucial role in wastew...

  20. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    OpenAIRE

    A.H Mahvi

    2008-01-01

    Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical ...

  1. Experimental research on the ozone-ultraviolet combined process for the advanced treatment of dye wastewater%臭氧紫外组合工艺协同深度处理染料废水实验研究

    Institute of Scientific and Technical Information of China (English)

    邹海明; 王艳; 李飞跃; 马万征

    2014-01-01

    Dye wastewater is characterized by high COD,high chroma,high salinity and low biodegradability,based on the preliminary research technology(coagulation+air flotation+anaerobic hydrolysis-acidification+oxic),a process combining ozone with UV has been used for the advanced treatment of effluent from aerobic tank. The results show that this combined process is feasible for the advanced treatment of dye wastewater. The treatment effect of it is significantly higher than that of using ozone and UV separately. A good removing rate ranging from 69.9%to 72.1%, and effluent COD 83.7-90.3 mg/L can be obtained,meeting the Discharge Standard of the Pollutants in Dyeing and Finishing of Textile Industry(GB 4287-1992)(below 100 mg/L),under the following conditions:pH is 6-8,ozone mass concentration 50 mg/L,UV intensity 40μW/cm2and reaction time 60 min.%染料废水具有高COD、高色度、高含盐量和低可生化性的特点。在前期研究的工艺(混凝+气浮+水解酸化+好氧)基础上,采用臭氧紫外工艺对好氧池出水进行深度处理。结果表明:臭氧紫外工艺协同深度处理染料废水的处理效果要明显好于臭氧和紫外单独处理染料废水时的效果;当pH为6~8时,臭氧质量浓度为50 mg/L,紫外线照射强度为40μW/cm2,反应时间60 min情况下,COD的去除率为69.9%~72.1%,出水中COD为83.7~90.3 mg/L,达到纺织染整工业污染物排放标准(GB 4287-1992)(小于100 mg/L)。

  2. Treatment of tannery wastewater by electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(II) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with different soluble electrodes (mild steel electrodes and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first (electrocoagulation time: 20 min, cell current: 1 A) followed by the filter and finally by the aluminum electrodes (electrocoagulation time: 20 min, cell current: 1 A), the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.

  3. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  4. A Guide to the Selection of Cost-Effective Wastewater Treatment Systems. Technical Report.

    Science.gov (United States)

    Van Note, Robert H.; And Others

    The data within this publication provide guidelines for planners, engineers and decision-makers at all governmental levels to evaluate cost-effectiveness of alternative wastewater treatment proposals. The processes described include conventional and advanced treatment units as well as most sludge handling and processing units. Flow sheets, cost…

  5. A pilot scale test of ozonization treatment of ethene wastewater for reuse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A pilot scale test of advanced treatment of ethene wastewater by ozonization was carried out for industrial water reuse.Effects of different operating conditions on COD degradation,such as wastewater flow rate,ozonized gas flow rate,operating voltage of ozonizer and two ozone generation means,using pure oxygen or air,was investigated.The results show that the increase of ozonizer operating voltage,the decrease of wastewater flow rate and the suitable ozonized gas flow rate improve the removal of COD in wastewater and that ozone generated respectively from air and pure oxygen can effectively remove COD of ethene wastewater to meet the industrial water reuse criterion.

  6. Advanced oxidation processes for wastewater reuse - removal of micropollutants

    OpenAIRE

    James, Christopher P.

    2013-01-01

    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power...

  7. Electrocoagulation treatment of metal finishing wastewater.

    Science.gov (United States)

    Odongo, Isabel E; McFarland, Michael J

    2014-07-01

    Electrocoagulation has been found to be a consistent and reliable industrial wastewater treatment process capable of removing heavy metals to levels well below pretreatment discharge standards. Results from the testing of a 113 L/min pilot scale electrocoagulation unit indicated that electrocoagulation was capable of decreasing the cadmium, chromium, and nickel concentrations from 0.14, 18.1, and 0.06 parts per million (ppm) to 0.029, 0.039, and 0.020 ppm respectively, at a 1-min hydraulic retention time. In the presence of a strong chelating substance, electrocoagulation performance was found to be effective in reducing both chromium and nickel concentrations to levels well below discharge limits. At a pH of 8.0, chromium and nickel influent concentrations of 0.328 and 0.062 ppm, respectively, were reduced to 0.005 and 0.04 ppm. The electrocoagulation removal efficiency for chromium remained high at over 98% and appeared to be unaffected by the presence of chelating substances. Utilizing aluminum as the sacrificial anode improved the removal efficiency of targeted heavy metals when the industrial wastewater was treated under acidic conditions. At a pH of 5.6, the influent concentrations of the regulated heavy metals cadmium, chromium, and nickel were reduced from 0.55, 49.7, and 13.7 ppm, respectively, to 0.013, 2.7, and 0.8 ppm at a 1-min hydraulic retention time. The results of these tests suggest that the formation of ferric hydroxide and aluminum hydroxide through the electrocoagulation process may be an effective approach for treating metal finishing wastewaters.

  8. Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis

    OpenAIRE

    Tony, Maha A.; Zeinab Bedri

    2014-01-01

    Establishing a treatment process for practical and economic disposal of car wash wastewater has become an urgent environmental concern. Photo-Fenton’s process as one of the advanced oxidation processes is a potentially useful oxidation process in treating such wastewater. Lab-scale experiments with UV source, coupled with Fenton’s reagent, showed that hydrocarbon oil is degradable through such a process. The feasibility of photo-Fenton’s process to treat wastewater from a car wash is investig...

  9. Optimization model for the design of distributed wastewater treatment networks

    OpenAIRE

    Ibrić Nidret; Ahmetović Elvis; Suljkanović Midhat

    2012-01-01

    In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The ...

  10. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aqua

  11. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The tr

  12. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  13. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level. PMID:26893178

  14. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  15. 臭氧强化混凝在酵母废水深度处理中的应用研究%Application of ozone enhanced coagulation to the advanced treatment of yeast wastewater

    Institute of Scientific and Technical Information of China (English)

    代琳琳; 宋英豪; 荆降龙; 贾立敏; 林秀军; 朱民

    2014-01-01

    Ozone enhanced coagulation has been used for the advanced treatment of the secondary effluent of yeast wastewater. The results show that when the dosage of O3 is 120 mg/L and FeCl3 0.5 g/L,the COD removing rate is 65.0%. Compared with the experimental results of that having the same dosages ,and the process by coagulation first and then ozonation next,19.2%of COD removing rate can be increased,and 50%or more of chemical sludge yield can be decreased. Compared with the results of the process by coagulation only ,more than 60%of coagulant dosage can be reduced. The wastewater treatment cost of ozone enhanced coagulation per ton is the lowest. When oxygen source is used,the treatment cost is CNY2.5/t. Compared with the treatment costs of the processes by coagulation first and ozonation next and by coagulation only,CNY0.7/t and CNY1.3/t can be reduced,respectively.%采用臭氧强化混凝的方法对酵母废水二级出水进行深度处理,结果表明,臭氧、三氯化铁投加量分别为120 mg/L、0.5 g/L时,COD去除率为65.0%,与相同投加量下先混凝后臭氧氧化的实验结果相比,COD去除率可提高19.2%,化学污泥产生量可减少50%以上;与单独混凝实验相比,可减少60%以上的混凝剂用量。臭氧强化混凝的吨水处理费用最低,采用氧气源时,吨水处理费为2.5元,分别比先混凝后臭氧氧化和单独混凝减少0.7、1.3元/t。

  16. Concentration of Norovirus during Wastewater Treatment and Its Impact on Oyster Contamination

    OpenAIRE

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O’Flaherty, Vincent; Doré, William

    2012-01-01

    The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. ...

  17. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  18. Cotton-textile wastewater management: investigating different treatment methods.

    Science.gov (United States)

    Georgiou, D; Aivasidis, A

    2012-01-01

    The cotton-textile industry consumes significant amounts of water during manufacturing, creating high volumes of wastewater needing treatment. The organic-load concentration of cotton-textile wastewater is equivalent to a medium-strength municipal wastewater; the color of the water, however, remains a significant environmental issue. This research, in cooperation with a cotton-textile manufacturer, investigated different treatment methods and different combinations of methods to identify the most cost-effective approaches to treating textile wastewater. Although activated-sludge is economical, it can only be used as part of an integrated wastewater management system because it cannot decolorize wastewater. Coagulation/flocculation methods are able to decolorize cotton-wastewater; however, this process creates high amounts of wastewater solids, thus significantly increasing total treatment costs. Chemical oxidation is an environmentally friendly technique that can only be used as a polishing step because of high operating costs. Anaerobic digestion in a series of fixed-bed bioreactors with immobilized methanogens using acetic acid as a substrate and a pH-control agent followed by activated-sludge treatment was found to be the most cost-effective and environmentally safe cotton-textile wastewater management approach investigated.

  19. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant.

    Science.gov (United States)

    Zhao, Jian-Liang; Jiang, Yu-Xia; Yan, Bo; Wei, Chaohai; Zhang, Li-Juan; Ying, Guang-Guo

    2014-09-01

    Coking wastewater contributes approximately 5% of the total discharge volume of industrial wastewaters every year in China. The toxicity of coking wastewater to aquatic organisms is still unknown. The authors evaluated the toxicity of wastewater from different treatment stages in a coking wastewater treatment plant, South China, using 5 test species belonging to different trophic levels: luminous bacteria, green alga, a crustacean, duckweed, and zebrafish embryos. The raw influent displayed the highest toxicity to the test species, with toxic units ranging from 16.2 to 1176. The toxicity in the wastewater was then gradually removed by sequential primary treatment, biological fluidized-bed treatment, and secondary clarifier treatment. The toxic unit of the final effluent was reduced to 2.26 for the green alga (Pseudokirchneriella subcapitata) and to 0 for the other 4 organisms. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs) and qualitative scanning by gas chromatography-mass spectrometry showed the presence of a variety of pollutants in the coking wastewaters. Multivariate statistical analysis revealed that the toxicity in the coking wastewater was correlated to the chemical oxygen demand, total nitrogen, ammonia nitrogen, volatile phenols, sulfide, metals (Cr, As, Sb, Hg, Pb, and Ni), and ΣPAHs. Based on the results, it is required to set a safety emission limit value for the discharge of coking wastewater to protect aquatic organisms in the receiving water bodies. PMID:25042296

  20. Advances on Pyrethroid Pesticide -contained Wastewater Treatment Technology%拟除虫菊酯类农药废水处理技术研究进展

    Institute of Scientific and Technical Information of China (English)

    庄新文; 姜伟立; 吴海锁; 邹敏

    2011-01-01

    拟除虫菊酯类农药废水COD浓度高、毒性大、污染物成分复杂、较难生物降解。通过系统阐述目前国内外各种针对拟除虫菊酯类农药废水处理技术的最新研究动态,分析了各种方法的优缺点,并对此类农药废水处理技术的发展方向进行了展望,可为此类废水处理工艺选择和工程设计提供有益参考。%Pyrethroid -contained wastewater has characteristics of high concentrations of COD, high toxicity, complicated components, and hard biodegradation. This paper systematically described the latest technological studies concerning pyrethroid pesti- cide - co

  1. Improving BOD removal at SNJ wastewater treatment plant by biological treatment

    OpenAIRE

    Hantanirina, Jeannine Marie Olga

    2010-01-01

    SNJ uses chemical precipitation method to treat domestic wastewater. With regard to organic removal requirement; chemical treatment alone does not seem to be sufficient at SNJ/IVAR wastewater plant. This thesis is to assess the performance of the aerobic biological treatment on the wastewater of the plant in order to upgrade the existing plant to include biological treatment. The work was to conduct a laboratory scale SBR test for determination of the wastewater characteristics and the effect...

  2. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  3. Treatment of oilfield wastewater by Fenton's process.

    Science.gov (United States)

    Gao, Y X; Yang, M; Zhang, Y; Hu, J Y

    2004-01-01

    A combination of coagulation and Fenton's process was used for the removal of total oxygen carbon (TOC) from oilfield wastewater. Compared with aluminium sulfate, ferric coagulant had better TOC removal efficiency at the same mass dosage. In Fenton's process, the effect of H2O2 and Fe2+ dose on the removal of TOC was studied. The optimum conditions required for TOC removal were an Fe3+ concentration of 40-50 mg/L, an H2O2 dose of 50 mmol/L and an Fe2+ concentration of 1.0 mmol/L. GC-MS chromatographic analysis indicated that most of the alkyl hydrocarbons of carbon numbers < 21 were removed in the first minute of Fenton's process mainly through adsorption. Alkyl hydrocarbons and phenols were oxidized almost completely following 120 min of treatment. The pathway of newly formed intermediates in Fenton's process was proposed on the basis of the GC/MS chromatogram. PMID:15077956

  4. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  5. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  6. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  7. Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation - A mini review

    Directory of Open Access Journals (Sweden)

    Chandan Singh, Rubina Chaudhary, Rajendra Singh Thakur

    2011-03-01

    Full Text Available During the last few years, there has been a plethora of research and development in the area of solar photocatalysis. The aim is to understand the fundamental processes and enhance photocatalytic efficiencies especially for air, soil and water pollution control. Municipal waste water is limited by continual organic water pollutants and micro-organisms that are not removed by conventional mechanical and biological treatment. In this overview of the most recent paper, studies focused on the treatment of municipal wastewater (containing organic compounds by photocatalysis and the effects of various parameters such as pH, light intensity, Advance oxidation method etc. have been studied It can be concluded that the photocatalysis process is suitable for the treatment of drinking water, municipal and industrial wastewater. Some studies on the economic analysis of photocatalytic systems are also included.

  8. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    -term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled......Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long...

  9. Perspectives on modelling micropollutants in wastewater treatment plants.

    Science.gov (United States)

    Clouzot, Ludiwine; Choubert, Jean-Marc; Cloutier, Frédéric; Goel, Rajeev; Love, Nancy G; Melcer, Henryk; Ort, Christoph; Patureau, Dominique; Plósz, Benedek G; Pomiès, Maxime; Vanrolleghem, Peter A

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters today, and that it is important to start considering classes of MPs based on their chemical structure or ecotoxicological effect, rather than the individual molecules. This paper identifies potential future research areas that comprise (i) considering transformation products in MP removal analysis, (ii) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters. PMID:23863441

  10. Anaerobic treatment of municipal wastewater using the UASB-technology.

    Science.gov (United States)

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates. PMID:18048975

  11. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected. PMID:2291438

  12. 超滤-反渗透集成膜技术深度处理酒精废水%Advanced Treatment of Alcohol Wastewater Using UF-RO Integrated Technology

    Institute of Scientific and Technical Information of China (English)

    于鲁冀; 唐敏; 刘培; 孔德芳

    2012-01-01

    Experiment was done for the advanced treatment of secondary effluent from alcohol wastewater by using UF-RO integrated technology. Effects of recovery of reverse osmosis (RO) membrane flux by different cleaning methods were studied, influence of different ultrafiltration membranes on wastewater treatment was discussed, and removal rate of pollutants were examined using UF-RO integrated technology. It appeared that ultrafiltration had good performance on removal of turbidity and organic matters with high molecular weight, which could guarantee good quality of feed water for reverse osmosis. The turbidity, total hardness and total iron for the effluent was no more than 0.1 NTU, 0.03 mmol/L and 0.03 mg/L, and electrical conductivity was between 60 and 120 μS/cm, which could be directly used as boiler make-up water. The cleaning method of acid washing and alkali washing could effectively recover the membrane flux of reverse osmosis, with the membrane flux able to be recovered as 93.75% as raw water flux.%采用超滤-反渗透集成膜技术对酒精废水二级生化处理出水进行深度处理,考察了不同超滤膜对废水的预处理性能,研究了超滤-反渗透集成膜技术对废水污染物的去除效果,并探索了不同清洗方式对反渗透膜通量恢复的影响.试验结果表明:超滤能有效地去除废水浊度和大分子有机物,为反渗透提供良好的进水水质;超滤-反渗透膜系统产水浊度、硬度、总铁均小于0.1 NTU、0.03 mmol/L和0.03 mg/L,电导率处于60-120 μS/cm之间,可回用作锅炉补充水;酸洗+碱洗组合清洗方式能有效恢复反渗透膜通量,其废水膜通量可恢复为新膜废水通量的93.75%.

  13. Treatment of Chinese Traditional Medicine Wastewater by Photosynthetic Bacteria

    Institute of Scientific and Technical Information of China (English)

    WANG You-zhi; WANG Feng-jun; BAO Li

    2005-01-01

    The influence factors treating wastewater of Chinese traditional medicine extraction by photosynthetic bacteria are tested and discussed. The results indicate that the method of photosynthetic bacteria can eliminate COD and BCD from wastewater in high efficiency. And it also has high load shock resistance. On the conditions of slight aerobic and semi-darkness, treating wastewater of Chinese traditional medicine extraction, the method has better efficiency to eliminate COD and BOD from the wastewater than those by anaerobic illumination and aerobic darkness treatments. After pretreatment of hydrolytic acidization, the removal rate of COD in the wastewater reached more than 85 %, and that rate of BOD reached more than 90% in the treating system of photosynthetic bacteria. It may be more feasible and advantageous than traditional anaerobic biological process to treat organic wastewater using PSB system.

  14. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  15. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  16. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the redu

  17. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    OpenAIRE

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the reduction of the environment contamination and hence the health risks and saving of the huge freshwater amounts.

  18. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  19. Inter-municipal cooperation for wastewater treatment: case studies from Israel.

    Science.gov (United States)

    Hophmayer-Tokich, Sharon; Kliot, Nurit

    2008-02-01

    Since the beginning of the 1990s, local authorities in Israel have been engaged in promoting advanced Wastewater Treatment Plant (WWTP) projects throughout the country, resulting in the "wastewater treatment revolution" of the 1990s. These achievements are extremely important in the water-scarce country, as untreated or partially treated wastewater has become a major source of pollution of Israel's fresh-water resources, and reuse of high-quality effluents can expand the national water potential. Many of these projects are regional schemes based on a central WWTP, serving a few neighboring municipalities. This paper presents two case studies of such regional cooperation: the "Karmiel Region Union of Towns for Sewage Treatment" and the "Treatment and Reuse of Wastewater in the area of the Hadera Stream, Ltd." corporation. The findings suggest that regional cooperation can be an efficient tool in promoting advanced wastewater treatment, and has several advantages: an efficient use of limited resources (financial and land); balancing disparities between municipalities (size, socio-economic features, consciousness and ability of local leaders); and reducing spillover effects. However, some problems were reported in both cases and should be addressed. PMID:17335957

  20. Fenton/BAF组合工艺处理全棉机织布印染废水研究%Fenton Oxidation/BAF Process for Advanced Treatment of Wastewater from Dyeing and Finishing of Cotton Woven Fabrics

    Institute of Scientific and Technical Information of China (English)

    文淦斌; 黄瑞敏; 黄春梅; 王君

    2011-01-01

    The dyeing and finishing processes of cotton woven fabrics need a lot of sizing agents toimprove the smoothness and wear resistance of the fabrics, thus the discharged wastewater often contains a lot of desizing wastewater, which has high concentration of COD, strong alkalinity and poor biodegradability. The biodegradability is difficult to be improved using conventional coagulation sedimentation/anaerobic/aerobic process, and the effluent COD and color are difficult to meet the standards. According to the characteristics above, the combined process of Fenton oxidation and biological aerated filter (BAF) was used for the advanced treatment. The results of the pilot study show that under the conditions of initial pH of 4, H2O2 dosage of 150 mg/L, Fe2+/H2O2 ratio of 1 and reaction time of 60 min in Fenton oxidation process, COD and color of the wastewater are reduced from 400 mg/L to 125 mg/L with the removal rate of 68.75% and from 200 times to less than 25 times respectively. After the Fenton oxidation,the B/C ratio is increased from 0.08 to 0.34, and the biodegradability is significantly improved. Under the condition of HRT of 2.5 h, COD in the effluent from BAF is 74.5 mg/L, with the removal rate of 40.4%. After treatment by the combined process, the removal rate of COD is more than 80% , and the color is less than 25 times, with good treatment efficiency.%全棉机织布染色加工需使用大量浆料助剂进行上浆处理以提高织物的光滑度及耐磨性,因而排放的废水中往往含有大量的退浆废水,其COD浓度高、碱度强、可生化性差,经常规的混凝沉淀/厌氧/好氧组合工艺处理后,可生化性难以改善,出水COD、色度值难以达标.采用Fen-ton/曝气生物滤池(BAF)组合工艺对其进行深度处理,中试结果表明,在Fenton工艺的初始pH值=4、H2O2投加量=150 mg/L、Fe2+/H2O2值=1、反应时间为60 min的条件下,COD由原来的400mg/L降低至125 mg/L,去除率达68.75%,色度由200

  1. Adaptive model based control for wastewater treatment plants

    OpenAIRE

    Niet, de, A.; Vrugt, van de, Noëlle Maria; Korving, Hans; Boucherie, Richard J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can contribute considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce an adaptive model based control strategy for aeration called adaptive WOMBAT. The strategy is...

  2. Anaerobic ponds for domestic wastewater treatment in temperate climates

    OpenAIRE

    Cruddas, Peter

    2014-01-01

    Energy demand, greenhouse gas emissions, and operational costs are continuing to rise year on year in the wastewater treatment sector, with traditional treatment options unable to provide sustainable solutions to increasing volumes and tightening quality standards. Current processes produce inherent fugitive greenhouse gas (GHG) emissions, whilst also generating large quantities of sludge for disposal. Anaerobic ponds (APs) are natural wastewater treatment processes that have t...

  3. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants

    OpenAIRE

    Novo, Ana; Manaia, Célia M.

    2010-01-01

    Municipal wastewater treatment plants are recognized reservoirs of antibiotic-resistant bacteria. Three municipal wastewater treatment plants differing on the dimensions and bio-treatment processes were compared for the loads of amoxicillin-, tetracycline-, and ciprofloxacinresistant heterotrophic bacteria, enterobacteria, and enterococci in the raw inflow and in the treated effluents. The sewage received by each plant, in average, corresponded to 85,000 inhabitant equ...

  4. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  5. Developing of effective treatment technology of the phenolic wastewater

    OpenAIRE

    Klymenko, Irina; Yelatontsev, Dmytro; Ivanchenko, Anna; Dupenko, Olga; Voloshyn, Nikolay

    2016-01-01

    It is found that a high degree of purification from emulsified coal tar is achieved in the phenolic wastewater treatment using 88 mg/dm3 of sodium bentonite with the addition of 8 mg/dm3 of cationic flocculant in conditions the closest to industrial. This innovative method of phenolic wastewater treatment is cost­effective because of the low cost of bentonite. It is shown that the deposit formed during the wastewater treatment with bentonite floats to the liquid surface and can be separated b...

  6. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-03-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals of membrane process in general, mechanisms of NF process including few basic models. fouling challenges and their control mechanisms adopted.

  7. Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor

    OpenAIRE

    A.O. Ibeje

    2013-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...

  8. Biological Treatment of Wastewater by Sequencing Batch Reactors

    OpenAIRE

    Tsvetko Prokopov; Dasha Mihaylova; Nikolay Mihalkov

    2014-01-01

    In the present paper the operation of wastewater treatment plant (WWTP) in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method) was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%), BOD5 (96.6%), total nitrogen (81.3%), total phosphorus (53.7%) and suspended soli...

  9. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-06-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals, mechanisms, fouling challenges and their controls.

  10. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  11. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    Science.gov (United States)

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard. PMID:26942530

  12. Reliability analysis of wastewater treatment plants.

    Science.gov (United States)

    Oliveira, Sílvia C; Von Sperling, Marcos

    2008-02-01

    This article presents a reliability analysis of 166 full-scale wastewater treatment plants operating in Brazil. Six different processes have been investigated, comprising septic tank+anaerobic filter, facultative pond, anaerobic pond+facultative pond, activated sludge, upflow anaerobic sludge blanket (UASB) reactors alone and UASB reactors followed by post-treatment. A methodology developed by Niku et al. [1979. Performance of activated sludge process and reliability-based design. J. Water Pollut. Control Assoc., 51(12), 2841-2857] is used for determining the coefficients of reliability (COR), in terms of the compliance of effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and fecal or thermotolerant coliforms (FC) with discharge standards. The design concentrations necessary to meet the prevailing discharge standards and the expected compliance percentages have been calculated from the COR obtained. The results showed that few plants, under the observed operating conditions, would be able to present reliable performances considering the compliance with the analyzed standards. The article also discusses the importance of understanding the lognormal behavior of the data in setting up discharge standards, in interpreting monitoring results and compliance with the legislation.

  13. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  14. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m2 with 13,000 employees in total. The production requires high consumption of water (90,000m3/day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment. The results of laboratory investigations showed the application of electron beam treatment of wastewater to be perspective for its purification The most significant improvements result in decolorizing and destructive oxidation of organic impurities in wastewater. Installation of the radiation treatment on the stage of chemical treatment or immediately before biological treatment may results in appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Being convinced with the feasibility of laboratory scale tests, a pilot plant for a large-scale test (flow rate of 1,000m3 per day) of wastewater has constructed and is now under operation with the electron accelerator of 1MeV, 40kW. The size of extraction window is 1500mm in width and Titanium foil is used for window material. For the uniform irradiation of water, nozzle type injector with the width of 1500mm was introduced. The wastewater is injected under the e-beam irradiation area through the injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Once the wastewater has passed under the irradiation area, then directly into the biological treatment system. On the evaluation of economies and efficiency of pilot plant, industrial plant for treating textile dyeing wastewater is under construction from 2003 for decreasing the amount of

  15. Treatment of biomass gasification wastewaters using reverse osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

    1981-09-01

    Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

  16. Bacteriophages-potential for application in wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Withey, S. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Cartmell, E. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: e.cartmell@cranfield.ac.uk; Avery, L.M. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Stephenson, T. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  17. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  18. Mathematical Modelling Of Cyanide Inhibition on Cassava Wastewater Treatment

    OpenAIRE

    E. Onukwugha

    2013-01-01

    Anaerobic Baffled Reactors (ABR) is used to evaluate the extent of cyanide inhibition of cassava wastewater treatment. The reactor has aspect ratio of 4:1:1. Kinetic analyses of specific growth rate μmax and half saturation constant

  19. Limited dissemination of the wastewater treatment plant core resistome

    DEFF Research Database (Denmark)

    Munck, Christian; Albertsen, Mads; Telke, Amar;

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role...

  20. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  1. 高级氧化技术处理废水的研究进展%The Research Progress of Advanced Oxidation Technology For Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    朱心悦; 韦新东; 蒋宝军

    2015-01-01

    Advanced catalytic oxidation technology has become an important means of treating biological degradation of toxic organic pollutants, which has been widely used in the printing and dyeing, chemical, pesticide, papermaking, electroplating and printed circuit boards, hospitals, pharmaceutical, mining, etc. According to the free radical production mode and different reaction conditions, advanced oxidation technology can be divided into photochemical oxidation, catalytic ozone oxidation, electrochemical oxidation, Fenton oxidation, catalytic wet air oxidation, ultrasonic oxidation method and so on. Advanced oxidation technology has many advantages,but some technical methods remain in the stage of experiment.So a more efficient and perfect technology should be studied to realize large-scale industrial application.%高级催化氧化技术已经成为治理生物难降解有机有毒污染物的重要手段,在印染、化工、农药、造纸、电镀和印制板、制药、医院、矿山等领域以及垃圾渗滤液等废水的处理上已经获得应用,具有很好的应用前景。根据产生自由基的方式和反应条件的不同,可将高级氧化技术分为光化学氧化法、催化臭氧氧化法、电化学氧化法、芬顿(Fenton)氧化法、催化湿式氧化法、超声氧化法等。高级氧化技术具有诸多优点,但其中一些技术方法仍处于研究实验阶段。因此,需要研究一种更高效、完善的技术,以实现大规模工业化应用。

  2. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  3. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  4. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena......, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  5. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  6. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    OpenAIRE

    Zong Woo Geem; Jin-Hong Kim

    2016-01-01

    The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not requi...

  7. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  8. Performance evaluation of Portuguese constructed wetlands for municipal wastewater treatment

    OpenAIRE

    Duarte, António A. L. Sampaio; Seco, Teresa Canais; Peres, José A.; Bentes, Isabel; Pinto, Jorge

    2010-01-01

    Constructed wetlands have been used as a technology appropriate for the treatment of municipal or domestic wastewater in some villages in Portugal. Most of constructed wetlands present a low cost (installation and maintenance), low energy requirements and technical skills of operators, environment friendly landscape, and good efficiency and reduced production of sludge. In a situation where is a need of appropriate wastewater treatment from a large number of rural villages, it is appropria...

  9. Photocatalysis as a tertiary treatment for petroleum refinery wastewaters

    OpenAIRE

    F. V. Santos; E. B. Azevedo; G. L. Sant'Anna Jr; M. Dezotti

    2006-01-01

    Photocatalysis has been used as tertiary treatment for petroleum refinery wastewaters to comply with the regulatory discharge limits and to oxidize persistent compounds that had not been oxidized in the biological treatment. The wastewater is generated by the refinery and directly discharged into the Guanabara Bay (Rio de Janeiro). Although BOD removal is high, a residual and persistent COD, besides a somewhat high phenol content remains. Three photocatalysts were tested - TiO2 (Aldrich), ZnO...

  10. Key issues for decentralization in municipal wastewater treatment

    OpenAIRE

    Bernal, Diana Paola; Restrepo, Inès

    2012-01-01

    12 p. International audience The pressure on water resources caused by accelerated urbanization, the inadequate management and disposal of wastewater and the implementation of sophisticated treatment systems which sometimes with low efficiency and coverage are some of the problems to be solved with alternative and innovative strategies that be in harmony with the recent trends on water management. One of these strategies is the decentralisation in wastewater treatment. In this article, ...

  11. Anaerobic treatment of glycol contaminated wastewater for methane production

    OpenAIRE

    Agbalakwe, Ekene

    2011-01-01

    Glycols are usually used in the offshore gas industry as hydrate inhibitor in gas pipelines laid deep under the sea. Glycols, in its use, are contaminated by dissolved salts from formation water together with scaling and corrosion products from the pipeline. This results to generation of wastewater containing glycols. Anaerobic treatment may represent an alternative to the aerobic treatment of glycol wastewater. Laboratory-scale studies were carried out to investigate the treatability of glyc...

  12. Performance analysis of wastewater treatment plants for mountain lodges

    OpenAIRE

    Čepon, Urban

    2013-01-01

    The thesis is based on independent chemical analyses, on-site analyses and field sampling. It includes seven selected wastewater treatment plants at mountain lodges. At each plant the author conducted three sets of winter analyses and two sets of summer analyses. The research includes 200 hours of field work in the mountains. Before conducting the analyses it was necessary to catalogue all wastewater treatment plants at Slovenian Alpine Association's mountain lodges and on this basis choose a...

  13. Time difference based measurement of ultrasonic cavitations in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    朱昌平

    2016-01-01

    Intensity of cavitation is significant in ultrasonic wastewater treatment, but is complicated to measure.A time difference based method of ultrasonic cavitation measurement is proposed.The time differences at different powers of 495kHz ultrasonic are measured in experiment in comparison with conductimetric method.Simulation results show that time difference and electrical conductivity are both approximately positive proportional to the ultrasonic power.The degradation of PNP solution verifies the availability in wastewater treatment by using ultrasonic.

  14. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    2016-01-01

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics. PMID:27508360

  15. Micro-electrolysis technology for industrial wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  16. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    Full Text Available The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solution for organically polluted industrial waste streams. In particular the development of high rate systems, in which hydraulic retention times (HRT are uncoupled from solids retention times (SRT, has led to a worldwide acceptance of anaerobic wastewater treatment. In this paper, literature on anaerobic digestion, anaerobic reactor technology and existing anaerobic treatment of pharmaceutical wastewater are presented. In addition, fate of pharmaceuticals in the environment was also discussed in brief. A case study of a laboratory investigation into the treatment of pharmaceutical wastewater containing the antibiotic Tylosin in an anaerobic reactor was also given. Specifically, it was determined whether the anaerobic reactor could be used as a pre-treatment system at an existing pharmaceutical production plant. The performance of the reactor treating real pharmaceutical wastewater at various organic loading rate (OLR was investigated and showed efficient substrate removal at low OLRs (0.43 – 1.86 kg COD.m-3.d-1 by promoting efficient chemical oxygen demand (COD reduction (70 – 75%. Under these conditions, an average of 95% Tylosin reduction was achieved in the UASR. However, increasing the OLRs to 3.73 kg COD.m-3.d-1 by reducing the hydraulic retention time (HRT (4 – 2 d reduced the COD removal efficiency (45%. Changes in the organic loading affected the treatment performance of the anaerobic reactor, and at high OLRs, it was not able to withstand the short

  17. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Kalka

    2012-01-01

    Full Text Available Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  18. Sulphate reducing bacteria in wastewater treatment

    OpenAIRE

    Van den Brand, T.P.H.

    2014-01-01

    The depletion of fresh water sources forces to design innovative integral solutions for the urban water cycle. Usual practice in most cities is to use drinking water to transport waste outside the city via sewer system. For toilet flushing the water quality is less important and seawater could be used as alternative to use of drinking water. Due to high sulphate content in seawater it usage for toilet flushing will increase the sulphate content of wastewater. Sulphate enrichment of wastewater...

  19. Treatment of Distillery Wastewater by Anaerobic Methods

    OpenAIRE

    Vandana Patyal

    2015-01-01

    One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmf...

  20. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  1. United membrane biological reactor in the treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-ti; YAN Bin; DU Cui-hong; DONG Xiao-li

    2003-01-01

    The united membrane biological reactor(UMBR) was studied for the treatment of some simulate and municipal wastewater . The removal efficiency for COD and turbidity are greater than 80% and 99% respectively. Effluent COD is less than 100 mg/L while turbidity less than 5. The removal of LAS in bath wastewater is greater than 70%. In treatment of dinning-hall wastewater, removal of fatty oil is greater than 90%, and its concentration in effluent is less than 5 mg/L. The match of biological reactor and the membrane separation component were calculated. The stable performance of wastewater treatment can be maintained by the optimization of operation conditions and the cleanout of membranes.

  2. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  3. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  4. 环境功能材料在阳离子染料废水处理中的应用研究进展%Research Advance for Applications of Environmental Functional Materials in Cationic Dye Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    赵丹华; 蔡伟文; 何伟发; 黄立棉; 李浩然; 林晓娜

    2014-01-01

    Applications of three kinds of the solid waste,natural minerals and functional nanomaterials as environmental functional materials in cationic dye wastewater treatment were mainly introduced.Finally,a per-spective for the treatment technology of cationic dye wastewater was also made.%主要介绍了固体废弃物、天然矿物和纳米功能材料等3种类型的环境功能材料在阳离子染料废水处理中的应用研究进展,并对阳离子染料废水处理技术的发展进行了展望。

  5. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m3/day of wastewater from 60,000m3/day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  6. MF-RO深度处理印染废水的效果和回用%Effect of advanced treatment of wastewater for reuse with MF-RO

    Institute of Scientific and Technical Information of China (English)

    邹勇斌; 颜幼平; 陈师楚; 陈志星; 陈鹏

    2013-01-01

    采用预处理+微滤(MF)+反渗透(RO)双膜技术深度处理印染废水.通过改变废水的温度、pH值、回用率和反渗透操作压力,分析相关因素对CODcr去除率和脱盐效果的影响.试验表明,优化的运行工况为:操作压力1.8 MPa,水温35℃,pH值6.0~10.0,回收率80%;此双膜法深度处理废水对CODcr的去除率和脱盐率分别达到97.4%和97.0%,浊度去除率接近100%,出水水质满足印染工艺回用要求.%Pretreatment + microfiltration + reverse osmosis technology is applied to dyeing effluents treatment. Factors exerting influence on the removal of CODCr and desalination results are discussed by changing temperature and pH value of dyeing effluents, recycling rate and operation pressure of reverse osmosis. The results show that the optimum operating conditions are as follows: operation pressure 1.8 Mpa, effluents temperature 35 ℃, pH value 6.0 ~ 10.0 and recovery rate 80%. The effluents after treatment can meet the reuse requirement with the removal of CODCr and desalination rate of 97.4% and 97% respectively, and the removal of turbidity closes to 100%.

  7. Evaluation of constructed wetland treatment performance for winery wastewater.

    Science.gov (United States)

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater. PMID:14587952

  8. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    for arsenic and heavy metals with EC, mainly due to the very low pH. On the other hand, after a preliminary Ca(OH)2 treatment for sulphate and heavy metal removal, arsenic could be removed totally by EC. In addition, EC could also be applied as a final remediation control tool for arsenic since the national......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...

  9. O3-BAF深度处理制革废水中沿程污染物降解规律%Study on the Pollutants Removal Performance Along the Advanced Treatment in Tannery Wastewater by O3-BAF

    Institute of Scientific and Technical Information of China (English)

    余彬; 刘锐; 程家迪; 范举红; 李昌湖; 冉坤; 曹国华; 陈吕军

    2013-01-01

    A pilot-scale hybrid process of ozone and biological aerated filters ( BAF) with the capacity of 36 t·d-1 was applied for advanced treatment of the secondary biologically effluent from a dyeing and tannery park wastewater treatment plant. The pollutants removal performance along the height of different medias BAFs were investigated. The results showed that the average COD and color were 55. 4 mg·L-1 and 12. 6 times at the height of 1 500 mm in activated carbon BAF, and were 55. 6 mg·L-1 and 9. 4 times at the height of 1 800 mm in composite BAF, both of the effluent at each height met the first level B criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918-2002). Along the height of ceramist BAF, the COD and color were seldom removed. In activated carbon BAF and composite BAF, COD and ammonia nitrogen were both greatly decreased at the height of 1 200 mm, then decreased slowly. The biomasses simultaneously reached the maximum at the height of 900 mm in activated carbon, composite and ceramist BAF, with the maxims of 30. 69, 28. 87 and 15. 94 nmol·g-1 , respectively.%针对浙江省某制革园区污水处理厂二级生化出水,开展了处理规模36 t·d-1的臭氧-曝气生物滤池中试研究,考察了不同填料曝气生物滤池沿程高度上污染物的降解规律.结果表明:活性炭曝气生物滤池在沿程l 500 mm处的平均出水COD和色度分别为55.4 mg·L-1和12.6倍,混合填料曝气生物滤池在沿程1 800 mm处的平均出水COD和色度分别为55.6 mg·L-1和9.4倍,出水达到《城镇污水厂污染物排放标准》(GB 18918-2002)中的一级B排放要求.陶粒曝气生物滤池在整个沿程高度上COD和色度变化幅度较小.在沿程高度上活性炭曝气生物滤池和混合填料曝气生物滤池的COD和氨氮在1 200 mm内降幅较大,之后降幅趋缓.3个曝气生物滤池的生物量在沿程900 mm时达到最大,分别为30.69、28.87和15.94 nmol

  10. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    Science.gov (United States)

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.

  11. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  12. Forward osmosis for application in wastewater treatment: a review.

    Science.gov (United States)

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector.

  13. The use of constructed wetlands for wastewater treatment in the Czech Republic

    OpenAIRE

    Matějovský, Jiří

    2014-01-01

    This Bachelor Thesis deals with the possibility of wetlands for wastewater treatment. Wetlands for wastewater treatment are a good alternative for treating waste water from small sources of pollution. The Bachelor Thesis consists of four parts. The first part describes constructed wetlands and wastewater treatment in KČOV (wetland for wastewater treatment) according to studies of scientific publications. The second part characterizes the plants suitable for planting roots in wastewater treatm...

  14. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants

    OpenAIRE

    Luca Rossi; Pierre Queloz; Alessandro Brovelli; Jonas Margot; D A Barry

    2013-01-01

    The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five ...

  15. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment. PMID:26894292

  16. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  17. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    OpenAIRE

    Rongjun Su; Guangshan Zhang; Peng Wang; Shixiong Li; Ryan M. Ravenelle; JOHN C. CRITTENDEN

    2015-01-01

    Rotating biological contactors (RBC) are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW). The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%....

  18. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    OpenAIRE

    RODICA BUCUROIU; MARIUS PETRACHE; VIOREL VLASCEANU; MARIUS GABRIEL PETRESCU

    2016-01-01

    Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT), suspended solids (SS) and chemical oxygen demand (COD) of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC), melamine formaldehyde polyme...

  19. Hybrid constructed wetlands for wastewater treatment: A worldwide review

    OpenAIRE

    M.H. Sayadi; R. Kargar; M.R. Doosti, et al.

    2012-01-01

    The utilization of environmentally friendly and eco-safe wastewater treatment plan is nowadays widespread. This study aimed to assess the potentiality of hybrid constructed wetlands for treating of landfill leachate, river polluted water, domestic, industrial, hospital, runoff and agricultural wastewaters in lab-scale, pilot-scale and full-scale with various configurations. The results revealed that the hybrid constructed wetlands are effective to remove organic matter (BOD5, COD) and suspend...

  20. Wetlands and their use as wastewater treatment systems

    OpenAIRE

    Fromal, Barbara L.

    1994-01-01

    Wetlands are complex ecosystems that have improved water quality by processes inherent to the system. There are varied criteria used to establish the existence of a wetland. During the last 20 years interest in the use of wetlands for wastewater treatment has increased. Natural and constructed wetlands were reviewed related to their ability to treat agricultural and domestic wastewaters, stormwater run-off, and acid mine drainage. Currently operating natural...

  1. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  2. Laundry wastewater treatment using coagulation and membrane filtration

    OpenAIRE

    Šostar-Turk, Sonja; Petrinić, Irena; Simonič, Marjana

    2012-01-01

    This paper presents the results obtained from laundry wastewater treatment using conventional methods namely precipitation/coagulation and the flocculation process with adsorption on granular-activated carbon (GAC) and an alternative method, membrane filtrations, namely ultrafiltration (UF) and reverse osmosis (RO). Chemical analyses showed that parameter values of untreated wastewater like temperature, pH, sediment substances, total nitrogen and phosphorous, COD, BOD5, and the amount of anio...

  3. A Study on the Wastewater Treatment from Antibiotic Production

    OpenAIRE

    Jayati Chatterjee; Neena Rai; Santosh K. Sar

    2014-01-01

    Wastewater from cephalosporin antibiotic production with high bio-toxicity is hard to degrade, and could cause great harm to environment and human being. In the present paper, wastewater from cephalosporin production was processed with biochemical treatments as hydrolytic acidification, Up-flow Anaerobic Sludge Bed(UASB), Sequencing Batch Reactor Activated Sludge Process(SBR), biological activated carbon process(BAC). Among them, hydrolytic acidification could efficaciously enhance the biodeg...

  4. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  5. Optimum municipal wastewater treatment plant design with consideration of uncertainty

    Institute of Scientific and Technical Information of China (English)

    ZENG Guang-ming; LIN Yu-peng; QIN Xiao-sheng; HUANG Guo-he; LI Jian-bing; JIANG Ru

    2004-01-01

    A newly developed model for the optimum municipal wastewater treatment plant (MWTP) design is presented. Through introducing the interval variables, the model attempts to consider the effects of uncertainties caused by the fluctuation of the wastewater quality and quantity during the design of MWTP. The model solution procedure is illustrated in detail, and a numerical example is given to verify the feasibility and advantage of the model. Furthermore, the possibility of the model application is briefly outlined.

  6. Upflow Constructed Wetland for On-site Industrial Wastewater Treatment

    OpenAIRE

    Yamagiwa, Kazuaki; Ong, Soon-An

    2007-01-01

    Constructed wetlands are cost-effective wastewater treatment technology highly applicable to Asia region. Combination of anaerobic and aerobic processes can upgrade constructed wetlands to treat industrial wastewater containing less-degradable organic pollutants. Controllability of anaerobic and aerobic activities in a vertical constructed wetland was investigated with and without supplementary aeration. The ORP profile along the wetland bed showed clear distinguishes between the anaerobic an...

  7. Method for treatment of wastewater of nuclear power plants

    International Nuclear Information System (INIS)

    A method for treatment of wastewater of nuclear power plants is characterized by the fact that concentration and volume reduction are performed after Ca and Mg as components for the formation of an adhering scale is converted to an 8-oxyquinoline complex, which is hardly soluble in water, and does not precipitate out as an adhering scale, by the addition of 8-oxyquinoline into nuclear power plant wastewater

  8. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  9. Comparison of advanced oxidation processes used for municipal waste water treatment

    OpenAIRE

    Pavlin, David

    2014-01-01

    Municipal wastewater can be used as an alternative water source. However, it is essential to treat the wastewater, thereby achieving extensive removal of organic pollutants. It is also necessary to ensure a nearly complete decolouration and disinfection of the water. The use of chemical oxidation and thus advanced oxidation processes (AOPs) in the processes of wastewater treatment is important in terms of ensuring an efficient degradation of the more difficult biodegradable or even non-biodeg...

  10. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    Science.gov (United States)

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China. PMID:27262686

  11. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    Science.gov (United States)

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China.

  12. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  13. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?

    Science.gov (United States)

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoÿs; Weil, Mirco; Rossi, Luca; de Alencastro, Luiz Felippe; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael; Barry, D A

    2013-09-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O3 l(-1) or a PAC dose between 10 and 20 mg l(-1). Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants

  14. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants.

    NARCIS (Netherlands)

    Mels, A.R.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainabilityMost of the currently applied municipal wastewater treatment plants in The Netherlands are based on the activated sludge process and include

  15. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    Science.gov (United States)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  16. Aquaponics and its potential aquaculture wastewater treatment and human urine treatment

    OpenAIRE

    Sánchez, Henrique Junior Aiveca

    2014-01-01

    The main objective of this thesis is to study the developing fields of aquaponics and its potential for aquaculture wastewater treatment and human urine treatment. Aquaponics is a food production system which combines fish farming (aquaculture) with soilless crop farming (hydroponics). In this thesis the concept of aquaponics and the underlying processes are explained. Research on aquaculture wastewater and human urine wastewater is reviewed and its potential application with aquaponic sys...

  17. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    OpenAIRE

    Bansari M. Ribadiya; Mehali J. Mehta

    2014-01-01

    Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost eff...

  18. Operation of industrial-scale electron beam wastewater treatment plant

    Science.gov (United States)

    Han, Bumsoo; Kyu Kim, Jin; Kim, Yuri; Seung Choi, Jang; Young Jeong, Kwang

    2012-09-01

    Textile dyeing processes consume large amount of water, steam and discharge filthy and colored wastewater. A pilot scale e-beam plant with an electron accelerator of 1 MeV, 40 kW had constructed at Daegu Dyeing Industrial Complex (DDIC) in 1997 for treating 1,000 m3 per day. Continuous operation of this plant showed the preliminary e-beam treatment reduced bio-treatment time and resulted in more significant decreasing TOC, CODCr, and BOD5. Convinced of the economics and efficiency of the process, a commercial plant with 1 MeV, 400 kW electron accelerator has constructed in 2005. This plant improves the removal efficiency of wastewater with decreasing the retention time in bio-treatment at around 1 kGy. This plant is located on the area of existing wastewater treatment facility in DDIC and the treatment capacity is 10,000 m3 of wastewater per day. The total construction cost for this plant was USD 4 M and the operation cost has been obtained was not more than USD 1 M per year and about USD 0.3 per each m3 of wastewater.

  19. Operation of industrial-scale electron beam wastewater treatment plant

    International Nuclear Information System (INIS)

    Textile dyeing processes consume large amount of water, steam and discharge filthy and colored wastewater. A pilot scale e-beam plant with an electron accelerator of 1 MeV, 40 kW had constructed at Daegu Dyeing Industrial Complex (DDIC) in 1997 for treating 1,000 m3 per day. Continuous operation of this plant showed the preliminary e-beam treatment reduced bio-treatment time and resulted in more significant decreasing TOC, CODCr, and BOD5. Convinced of the economics and efficiency of the process, a commercial plant with 1 MeV, 400 kW electron accelerator has constructed in 2005. This plant improves the removal efficiency of wastewater with decreasing the retention time in bio-treatment at around 1 kGy. This plant is located on the area of existing wastewater treatment facility in DDIC and the treatment capacity is 10,000 m3 of wastewater per day. The total construction cost for this plant was USD 4 M and the operation cost has been obtained was not more than USD 1 M per year and about USD 0.3 per each m3 of wastewater. - Highlights: ► Commercial e-beam plant to treat textile dyeing wastewater has constructed. ► Electron accelerator of 1MeV, 400kW was installed. ► This plant treats 10,000 m3/d of wastewater with 1kGy. ► It showed improvement in removal efficiency with low cost (USD 0.3/m3)

  20. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  1. A study of irradiation in the treatment of wastewater

    Science.gov (United States)

    Bao, Huaying; Liu, Yuanxia; Jia, Haishun

    2002-03-01

    A grafting copolymer of starch and acrylamide was prepared by 60Co- γ pre-irradiation. After purification, the copolymer was modified by a cationic reaction to form a cationic copolymer. The structure of the cationic copolymer was identified by IR and NMR spectroscopy. Using the industrial and sanitary municipal wastewater from the Factory of Wastewater Treatment of Gaobeidian in Beijing as the study sample, three-treatment methods: flocculation deposition, flocculation deposition combined with γ irradiation and the direct irradiation were carried out. COD was applied to evaluate the treatment effect. The preliminary results show that the method of flocculation deposition combined with γ irradiation was effective than the other two.

  2. Treatment of oily wastewaters to meet regulatory standards

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J.L.; Shell, G.L.; Dahlstrom, D.A.

    1972-01-01

    Treatment of oily wastewaters to meet regulatory agency discharge or inplant reuse standards is a problem faced not only by refineries and steel mills, but also by metal finishing, paint manufacturing, and many other industries. Information is presented to answer several major questions: (1) What is oil--How is it measured. (2) What oil removal processes and equipment are available. (3) How may treatment equipment and processes be applied to new and existing treatment plants to meet discharge or reuse requirements. Several case histories describe how specific wastewater problems were solved. Equipment applied in these solutions include dissolved air flotation, gravity separation, granular media, and precoat filtration.

  3. Predication of Fhhh potential in PTA wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    CHENG Shu-pei; SHI Lei; ZHANG Xu-xiang; YAN Jun; DING Zhong-hai; HAO Chun-bo

    2004-01-01

    Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume ( Vmin ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first, then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.

  4. Impacts of coagulant on a chemically enhanced MBR applied for advanced treatment of dyeing wastewater%混凝剂对化学强化MBR深度处理印染废水的影响

    Institute of Scientific and Technical Information of China (English)

    张迎敏; 吴佩琳; 孙娜; 肖小兰; 王新华; 李秀芬

    2013-01-01

    在自主开发的化学强化MBR(膜生物反应器)技术的基础上,考察30 mg/L FeCl3,30mg/L FeCl3和30 mg/LCaCl2的组合以及30 mg/LCaCl2三种混凝剂投加方式对其深度处理模拟印染废水二级出水的效果以及对膜污染的影响.结果表明,单独投加FeCl3及FeCl3和CaCl2的组合提高了化学强化MBR装置对色度、COD、氨氮和总磷的去除效果.单独投加FeCls及FeCl3和CaCI2的组合都可以有效地缓解膜污染,其中投加FeCl3和CaCl2组合的效果更好,而单独投加CaCI2将会加重膜污染.FeCl3的絮凝作用可以降低胞外聚合物(EPS)的含量并增加污泥颗粒粒径.此外,CaCl2可以强化FeCl3的絮凝作用,提高膜污染的延缓效果.然而,单独投加CaCl2由于刺激EPS的产生并造成污泥颗粒粒径的减少,从而加重了膜污染.FeCl3和CaCl2都有利于溶解性有机物(DOM)中的小分子量片段向大分子量片段的转化,其中CaCl2的影响更大.%The impacts of coagulant on the effluent water quality and membrane fouling of a chemical enhanced membrane bioreactor (CEMBR) applied for advanced treatment of dyeing wastewater were investigated.In this study,three adding modes of 30 mg/L FeC13,the combination of 30 mg/L FeCl3 and 30 mg/LCaCl2 and 30 mg/LCaCl2 were applied,and synthetic secondary effluent of dyeing wastewater composed of disperse red was used as influent of the CEMBR.The results showed that adding FeCl3 and the combination of FeCl3 and CaCl2 could enhance the removal of color,chemical oxygen demand (COD),ammonia nitrogen and total phosphorus,and alleviate the membrane fouling of CEMBR.Compared with the addition of FeCl3,adding the combination of FeCl3 and CaCl2 had better effect on reducing membrane fouling.It could be attributed to the facts that FeCl3 could reduce the extracellular polymeric substances (EPS) and increase the particle size in sludge by flocculation,and CaCl2 could enhance the flocculation of FeCl3.However,only adding CaCl2

  5. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system.

  6. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. PMID:26706768

  7. Application of electron beam to treatment of wastewater from papermill

    International Nuclear Information System (INIS)

    Electron-beam treatment of wastewater from a papermill has been studied in combination with conventional methods (coagulation+flocculation and biological). It has been found that such combination (the required dose is about 1 kGy) allows one to decrease chemical oxygen demand and total organic carbon values of wastewater to the value below 25 ppm and, as a consequence, to increase the recirculation rate of wastewater from 20-30% up to 70-80%. The design of commercial plant equipped with three electron accelerators (total beam power 300 kW) for the purification of wastewater from a papermill in Cheongwon (Republic of Korea) has been developed. Its planned output is equal to 15,000 m3/day

  8. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed. PMID:26301853

  9. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    Science.gov (United States)

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  10. Advances in burn treatment

    OpenAIRE

    Lahoda, LU; Vogt, PM

    2006-01-01

    The German-speaking burn specialist, organized in the DAV (Deutsche Arbeitsgemeinschaft für Verbrennungsmedizin) held their yearly meeting in 2004 in Rottach-Egern, Bavaria. Participants from Switzerland, Germany and Austria found a high standing, very well organized and thorough program summoned by the host, Dr. Guido Graf Henckel von Donnersmarck, Munich. The topics consisted of reconstructive surgery, skin substitutes and replacement, advances in burn medicine over the last 10 years and bu...

  11. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    Niet, de Arie; Vrugt, van de Maartje; Korving, Hans; Boucherie, Richard J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can contribu

  12. Optimal flow sensor placement on wastewater treatment plants.

    Science.gov (United States)

    Villez, Kris; Vanrolleghem, Peter A; Corominas, Lluís

    2016-09-15

    Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set of installed sensors on a wastewater treatment plant. Little attention is however given to how one can install sensors in such a way that fault detection and identification can be improved. In this work, we develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy. Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with limited sensor information, and without prior data collection. In addition, the developed optimization scheme is fast. Practically important is that the number of sensors needed for both observability of all flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for observability of all flows in the studied wastewater treatment plant configurations. PMID:27258618

  13. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m2/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  14. Biological treatment and nanofiltration of denim textile wastewater for reuse

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Dilek, Filiz B. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)], E-mail: fdilek@metu.edu.tr

    2008-05-30

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 {+-} 2% and 84 {+-} 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 {+-} 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 {mu}m pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m{sup 2}/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.

  15. Optimal flow sensor placement on wastewater treatment plants.

    Science.gov (United States)

    Villez, Kris; Vanrolleghem, Peter A; Corominas, Lluís

    2016-09-15

    Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set of installed sensors on a wastewater treatment plant. Little attention is however given to how one can install sensors in such a way that fault detection and identification can be improved. In this work, we develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy. Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with limited sensor information, and without prior data collection. In addition, the developed optimization scheme is fast. Practically important is that the number of sensors needed for both observability of all flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for observability of all flows in the studied wastewater treatment plant configurations.

  16. Electrochemical treatment of tannery wastewater using DSA electrodes

    International Nuclear Information System (INIS)

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity

  17. Integration of energy and environmental systems in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Suzanna Long, Elizabeth Cudney

    2012-01-01

    Full Text Available Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  18. Electrochemical treatment of tannery wastewater using DSA electrodes.

    Science.gov (United States)

    Costa, Carla Regina; Botta, Clarice M R; Espindola, Evaldo L G; Olivi, Paulo

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity. PMID:17931769

  19. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  20. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    in pH due to the produced alkalinity from dissolution of iron(III)hydroxides from waterworks sludge, lower internal recirculation of phosphate concentration in the reject water and reduced sulphide in the digested liquid. However, recirculation of the produced soluble iron(II) as an iron source...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant......The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...

  1. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  2. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    Science.gov (United States)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized

  3. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  4. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    Science.gov (United States)

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  5. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Maja Klančnik

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  6. Solar photocatalytic treatment of synthetic municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Poulios, I. [University of Thessaloniki (Greece). Department of Chemistry, Lab. Physical Chemistry; Malato, S.; Caceres, J.; Campos, A. [Plataforma Solar de Almeria, Tabernas (Spain)

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJ L{sup -1} the synergetic effect of 0.2 g L{sup -1} TiO{sub 2} P-25 with hydrogen peroxide (H{sub 2}O{sub 2}) and Na{sub 2}S{sub 2}O{sub 8} leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation energy of 20 kJ L{sup -1} leads to 80% reduction of the organic content. The presence of oxalate in the Fe{sup 3+}/H{sub 2}O{sub 2} system leads to an additional improvement of the photocatalytic efficiency. (author)

  7. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  8. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    OpenAIRE

    J. Kalka

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate ...

  9. Electrospun nylon 6 microfiltration membrane for treatment of brewery wastewater

    Science.gov (United States)

    Islam, Md. Shahidul; Sultana, Sormin; Rahaman, Md. Saifur

    2016-07-01

    Nylon 6 microfiltration membrane, for the treatment of brewery wastewater, was fabricated using an electrospinning technique, followed by hot-pressing. The fabricated membrane was robust and demonstrated highly hydrophilic property (water contact angle 39° at the touching point to the membrane surface and the water droplet was completely immersed into the membrane in 7 seconds), and higher porosity (65%) with pore sizes of 100 to 210 nm. The electrospun nylon 6 membrane showed higher pure water flux (850 LMH) at an applied pressure of 4 psi. The same membrane also demonstrated a 95% rejection rate of suspended solids (SS) in brewery wastewater treatment.

  10. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-10-06

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  11. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  12. Energy saving on wastewater treatment plants through improved online control: case study wastewater treatment plant Antwerp-South.

    Science.gov (United States)

    De Gussem, Kris; Fenu, Alessio; Wambecq, Tom; Weemaes, Marjoleine

    2014-01-01

    This work provides a case study on how activated sludge modelling and computational fluid dynamics (CFD) can help to optimize the energy consumption of a treatment plant that is already equipped with an advanced control based on online nutrient measurements. Currently, aeration basins on wastewater treatment plant Antwerp-South are operated sequentially while flow direction and point of inflow and outflow vary as a function of time. Activated sludge modelling shows that switching from the existing alternating flow based control to a simultaneous parallel feeding of all aeration tanks saves 1.3% energy. CFD calculations also illustrate that the water velocity is still sufficient if some impellers in the aeration basins are shutdown. The simulations of the Activated Sludge Model No. 2d indicate that the coupling of the aeration control with the impeller control, and automatically switching off some impellers when the aeration is inactive, can save 2.2 to 3.3% of energy without affecting the nutrient removal efficiency. On the other hand, all impellers are needed when the aeration is active to distribute the oxygen.

  13. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  14. Treatment of wastewater from dyes manufacture using adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Rathi, A.K.A.; Puranik, S.A. [Govt. of Gujarat, Gandhinagar (India). Industries Commissionerate

    2003-11-01

    In a typical wastewater treatment flow sheet used by several industrial units in India, various stages of treatment include the primary treatment-oil/grease removal and neutralization, followed by the secondary treatment-chemical/biological oxidation and clarification, and the tertiary treatment-adsorption onto activated carbon. The neutralization of the wastewater with acid/milk of lime increases the concentration of total dissolved solids, which adversely affects the activity of microorganisms during biological oxidation process. To overcome this limitation, adsorption is proposed in the first stage of treatment and other stages could follow depending on the quality of the wastewater. Experiments were carried out on wastewater samples from different plants manufacturing dyes using various adsorbents - activated carbon, fly ash, bentonite and lignite. The effectiveness of adsorbents in reducing chemical oxygen demand (COD) and colour was evaluated. The results of COD reduction are fitted into different models available in the literature. A model for predicting COD equilibrium values is proposed. Sorption kinetics and rate of reduction of COD over time are also discussed.

  15. Fecal contamination of wastewater treatment plants in Portugal.

    Science.gov (United States)

    Oliveira, Manuela; Serrano, Isa; Van Harten, Sofia; Bessa, Lucinda J; Bernardo, Fernando; da Costa, Paulo Martins

    2016-07-01

    Reutilization of effluents from wastewater treatment plants (WWTP) for non-potable applications is increasing due to the reduction of sustainable water resources. These products mostly come from municipal WWTP and also from slaughterhouses effluents. The microbiological certification of these products is mandatory before their discharge into the environment. This study evaluates if the treatment applied in WWTP to municipal waters or to poultry slaughterhouse effluents distributed over the Portuguese continental territory is efficient in reducing the microbiological risk associated with the reutilization of those wastewaters and sludges. Fecal indicators Escherichia coli and enterococci were evaluated in 42 and 24 wastewater samples from 14 municipal WWTP and 8 poultry slaughterhouse treatment plants, respectively, by the conventional culture method and a rapid Fluorescent in situ hybridization (FISH) technique. Bacterial enumeration in inflow water from most WWTP was rather high (generally >10(5) cells/ml), for both E. coli and Enterococcus spp., and the bacterial quantification by FISH was generally higher than enumeration by the conventional culture method. In both types of treatment plants studied, bacterial load from effluents and sludges was not statistically different from the inflows, indicating that the treatment applied seems to be equally unable to reduce the microbiological load of the effluents. These findings may jeopardize the safe reuse of treated wastewaters in agriculture and the quality of the water environment. Therefore, products like water, sewage sludge, and biosolids originated from the municipal and slaughterhouse WWTP studied should not be reutilized, and effluents treatment should be urgently reviewed. PMID:27236442

  16. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  17. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    Science.gov (United States)

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F

    2005-01-01

    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem. PMID:16180464

  18. Advanced Treatment of Coking Wastewater with a Novel Heterogeneous Electro-Fenton Technology%新型非均相电-Fenton技术深度处理焦化废水

    Institute of Scientific and Technical Information of China (English)

    李海涛; 李玉平; 张安洋; 曹宏斌; 李鑫钢; 张懿

    2011-01-01

    分别采用高效氯气还原阴极PAQ/GF和形稳性阳极IrO2-RuO2-TiO2/Ti做为阴、阳极,填充非均相催化剂,研究一种阴、阳极同时催化氧化的电化学过程,并应用于焦化废水生化出水深度处理.采用在石墨毡上电聚合蒽醌制备PAQ/GF电极,并用循环伏安进行了表征.结果表明,蒽醌在电极表面具有很好的可逆性,并对电催化还原氧气生成过氧化氢(H2O2)表现很高的电催化活性;隔膜电解槽中PAQ/GF做阴极,在-0.7 V(相对饱和甘汞电极)和pH 6下电解6 h后,H2O2浓度为13.5mmol/L,电流效率>50%.采用浸渍法制备了非均相催化剂Fe-Cu/Y350,通过结晶紫褪色反应和羟自由基探针化合物(对氯苯甲酸)氧化反应验证Fe-Cu/Y350催化H 202产生了羟基自由基(·OH);使用Fe-Cu/Y350催化次氯酸钠氧化处理焦化废水,COD去除率达到26%,远高于没有催化剂时的11%.利用组装的电催化反应器对焦化废水进行处理,COD去除率达到49.4%,远高于传统的双极氧化过程(29.8%),其中阴极与阳极催化过程对COD去除的贡献率分别为26.0%和23.4%.在优化条件下(初始COD=192 mg/L、I=10 A·m-2、pH 4~5)电解1 h后,焦化废水COD去除率>50%.反应途径可能为:氧气在PAQ/GF电极上高效电催化还原为H2O2,再经Fe-Cu/Y350催化分解产生·OH,从而将有机污染物氧化分解;氯离子在IrO2-RuO2-TiO2/Ti电极氧化产生Cl2或次氯酸,并在Fe-Cu/Y350催化作用下将有机污染物氧化或有机物在阳极直接氧化降解.%A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2-TiO2/Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic vohametry measurements

  19. THE EXPERIMENTAL STUDY ON ADVANCED TREATMENT OF PULP AND PAPER WASTEWATER BASED ONOZONE-HYDROGEN PEROXIDE AND COAGULATION%O3/H2O2联用工艺深度处理制浆造纸废水的试验研究

    Institute of Scientific and Technical Information of China (English)

    张莹莹; 买文宁; 马静; 王国媛

    2012-01-01

    制浆造纸废水对水环境的污染十分严重,对其进行深度处理,势在必行,同时对废水深度处理技术的研究和应用也有着重要的意义.本文采用O3/H2O2工艺深度处理制浆造纸废水,考察了臭氧氧化法以及臭氧和过氧化氢联合工艺对废水COD、色度的去除效果和影响因素.结果表明,采用O3/H2O2联合工艺深度处理制浆造纸废水,效果显著,最终可将废水COD从300 mg·L-1降至95.250 mg· L-1,色度由350倍降至4倍以下,出水浊度小于5 NTU基本达到污水回用标准.%Pulp and paper wastewater was one of the most significant resources of water pollution, it was imperative to have a advanced treatment. Meanwhile to the depth of wastewater treatment technology research and the application may also have important implications. This thesis adopted ozone, ozone-hydrogen peroxide solution and coagulating sedimentation process deep treatment of pulp and paper wastewater, inspecting the influencing factors and the removal effectiveness of wastewater COD, coloring removal by the process of ozone oxidation and ozone-hydrogen process. While water of ozone oxidation flocculation processing, mainly inspect the different type coagulants (PAC, PFS) and coagulant (PAM) combination of wastewater, COD, turbidity removal efficiency of influencing factors. Experimental results proved that the O3 / H2O2 and coagulating sedimentation process had high performance to treatment the pulp and paper wastewater. Eventually will make the COD by 300 mg· L-1 drop to 95.25 mg · L-1, chroma 350 times to reduce by 4 times, turbidity less than 5 NTU, which can achieve sewage reuse criteria.

  20. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  1. Progress report: Use of water hyacinth in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Yusof, Abdullah bin [Standards and Industrial Research Institute of Malaysia (SIRIM), P.O. Box 35, Shah Alam, Selangor (Malaysia)

    1981-11-15

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site.

  2. Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent.

    Science.gov (United States)

    Keen, Olya S; Linden, Karl G

    2013-11-19

    Trace levels of antibiotics in treated wastewater effluents may present a human health risk due to the rise of antibacterial activity in the downstream environments. Advanced oxidation has a potential to become an effective treatment technology for transforming trace antibiotics in wastewater effluents, but residual or newly generated antibacterial properties of transformation products are a concern. This study demonstrates the effect of UV photolysis and UV/H2O2 advanced oxidation on transformation of 6 antibiotics, each a representative of a different structural class, in pure water and in two different effluents and reports new or confirmatory photolysis quantum yields and hydroxyl radical rate constants. The decay of the parent compound was monitored with HPLC/ITMS, and the corresponding changes in antibacterial activity were measured using bacterial inhibition assays. No antibacterially active products were observed following treatment for four of the six antibiotics (clindamycin, ciprofloxacin, penicillin-G, and trimethoprim). The remaining two antibiotics (erythromycin and doxycycline) showed some intermediates with antibacterial activity at low treatment doses. The antibacterially active products lost activity as the UV dose increased past 500 mJ/cm(2). Active products were observed only in wastewater effluents and not in pure water, suggesting that complex secondary reactions controlled by the composition of the matrix were responsible for their formation. This outcome emphasizes the importance of bench-scale experiments in realistic water matrices. Most importantly, the results indicate that photosensitized processes during high dose wastewater disinfection may be creating antibacterially active transformation products from some common antibiotics.

  3. Status of industrial scale radiation treatment of wastewater and its future. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    Providing access to clean water resources is one of the most important objectives of the UN's Millennium Project. Contamination of surface water is a big problem for many, mostly developing countries. The main sources of liquid polluted effluents are municipalities and industry. Effective, mostly biological wastewater technologies for wastewater purification are available nowadays. However, they cannot be applied to solve all existing problems. Destruction of non-biodegradable organic compounds is one problem and biological contamination (caused by viruses, bacteria, parasites, etc.) of sludge is another. Methods of their purification are sought. Ionizing radiation (gamma or X rays, electron beams) is a very effective form of energy, which can destroy organic or biological contaminants. The IAEA promotes and supports research on radiation treatment of liquid effluents. The Coordinated Research Project (CRP) on Remediation of Polluted Waters and Wastewater by Radiation Processing aims to establish optimal treatment methodologies to disinfect and decontaminate actual samples of drinking water and wastewater by using ionizing radiation. Quite a few technical cooperation (TC) projects concerning radiation treatment of wastewater and sludge are under development. In the frame of one of such TC projects pilot plant for electron beam treatment of textile dyeing complex wastewater was constructed in the Republic of Korea. To discuss developments achieved under these projects and results of the pilot plant operation, the IAEA organized a consultants meeting in Daejon, Republic of Korea, 13-16 October 2003. These proceedings will be of value to research groups working in the field of radiation technology development. Developing Member States with radiation technology programmes will benefit from research in this area. The meeting dealt with advanced radiation processing of wastewater and its technical and economical aspects. It informed about high power accelerators ELV-12

  4. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion.

    Science.gov (United States)

    Wang, Dongbo; Chen, Yinguang

    2016-10-01

    Nanoparticles (NPs), with at least one dimension less than 100 nm, are substantially employed in consumer and industrial products due to their specific physical and chemical properties. The wide uses of engineered NPs inevitably cause their release into the environment, especially wastewater treatment plants. Therefore, it is essential to systematically assess their potential impact on biological wastewater treatment and subsequent sewage sludge digestion. This review aims to provide such support. First, this paper reviews the recent advances on the analytical developments and nano-bio interface of NPs in wastewater and sewage sludge treatment. The effects of NPs on biological wastewater treatment and sewage sludge digestion and related mechanisms are discussed in detail. Finally, the key questions that need to be answered in the future are pointed out, which include on-line revelation of the changes of NPs in sewage and sludge environments, in situ assessment of the variations of microorganisms involved in these biological systems after they are exposed to NPs. Differentiation of the contribution of individual toxicity mechanisms to these systems, and the identification of under what conditions the nanoparticle-induced toxicity will be increased or decreased are also considered. PMID:26036277

  5. Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand.

    Science.gov (United States)

    Sinthuchai, Donwichai; Boontanon, Suwanna Kitpati; Boontanon, Narin; Polprasert, Chongrak

    2016-01-01

    This study aimed to investigate the antibiotic concentration at each stage of treatment and to evaluate the removal efficiency of antibiotics in different types of secondary and advanced treatment, as well as the effects of the location of their discharge points on the occurrence of antibiotics in surface water. Eight target antibiotics and four hospital wastewater treatment plants in Bangkok with different conventional and advanced treatment options were investigated. Antibiotics were extracted by solid phase extraction and analysed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The antibiotic with the highest concentration at influent was cefazolin at 13,166 ng/L, while the antibiotic with the highest concentration at effluent was sulfamethoxazole at 1,499 ng/L. The removal efficiency of antibiotics from lowest to highest was sulfamethoxazole, piperacillin, clarithromycin, metronidazole, dicloxacillin, ciprofloxacin, cefazolin, and cefalexin. The adopted conventional treatment systems could not completely remove all antibiotics from wastewater. However, using advanced treatments or disinfection units such as chlorination and UV could increase the antibiotic removal efficiency. Chlorination was more effective than UV, ciprofloxacin and sulfamethoxazole concentration fluctuated during the treatment process, and sulfamethoxazole was the most difficult to remove. Both these antibiotics should be studied further regarding their contamination in sludge and suitable treatment options for their removal. PMID:26744950

  6. Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand.

    Science.gov (United States)

    Sinthuchai, Donwichai; Boontanon, Suwanna Kitpati; Boontanon, Narin; Polprasert, Chongrak

    2016-01-01

    This study aimed to investigate the antibiotic concentration at each stage of treatment and to evaluate the removal efficiency of antibiotics in different types of secondary and advanced treatment, as well as the effects of the location of their discharge points on the occurrence of antibiotics in surface water. Eight target antibiotics and four hospital wastewater treatment plants in Bangkok with different conventional and advanced treatment options were investigated. Antibiotics were extracted by solid phase extraction and analysed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The antibiotic with the highest concentration at influent was cefazolin at 13,166 ng/L, while the antibiotic with the highest concentration at effluent was sulfamethoxazole at 1,499 ng/L. The removal efficiency of antibiotics from lowest to highest was sulfamethoxazole, piperacillin, clarithromycin, metronidazole, dicloxacillin, ciprofloxacin, cefazolin, and cefalexin. The adopted conventional treatment systems could not completely remove all antibiotics from wastewater. However, using advanced treatments or disinfection units such as chlorination and UV could increase the antibiotic removal efficiency. Chlorination was more effective than UV, ciprofloxacin and sulfamethoxazole concentration fluctuated during the treatment process, and sulfamethoxazole was the most difficult to remove. Both these antibiotics should be studied further regarding their contamination in sludge and suitable treatment options for their removal.

  7. Energy pattern analysis of a wastewater treatment plant

    Science.gov (United States)

    Singh, Pratima; Carliell-Marquet, Cynthia; Kansal, Arun

    2012-09-01

    Various forms of energy are used during a wastewater treatment process like electrical, manual, fuel, chemical etc. Most of the earlier studies have focused only on electrical energy intensity of large-scale centralized wastewater treatment plants (WWTPs). This paper presents a methodological framework for analysing manual, mechanical, chemical and electrical energy consumption in a small-scaled WWTP. The methodology has been demonstrated on a small-scale WWTP in an institutional area. Total energy intensity of the plant is 1.046 kWh/m3 of wastewater treated. Electrical energy is only about half of the total energy consumption. Manual energy also has a significant share, which means that the small-scale treatment plants offer significant employment opportunities in newly industrializing countries and replaces fossil fuel-based energy with renewable. There is a lack of sufficient data in the literature for comparison, and few studies have reported values that vary significantly due to the difference in scale, scope of the study and the choice of the treatment technologies. Replication of similar studies and generation of data in this area will offer directions for decision on choice of the scale of wastewater treatment process from the considerations of energy and climate change mitigation strategies.

  8. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  9. Hybrid constructed wetlands for wastewater treatment: A worldwide review

    Directory of Open Access Journals (Sweden)

    M.H. Sayadi

    2012-12-01

    Full Text Available The utilization of environmentally friendly and eco-safe wastewater treatment plan is nowadays widespread. This study aimed to assess the potentiality of hybrid constructed wetlands for treating of landfill leachate, river polluted water, domestic, industrial, hospital, runoff and agricultural wastewaters in lab-scale, pilot-scale and full-scale with various configurations. The results revealed that the hybrid constructed wetlands are effective to remove organic matter (BOD5, COD and suspended solid, while in terms of nutrient removal such as N and Pcomponents, the removal efficiencies were depending to system properties and operational condition. Additionally it is very useful system to remove the heavy metals and pharmaceuticals pollutants from different wastewaters. Combination of constructed wetlands enhances pollutants removal efficiency as hybrid constructed wetlands could cover the limitation of each single constructed wetlands. It could be concluded that the hybrid constructed wetlands ensure a more stable removal rate of pollutants from various wastewaters in comparison with other wastewaters treatment plans.

  10. Detoxification and recycling of wastewater by solar-catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Freudenhammer, H.; Geissen, S.-U.; Vogelpohl, A. [Technische Univ. Clausthal, Inst. fuer Thermische Verfahrenstechnik, Clausthal-Zellerfeld (Germany); Bahnemann, D.; Siemon, U. [Institut fuer Solarenergieforschung GmbH, Hannover (Germany); Bousselmi, L.; Ghrabi, A. [Institut National de Recherche Scientifique et Technique, Cite Mahrajene Tunis (Tunisia); Saleh, F. [Damascus Univ., Chemistry Dept., Damascus (Syrian Arab Republic); Si-Salah, A. [Institut Algerien du Petrole, Boumerdes (Algeria)

    1997-12-31

    An introduction to a joint research project is given which deals with the technical application of solar photocatalysis for wastewater detoxification. A non-concentrating thin-film fixed-bed reactor (TFFBR) is used to study application and areas where a solar-catalytic treatment or recycling of wastewater is possible. This reactor excels by its low cost and an easy-to-build construction using molecular oxygen in air as the oxidising agent. The design parameters of the reactor as well as the process itself have been determined from the reaction kinetics of a model substance, the hydrodynamics and the mass transfer. The treatment of different real wastewaters was successfully carried out, and biologically pre-treated textile wastewater maximum solar degradation rate was about 3{sub g} COD h{sup -1} m{sup -2}. A comparison of reaction rates with artificial and solar illumination shows the necessity of outdoor experiments. Due to the reaction rates observed, photocatalysis is suitable as the final stage of purification of biologically or physically pretreated wastewater and will offer a great opportunity for sunrich areas. (Author)

  11. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; Ameri, A.; Gholami, M.; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  12. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  13. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  14. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  15. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    Science.gov (United States)

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  16. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  17. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant.

    Science.gov (United States)

    Basim, Yalda; Farzadkia, Mahdi; Jaafarzadeh, Nematollah; Hendrickx, Tim

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  18. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  19. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  20. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.