WorldWideScience

Sample records for advanced visualization system

  1. Advancing Water Science through Data Visualization

    Science.gov (United States)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  2. Structural and functional brain changes beyond visual system in patients with advanced glaucoma.

    Directory of Open Access Journals (Sweden)

    Paolo Frezzotti

    Full Text Available In order to test the hypothesis that in primary open angle glaucoma (POAG, an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC. Altered integrity (decreased fractional anisotropy or increased diffusivities of white matter (WM tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle. POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM regions (frontoparietal cortex, hippocampi and cerebellar cortex, decreased functional connectivity (FC in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.

  3. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  4. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  5. Advanced Visualization Software System for Nuclear Power Plant Inspection

    International Nuclear Information System (INIS)

    Kukic, I.; Jambresic, D.; Reskovic, S.

    2006-01-01

    Visualization techniques have been widely used in industrial environment for enhancing process control. Traditional techniques of visualization are based on control panels with switches and lights, and 2D graphic representations of processes. However, modern visualization systems enable significant new opportunities in creating 3D virtual environments. These opportunities arise from the availability of high end graphics capabilities in low cost personal computers. In this paper we describe implementation of process visualization software, developed by INETEC. This software is used to visualize testing equipment, components being tested and the overall power plant inspection process. It improves security of the process due to its real-time visualization and collision detection capabilities, and therefore greatly enhances the inspection process. (author)

  6. Advances in visual representation of molecular potentials.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  7. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    International Nuclear Information System (INIS)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho; Woo, Hyun Soo; Jo, Jae Min; Lee, Min Hee

    2015-01-01

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques

  8. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  9. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  10. Advanced Visual Quantum Mechanics

    CERN Document Server

    Thaller, Bernd

    2005-01-01

    Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.

  11. Advanced Visual and Instruction Systems for Maintenance Support (AVIS-MS)

    National Research Council Canada - National Science Library

    Badler, Norman I; Allbeck, Jan M

    2006-01-01

    .... Moreover, the realities of real-world maintenance may not permit the hardware indulgences and rigid controls of laboratory settings for visualization and training systems, and at the same time...

  12. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    Science.gov (United States)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as

  13. Visual outcome of accelerated fractionated radiation for advanced sinonasal malignancies employing photons/protons

    International Nuclear Information System (INIS)

    Weber, Damien C.; Chan, Annie W.; Lessell, Simmons; McIntyre, James F.; Goldberg, Saveli I.; Bussiere, Marc R.; Fitzek, Markus M.; Thornton, Allan F.; DeLaney, Thomas F.

    2006-01-01

    Purpose: To investigate the visual outcomes of patients with advanced sinonasal malignancies treated with proton/photon accelerated fractionated radiation (AFR). Patients and methods: Between 1991 and 2001, AFR was used to treat 36 patients with advanced stage primary (n = 33) or recurrent (n = 3) nasal or paranasal malignant tumors. Full ophthalmologic follow-up was documented. The median dose to the gross tumor volume (GTV) was 69.6 CGE (range 60.8-77). Visual complications were graded according to the National Cancer Institute Common Toxicity Criteria (CTC) and the late effects of normal tissue (LENT) scoring systems. The median follow-up was 52.4 months (range 17-122.8). Results: Thirteen patients developed late visual/ocular toxicity. Cataracts were LENT grade 1 and 3 in 2 patients and 1 patient, respectively. One LENT grade 1 vascular retinopathy and 1 optic neuropathy were also observed. Three and five patients presented with nasolacrimal duct stenosis (CTC grade 2, 2 patients; CTC grade 3, 1 patient) and dry-eye syndrome (CTC grade 1, 1 patient; CTC grade 2, 4 patients), respectively. The 3- and 5-year probability of LENT/CTC grade ≥2 visual toxicity were 15.8 ± 6.7% and 20.7 ± 7.8%, respectively. Conclusions: AFR for locally advanced nasal cavity and paranasal sinus tumors enables delivery of 70 CGE to the tumor with acceptable ophthalmologic complications

  14. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  15. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.

    Science.gov (United States)

    Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru

    2007-01-01

    Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.

  16. VISUAL TEACHING TECHNOLOGY IN IT SYSTEMS FOR THE “MILLENNIAL GENERATION”

    Directory of Open Access Journals (Sweden)

    Robert Lis

    2015-11-01

    Full Text Available This publication presents the ongoing development of visual teaching technology in IT systems, which can be used for e-learning for the “Millennial Generation”. The analysis of different models of teaching making use of visual messages, leads to the conclusion that systems more advanced in VPN technologies possess substantial educational qualities. These systems include TightVPN, UltraVNC, OpenVPN, RealVNC or Radmin and ComodoUNITE as well as TeamViewer.

  17. Advanced Visualization System for Monitoring the ATLAS TDAQ Network in real-time

    CERN Document Server

    Batraneanu, S M; The ATLAS collaboration; Martin, B; Savu, D O; Stancu, S N; Leahu, L

    2012-01-01

    The trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN comprises approximately 2500 servers interconnected by three separate Ethernet networks, totaling 250 switches. Due to its real-time nature, there are additional requirements in comparison to conventional networks in terms of speed and performance. A comprehensive monitoring framework has been developed for expert use. However, non experts may experience difficulties in using it and interpreting data. Moreover, specific performance issues, such as single component saturation or unbalanced workload, need to be spotted with ease, in real-time, and understood in the context of the full system view. We addressed these issues by developing an innovative visualization system where the users benefit from the advantages of 3D graphics to visualize the large monitoring parameter space associated with our system. This has been done by developing a hierarchical model of the complete system onto which we overlaid geographical, logical and real...

  18. Structure design and realization of advanced nuclear reactor expert evaluation system

    International Nuclear Information System (INIS)

    Gao Bin; Zhou Zhiwei; Gu Junyang

    2007-01-01

    Advanced nuclear reactor expert evaluation system is the initial practice of software on nuclear power plants evaluation system. The system was developed in C++ code under the Visual Studio Net environment, and it used Model-View-Control (MVC) pattern as its basic frame. The system was used to access the advanced nuclear reactor in China. Available results illustrate that the frame of the system is feasible and effective. (authors)

  19. Cumulative latency advance underlies fast visual processing in desynchronized brain state.

    Science.gov (United States)

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-07

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.

  20. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-01-01

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  1. Visualization-based decision support for value-driven system design

    Science.gov (United States)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations

  2. Visualization tool. 3DAVS and polarization-type VR system

    International Nuclear Information System (INIS)

    Takeda, Yasuhiro; Ueshima, Yutaka

    2003-01-01

    In the visualization work of simulation data in every advanced research field, what is used most in the report or the presentation as a research result has still remained in the stages of the still picture or the 2-dimensional animation, in spite of recent abundance of various visualization software. With the recent progress of computational environment, however, more complicated phenomena can be so easily computed that the results are more needed to be comprehensible as well as intelligible. Therefore, it inevitably requires an animation rather than a still picture, or 3-dimensional display (virtual reality) rather than 2-dimensional one. In this report, two visualization tools, 3DAVS and Polarization-Type VR system are described as the data expression method after visualization processing. (author)

  3. Visual cues in low-level flight - Implications for pilotage, training, simulation, and enhanced/synthetic vision systems

    Science.gov (United States)

    Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.

    1992-01-01

    This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.

  4. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  5. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas; Altaf, Muhammad; Mandli, Kyle T.; Hadwiger, Markus; Dawson, Clint N.; Hoteit, Ibrahim

    2015-01-01

    allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations

  6. The advanced glaucoma intervention study, 6: effect of cataract on visual field and visual acuity. The AGIS Investigators.

    Science.gov (United States)

    2000-12-01

    To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT

  7. Investigations of the human visual system using functional magnetic resonance imaging (FMRI)

    International Nuclear Information System (INIS)

    Kollias, Spyros S.

    2004-01-01

    The application of functional magnetic resonance imaging (fMRI) in studies of the visual system provided significant advancement in our understanding of the organization and functional properties of visual areas in the human cortex. Recent technological and methodological improvements allowed studies to correlate neuronal activity with visual perception and demonstrated the ability of fMRI to observe distributed neural systems and to explore modulation of neural activity during higher cognitive processes. Preliminary applications in patients with visual impairments suggest that this method provides a powerful tool for the assessment and management of brain pathologies. Recent research focuses on obtaining new information about the spatial localization, organization, functional specialization and participation in higher cognitive functions of visual cortical areas in the living human brain and in further establishment of the method as a useful clinical tool of diagnostic and prognostic significance for various pathologic processes affecting the integrity of the visual system. It is anticipated that the combined neuroimaging approach in patients with lesions and healthy controls will provide new insight on the topography and functional specialization of cortical visual areas and will further establish the clinical value of the method for improving diagnostic accuracy and treatment planning

  8. Preprint WebVRGIS Based Traffic Analysis and Visualization System

    OpenAIRE

    Li, Xiaoming; Lv, Zhihan; Wang, Weixi; Zhang, Baoyun; Hu, Jinxing; Yin, Ling; Feng, Shengzhong

    2015-01-01

    This is the preprint version of our paper on Advances in Engineering Software. With several characteristics, such as large scale, diverse predictability and timeliness, the city traffic data falls in the range of definition of Big Data. A Virtual Reality GIS based traffic analysis and visualization system is proposed as a promising and inspiring approach to manage and develop traffic big data. In addition to the basic GIS interaction functions, the proposed system also includes some intellige...

  9. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Weir, Mark; Holubowich, Corinne

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  10. [Development and application of information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province].

    Science.gov (United States)

    Mao, Yuan-Hua; Li, Dong; Ning, An; Qiu, Ling; Xiong, Ji-Jie

    2011-04-01

    To develop the information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province. Based on Access 2003, the system was programmed by Visual Basic 6.0 and packaged by Setup Factory 8.0. In the system, advanced schistosomiasis data were able to be input, printed, indexed, and statistically analyzed. The system could be operated and maintained easily and timely. The information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province is successfully developed.

  11. Visualization system on ITBL

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2004-01-01

    Visualization systems PATRAS/ITBL and AVS/ITBL, which are based on visualization software PATRAS and AVS/Express respectively, have been developed on a global, heterogeneous computing environment, Information Technology Based Laboratory (ITBL). PATRAS/ITBL allows for real-time visualization of the numerical results acquired from coupled multi-physics numerical simulations, executed on different hosts situated in remote locations. AVS/ITBL allow for post processing visualization. The scientific data located in remote sites may be selected and visualized on a web browser installed in a user terminal. The global structure and main functions of these systems are presented. (author)

  12. The advanced magnetovision system for Smart application

    Science.gov (United States)

    Kaleta, Jerzy; Wiewiórski, Przemyslaw; Lewandowski, Daniel

    2010-04-01

    An original method, measurement devices and software tool for examination of magneto-mechanical phenomena in wide range of SMART applications is proposed. In many Hi-End market constructions it is necessary to carry out examinations of mechanical and magnetic properties simultaneously. Technological processes of fabrication of modern materials (for example cutting, premagnetisation and prestress) and advanced concept of using SMART structures involves the design of next generation system for optimization of electric and magnetic field distribution. The original fast and higher than million point static resolution scanner with mulitsensor probes has been constructed to measure full components of the magnetic field intensity vector H, and to visualize them into end user acceptable variant. The scanner has also the capability to acquire electric potentials on surface to work with magneto-piezo devices. Advanced electronic subsystems have been applied for processing of results in the Magscaner Vison System and the corresponding software - Maglab has been also evaluated. The Dipole Contour Method (DCM) is provided for modeling different states between magnetic and electric coupled materials and to visually explain the information of the experimental data. Dedicated software collaborating with industrial parametric systems CAD. Measurement technique consists of acquiring a cloud of points similarly as in tomography, 3D visualisation. The actually carried verification of abilities of 3D digitizer will enable inspection of SMART actuators with the cylindrical form, pellets with miniature sizes designed for oscillations dampers in various construction, for example in vehicle industry.

  13. READING AUTHENTIC EFL TEXT USING VISUALIZATION AND ADVANCE ORGANIZERS IN A MULTIMEDIA LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Tsuiping Chen

    2007-02-01

    Full Text Available The purpose of this experimental study was to compare the effects of different types of computer-generated visuals (static versus animated and advance organizers (descriptive versus question in enhancing comprehension and retention of a content-based lesson for learning English as a Foreign Language (EFL. Additionally, the study investigated the interactive effect of students’ existing reading proficiency level and the above-mentioned treatments on their reading comprehension achievement. Students from two EFL reading sections (N = 115 were tested on their reading proficiency and then randomly assigned to one of four computer-based instructional modules—static visual alone, animation alone, animation plus descriptive advance organizer, and animation plus question advance organizer. Once having interacted with their respective instructional materials, students then took four criterion tests immediately afterward and again four weeks later. The results showed that the animation group outperformed the static visual group in one of the four tests, and that animation embedded with a question advance organizer had a marginal effect among the four treatments in facilitating the acquisition of L2 reading comprehension both for the immediate and the delayed posttests.

  14. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma.

    Science.gov (United States)

    2002-10-01

    To examine the relationships between baseline risk factors and sustained decrease of visual field (SDVF) and sustained decrease of visual acuity (SDVA). Cohort study of participants in the Advanced Glaucoma Intervention Study (AGIS). This multicenter study enrolled patients between 1988 and 1992 and followed them until 2001; 789 eyes of 591 patients with advanced glaucoma were randomly assigned to one of two surgical sequences, argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy (ATT) or trabeculectomy-ALT-trabeculectomy (TAT). This report is based on data from 747 eyes. Eyes were offered the next intervention in the sequence upon failure of the previous intervention. Failure was based on recurrent intraocular pressure elevation, visual field defect, and disk rim criteria. Study visits occurred every 6 months; potential follow-up ranged from 8 to 13 years. For each intervention sequence, Cox multiple regression analyses were used to examine the baseline characteristics for association with two vision outcomes: SDVF and SDVA. The magnitude of the association is measured by the hazard ratio (HR), where HR for binary variables is the relative change in the hazard (or risk) of the outcome in eyes with the factor divided by the hazard in eyes without the factor, and HR for continuous variables is the relative change in the hazard (or risk) of the outcome in eyes with a unit increase in the factor. Characteristics associated with increased SDVF risk in the ATT sequence are: less baseline visual field defect (hazard ratio [HR] = 0.86, P <.001, 95% CI = 0.82-0.90), male gender (HR = 2.23, P <.001, 1.54-3.23), and worse baseline visual acuity (HR = 0.96, P =.001, 0.94-0.98); in the TAT sequence: less baseline visual field defect (HR = 0.93, P =.001, 0.89-0.97) and diabetes (HR = 1.87, P =.007, 1.18-2.97). Characteristics associated with increased SDVA risk in both treatment sequences are better baseline acuity (ATT: HR = 1.05, P <.001, 1.02-1.09; TAT: HR = 1

  15. The Web system of visualization and analysis equipped with reproducibility

    International Nuclear Information System (INIS)

    Ueshima, Yutaka; Saito, Kanji; Takeda, Yasuhiro; Nakai, Youichi; Hayashi, Sachiko

    2005-01-01

    In the advanced photon experimental research, real-time visualization and steering system is thought as desirable method of data analysis. This approach is valid only in the fixed analysis at one time or in the easily reproducible experiment. But, in the research for an unknown problem like the advanced photon experimental research, it is necessary that the observation data can be analyzed many times because profitable analysis is difficult at the first time. Consequently, output data should be filed to refer and analyze at any time. To support the research, we need the followed automatic functions, transporting data files from data generator to data storage, analyzing data, tracking history of data handling, and so on. The supporting system will be integrated database system with several functional servers distributed on the network. (author)

  16. A Collaborative Education Network for Advancing Climate Literacy using Data Visualization Technology

    Science.gov (United States)

    McDougall, C.; Russell, E. L.; Murray, M.; Bendel, W. B.

    2013-12-01

    One of the more difficult issues in engaging broad audiences with scientific research is to present it in a way that is intuitive, captivating and up-to-date. Over the past ten years, the National Oceanic and Atmospheric Administration (NOAA) has made significant progress in this area through Science On a Sphere(R) (SOS). SOS is a room-sized, global display system that uses computers and video projectors to display Earth systems data onto a six-foot diameter sphere, analogous to a giant animated globe. This well-crafted data visualization system serves as a way to integrate and display global change phenomena; including polar ice melt, projected sea level rise, ocean acidification and global climate models. Beyond a display for individual data sets, SOS provides a holistic global perspective that highlights the interconnectedness of Earth systems, nations and communities. SOS is now a featured exhibit at more than 100 science centers, museums, universities, aquariums and other institutions around the world reaching more than 33 million visitors every year. To facilitate the development of how this data visualization technology and these visualizations could be used with public audiences, we recognized the need for the exchange of information among the users. To accomplish this, we established the SOS Users Collaborative Network. This network consists of the institutions that have an SOS system or partners who are creating content and educational programming for SOS. When we began the Network in 2005, many museums had limited capacity to both incorporate real-time, authentic scientific data about the Earth system and interpret global change visualizations. They needed not only the visualization platform and the scientific content, but also assistance with methods of approach. We needed feedback from these users on how to craft understandable visualizations and how to further develop the SOS platform to support learning. Through this Network and the collaboration

  17. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    Science.gov (United States)

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  18. Visual Peoplemeter: A Vision-based Television Audience Measurement System

    Directory of Open Access Journals (Sweden)

    SKELIN, A. K.

    2014-11-01

    Full Text Available Visual peoplemeter is a vision-based measurement system that objectively evaluates the attentive behavior for TV audience rating, thus offering solution to some of drawbacks of current manual logging peoplemeters. In this paper, some limitations of current audience measurement system are reviewed and a novel vision-based system aiming at passive metering of viewers is prototyped. The system uses camera mounted on a television as a sensing modality and applies advanced computer vision algorithms to detect and track a person, and to recognize attentional states. Feasibility of the system is evaluated on a secondary dataset. The results show that the proposed system can analyze viewer's attentive behavior, therefore enabling passive estimates of relevant audience measurement categories.

  19. The Effect of Visual Advance Organizer and Types of Passages on EFL Learners’ Listening Comprehension

    Directory of Open Access Journals (Sweden)

    Gholam Reza Kiany

    2008-05-01

    Full Text Available Testing the comprehension of spoken language is of primary importance. A lot of factors may affect the performance of EFL learners on listening comprehension tests, among which are the use of visual advance organizers, and types of listening passages (dialogues or monologues. As B-Ikeguchi (1997 states a few studies have been carried out on the effects of these factors on EFL learners’ listening comprehension with controversial results. And even fewer studies have concentrated on the effects of these factors on EFL learners’ performance on listening comprehension tests, which is the purpose of this study. In the present study, 180 advanced EFL learners were randomly selected by administering the Oxford Placement Test (OPT. The subjects were randomly assigned to three groups each consisting of 60 students. As far as the performance of subjects on listening comprehension test was concerned, the following results were obtained: 1 There was a significant difference between the presence vs. lack of visual advance organizer; 2 There was a significant difference between the uses of short-interval vs. long-interval advance organizer; 3 There was a significant difference between different types of listening passages (dialogues vs. monologues; and 4 There was no significant interaction between the use of visual advance organizer and  different types of listening passages.

  20. Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in whole cell walls from native plant tissue and treated biomass are also discussed.

  1. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas

    2015-01-15

    We present a novel integrated visualization system that enables the interactive visual analysis of ensemble simulations and estimates of the sea surface height and other model variables that are used for storm surge prediction. Coastal inundation, caused by hurricanes and tropical storms, poses large risks for today\\'s societies. High-fidelity numerical models of water levels driven by hurricane-force winds are required to predict these events, posing a challenging computational problem, and even though computational models continue to improve, uncertainties in storm surge forecasts are inevitable. Today, this uncertainty is often exposed to the user by running the simulation many times with different parameters or inputs following a Monte-Carlo framework in which uncertainties are represented as stochastic quantities. This results in multidimensional, multivariate and multivalued data, so-called ensemble data. While the resulting datasets are very comprehensive, they are also huge in size and thus hard to visualize and interpret. In this paper, we tackle this problem by means of an interactive and integrated visual analysis system. By harnessing the power of modern graphics processing units for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations to highlight the uncertainty or show the complete distribution of the simulations at user-defined positions over the complete time series of the prediction. We highlight the benefits of our system by presenting its application in a real-world scenario using a simulation of Hurricane Ike.

  2. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  3. Flow visualization system for wind turbines without blades applied to micro reactors

    International Nuclear Information System (INIS)

    Santos, G.S.B.; Guimarães, L.N.F.; Placco, G.M.

    2017-01-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work

  4. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  5. The GEANT4 Visualization System

    International Nuclear Information System (INIS)

    Allison, J

    2007-01-01

    The Geant4 Visualization System is a multi-driver graphics system designed to serve the Geant4 Simulation Toolkit. It is aimed at the visualization of Geant4 data, primarily detector descriptions and simulated particle trajectories and hits. It can handle a variety of graphical technologies simultaneously and interchangeably, allowing the user to choose the visual representation most appropriate to requirements. It conforms to the low-level Geant4 abstract graphical user interfaces and introduces new abstract classes from which the various drivers are derived and that can be straightforwardly extended, for example, by the addition of a new driver. It makes use of an extendable class library of models and filters for data representation and selection. The Geant4 Visualization System supports a rich set of interactive commands based on the Geant4 command system. It is included in the Geant4 code distribution and maintained and documented like other components of Geant4

  6. Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease.

    Science.gov (United States)

    Knickelbein, Jared E; Jacobs-El, Naima; Wong, Wai T; Wiley, Henry E; Cukras, Catherine A; Meyerle, Catherine B; Chew, Emily Y

    2017-01-01

    To describe the clinical course of advanced juxtapapillary retinal capillary hemangioblastomas (RCH) associated with von Hippel-Lindau (VHL) disease treated with systemic sunitinib malate, an agent that inhibits both anti-vascular endothelial growth factor and anti-platelet-derived growth factor signaling. Observational case review. Three patients with advanced VHL-related juxtapapillary RCH treated with systemic sunitinib malate. Patient 1 was followed routinely every 4 months while on systemic sunitinib prescribed by her oncologist for metastatic pancreatic neuroendocrine and kidney tumors. Patients 2 and 3 were part of a prospective clinical trial evaluating the use of systemic sunitinib for ocular VHL lesions during a period of 9 months. Visual acuity, size of RCH, and degree of exudation were recorded at each visit. Optical coherence tomography (OCT) and fluorescein angiography were also obtained at some visits. Visual acuity, size of RCH, and degree of exudation. Three patients with advanced VHL-associated juxtapapillary RCH were treated with systemic sunitinib malate. While none of the patients lost vision during therapy, treatment with sunitinib malate did not improve visual acuity or reduce the size of RCH. Improvements in RCH-associated retinal edema were observed in two patients. All patients experienced multiple adverse effects, including thyroid toxicity, thrombocytopenia, nausea, fatigue, jaundice, and muscle aches. Two of the three patients had to discontinue treatment prematurely and the third required dose reduction. Systemic sunitinib malate may be useful in slowing progression of ocular disease from VHL-associated RCH. However, significant systemic adverse effects limited its use in this small series, and systemic sunitinib malate may not be safe for treatment of RCH when used at the doses described in this report. Further studies are required to determine if this medication used at lower doses with different treatment strategies, other

  7. GRAVE: An Interactive Geometry Construction and Visualization Software System for the TORT Nuclear Radiation Transport Code

    International Nuclear Information System (INIS)

    Blakeman, E.D.

    2000-01-01

    A software system, GRAVE (Geometry Rendering and Visual Editor), has been developed at the Oak Ridge National Laboratory (ORNL) to perform interactive visualization and development of models used as input to the TORT three-dimensional discrete ordinates radiation transport code. Three-dimensional and two-dimensional visualization displays are included. Display capabilities include image rotation, zoom, translation, wire-frame and translucent display, geometry cuts and slices, and display of individual component bodies and material zones. The geometry can be interactively edited and saved in TORT input file format. This system is an advancement over the current, non-interactive, two-dimensional display software. GRAVE is programmed in the Java programming language and can be implemented on a variety of computer platforms. Three- dimensional visualization is enabled through the Visualization Toolkit (VTK), a free-ware C++ software library developed for geometric and data visual display. Future plans include an extension of the system to read inputs using binary zone maps and combinatorial geometry models containing curved surfaces, such as those used for Monte Carlo code inputs. Also GRAVE will be extended to geometry visualization/editing for the DORT two-dimensional transport code and will be integrated into a single GUI-based system for all of the ORNL discrete ordinates transport codes

  8. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    Science.gov (United States)

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  9. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  10. Development of design and analysis software for advanced nuclear system

    International Nuclear Information System (INIS)

    Wu Yican; Hu Liqin; Long Pengcheng; Luo Yuetong; Li Yazhou; Zeng Qin; Lu Lei; Zhang Junjun; Zou Jun; Xu Dezheng; Bai Yunqing; Zhou Tao; Chen Hongli; Peng Lei; Song Yong; Huang Qunying

    2010-01-01

    A series of professional codes, which are necessary software tools and data libraries for advanced nuclear system design and analysis, were developed by the FDS Team, including the codes of automatic modeling, physics and engineering calculation, virtual simulation and visualization, system engineering and safety analysis and the related database management etc. The development of these software series was proposed as an exercise of development of nuclear informatics. This paper introduced the main functions and key techniques of the software series, as well as some tests and practical applications. (authors)

  11. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  12. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    Energy Technology Data Exchange (ETDEWEB)

    Ozana, Stepan, E-mail: stepan.ozana@vsb.cz; Pies, Martin, E-mail: martin.pies@vsb.cz; Docekal, Tomas, E-mail: docekalt@email.cz [VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, 17. listopadu 15/2172, Ostrava-Poruba, 700 30 (Czech Republic)

    2016-06-08

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  13. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    International Nuclear Information System (INIS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-01-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  14. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    Science.gov (United States)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  15. Visualization Design Environment

    Energy Technology Data Exchange (ETDEWEB)

    Pomplun, A.R.; Templet, G.J.; Jortner, J.N.; Friesen, J.A.; Schwegel, J.; Hughes, K.R.

    1999-02-01

    Improvements in the performance and capabilities of computer software and hardware system, combined with advances in Internet technologies, have spurred innovative developments in the area of modeling, simulation and visualization. These developments combine to make it possible to create an environment where engineers can design, prototype, analyze, and visualize components in virtual space, saving the time and expenses incurred during numerous design and prototyping iterations. The Visualization Design Centers located at Sandia National Laboratories are facilities built specifically to promote the ''design by team'' concept. This report focuses on designing, developing and deploying this environment by detailing the design of the facility, software infrastructure and hardware systems that comprise this new visualization design environment and describes case studies that document successful application of this environment.

  16. STRING 3: An Advanced Groundwater Flow Visualization Tool

    Science.gov (United States)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  17. Throwing Down the Visual Intelligence Gauntlet

    KAUST Repository

    Tan, Cheston

    2013-01-01

    In recent years, scientific and technological advances have produced artificial systems that have matched or surpassed human capabilities in narrow domains such as face detection and optical character recognition. However, the problem of producing truly intelligent machines still remains far from being solved. In this chapter, we first describe some of these recent advances, and then review one approach to moving beyond these limited successes – the neuromorphic approach of studying and reverse-engineering the networks of neurons in the human brain (specifically, the visual system). Finally, we discuss several possible future directions in the quest for visual intelligence.

  18. Visual odometry for trailer off-tracking estimation

    CSIR Research Space (South Africa)

    De Saxe, Christopher

    2016-11-01

    Full Text Available utilises high precision RTK-GPS, an articulation angle sensor and a kinematic vehicle model. Helmick et al. (2004) proposed a visual odometry-based path-following system for a Mars rover in high-slip environments. Visual odometry data was merged...- dimensional scene. Advances in visual odometry algorithms have resulted in its widespread use in the areas of autonomous road vehicles and mobile robotics. Compared to other odometry systems such as wheel speed sensors and GPS, visual odometry offers high...

  19. Visual system manifestations of Alzheimer's disease.

    Science.gov (United States)

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A

    2017-12-01

    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Development of driver’s assistant system of additional visual information of blind areas for Gazelle Next

    Science.gov (United States)

    Makarov, V.; Korelin, O.; Koblyakov, D.; Kostin, S.; Komandirov, A.

    2018-02-01

    The article is devoted to the development of the Advanced Driver Assistance Systems (ADAS) for the GAZelle NEXT car. This project is aimed at developing a visual information system for the driver integrated into the windshield racks. The developed system implements the following functions: assistance in maneuvering and parking; Recognition of road signs; Warning the driver about the possibility of a frontal collision; Control of "blind" zones; "Transparent" vision in the windshield racks, widening the field of view, behind them; Visual and sound information about the traffic situation; Control and descent from the lane of the vehicle; Monitoring of the driver’s condition; navigation system; All-round review. The scheme of action of sensors of the developed system of visual information of the driver is provided. The moments of systems on a prototype of a vehicle are considered. Possible changes in the interior and dashboard of the car are given. The results of the implementation are aimed at the implementation of the system - improved informing of the driver about the environment and the development of an ergonomic interior for this system within the new Functional Salon of the Gazelle Next vehicle equipped with a visual information system for the driver.

  1. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  2. Engineering visualization utilizing advanced animation

    Science.gov (United States)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  3. Improving Design Communication: Advanced Visualization

    National Research Council Canada - National Science Library

    Adeoye, Blessing

    2001-01-01

    .... While design professionals may use similar visual modes (lines, text, graphic symbols, etc.) to represent and communicate concepts in complex drawing tasks, similar visual modes may be used ambiguously across disciplines...

  4. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  5. The Visual System

    Medline Plus

    Full Text Available ... Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More ...

  6. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    Science.gov (United States)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  7. Advances and limitations of visual conditioning protocols in harnessed bees.

    Science.gov (United States)

    Avarguès-Weber, Aurore; Mota, Theo

    2016-10-01

    Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An approach for the development of visual configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Ladeby, Klaes Rohde

    2007-01-01

    How can a visual configuration system be developed to support the specification process' in companies that manufacture customer tailored products? This article focuses on how visual configuration systems can be developed. The approach for developing visual configuration systems has been developed...... by Centre for Product Modelling (CPM) at The Technical University of Denmark. The approach is based on experiences from a visualization project in co-operation between CPM and the global provider of power protection American Power Conversion (APC). The visual configuration system was developed in 2001...... of the product in the visual configuration system....

  9. The Visual System

    Medline Plus

    Full Text Available ... The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips ... addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | ...

  10. The Visual System

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI for Kids >> The Visual System Listen All ... up to 28,800 times a day! NEI Home Contact Us A-Z Site Map NEI on ...

  11. The Visual System

    Medline Plus

    Full Text Available ... for Kids >> The Visual System Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  12. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  13. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  14. Storytelling in Interactive 3D Geographic Visualization Systems

    Directory of Open Access Journals (Sweden)

    Matthias Thöny

    2018-03-01

    Full Text Available The objective of interactive geographic maps is to provide geographic information to a large audience in a captivating and intuitive way. Storytelling helps to create exciting experiences and to explain complex or otherwise hidden relationships of geospatial data. Furthermore, interactive 3D applications offer a wide range of attractive elements for advanced visual story creation and offer the possibility to convey the same story in many different ways. In this paper, we discuss and analyze storytelling techniques in 3D geographic visualizations so that authors and developers working with geospatial data can use these techniques to conceptualize their visualization and interaction design. Finally, we outline two examples which apply the given concepts.

  15. The Visual System

    Medline Plus

    Full Text Available ... Home » NEI for Kids » The Visual System Listen All About Vision About the Eye Ask a Scientist ... learn how you’re able to see the world around you. Did You Know? On average, you ...

  16. The Visual System

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI for Kids » The Visual System Listen All ... up to 28,800 times a day! NEI Home Contact Us A-Z Site Map NEI on ...

  17. ARM-based visual processing system for prosthetic vision.

    Science.gov (United States)

    Matteucci, Paul B; Byrnes-Preston, Philip; Chen, Spencer C; Lovell, Nigel H; Suaning, Gregg J

    2011-01-01

    A growing number of prosthetic devices have been shown to provide visual perception to the profoundly blind through electrical neural stimulation. These first-generation devices offer promising outcomes to those affected by degenerative disorders such as retinitis pigmentosa. Although prosthetic approaches vary in their placement of the stimulating array (visual cortex, optic-nerve, epi-retinal surface, sub-retinal surface, supra-choroidal space, etc.), most of the solutions incorporate an externally-worn device to acquire and process video to provide the implant with instructions on how to deliver electrical stimulation to the patient, in order to elicit phosphenized vision. With the significant increase in availability and performance of low power-consumption smart phone and personal device processors, the authors investigated the use of a commercially available ARM (Advanced RISC Machine) device as an externally-worn processing unit for a prosthetic neural stimulator for the retina. A 400 MHz Samsung S3C2440A ARM920T single-board computer was programmed to extract 98 values from a 1.3 Megapixel OV9650 CMOS camera using impulse, regional averaging and Gaussian sampling algorithms. Power consumption and speed of video processing were compared to results obtained to similar reported devices. The results show that by using code optimization, the system is capable of driving a 98 channel implantable device for the restoration of visual percepts to the blind.

  18. Web-based Visual Analytics for Extreme Scale Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Evans, Katherine J [ORNL; Harney, John F [ORNL; Jewell, Brian C [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  19. A feasibility study on worksite visualization system using augmented reality for Fugen NPP

    International Nuclear Information System (INIS)

    Izumi, Masanori; Shimoda, Hiroshi; Ishii, Hirotake

    2010-01-01

    Fugen Nuclear Power Plant, Advanced Thermal Reactor, was permanently shut down in March 2003 and it is at the decommissioning stage. Decommissioning Engineering Support System, DEXUS, has been developed to help planning of the optimal dismantling process and for carrying out the dismantling work safely and efficiently. Worksite Visualization System (WVS), as part of Dismantling Work Support System of DEXUS, has been developed to support the field workers to deal with the information on the dismantling facilities comprehensibly and intuitively. In this article, outline of the dismantling process of Fugen is first introduced, then a feasibility study on WVS is described. (author)

  20. New data visualization of the LHC Era Monitoring (Lemon) system

    International Nuclear Information System (INIS)

    Ivan, Fedorko; Veronique, Lefebure; Daniel, Lenkes; Omar, Pera Mira

    2012-01-01

    In the last few years, new requirements have been received for visualization of monitoring data: advanced graphics, flexibility in configuration and decoupling of the presentation layer from the monitoring repository. Lemonweb is the data visualization component of the LHC Era Monitoring (Lemon) system. Lemonweb consists of two subcomponents: a data collector and a web visualization interface. The data collector is a daemon, implemented in Python, responsible for data gathering from the central monitoring repository and storing into time series data structures. Data is stored on disk in Round Robin Database (RRD) files: one file per monitored entity, with set of entity related metrics. Entities may be grouped into a hierarchical structure, called “clusters” and supporting mathematical operations over entities and clusters (e.g. cluster A + cluster B /clusters C – entity XY). Using the configuration information, a cluster definition is evaluated in the collector engine and, at runtime, a sequence of data selects is built, to optimize access to the central monitoring repository. In this article, an overview of the design and architecture as well as highlights of some implemented features will be presented.

  1. The Visual System

    Medline Plus

    Full Text Available ... First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables The Visual System Ever wonder how your eyes work? Watch this video to learn how you’re able ...

  2. The Visual System

    Medline Plus

    Full Text Available ... Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables The Visual System Ever wonder how your eyes work? Watch this ... Policies and Other Important Links NEI Employee Emergency Information NEI ... | USA.gov NIH…Turning Discovery Into Health ®

  3. A proposed intracortical visual prosthesis image processing system.

    Science.gov (United States)

    Srivastava, N R; Troyk, P

    2005-01-01

    It has been a goal of neuroprosthesis researchers to develop a system, which could provide artifical vision to a large population of individuals with blindness. It has been demonstrated by earlier researches that stimulating the visual cortex area electrically can evoke spatial visual percepts, i.e. phosphenes. The goal of visual cortex prosthesis is to stimulate the visual cortex area and generate a visual perception in real time to restore vision. Even though the normal working of the visual system is not been completely understood, the existing knowledge has inspired research groups to develop strategies to develop visual cortex prosthesis which can help blind patients in their daily activities. A major limitation in this work is the development of an image proceessing system for converting an electronic image, as captured by a camera, into a real-time data stream for stimulation of the implanted electrodes. This paper proposes a system, which will capture the image using a camera and use a dedicated hardware real time image processor to deliver electrical pulses to intracortical electrodes. This system has to be flexible enough to adapt to individual patients and to various strategies of image reconstruction. Here we consider a preliminary architecture for this system.

  4. Interactive visual steering--rapid visual prototyping of a common rail injection system.

    Science.gov (United States)

    Matković, Kresimir; Gracanin, Denis; Jelović, Mario; Hauser, Helwig

    2008-01-01

    Interactive steering with visualization has been a common goal of the visualization research community for twenty years, but it is rarely ever realized in practice. In this paper we describe a successful realization of a tightly coupled steering loop, integrating new simulation technology and interactive visual analysis in a prototyping environment for automotive industry system design. Due to increasing pressure on car manufacturers to meet new emission regulations, to improve efficiency, and to reduce noise, both simulation and visualization are pushed to their limits. Automotive system components, such as the powertrain system or the injection system have an increasing number of parameters, and new design approaches are required. It is no longer possible to optimize such a system solely based on experience or forward optimization. By coupling interactive visualization with the simulation back-end (computational steering), it is now possible to quickly prototype a new system, starting from a non-optimized initial prototype and the corresponding simulation model. The prototyping continues through the refinement of the simulation model, of the simulation parameters and through trial-and-error attempts to an optimized solution. The ability to early see the first results from a multidimensional simulation space--thousands of simulations are run for a multidimensional variety of input parameters--and to quickly go back into the simulation and request more runs in particular parameter regions of interest significantly improves the prototyping process and provides a deeper understanding of the system behavior. The excellent results which we achieved for the common rail injection system strongly suggest that our approach has a great potential of being generalized to other, similar scenarios.

  5. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    Science.gov (United States)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  6. Reading Authentic EFL Text Using Visualization and Advance Organizers in a Multimedia Learning Environment

    Science.gov (United States)

    Lin, Huifen; Chen, Tsuiping

    2007-01-01

    The purpose of this experimental study was to compare the effects of different types of computer-generated visuals (static versus animated) and advance organizers (descriptive versus question) in enhancing comprehension and retention of a content-based lesson for learning English as a Foreign Language (EFL). Additionally, the study investigated…

  7. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.

    Science.gov (United States)

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-07-01

    To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Normal subjects and patients with glaucoma with mean deviation glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (pglaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (pglaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Occurrence of CYP1B1 Mutations in Juvenile Open-Angle Glaucoma With Advanced Visual Field Loss.

    Science.gov (United States)

    Souzeau, Emmanuelle; Hayes, Melanie; Zhou, Tiger; Siggs, Owen M; Ridge, Bronwyn; Awadalla, Mona S; Smith, James E H; Ruddle, Jonathan B; Elder, James E; Mackey, David A; Hewitt, Alex W; Healey, Paul R; Goldberg, Ivan; Morgan, William H; Landers, John; Dubowsky, Andrew; Burdon, Kathryn P; Craig, Jamie E

    2015-07-01

    Juvenile open-angle glaucoma (JOAG) is a severe neurodegenerative eye disorder in which most of the genetic contribution remains unexplained. To assess the prevalence of pathogenic CYP1B1 sequence variants in an Australian cohort of patients with JOAG and severe visual field loss. For this cohort study, we recruited 160 patients with JOAG classified as advanced (n = 118) and nonadvanced (n = 42) through the Australian and New Zealand Registry of Advanced Glaucoma from January 1, 2007, through April 1, 2014. Eighty individuals with no evidence of glaucoma served as a control group. We defined JOAG as diagnosis before age 40 years and advanced JOAG as visual field loss in 2 of the 4 central fixation squares on a reliable visual field test result. We performed direct sequencing of the entire coding region of CYP1B1. Data analysis was performed in October 2014. Identification and characterization of CYP1B1 sequence variants. We identified 7 different pathogenic variants among 8 of 118 patients with advanced JOAG (6.8%) but none among the patients with nonadvanced JOAG. Three patients were homozygous or compound heterozygous for CYP1B1 pathogenic variants, which provided a likely basis for their disease. Five patients were heterozygous. The allele frequency among the patients with advanced JOAG (11 in 236 [4.7%]) was higher than among our controls (1 in 160 [0.6%]; P = .02; odds ratio, 7.8 [95% CI, 0.02-1.0]) or among the control population from the Exome Aggregation Consortium database (2946 of 122 960 [2.4%]; P = .02; odds ratio, 2.0 [95% CI, 0.3-0.9]). Individuals with CYP1B1 pathogenic variants, whether heterozygous or homozygous, had worse mean (SD) deviation on visual fields (-24.5 [5.1] [95% CI, -31.8 to -17.2] vs -15.6 [10.0] [95% CI, -17.1 to -13.6] dB; F1,126 = 5.90; P = .02; partial ηp2 = 0.05) and were younger at diagnosis (mean [SD] age, 23.1 [8.4] [95% CI, 17.2-29.1] vs 31.5 [8.0] [95% CI, 30.1-33.0] years; F1,122 = 7

  9. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    2017-07-01

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability and accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.

  10. Advances in visual correction and postoperative visual treatment of congenital cataract

    Directory of Open Access Journals (Sweden)

    Lin Mei

    2014-04-01

    Full Text Available Congenital cataract is one of the important diseases that cause irreversible visual impairment on children. Compared with adult cataract, the surgery of congenital cataract is more complicated and the complications are more severer, especially the postoperative amblyopia often leads to bad prognosis. Therefore, the postoperative treatment is necessary to obtain the better visual outcome. The traditional visual correction methods after surgery include the combined use of spectacles, contact lens, and intraocular lens(IOL, but some problems such as IOL power calculation and IOL implantation time are still controversial. Besides, occlusion therapy and visual training are also essential for preventing amblyopia after cataract surgery. Occlusion in an appropriate dose and course must be mastered, accompanied by visual training. Both of the operative eyes and normal eyes will be able to achieve much better visual acuity and color sensitivity, so that the binocular vision can recover and develop as normal function.

  11. Public health nurse perceptions of Omaha System data visualization.

    Science.gov (United States)

    Lee, Seonah; Kim, Era; Monsen, Karen A

    2015-10-01

    Electronic health records (EHRs) provide many benefits related to the storage, deployment, and retrieval of large amounts of patient data. However, EHRs have not fully met the need to reuse data for decision making on follow-up care plans. Visualization offers new ways to present health data, especially in EHRs. Well-designed data visualization allows clinicians to communicate information efficiently and effectively, contributing to improved interpretation of clinical data and better patient care monitoring and decision making. Public health nurse (PHN) perceptions of Omaha System data visualization prototypes for use in EHRs have not been evaluated. To visualize PHN-generated Omaha System data and assess PHN perceptions regarding the visual validity, helpfulness, usefulness, and importance of the visualizations, including interactive functionality. Time-oriented visualization for problems and outcomes and Matrix visualization for problems and interventions were developed using PHN-generated Omaha System data to help PHNs consume data and plan care at the point of care. Eleven PHNs evaluated prototype visualizations. Overall PHNs response to visualizations was positive, and feedback for improvement was provided. This study demonstrated the potential for using visualization techniques within EHRs to summarize Omaha System patient data for clinicians. Further research is needed to improve and refine these visualizations and assess the potential to incorporate visualizations within clinical EHRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  13. Performance of the visual field index in glaucoma patients with moderately advanced visual field loss.

    Science.gov (United States)

    Lee, Jun Mo; Cirineo, Nila; Ramanathan, Meera; Nouri-Mahdavi, Kouros; Morales, Esteban; Coleman, Anne L; Caprioli, Joseph

    2014-01-01

    To explore the relationship between the visual field index (VFI) and the visual field mean deviation (MD) in glaucoma patients with moderately advanced perimetric damage and to identify the magnitude of the boundary effect of VFI that occurred when the VFI estimation strategy changed from pattern deviation probability value to total deviation probability value as the MD crossed -20 dB in longitudinal visual field (VF) series. A retrospective cohort study of longitudinal data analysis. The MD and VFI values obtained from VF tests conducted on 148 eyes of 148 glaucoma patients having an MD around -20 dB were studied. A total of 1286 VFs with MD values within the range of -16 dB to -24 dB were included. The eyes were divided into 2 groups, with the first having serial MDs all better than or all worse than -20 dB and the second with serial MDs crossing the -20 dB value. Change in MD (ΔMD) was defined as the absolute difference between the MD values of 2 consecutive VFs. Based on the 2 VFI values of the same VFs, the absolute value of change in VFI (ΔVFI) was calculated. The means (± standard deviation) for the ΔVFI were 4.17% (± 3.3%) in the group of eyes with MDs on either side of -20 dB, and were 15.8% (± 8.4%) in the group with MDs crossing -20 dB (P values were 6.8%/dB (± 10.5%) when the range of MD falls on either side of -20 dB, and 7.9%/dB (± 6.2%) when the range of MD crosses the -20 dB values (P = .042). The values of the VFI become highly variable in serial VFs of eyes with MDs crossing -20 dB, in comparison to those VFIs associated with MDs on either side of -20 dB. The likelihood for this effect is the change from use of pattern deviation probability value to total deviation probability value in the points included in the calculation of VFI at -20 dB of MD. The development of indices to measure VF rates that are free from this boundary effect in moderately advanced glaucoma is desirable. Copyright © 2014. Published by Elsevier Inc.

  14. Advances in Text Mining and Visualization for Precision Medicine.

    Science.gov (United States)

    Gonzalez-Hernandez, Graciela; Sarker, Abeed; O'Connor, Karen; Greene, Casey; Liu, Hongfang

    2018-01-01

    According to the National Institutes of Health (NIH), precision medicine is "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person." Although the text mining community has explored this realm for some years, the official endorsement and funding launched in 2015 with the Precision Medicine Initiative are beginning to bear fruit. This session sought to elicit participation of researchers with strong background in text mining and/or visualization who are actively collaborating with bench scientists and clinicians for the deployment of integrative approaches in precision medicine that could impact scientific discovery and advance the vision of precision medicine as a universal, accessible approach at the point of care.

  15. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    Science.gov (United States)

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  16. Annual Performance Assessment of Complex Fenestration Systems in Sunny Climates Using Advanced Computer Simulations

    Directory of Open Access Journals (Sweden)

    Chantal Basurto

    2015-12-01

    Full Text Available Complex Fenestration Systems (CFS are advanced daylighting systems that are placed on the upper part of a window to improve the indoor daylight distribution within rooms. Due to their double function of daylight redirection and solar protection, they are considered as a solution to mitigate the unfavorable effects due to the admission of direct sunlight in buildings located in prevailing sunny climates (risk of glare and overheating. Accordingly, an adequate assessment of their performance should include an annual evaluation of the main aspects relevant to the use of daylight in such regions: the indoor illuminance distribution, thermal comfort, and visual comfort of the occupant’s. Such evaluation is possible with the use of computer simulations combined with the bi-directional scattering distribution function (BSDF data of these systems. This study explores the use of available methods to assess the visible and thermal annual performance of five different CFS using advanced computer simulations. To achieve results, an on-site daylight monitoring was carried out in a building located in a predominantly sunny climate location, and the collected data was used to create and calibrate a virtual model used to carry-out the simulations. The results can be employed to select the CFS, which improves visual and thermal interior environment for the occupants.

  17. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.

    Science.gov (United States)

    Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung

    2018-05-04

    Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Advanced Worker Protection System

    International Nuclear Information System (INIS)

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs

  19. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  20. The Visual System

    Medline Plus

    Full Text Available ... Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables The Visual System Ever wonder how your eyes work? Watch this video to learn how you’re able to see the world around you. Did ... on Social Media Information in Spanish (Información en español) Website, Social Media ...

  1. The Visual System

    Medline Plus

    Full Text Available ... Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables The Visual System Ever wonder how your eyes work? Watch this video to learn how you’re able to see the world around you. Did You Know? On ... on Social Media Information in Spanish (Información en español) Website, Social Media ...

  2. A survey of visualization systems for network security.

    Science.gov (United States)

    Shiravi, Hadi; Shiravi, Ali; Ghorbani, Ali A

    2012-08-01

    Security Visualization is a very young term. It expresses the idea that common visualization techniques have been designed for use cases that are not supportive of security-related data, demanding novel techniques fine tuned for the purpose of thorough analysis. Significant amount of work has been published in this area, but little work has been done to study this emerging visualization discipline. We offer a comprehensive review of network security visualization and provide a taxonomy in the form of five use-case classes encompassing nearly all recent works in this area. We outline the incorporated visualization techniques and data sources and provide an informative table to display our findings. From the analysis of these systems, we examine issues and concerns regarding network security visualization and provide guidelines and directions for future researchers and visual system developers.

  3. Performance of an iPad Application to Detect Moderate and Advanced Visual Field Loss in Nepal.

    Science.gov (United States)

    Johnson, Chris A; Thapa, Suman; George Kong, Yu Xiang; Robin, Alan L

    2017-10-01

    To evaluate the accuracy and efficiency of Visual Fields Easy (VFE), a free iPad app, for performing suprathreshold perimetric screening. Prospective, cross-sectional validation study. We performed screening visual fields using a calibrated iPad 2 with the VFE application on 206 subjects (411 eyes): 210 normal (NL), 183 glaucoma (GL), and 18 diabetic retinopathy (DR) at Tilganga Institute of Ophthalmology, Kathmandu, Nepal. We correlated the results with a Humphrey Field Analyzer using 24-2 SITA Standard tests on 373 of these eyes (198 NL, 160 GL, 15 DR). The number of missed locations on the VFE correlated with mean deviation (MD, r = 0.79), pattern standard deviation (PSD, r = 0.60), and number of locations that were worse than the 95% confidence limits for total deviation (r = 0.51) and pattern deviation (r = 0.68) using SITA Standard. iPad suprathreshold perimetry was able to detect most visual field deficits with moderate (MD of -6 to -12 dB) and advanced (MD worse than -12 dB) loss, but had greater difficulty in detecting early (MD better than -6 dB) loss, primarily owing to an elevated false-positive response rate. The average time to perform the Visual Fields Easy test was 3 minutes, 18 seconds (standard deviation = 16.88 seconds). The Visual Fields Easy test procedure is a portable, fast, effective procedure for detecting moderate and advanced visual field loss. Improvements are currently underway to monitor eye and head tracking during testing, reduce testing time, improve performance, and eliminate the need to touch the video screen surface. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Visual Attention and Applications in Multimedia Technologies

    OpenAIRE

    Le Callet, Patrick; Niebur, Ernst

    2013-01-01

    Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual atte...

  5. Using Visualization in Cockpit Decision Support Systems

    Science.gov (United States)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  6. Experimental study on reduced moderation BWR with Advanced Recycle System (BARS)

    International Nuclear Information System (INIS)

    Hiraiwa, K.; Yoshioka, K.; Yamamoto, Y.; Akiba, M.; Yamaoka, M.; Abe, N.; Mimatsu, J.

    2004-01-01

    Experimental study has been done for reduced-moderation spectrum boiling water reactor named BARS (BWR with Advanced Recycle System). The critical assembly experiment for triangular tight uranium lattice has been done in TOSHIBA critical assembly (NCA). Experimental method based on modified conversion ratio was adopted to evaluate the void reactivity effect. Void fraction was simulated by formed polystyrene in this experiment. The measured void coefficient for tight uranium lattice agreed with calculation. The thermal hydraulic test study has been done to study the coolability of BARS lattice. Visual test and high-pressure thermal hydraulic test have been done as the thermal hydraulic test. Visual test has indicated the flow behavior for BARS lattice is same as that of current BWR. The high-pressure thermal hydraulic test has indicated the applicability of modified Arai's correlation to the BARS lattice. (authors)

  7. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  8. Logistics Reduction: Advanced Clothing System (ACS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Advanced Exploration System (AES) Logistics Reduction (LR) project's Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf...

  9. The Visual System

    Medline Plus

    Full Text Available ... The Visual System Ever wonder how your eyes work? Watch this video to learn how you’re able to see the world around you. Did You Know? On average, you blink about 15 to 20 times every minute. That’s up to 28,800 times a day! NEI Home Contact Us A-Z Site Map NEI on ...

  10. Reading wiring diagrams made easier for maintenance operators: contribution from research in visual attention and visual search

    International Nuclear Information System (INIS)

    Ponthieu, L.; Wolfe, J.M.

    1994-07-01

    This work has been carried out while the author was visiting the Visual Psychophysics lab at the Center for Ophthalmic Research, Harvard Medical School. The general framework is the design of a wiring diagrams visualization system for maintenance operators in electric plants. This study concentrates on how knowledge and experimental techniques from visual attention can help this goal. From this standpoint, the visualization system must best exploit the human visual system abilities. As electronic databases containing all the diagrams will soon be available, it is important to think in advance the display techniques. Presently, maintenance operators favor working with paper printouts even where such databases are already available. The study shows why such an approach is valuable for the design of a display that fits the operator's tasks. Beyond that, this work has been a mean to learn the experimental techniques of cognitive sciences in an applied frame. (authors). 9 figs., 5 annexes

  11. Driver Drowsiness Warning System Using Visual Information for Both Diurnal and Nocturnal Illumination Conditions

    Directory of Open Access Journals (Sweden)

    Flores MarcoJavier

    2010-01-01

    Full Text Available Every year, traffic accidents due to human errors cause increasing amounts of deaths and injuries globally. To help reduce the amount of fatalities, in the paper presented here, a new module for Advanced Driver Assistance System (ADAS which deals with automatic driver drowsiness detection based on visual information and Artificial Intelligence is presented. The aim of this system is to locate, track, and analyze both the drivers face and eyes to compute a drowsiness index, where this real-time system works under varying light conditions (diurnal and nocturnal driving. Examples of different images of drivers taken in a real vehicle are shown to validate the algorithms used.

  12. Informing Regional Water-Energy-Food Nexus with System Analysis and Interactive Visualizations

    Science.gov (United States)

    Yang, Y. C. E.; Wi, S.

    2016-12-01

    Communicating scientific results to non-technical practitioners is challenging due to their differing interests, concerns and agendas. It is further complicated by the growing number of relevant factors that need to be considered, such as climate change and demographic dynamic. Visualization is an effective method for the scientific community to disseminate results, and it represents an opportunity for the future of water resources systems analysis (WRSA). This study demonstrates an intuitive way to communicate WRSA results to practitioners using interactive web-based visualization tools developed by the JavaScript library: Data-Driven Documents (D3) with a case study in Great Ruaha River of Tanzania. The decreasing trend of streamflow during the last decades in the region highlights the need of assessing the water usage competition between agricultural production, energy generation, and ecosystem service. Our team conduct the advance water resources systems analysis to inform policy that will affect the water-energy-food nexus. Modeling results are presented in the web-based visualization tools and allow non-technical practitioners to brush the graph directly (e. g. Figure 1). The WRSA suggests that no single measure can completely resolve the water competition. A combination of measures, each of which is acceptable from a social and economic perspective, and accepting that zero flows cannot be totally eliminated during dry years in the wetland, are likely to be the best way forward.

  13. Specialized Computer Systems for Environment Visualization

    Science.gov (United States)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  14. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  15. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  16. COMBINING INDEPENDENT VISUALIZATION AND TRACKING SYSTEMS FOR AUGMENTED REALITY

    Directory of Open Access Journals (Sweden)

    P. Hübner

    2018-05-01

    Full Text Available The basic requirement for the successful deployment of a mobile augmented reality application is a reliable tracking system with high accuracy. Recently, a helmet-based inside-out tracking system which meets this demand has been proposed for self-localization in buildings. To realize an augmented reality application based on this tracking system, a display has to be added for visualization purposes. Therefore, the relative pose of this visualization platform with respect to the helmet has to be tracked. In the case of hand-held visualization platforms like smartphones or tablets, this can be achieved by means of image-based tracking methods like marker-based or model-based tracking. In this paper, we present two marker-based methods for tracking the relative pose between the helmet-based tracking system and a tablet-based visualization system. Both methods were implemented and comparatively evaluated in terms of tracking accuracy. Our results show that mobile inside-out tracking systems without integrated displays can easily be supplemented with a hand-held tablet as visualization device for augmented reality purposes.

  17. Using Visualization in Cockpit Decision Support Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.

    2005-07-01

    In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.

  18. Defining the cortical visual systems: "what", "where", and "how"

    Science.gov (United States)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  19. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  20. Python data visualization cookbook

    CERN Document Server

    Milovanovic, Igor

    2013-01-01

    This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python.Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data.You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co

  1. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration.

    Science.gov (United States)

    Roh, Miin; Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W; Jackson, Mary Lou

    2018-01-01

    Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL.

  2. A visual representation system for the scheduling and management of projects

    NARCIS (Netherlands)

    Pollalis, S.N.

    1992-01-01

    A VISUAL SCHEDULING AND MANAGEMENT SYSTEM (VSMS) This work proposes a new system for the visual representation of projects that displays the quantities of work, resources and cost. This new system, called Visual Scheduling and Management System, has a built-in hierarchical system to provide

  3. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    Science.gov (United States)

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful

  4. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    Directory of Open Access Journals (Sweden)

    Hanwell Marcus D

    2012-08-01

    Full Text Available Abstract Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format

  5. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  6. Visualization system for grid environment in the nuclear field

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Matsumoto, Nobuko; Idomura, Yasuhiro; Tani, Masayuki

    2006-01-01

    An innovative scientific visualization system is needed to integratedly visualize large amount of data which are distributedly generated in remote locations as a result of a large-scale numerical simulation using a grid environment. One of the important functions in such a visualization system is a parallel visualization which enables to visualize data using multiple CPUs of a supercomputer. The other is a distributed visualization which enables to execute visualization processes using a local client computer and remote computers. We have developed a toolkit including these functions in cooperation with the commercial visualization software AVS/Express, called Parallel Support Toolkit (PST). PST can execute visualization processes with three kinds of parallelism (data parallelism, task parallelism and pipeline parallelism) using local and remote computers. We have evaluated PST for large amount of data generated by a nuclear fusion simulation. Here, two supercomputers Altix3700Bx2 and Prism installed in JAEA are used. From the evaluation, it can be seen that PST has a potential to efficiently visualize large amount of data in a grid environment. (author)

  7. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)

  8. Information processing in the primate visual system - An integrated systems perspective

    Science.gov (United States)

    Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  9. Information Processing in the Primate Visual System: An Integrated Systems Perspective

    Science.gov (United States)

    van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  10. Visualization of thermal management system in space using neutron radiography

    International Nuclear Information System (INIS)

    Nakazawa, Takeshi

    1995-01-01

    The visualizing technique by neutron radiography is effective for visualizing liquid in metals, and the applications in wide fields have been reported. In this paper, as one of the examples of applying the visualizing technique by neutron radiography, the experiment of visualizing the two-phase fluid loop heat removal system for the purpose of using in spatial environment was carried out, and its results are reported. For future large scale space ships and space stations, the heat removal system with two-phase fluid loop which utilizes the phase transformation of heat transport media is regarded as promising. By this system, good heat transfer performance is obtained, transported heat quantity per unit mass of media increases, and pumping power and the weight of the total system are reduced. Temperature can be controlled by system pressure. The two-phase fluid loop for the visualization experiment and the experimental results are reported. By the experiment using the real time NRG system at the JRR-3M, the boiling and evaporation phenomena in the capillary heat transfer tubes were able to be visualized. (K.I.)

  11. READING AUTHENTIC EFL TEXT USING VISUALIZATION AND ADVANCE ORGANIZERS IN A MULTIMEDIA LEARNING ENVIRONMENT

    OpenAIRE

    Tsuiping Chen; Huifen Lin

    2007-01-01

    The purpose of this experimental study was to compare the effects of different types of computer-generated visuals (static versus animated) and advance organizers (descriptive versus question) in enhancing comprehension and retention of a content-based lesson for learning English as a Foreign Language (EFL). Additionally, the study investigated the interactive effect of students’ existing reading proficiency level and the above-mentioned treatments on their reading comprehension achievement. ...

  12. Sunfall: a collaborative visual analytics system for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Aragon, Cecilia R.; Bailey, Stephen J.; Poon, Sarah; Runge, Karl; Thomas, Rollin C.

    2008-07-07

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  13. Sunfall: a collaborative visual analytics system for astrophysics

    International Nuclear Information System (INIS)

    Aragon, C R; Bailey, S J; Poon, S; Runge, K; Thomas, R C

    2008-01-01

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project

  14. Sunfall: a collaborative visual analytics system for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, C R; Bailey, S J; Poon, S; Runge, K; Thomas, R C [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: CRAragon@lbl.gov

    2008-07-15

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  15. uVis: A Formula-Based Visualization Tool

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Xu, Shangjin; Kuhail, Mohammad Amin

    Several tools use programming approaches for developing advanced visualizations. Others can with a few steps create simple visualizations with built-in patterns, and users with limited IT experience can use them. However, it is programming and time demanding to create and customize...... these visualizations. We introduce uVis, a tool that allows users with advanced spreadsheet-like IT knowledge and basic database understanding to create simple as well as advanced visualizations. These users construct visualizations by combining building blocks (i.e. controls, shapes). They specify spreadsheet...

  16. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment Update

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Wells, David; Holubowich, Corinne

    2017-01-01

    Background Retinitis pigmentosa is a group of inherited disorders characterized by the degeneration of the photoreceptors in the retina, resulting in progressive vision loss. The Argus II system is designed to restore partial functional vision in patients with profound vision loss from advanced retinitis pigmentosa. At present, it is the only treatment option approved by Health Canada for this patient population. In June 2016, Health Quality Ontario published a health technology assessment of the Argus II retinal prosthesis system for patients with advanced retinitis pigmentosa. Based on that assessment, the Ontario Health Technology Advisory Committee recommended against publicly funding the Argus II system for this population. It also recommended that Health Quality Ontario re-evaluate the evidence in 1 year. The objective of this report was to examine new evidence published since the 2016 health technology assessment. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences related to the Argus II system. We performed a systematic literature search for studies published since the 2016 Argus II health technology assessment. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care, and we calculated incremental cost-effectiveness ratios over a 20-year time horizon. We also conducted a five-year budget impact analysis. Finally, we interviewed people with retinitis pigmentosa about their lived experience with vision loss, and with the Argus II system. Results Four publications from one multicentre international study were included in the clinical review. Patients showed significant improvements in visual function and functional outcomes with the Argus II system, and these outcomes were sustained up to a 5-year follow-up (moderate quality of evidence). The safety profile was generally acceptable. In

  17. Application of Advanced Wide Area Early Warning Systems with Adaptive Protection

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, Carl [Univ. of California, Berkeley, CA (United States); Cibulka, Lloyd [Univ. of California, Berkeley, CA (United States); Thorp, James [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Centeno, Virgilio [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); King, Roger [Mississippi State Univ., Mississippi State, MS (United States); Reeves, Kari [Mississippi State Univ., Mississippi State, MS (United States); Ashrafi, Frank [Southern California Edison Co., Rosemead, CA (United States); Madani, Vahid [Pacific Gas & Electric Co., San Francisco, CA (United States)

    2014-09-30

    Recent blackouts of power systems in North America and throughout the world have shown how critical a reliable power system is to modern societies, and the enormous economic and societal damage a blackout can cause. It has been noted that unanticipated operation of protection systems can contribute to cascading phenomena and, ultimately, blackouts. This project developed and field-tested two methods of Adaptive Protection systems utilizing synchrophasor data. One method detects conditions of system stress that can lead to unintended relay operation, and initiates a supervisory signal to modify relay response in real time to avoid false trips. The second method detects the possibility of false trips of impedance relays as stable system swings “encroach” on the relays’ impedance zones, and produces an early warning so that relay engineers can re-evaluate relay settings. In addition, real-time synchrophasor data produced by this project was used to develop advanced visualization techniques for display of synchrophasor data to utility operators and engineers.

  18. Construction of Index System Based on Advanced Persistent Threat

    Directory of Open Access Journals (Sweden)

    Lin Jia

    2017-01-01

    Full Text Available With the proliferation of advanced persistent threat (APT, APT attack effect evaluation is playing an increasingly important role in cyberspace. As one of the hot issues of network security, the evaluation to its attack effect can quantify the harm caused by APT. Then according to the evaluation results, we can derive specific measures to the network attack. At present, a lot of work has done in the network attack effect evaluation index system. However, a significant barrier to the development of APT attack effect evaluation is that the existing index system is either from the point of view of the network security situation, or for a single attack weapons to customize. In this paper, an evaluation index system is proposed through analysing the features of APT. Through this index system, we can not only quantify APT attack effect, but also visually observe the APT ability from various angles. Then, we use the analytic hierarchy process (AHP to model the evaluation process and calculate the weight of each indicator. Finally, the Ukrainian Power Outages is taken as an example to validate the proposed index system. The experimental results verify the effectiveness of the index system.

  19. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  20. The Advanced LIGO timing system

    International Nuclear Information System (INIS)

    Bartos, Imre; Factourovich, Maxim; Marka, Szabolcs; Marka, Zsuzsa; Raics, Zoltan; Bork, Rolf; Heefner, Jay; Schwinberg, Paul; Sigg, Daniel

    2010-01-01

    Gravitational wave detection using a network of detectors relies upon the precise time stamping of gravitational wave signals. The relative arrival times between detectors are crucial, e.g. in recovering the source direction, an essential step in using gravitational waves for multi-messenger astronomy. Due to the large size of gravitational wave detectors, timing at different parts of a given detector also needs to be highly synchronized. In general, the requirement toward the precision of timing is determined such that, upon detection, the deduced (astro-) physical results should not be limited by the precision of timing. The Advanced LIGO optical timing distribution system is designed to provide UTC-synchronized timing information for the Advanced LIGO detectors that satisfies the above criterium. The Advanced LIGO timing system has modular structure, enabling quick and easy adaptation to the detector frame as well as possible changes or additions of components. It also includes a self-diagnostics system that enables the remote monitoring of the status of timing. After the description of the Advanced LIGO timing system, several tests are presented that demonstrate its precision and robustness.

  1. Equipment of visualization environment of a large-scale structural analysis system. Visualization using AVS/Express of an ADVENTURE system

    International Nuclear Information System (INIS)

    Miyazaki, Mikiya

    2004-02-01

    The data display work of visualization is done in many research fields, and a lot of special softwares for the specific purposes exist today. But such softwares have an interface to only a small number of solvers. In many simulations, data conversion for visualization software is required between analysis and visualization for the practical use. This report describes the equipment work of the data visualization environment where AVS/Express was installed in corresponding to many requests from the users of the large-scale structural analysis system which is prepared as an ITBL community software. This environment enables to use the ITBL visualization server as a visualization device after the computation on the ITBL computer. Moreover, a lot of use will be expected within the community in the ITBL environment by merging it into ITBL/AVS environment in the future. (author)

  2. Visualization system on the earth simulator user's guide

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Sai, Kazunori

    2002-08-01

    A visualization system on the Earth Simulator is developed. The system enables users to see a graphic representation of simulation results on a client terminal simultaneously with them being computed on the Earth Simulator. Moreover, the system makes it possible to change parameters of the calculation and its visualization in the middle of calculation. The graphical user interface (GUI) of the system is constructed on a Java applet. Consequently, the client only needs a web browser, so it is independent of operating systems. The system consists of a server function, post-processing function and client function. The server and post-processing functions work on the Earth Simulator, and the client function works on the client terminal. The server function employs a library style format so that users can easily invoke real-time visualization functions by applying their code. The post-processing function employs a library style format and moreover provides a load module. This report describes mainly the usage of the server and post-processing functions. (author)

  3. Retinal prosthesis system: a revolutionary advancement for the severely visually impaired

    Science.gov (United States)

    2018-04-01

    Despite all the advancements in modern ophthalmology, disease can affect vision, resulting in blindness. Worldwide, there are 200 000 people who have retinitis pigmentosa, 2 million with age-related macular degeneration (AMD) and 6 million have other forms of sight loss.

  4. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    Science.gov (United States)

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  5. Visualizing Mobility of Public Transportation System.

    Science.gov (United States)

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  6. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Visualization environment of the large-scale data of JAEA's supercomputer system

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kensaku [Japan Atomic Energy Agency, Center for Computational Science and e-Systems, Tokai, Ibaraki (Japan); Hoshi, Yoshiyuki [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2013-11-15

    On research and development of various fields of nuclear energy, visualization of calculated data is especially useful to understand the result of simulation in an intuitive way. Many researchers who run simulations on the supercomputer in Japan Atomic Energy Agency (JAEA) are used to transfer calculated data files from the supercomputer to their local PCs for visualization. In recent years, as the size of calculated data has gotten larger with improvement of supercomputer performance, reduction of visualization processing time as well as efficient use of JAEA network is being required. As a solution, we introduced a remote visualization system which has abilities to utilize parallel processors on the supercomputer and to reduce the usage of network resources by transferring data of intermediate visualization process. This paper reports a study on the performance of image processing with the remote visualization system. The visualization processing time is measured and the influence of network speed is evaluated by varying the drawing mode, the size of visualization data and the number of processors. Based on this study, a guideline for using the remote visualization system is provided to show how the system can be used effectively. An upgrade policy of the next system is also shown. (author)

  8. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  9. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  10. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration

    Science.gov (United States)

    Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W.; Jackson, Mary Lou

    2018-01-01

    Purpose Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. Methods We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Results Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). Conclusion In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL. PMID:29746512

  11. Advanced Agriculture system

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Zanwar

    2012-05-01

    Full Text Available This article addresses the advanced system which improves agriculture processes like cultivation on ploughed land, based on robotic platform. We have developed a robotic vehicle having four wheels and steered by DC motor. The advanced autonomous system architecture gives us the opportunity to develop a complete new range of agricultural equipment based on small smart machines. The machine will cultivate the farm by considering particular rows and specific column at fixed distance depending on crop. The obstacle detection problem will also be considered, sensed by infrared sensor. The whole algorithm, calculation, processing, monitoring are designed with motors & sensor interfaced with microcontroller. The result obtained through example activation unit is also presented. The dc motor simulation with feedforward and feedback technique shows precise output. With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and Simulink for modeling, analysis and control is designed.

  12. Visual management support system

    Science.gov (United States)

    Lee Anderson; Jerry Mosier; Geoffrey Chandler

    1979-01-01

    The Visual Management Support System (VMSS) is an extension of an existing computer program called VIEWIT, which has been extensively used by the U. S. Forest Service. The capabilities of this program lie in the rapid manipulation of large amounts of data, specifically opera-ting as a tool to overlay or merge one set of data with another. VMSS was conceived to...

  13. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  14. The Advanced Technology Operations System: ATOS

    Science.gov (United States)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  15. Visualization system of swirl motion

    International Nuclear Information System (INIS)

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.

    2004-01-01

    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  16. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  17. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  18. Development of an automatic visual grading system for grafting seedlings

    Directory of Open Access Journals (Sweden)

    Subo Tian

    2017-01-01

    Full Text Available In this study, a visual grading system of vegetable grafting machine was developed. The study described key technology of visual grading system of vegetable grafting machine. First, the contrasting experiment was conducted between acquired images under blue background light and natural light conditions, with the blue background light chosen as lighting source. The Visual C++ platform with open-source computer vision library (Open CV was used for the image processing. Subsequently, maximum frequency of total number of 0-valued pixels was predicted and used to extract the measurements of scion and rootstock stem diameters. Finally, the developed integrated visual grading system was experimented with 100 scions and rootstock seedlings. The results showed that success rate of grading reached up to 98%. This shows that selection and grading of scion and rootstock could be fully automated with this developed visual grading system. Hence, this technology would be greatly helpful for improving the grading accuracy and efficiency.

  19. A framework for interactive visualization of digital medical images.

    Science.gov (United States)

    Koehring, Andrew; Foo, Jung Leng; Miyano, Go; Lobe, Thom; Winer, Eliot

    2008-10-01

    The visualization of medical images obtained from scanning techniques such as computed tomography and magnetic resonance imaging is a well-researched field. However, advanced tools and methods to manipulate these data for surgical planning and other tasks have not seen widespread use among medical professionals. Radiologists have begun using more advanced visualization packages on desktop computer systems, but most physicians continue to work with basic two-dimensional grayscale images or not work directly with the data at all. In addition, new display technologies that are in use in other fields have yet to be fully applied in medicine. It is our estimation that usability is the key aspect in keeping this new technology from being more widely used by the medical community at large. Therefore, we have a software and hardware framework that not only make use of advanced visualization techniques, but also feature powerful, yet simple-to-use, interfaces. A virtual reality system was created to display volume-rendered medical models in three dimensions. It was designed to run in many configurations, from a large cluster of machines powering a multiwalled display down to a single desktop computer. An augmented reality system was also created for, literally, hands-on interaction when viewing models of medical data. Last, a desktop application was designed to provide a simple visualization tool, which can be run on nearly any computer at a user's disposal. This research is directed toward improving the capabilities of medical professionals in the tasks of preoperative planning, surgical training, diagnostic assistance, and patient education.

  20. Experiments with general purpose visualization software on a unix workstation

    International Nuclear Information System (INIS)

    Adam, G.

    1995-10-01

    A study was performed on the opportunity of buying, for the ICTP use, one of the following visualization systems: Advanced Visualization Systems (AVS) - release 5.02 IRIS Explorer - release 2.2 from NAG IBM Data Explorer (DX) - release 2.1.5 Khoros - Developer's Release 2.0+p2. Criteria for an optimal choice were defined and it was concluded that none of these visualization systems would be a good today compromise. Conservative consideration of the market opportunities shows that substantially improved releases of these systems are expected to be operational within at most an year. For short term period, the ratio benefit to burden still makes public domain low-end graphics attractive. (author)

  1. Experiments with general purpose visualization software on a unix workstation

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G

    1995-10-01

    A study was performed on the opportunity of buying, for the ICTP use, one of the following visualization systems: Advanced Visualization Systems (AVS) - release 5.02 IRIS Explorer - release 2.2 from NAG IBM Data Explorer (DX) - release 2.1.5 Khoros - Developer`s Release 2.0+p2. Criteria for an optimal choice were defined and it was concluded that none of these visualization systems would be a good today compromise. Conservative consideration of the market opportunities shows that substantially improved releases of these systems are expected to be operational within at most an year. For short term period, the ratio benefit to burden still makes public domain low-end graphics attractive. (author).

  2. Visual assistance system for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Tachikawa, Toshiki; Murakami, Tohru.

    1994-01-01

    A computer-based operation system for a cyclotron which assists operators has been developed. It is the operation assistance system depending on visual sense to indicate beam parameters to operators. First, the mental model of operators at the time of beam adjustment was analyzed, and it was presumed to be composed of five partial mental models, that is, beam behavior model, feasible setting region model, parameter sensitivity model, parameter interrelation model and status map model. Next, three visual interfaces were developed. Beam trajectory is rapidly calculated and graphically displayed whenever operators change parameters. Feasible setting regions (FSR) for parameters that satisfy the beam acceptance criteria of a cyclotron are indicated. The distribution of beam current values which are the quantity for evaluating adjustment is indicated as search history. Finally, for evaluating the system effectiveness, the search time required to reach the optimum conditions was measured. In addition, the system usability was evaluated by written questionnaires. The result of experiment showed the reduction of search time by about 65%. The written questionnaires survey showed the operators highly evaluate system usability. (K.I.)

  3. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  4. Large-scale visualization system for grid environment

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) has been conducting R and Ds of distributed computing (grid computing) environments: Seamless Thinking Aid (STA), Information Technology Based Laboratory (ITBL) and Atomic Energy Grid InfraStructure (AEGIS). In these R and Ds, we have developed the visualization technology suitable for the distributed computing environment. As one of the visualization tools, we have developed the Parallel Support Toolkit (PST) which can execute the visualization process parallely on a computer. Now, we improve PST to be executable simultaneously on multiple heterogeneous computers using Seamless Thinking Aid Message Passing Interface (STAMPI). STAMPI, we have developed in these R and Ds, is the MPI library executable on a heterogeneous computing environment. The improvement realizes the visualization of extremely large-scale data and enables more efficient visualization processes in a distributed computing environment. (author)

  5. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  6. Human visual system automatically encodes sequential regularities of discrete events.

    Science.gov (United States)

    Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki

    2010-06-01

    For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential

  7. Data management system advanced development

    Science.gov (United States)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  8. Top-down attention affects sequential regularity representation in the human visual system.

    Science.gov (United States)

    Kimura, Motohiro; Widmann, Andreas; Schröger, Erich

    2010-08-01

    Recent neuroscience studies using visual mismatch negativity (visual MMN), an event-related brain potential (ERP) index of memory-mismatch processes in the visual sensory system, have shown that although sequential regularities embedded in successive visual stimuli can be automatically represented in the visual sensory system, an existence of sequential regularity itself does not guarantee that the sequential regularity will be automatically represented. In the present study, we investigated the effects of top-down attention on sequential regularity representation in the visual sensory system. Our results showed that a sequential regularity (SSSSD) embedded in a modified oddball sequence where infrequent deviant (D) and frequent standard stimuli (S) differing in luminance were regularly presented (SSSSDSSSSDSSSSD...) was represented in the visual sensory system only when participants attended the sequential regularity in luminance, but not when participants ignored the stimuli or simply attended the dimension of luminance per se. This suggests that top-down attention affects sequential regularity representation in the visual sensory system and that top-down attention is a prerequisite for particular sequential regularities to be represented. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Advanced fire information system

    CSIR Research Space (South Africa)

    Frost, PE

    2007-01-01

    Full Text Available The South African Advanced Fire Information System (AFIS) is the first near real-time satellite-based fire monitoring system in Africa. It was originally developed for, and funded by, the electrical power utility Eskom, to reduce the impact of wild...

  10. Technical note: real-time web-based wireless visual guidance system for radiotherapy.

    Science.gov (United States)

    Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho

    2017-06-01

    Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.

  11. A web based MDSplus data analysis and visualization system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F., E-mail: fyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Department of Computer Science, Anhui Medical University, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We design and implement a web based visualization system for MDSplus using java technology. Black-Right-Pointing-Pointer In order to speed up data display (short pulse or long pulse), we adopt three new methods: frequency reduction, slice display and thumbnail. Black-Right-Pointing-Pointer The slice is combined with the frequency reduction to solve the problems of long pulse data access. Black-Right-Pointing-Pointer Data of various experiments in different servers can be viewed in either a single panel or multiple frames, which makes it easier for cross comparison among different data sources. - Abstract: In an EAST (Experimental Advanced Superconducting Tokamak) experiment, the convenient data analysis and visualization tools are very important for physicists and engineering experts to view the operational status of the device. Along with the increasing data sampling rate and pulse length, it will be increasingly challenging for the end user to view the data conveniently under limited Internet bandwidth. We propose a software based on jScope [1] called WebScope for data visualization. By applying java applet techniques, this software can be accessed directly over the Internet via a variety of web browsers without installing client software. Using this data viewer the frequency will be effectively adjusted according to the computer displaying resolution, which saves the total amount of data to be transferred across the Internet and enables the user to view the data quickly. When the signals are zoomed or unzoomed, the data frequency will be re-adjusted to the displaying resolution. With WebScope, data of various experiments in different servers can be viewed in either a single panel or multiple frames, which makes it easier for cross comparison among different data sources. The system was successfully applied to EAST experiment and achieved excellent performance. Its design, function and implementation details will be

  12. A web based MDSplus data analysis and visualization system for EAST

    International Nuclear Information System (INIS)

    Yang, F.; Xiao, B.J.

    2012-01-01

    Highlights: ► We design and implement a web based visualization system for MDSplus using java technology. ► In order to speed up data display (short pulse or long pulse), we adopt three new methods: frequency reduction, slice display and thumbnail. ► The slice is combined with the frequency reduction to solve the problems of long pulse data access. ► Data of various experiments in different servers can be viewed in either a single panel or multiple frames, which makes it easier for cross comparison among different data sources. - Abstract: In an EAST (Experimental Advanced Superconducting Tokamak) experiment, the convenient data analysis and visualization tools are very important for physicists and engineering experts to view the operational status of the device. Along with the increasing data sampling rate and pulse length, it will be increasingly challenging for the end user to view the data conveniently under limited Internet bandwidth. We propose a software based on jScope [1] called WebScope for data visualization. By applying java applet techniques, this software can be accessed directly over the Internet via a variety of web browsers without installing client software. Using this data viewer the frequency will be effectively adjusted according to the computer displaying resolution, which saves the total amount of data to be transferred across the Internet and enables the user to view the data quickly. When the signals are zoomed or unzoomed, the data frequency will be re-adjusted to the displaying resolution. With WebScope, data of various experiments in different servers can be viewed in either a single panel or multiple frames, which makes it easier for cross comparison among different data sources. The system was successfully applied to EAST experiment and achieved excellent performance. Its design, function and implementation details will be introduced in this paper.

  13. Visualization System for Monitoring Data Management Systems

    Directory of Open Access Journals (Sweden)

    Emanuel Pinho

    2016-11-01

    Full Text Available Usually, a Big Data system has a monitoring system for performance evaluation and error prevention. There are some disadvantages in the way that these tools display the information and its targeted approach to physical components. The main goal is to study visual and interactive mechanisms that allow the representation of monitoring data in grid computing environments, providing the end-user information, which can contribute objectively to the system analysis. This paper is an extension of the paper presented at (Pinho and Carvalho 2016 and has the purpose to present the state of the art, carries out the proposed solution and present the achieved goals.

  14. A novel visual pipework inspection system

    Science.gov (United States)

    Summan, Rahul; Jackson, William; Dobie, Gordon; MacLeod, Charles; Mineo, Carmelo; West, Graeme; Offin, Douglas; Bolton, Gary; Marshall, Stephen; Lille, Alexandre

    2018-04-01

    The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localize surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorealistic, geometrically accurate surface model. The error of the system output was evaluated through comparison to a ground truth laser scan (ATOS GOM Triple Scan) of a nuclear grade split pipe sample (stainless steel 304L, 80mm internal diameter) containing defects representative of the application - the error was found to be submillimeter across the sample.

  15. Scientific & Intelligence Exascale Visualization Analysis System

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-14

    SIEVAS provides an immersive visualization framework for connecting multiple systems in real time for data science. SIEVAS provides the ability to connect multiple COTS and GOTS products in a seamless fashion for data fusion, data analysis, and viewing. It provides this capability by using a combination of micro services, real time messaging, and web service compliant back-end system.

  16. Visualization framework for CAVE virtual reality systems

    OpenAIRE

    Kageyama, Akira; Tomiyama, Asako

    2016-01-01

    We have developed a software framework for scientific visualization in immersive-type, room-sized virtual reality (VR) systems, or Cave automatic virtual environment (CAVEs). This program, called Multiverse, allows users to select and invoke visualization programs without leaving CAVE’s VR space. Multiverse is a kind of immersive “desktop environment” for users, with a three-dimensional graphical user interface. For application developers, Multiverse is a software framework with useful class ...

  17. Towards a visual modeling approach to designing microelectromechanical system transducers

    Science.gov (United States)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  18. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  19. The Visual System

    Medline Plus

    Full Text Available ... to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.” ... Clinical Studies Publications Catalog Photos ...

  20. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2011-03-30

    Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.

  1. The development of a visual system for the detection of obstructions for visually impaired people

    International Nuclear Information System (INIS)

    Okayasu, Mitsuhiro

    2009-01-01

    In this paper, the author presents a new visual system that can aid visually impaired people in walking. The system provides object information (that is, shape and location) through the sense of touch. This visual system depends on three different components: (i) an infrared camera sensor that detects the obstruction, (ii) a control system that measures the distance between the obstruction and the sensor, and (iii) a tooling apparatus with small pins (φ1 mm) used in forming a three-dimensional shape of the obstruction. The pins, arranged on a 6x6 matrix, move longitudinally between the retracted and extended positions based on the distance data. The pin extends individually, while the pin tip reflects the object's outer surface. The length of the pin from the base surface is proportional to the distance of the sensor from the obstruction. An ultrasonic actuator, controlled at a 15Hz frame rate, is the driving force for the pin movement. The tactile image of the 3D shape can provide information about the obstruction

  2. Engaging Patients With Advance Directives Using an Information Visualization Approach.

    Science.gov (United States)

    Woollen, Janet; Bakken, Suzanne

    2016-01-01

    Despite the benefits of advance directives (AD) to patients and care providers, they are often not completed due to lack of patient awareness. The purpose of the current article is to advocate for creation and use of an innovative information visualization (infovisual) as a health communication tool aimed at improving AD dissemination and engagement. The infovisual would promote AD awareness by encouraging patients to learn about their options and inspire contemplation and conversation regarding their end-of-life (EOL) journey. An infovisual may be able to communicate insights that are often communicated in words, but are much more powerfully communicated by example. Furthermore, an infovisual could facilitate vivid understanding of options and inspire the beginning of often difficult conversations among care providers, patients, and loved ones. It may also save clinicians time, as care providers may be able to spend less time explaining details of EOL care options. Use of an infovisual could assist in ensuring a well-planned EOL journey. Copyright 2016, SLACK Incorporated.

  3. Plant Growth Modeling Using L-System Approach and Its Visualization

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2011-05-01

    Full Text Available The visualizationof plant growth modeling using computer simulation has rarely been conducted with Lindenmayer System (L-System approach. L-System generally has been used as framework for improving and designing realistic modeling on plant growth. It is one kind of tools for representing plant growth based on grammar sintax and mathematic formulation. This research aimed to design modeling and visualizing plant growth structure generated using L-System. The environment on modeling design used three dimension graphic on standart OpenGL format. The visualization on system design has been developed by some of L-System grammar, and the output graphic on three dimension reflected on plant growth as a virtual plant growth system. Using some of samples on grammar L-System rules for describing of the charaterictics of plant growth, the visualization of structure on plant growth has been resulted and demonstrated.

  4. Recent results in visual servoing

    Science.gov (United States)

    Chaumette, François

    2008-06-01

    Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.

  5. The Visual System

    Medline Plus

    Full Text Available ... National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, ...

  6. Advanced fenestration and daylighting systems

    Energy Technology Data Exchange (ETDEWEB)

    McCluney, R. [Florida Solar Energy Centere, Cocoa, FL (United States)

    1998-09-01

    Advanced fenestration systems are new high-performance glazing and reflecting systems for otherwise conventional windows which offer specialized spectral and /or angular selectivity to provide improved illumination quantity and quality under optimal human comfort and energy conservation conditions. Advanced daylighting systems include systems manufactured by the solar lighting industry to introduce daylight into the core spaces of multi-storey buildings, spaces distant from the building envelope, or other locations where more conventional daylighting apertures cannot be placed. Details of operating, energy and illumination performance characteristics of both these systems were provided. It was concluded that solar lighting systems can effectively provide daylight illumination to interior spaces of a building that are not amenable to more conventional systems. Nevertheless, techniques need to be developed to predict the performance of such systems prior to their being built, so as to provide designers better means for justifying their use and economic viability, and to develop codes and performance standards to protect the consumer in the marketplace. 20 refs., 12 figs.

  7. The Visual System

    Medline Plus

    Full Text Available ... NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of ...

  8. GVS - GENERAL VISUALIZATION SYSTEM

    Science.gov (United States)

    Keith, S. R.

    1994-01-01

    The primary purpose of GVS (General Visualization System) is to support scientific visualization of data output by the panel method PMARC_12 (inventory number ARC-13362) on the Silicon Graphics Iris computer. GVS allows the user to view PMARC geometries and wakes as wire frames or as light shaded objects. Additionally, geometries can be color shaded according to phenomena such as pressure coefficient or velocity. Screen objects can be interactively translated and/or rotated to permit easy viewing. Keyframe animation is also available for studying unsteady cases. The purpose of scientific visualization is to allow the investigator to gain insight into the phenomena they are examining, therefore GVS emphasizes analysis, not artistic quality. GVS uses existing IRIX 4.0 image processing tools to allow for conversion of SGI RGB files to other formats. GVS is a self-contained program which contains all the necessary interfaces to control interaction with PMARC data. This includes 1) the GVS Tool Box, which supports color histogram analysis, lighting control, rendering control, animation, and positioning, 2) GVS on-line help, which allows the user to access control elements and get information about each control simultaneously, and 3) a limited set of basic GVS data conversion filters, which allows for the display of data requiring simpler data formats. Specialized controls for handling PMARC data include animation and wakes, and visualization of off-body scan volumes. GVS is written in C-language for use on SGI Iris series computers running IRIX. It requires 28Mb of RAM for execution. Two separate hardcopy documents are available for GVS. The basic document price for ARC-13361 includes only the GVS User's Manual, which outlines major features of the program and provides a tutorial on using GVS with PMARC_12 data. Programmers interested in modifying GVS for use with data in formats other than PMARC_12 format may purchase a copy of the draft GVS 3.1 Software Maintenance

  9. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  10. Experience-independent development of the hamster circadian visual system.

    Directory of Open Access Journals (Sweden)

    August Kampf-Lassin

    2011-04-01

    Full Text Available Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems.

  11. The Visual System

    Medline Plus

    Full Text Available ... programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health ... Pressroom Contacts Dustin Hays - Chief, Science Communication dustin.hays@nih.gov Kathryn DeMott, Media Relations ...

  12. The Visual System

    Medline Plus

    Full Text Available ... blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.” ... DeMott, Media Relations Kathryn.DeMott@nih.gov NEI Office of Communications ( ...

  13. SVIP-N 1.0: An integrated visualization platform for neutronics analysis

    International Nuclear Information System (INIS)

    Luo Yuetong; Long Pengcheng; Wu Guoyong; Zeng Qin; Hu Liqin; Zou Jun

    2010-01-01

    Post-processing is an important part of neutronics analysis, and SVIP-N 1.0 (scientific visualization integrated platform for neutronics analysis) is designed to ease post-processing of neutronics analysis through visualization technologies. Main capabilities of SVIP-N 1.0 include: (1) ability of manage neutronics analysis result; (2) ability to preprocess neutronics analysis result; (3) ability to visualization neutronics analysis result data in different way. The paper describes the system architecture and main features of SVIP-N, some advanced visualization used in SVIP-N 1.0 and some preliminary applications, such as ITER.

  14. The Visual System

    Medline Plus

    Full Text Available ... to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of ... Pressroom Contacts Dustin Hays - Chief, Science Communication dustin.hays@nih.gov Kathryn DeMott, Media Relations ...

  15. The Visual System

    Medline Plus

    Full Text Available ... with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the ... Contact Us A-Z Site Map NEI on Social Media Information in Spanish (Información en español) Website, ...

  16. Review of advanced driver assistance systems (ADAS)

    Science.gov (United States)

    Ziebinski, Adam; Cupek, Rafal; Grzechca, Damian; Chruszczyk, Lukas

    2017-11-01

    New cars can be equipped with many advanced safety solutions. Airbags, seatbelts and all of the essential passive safety parts are standard equipment. Now cars are often equipped with new advanced active safety systems that can prevent accidents. The functions of the Advanced Driver Assistance Systems are still growing. A review of the most popular available technologies used in ADAS and descriptions of their application areas are discussed in this paper.

  17. Visualization of the CMS python configuration system

    International Nuclear Information System (INIS)

    Erdmann, M; Fischer, R; Klimkovich, T; Mueller, G; Steggemann, J; Hegner, B; Hinzmann, A

    2010-01-01

    The job configuration system of the CMS experiment is based on the Python programming language. Software modules and their order of execution are both represented by Python objects. In order to investigate and verify configuration parameters and dependencies naturally appearing in modular software, CMS employs a graphical tool. This tool visualizes the configuration objects, their dependencies, and the information flow. Furthermore it can be used for documentation purposes. The underlying software concepts as well as the visualization are presented.

  18. Visualization of the CMS python configuration system

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, M; Fischer, R; Klimkovich, T; Mueller, G; Steggemann, J [RWTH Aachen University, Physikalisches Institut 3A, 52062 Aachen (Germany); Hegner, B [CERN, CH-1211 Geneva 23 (Switzerland); Hinzmann, A, E-mail: andreas.hinzmann@cern.c

    2010-04-01

    The job configuration system of the CMS experiment is based on the Python programming language. Software modules and their order of execution are both represented by Python objects. In order to investigate and verify configuration parameters and dependencies naturally appearing in modular software, CMS employs a graphical tool. This tool visualizes the configuration objects, their dependencies, and the information flow. Furthermore it can be used for documentation purposes. The underlying software concepts as well as the visualization are presented.

  19. OPTIMIZATION OF ADVANCED FILTER SYSTEMS; TOPICAL

    International Nuclear Information System (INIS)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-01-01

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  20. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  1. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  2. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  3. Advanced public transportation systems benefits

    Science.gov (United States)

    1996-03-01

    Benefits and cost savings for various Advanced Public Transportation Systems are outlined here. Operational efficiencies are given for Transit Management Systems in different locales, as well as compliant resolution and safety. Electronic Fare Paymen...

  4. Visual color matching system based on RGB LED light source

    Science.gov (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  5. Simple Smartphone-Based Guiding System for Visually Impaired People.

    Science.gov (United States)

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-06-13

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.

  6. Simple Smartphone-Based Guiding System for Visually Impaired People

    Directory of Open Access Journals (Sweden)

    Bor-Shing Lin

    2017-06-01

    Full Text Available Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.

  7. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  8. Advances in Reasoning-Based Image Processing Intelligent Systems Conventional and Intelligent Paradigms

    CERN Document Server

    Nakamatsu, Kazumi

    2012-01-01

    The book puts special stress on the contemporary techniques for reasoning-based image processing and analysis: learning based image representation and advanced video coding; intelligent image processing and analysis in medical vision systems; similarity learning models for image reconstruction; visual perception for mobile robot motion control, simulation of human brain activity in the analysis of video sequences; shape-based invariant features extraction; essential of paraconsistent neural networks, creativity and intelligent representation in computational systems. The book comprises 14 chapters. Each chapter is a small monograph, representing resent investigations of authors in the area. The topics of the chapters cover wide scientific and application areas and complement each-other very well. The chapters’ content is based on fundamental theoretical presentations, followed by experimental results and comparison with similar techniques. The size of the chapters is well-ballanced which permits a thorough ...

  9. Overview of Advanced Turbine Systems Program

    Science.gov (United States)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  10. Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items

    OpenAIRE

    He, Ruining; Lin, Chunbin; McAuley, Julian

    2016-01-01

    To build a fashion recommendation system, we need to help users retrieve fashionable items that are visually similar to a particular query, for reasons ranging from searching alternatives (i.e., substitutes), to generating stylish outfits that are visually consistent, among other applications. In domains like clothing and accessories, such considerations are particularly paramount as the visual appearance of items is a critical feature that guides users' decisions. However, existing systems l...

  11. Alert system for students with visual disabilities at the UTM

    Directory of Open Access Journals (Sweden)

    Marely del Rosario Cruz Felipe

    2018-01-01

    Full Text Available In the transfer of students with visual disabilities at the Technical University of Manabí (UTM accidents have been reported when going through some ramps and other obstacles, especially on rainy days. This article belongs to an investigation into the realization of an alert system for students with visual disabilities. The objective of the implementation of this system is to guide students with visual disabilities on different obstacles that exist in their transfer through the university. To carry out the implementation of this system, the alert systems and the technologies that are currently used as a result of a recording studio in the national and international scope were analyzed, the tools and technologies used in the developed solution are described. (Definition, technologies for the change of people, software, programming languages, etc. that allowed an efficient implementation in a short time of the proposed system by means of RFID (Radio Frequency Identification technology. The above is reflected in the positive orientation for the transfer of 32 students with visual disabilities through the university and by those who have contributed to improving their quality of life.

  12. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  13. The Application of Visual Illusion in the Visual Communication Design

    Science.gov (United States)

    Xin, Tao; You Ye, Han

    2018-03-01

    With the development of our national reform, opening up and modernization, the science and technology has also been well developed and it has been applied in every wall of life, the development of visual illusion industry is represented in the widespread use of advanced technology in it. Ultimately, the visual illusion is a phenomenon, it should be analyzed from the angles of physics and philosophy. The widespread application of visual illusion not only can improve the picture quality, but also could maximize peoples’ sense degree through the visual communication design works, expand people’s horizons and promote the diversity of visual communication design works.

  14. Advanced smartgrids for distribution system operators

    CERN Document Server

    Boillot, Marc

    2014-01-01

    The dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the secu

  15. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Science.gov (United States)

    2010-01-01

    ... Visual Communications System. The NASA Graphics Coordinator will develop and issue changes and additions... Communications System. 1221.108 Section 1221.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Communications System § 1221.108 Establishment of the NASA Unified Visual Communications System. (a) The NASA...

  16. Advanced Dynamics Analytical and Numerical Calculations with MATLAB

    CERN Document Server

    Marghitu, Dan B

    2012-01-01

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...

  17. Recent Advances and History of Vitreous Surgery

    Directory of Open Access Journals (Sweden)

    Tatsuya Mimura

    2011-01-01

    Full Text Available There have been tremendous advances in the small-gauge pars plana vitrectomy (PPV systems. This review provides an overview of the recent advances and state of the art of vitreous surgery. The two most innovative advancements that have been developed in this area are the small-gauge cutter and the new illuminating systems. Compared to the traditional 20-gauge PPV, transconjunctival sutureless small-gauge PPV is a safe and effective strategy to treat a variety of vitreoretinal diseases. Chandelier illumination allows better visualisation of vitreous for bimanual surgery. The small-gauge PPV provides benefits in terms of less inflammation, less patient discomfort, and faster recovery of the visual acuity.

  18. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    Science.gov (United States)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  20. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  1. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  2. Parallel real-time visualization system for large-scale simulation. Application to WSPEEDI

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Kitabata, Hideyuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    2000-01-01

    The real-time visualization system, PATRAS (PArallel TRAcking Steering system) has been developed on parallel computing servers. The system performs almost all of the visualization tasks on a parallel computing server, and uses image data compression technique for efficient communication between the server and the client terminal. Therefore, the system realizes high performance concurrent visualization in an internet computing environment. The experience in applying PATRAS to WSPEEDI (Worldwide version of System for Prediction Environmental Emergency Dose Information) is reported. The application of PATRAS to WSPEEDI enables users to understand behaviours of radioactive tracers from different release points easily and quickly. (author)

  3. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  4. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  5. A Study on Performance Requirements for Advanced Alarm System

    International Nuclear Information System (INIS)

    Seong, Duk Hyun; Jeong, Jae Hoon; Sim, Young Rok; Ko, Jong Hyun; Kim, Jung Seon; Jang, Gwi Sook; Park, Geun Ok

    2005-01-01

    A design goals of advanced alarm system is providing advanced alarm information to operator in main control room. To achive this, we applied computer based system to Alarm System. Because, It should apply data management and advanced alarm processing(ie. Data Base Mangegment System and S/W module for alarm processing). These are not impossible in analog based alarm system. And, preexitance research examples are made on digital computer. We have digital systems for test of advanced alarm system table and have tested and studied using by test equipment in the view point of the system performance, stability and security. In this paper, we discribed about general software architecture of preexitance research examples. Also, CPU performance and requirements of system software that served to accommodate it, stability and security

  6. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  7. A zero-footprint 3D visualization system utilizing mobile display technology for timely evaluation of stroke patients

    Science.gov (United States)

    Park, Young Woo; Guo, Bing; Mogensen, Monique; Wang, Kevin; Law, Meng; Liu, Brent

    2010-03-01

    When a patient is accepted in the emergency room suspected of stroke, time is of the utmost importance. The infarct brain area suffers irreparable damage as soon as three hours after the onset of stroke symptoms. A CT scan is one of standard first line of investigations with imaging and is crucial to identify and properly triage stroke cases. The availability of an expert Radiologist in the emergency environment to diagnose the stroke patient in a timely manner only increases the challenges within the clinical workflow. Therefore, a truly zero-footprint web-based system with powerful advanced visualization tools for volumetric imaging including 2D. MIP/MPR, 3D display can greatly facilitate this dynamic clinical workflow for stroke patients. Together with mobile technology, the proper visualization tools can be delivered at the point of decision anywhere and anytime. We will present a small pilot project to evaluate the use of mobile technologies using devices such as iPhones in evaluating stroke patients. The results of the evaluation as well as any challenges in setting up the system will also be discussed.

  8. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  9. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  10. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  11. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  12. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  13. Soldier-worn augmented reality system for tactical icon visualization

    Science.gov (United States)

    Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared

    2012-06-01

    This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.

  14. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  15. Experimental consideration for realizing image based visual servo control system

    International Nuclear Information System (INIS)

    Ishikawa, N.; Suzuki, K.; Fujii, Y.; Usui, H.

    1995-01-01

    In this study, we consider the experimental aspect of image based visual servo control system. The items considered are the following; 1) Inertial parameter estimation, 2) Focal point estimation, 3) Controller performance for the system with delay. From the experimental result of visual control, it is found that the system is very sensitive to the controller gain because of the computational delay of vision. In order to establish a satisfactory delay compensation, more investigations on controller design are required. (author)

  16. Advanced Distribution Management System

    OpenAIRE

    Avazov, Artur; Sobinova, Lubov Anatolievna

    2016-01-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  17. Advanced Distribution Management System

    Science.gov (United States)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  18. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant control rooms as a result of several factors. These include: (1) incorporation of new systems such as safety parameter display systems, (2) backfitting of current control rooms with new technologies when existing hardware is no longer supported by equipment vendors, and (3) development of advanced control room concepts. Control rooms of the future will be developed almost exclusively with advanced instrumentation and controls based upon digital technology. In addition, the control room operator will be interfacing with more intelligent systems which will be capable of providing information processing support to the operator. These developments may have significant implications for plant safety in that they will greatly affect the operator's role in the system as well as the ways in which he interacts with it. At present, however, the only guidance available to the Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces is NUREG-0700. It is a document which was written prior to these technological changes and is, therefore, tailored to the technologies used in traditional control rooms. Thus, the present guidance needs to be updated since it is inadequate to serve as the basis for NRC staff review of such advanced or hybrid control room designs. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline suitable for use in performing human factors reviews of advanced operator interfaces. This guideline will take the form of a portable, interactive, computer-based document that may be conveniently used by an inspector in the field, as well as a text-based document

  19. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  20. The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS.

    Science.gov (United States)

    Martínez-Lapiscina, Elena H; Fraga-Pumar, Elena; Gabilondo, Iñigo; Martínez-Heras, Eloy; Torres-Torres, Ruben; Ortiz-Pérez, Santiago; Llufriu, Sara; Tercero, Ana; Andorra, Magi; Roca, Marc Figueras; Lampert, Erika; Zubizarreta, Irati; Saiz, Albert; Sanchez-Dalmau, Bernardo; Villoslada, Pablo

    2014-12-15

    Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-aged MS population in Barcelona, Spain. We started the recruitment of patients in the early phase of MS in 2010 and it remains permanently open. All patients undergo a complete neurological and ophthalmological examination including measurements of physical and disability (Expanded Disability Status Scale; Multiple Sclerosis Functional Composite and neuropsychological tests), disease activity (relapses) and visual function testing (visual acuity, color vision and visual field). The MS-VisualPath protocol also assesses the presence of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale), general quality of life (SF-36) and visual quality of life (25-Item National Eye Institute Visual Function Questionnaire with the 10-Item Neuro-Ophthalmic Supplement). In addition, the imaging protocol includes both retinal (Optical Coherence Tomography and Wide-Field Fundus Imaging) and brain imaging (Magnetic Resonance Imaging). Finally, multifocal Visual Evoked Potentials are used to perform neurophysiological assessment of the visual pathway. The analysis of the visual pathway with advance imaging and electrophysilogical tools in parallel with clinical information will provide significant and new knowledge regarding neurodegeneration in MS and provide new clinical and imaging biomarkers to help monitor disease progression in these patients.

  1. Advanced Teleprocessing Systems

    Science.gov (United States)

    1983-03-31

    Nelson and Richard Gail with equations written on napkins at lunch time. Other students of the ATS (Advanced Teleprocessing Systems) group have also been... ink Mik 2Gk (I+S,)2 Mk = (1+k/Mk) 2 - Mi k M -I- - mk -- 2Gk, Eq.(2.11) reduces to Gk - ’h (2.13) k-1 which allows throughput of G,/e for group k ( k

  2. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  3. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    Science.gov (United States)

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  4. Rethinking Visual Analytics for Streaming Data Applications

    Energy Technology Data Exchange (ETDEWEB)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    2017-01-01

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between the two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive

  5. US Advanced Freight and Passenger MAGLEV System

    Science.gov (United States)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  6. Advanced Clothing System

    Science.gov (United States)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  7. The µ-opioid system promotes visual attention to faces and eyes.

    Science.gov (United States)

    Chelnokova, Olga; Laeng, Bruno; Løseth, Guro; Eikemo, Marie; Willoch, Frode; Leknes, Siri

    2016-12-01

    Paying attention to others' faces and eyes is a cornerstone of human social behavior. The µ-opioid receptor (MOR) system, central to social reward-processing in rodents and primates, has been proposed to mediate the capacity for affiliative reward in humans. We assessed the role of the human MOR system in visual exploration of faces and eyes of conspecifics. Thirty healthy males received a novel, bidirectional battery of psychopharmacological treatment (an MOR agonist, a non-selective opioid antagonist, or placebo, on three separate days). Eye-movements were recorded while participants viewed facial photographs. We predicted that the MOR system would promote visual exploration of faces, and hypothesized that MOR agonism would increase, whereas antagonism decrease overt attention to the information-rich eye region. The expected linear effect of MOR manipulation on visual attention to the stimuli was observed, such that MOR agonism increased while antagonism decreased visual exploration of faces and overt attention to the eyes. The observed effects suggest that the human MOR system promotes overt visual attention to socially significant cues, in line with theories linking reward value to gaze control and target selection. Enhanced attention to others' faces and eyes represents a putative behavioral mechanism through which the human MOR system promotes social interest. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Visualizing systems engineering data with Java

    International Nuclear Information System (INIS)

    Barter, R; Vinzant, A.

    1998-01-01

    Systems Engineers are required to deal with complex sets of data. To be useful, the data must be managed effectively, and presented in meaningful terms to a wide variety of information consumers. Two software patterns are presented as the basis for exploring the visualization of systems engineering data. The Model, View, Controller pattern defines an information management system architecture. The Entity, Relation, Attribute pattern defines the information model. MVC Views then form the basis for the user interface between the information consumer and the MVC Controller/Model combination. A Java tool set is described for exploring alternative views into the underlying complex data structures encountered in systems engineering

  9. COALA-System for Visual Representation of Cryptography Algorithms

    Science.gov (United States)

    Stanisavljevic, Zarko; Stanisavljevic, Jelena; Vuletic, Pavle; Jovanovic, Zoran

    2014-01-01

    Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper…

  10. Visual MRI grading system to evaluate atrophy of the supeaspinatus muscle

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyun Kyoung; Hong, Sung Hwan; Yoo, Hye Jin; Choi, Ja Young; Kim, Sae Hoon; Choi, Jung Ah; Kang, Heung Sik [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-08-15

    To investigate the interobserver reproducibility and diagnostic feasibility of a visual grading system for assessing atrophy of the supraspinatus muscle on magnetic resonance imaging (MRI). Three independent radiologists retrospectively evaluated the occupying ratio of the supraspinatus muscle in the supraspinatus fossa on 192 shoulder MRI examinations in 188 patients using a 3-point visual grading system (1, ≥ 60%; 2, 30-59%; 3, < 30%) on oblique sagittal T1-weighted images. The inter-reader agreement and the agreement with the reference standard (3-point grades according to absolute occupying ratio values quantitatively measured by directly contouring the muscles on MRI) were analyzed using weighted kappa. The visual grading was applied by a single reader to a group of 100 consecutive patients who had undergone rotator cuff repair to retrospectively determine the association between the visual grades at preoperative state and postsurgical occurrences of retear. The inter-reader weighted kappa value for the visual grading was 0.74 when averaged across three reader pairs (0.70-0.77 for individual reader pairs). The weighted kappa value between the visual grading and the reference standard ranged from 0.75 to 0.83. There was a significant difference in retear rates of the rotator cuff between the 3 visual grades of supraspinatus muscle atrophy on MRI in univariable analysis (p < 0.001), but not in multivariable analysis (p = 0.026). The 3-point visual grading system may be a feasible method to assess the severity of supraspinatus muscle atrophy on MRI and assist in the clinical management of patients with rotator cuff tear.

  11. Visual MRI grading system to evaluate atrophy of the supeaspinatus muscle

    International Nuclear Information System (INIS)

    Lim, Hyun Kyoung; Hong, Sung Hwan; Yoo, Hye Jin; Choi, Ja Young; Kim, Sae Hoon; Choi, Jung Ah; Kang, Heung Sik

    2014-01-01

    To investigate the interobserver reproducibility and diagnostic feasibility of a visual grading system for assessing atrophy of the supraspinatus muscle on magnetic resonance imaging (MRI). Three independent radiologists retrospectively evaluated the occupying ratio of the supraspinatus muscle in the supraspinatus fossa on 192 shoulder MRI examinations in 188 patients using a 3-point visual grading system (1, ≥ 60%; 2, 30-59%; 3, < 30%) on oblique sagittal T1-weighted images. The inter-reader agreement and the agreement with the reference standard (3-point grades according to absolute occupying ratio values quantitatively measured by directly contouring the muscles on MRI) were analyzed using weighted kappa. The visual grading was applied by a single reader to a group of 100 consecutive patients who had undergone rotator cuff repair to retrospectively determine the association between the visual grades at preoperative state and postsurgical occurrences of retear. The inter-reader weighted kappa value for the visual grading was 0.74 when averaged across three reader pairs (0.70-0.77 for individual reader pairs). The weighted kappa value between the visual grading and the reference standard ranged from 0.75 to 0.83. There was a significant difference in retear rates of the rotator cuff between the 3 visual grades of supraspinatus muscle atrophy on MRI in univariable analysis (p < 0.001), but not in multivariable analysis (p = 0.026). The 3-point visual grading system may be a feasible method to assess the severity of supraspinatus muscle atrophy on MRI and assist in the clinical management of patients with rotator cuff tear.

  12. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    Science.gov (United States)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors

  13. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  14. Advanced Distribution Management System

    Directory of Open Access Journals (Sweden)

    Avazov Artur R.

    2016-01-01

    Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  15. Advanced fuelling system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Roger [University of Washington, Seattle, WA (United States)], E-mail: raman@aa.washington.edu

    2008-12-15

    Steady-state high-performance discharges in reactors, such as the Advanced Tokamak (AT) scenarios would rely on optimized density and pressure profiles that must be maintained. This maximizes the bootstrap current fraction, reduces reactor recycling power and reduces thermal stresses. Other than a system for the balance of current drive not provided by bootstrap current drive, no other sources of input power, such as from neutral beams, are allowed. For these systems, a precision fuelling system would be the ideal way to control the fusion burn by controlling and maintaining the required pressure profile. This requires a fuelling system that is capable of depositing fuel at any radial location within the plasma while at the same time not altering the density profile to a level that degrades the required pressure profile. Present fuelling systems are incapable of meeting these requirements. An advanced fuelling system based on Compact Toroid injection has the potential to meet these needs while simultaneously providing a source of toroidal momentum input. Description of a conceptual Compact Toroid fueller for ITER is presented in conjunction with a plan for developing this much needed technology.

  16. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  17. LongLine: Visual Analytics System for Large-scale Audit Logs

    Directory of Open Access Journals (Sweden)

    Seunghoon Yoo

    2018-03-01

    Full Text Available Audit logs are different from other software logs in that they record the most primitive events (i.e., system calls in modern operating systems. Audit logs contain a detailed trace of an operating system, and thus have received great attention from security experts and system administrators. However, the complexity and size of audit logs, which increase in real time, have hindered analysts from understanding and analyzing them. In this paper, we present a novel visual analytics system, LongLine, which enables interactive visual analyses of large-scale audit logs. LongLine lowers the interpretation barrier of audit logs by employing human-understandable representations (e.g., file paths and commands instead of abstract indicators of operating systems (e.g., file descriptors as well as revealing the temporal patterns of the logs in a multi-scale fashion with meaningful granularity of time in mind (e.g., hourly, daily, and weekly. LongLine also streamlines comparative analysis between interesting subsets of logs, which is essential in detecting anomalous behaviors of systems. In addition, LongLine allows analysts to monitor the system state in a streaming fashion, keeping the latency between log creation and visualization less than one minute. Finally, we evaluate our system through a case study and a scenario analysis with security experts.

  18. Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Directory of Open Access Journals (Sweden)

    Qingwu Li

    2015-01-01

    Full Text Available In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT. The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions.

  19. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  20. A Visual Formalism for Interacting Systems

    Directory of Open Access Journals (Sweden)

    Paul C. Jorgensen

    2015-04-01

    Full Text Available Interacting systems are increasingly common. Many examples pervade our everyday lives: automobiles, aircraft, defense systems, telephone switching systems, financial systems, national governments, and so on. Closer to computer science, embedded systems and Systems of Systems are further examples of interacting systems. Common to all of these is that some "whole" is made up of constituent parts, and these parts interact with each other. By design, these interactions are intentional, but it is the unintended interactions that are problematic. The Systems of Systems literature uses the terms "constituent systems" and "constituents" to refer to systems that interact with each other. That practice is followed here. This paper presents a visual formalism, Swim Lane Event-Driven Petri Nets, that is proposed as a basis for Model-Based Testing (MBT of interacting systems. In the absence of available tools, this model can only support the offline form of Model-Based Testing.

  1. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  2. A computer graphics system for visualizing spacecraft in orbit

    Science.gov (United States)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  3. Advances in directional borehole radar data analysis and visualization

    Science.gov (United States)

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  4. A quasi-realtime x-ray microtomography system at the Advanced Photon Source

    International Nuclear Information System (INIS)

    DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D.; McNulty, I.; Su, M.; Tieman, B.; Wang, Y.; Laszewski, G. von

    1999-01-01

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms

  5. Assessment of HAPs emissions from advanced power systems

    International Nuclear Information System (INIS)

    Erickson, T.A.; Brekke, D.W.

    1996-01-01

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the U. S. Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. Eleven trace elements are included in the CAAA list of HAPS, as shown in Table 1. The EPA will define those sources that require regulation and limit their emissions according to regulatory directives. This project focused on evaluating and manipulating the advanced power systems HAPs data currently available for presentation to the U.S. Department of Energy (DOE). Trace components included in the 189 HAPs of the 1990 CAAA are: antimony compounds; arsenic compounds; beryllium compounds; cadmium compounds; chromium compounds; cobalt compounds; lead compounds; manganese compounds; mercury compounds; nickel compounds; and selenium compounds. The review of trace element emissions from advanced power systems and hot-gas cleanup systems included data from Tidd Station, General Electric hot-gas cleanup, Louisiana Gasification Technology Incorporated, and the Cool Water plant. Very few other sources of information were located, and those that were contained significantly flawed information that was not of value to this project. To offset the shortage of information, thermochemical equilibrium predictions were used in evaluating advanced control systems. An outline of the systems reviewed is given in Table 2. In addition to the four demonstration and 1 full-scale systems reviewed, nine conventional systems were also reviewed for comparison with the advanced systems

  6. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  7. Advanced HEDL gamma scan system

    International Nuclear Information System (INIS)

    Smith, F.C.; Olson, R.N.

    1983-01-01

    The design of an advanced state-of-the-art gamma scan system built for the purpose of measuring the point-by-point gamma activity of irradiated fuel rods is described. The emphasis of the system design was to achieve the highest rate of throughput with the minimum per rod cost while maintaining system accuracy and reliability. Preliminary tests demonstrate that all system requirements were met or exceeded. The system provides improved throughput, precision, automation, flexibility, and data processing capability over previous gamma scan systems

  8. Two different streams form the dorsal visual system: anatomy and functions.

    Science.gov (United States)

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  9. A Generalized Visual Aid System for Teleoperation Applied to Satellite Servicing

    Directory of Open Access Journals (Sweden)

    Guoliang Zhang

    2014-02-01

    Full Text Available This paper presents the latest results of a newly developed visual aid system for direct teleoperation. This method is extended to visual control to make an efficient teleoperation system by combining direct teleoperation and automatic control. On the one hand, an operator can conduct direct teleoperation with 3D graphic prediction simulation established by the VR technique. In order to remove inconsistencies between the virtual and real environments, a practical model-matching method is investigated. On the other hand, to realize real-time visual servoing control, a particular object recognition and pose estimation algorithm based on polygonal approximation is investigated to ensure a low computational cost for image processing. To avoid undesired forces involved in contact operation, 3D visual servoing incorporating a compliant control based on impedance control is developed. Finally, in a representative laboratory environment, a typical satellite servicing experiment is carried out based on this combined system. Experimental results demonstrate the feasibility and the effectiveness of the proposed method.

  10. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    Science.gov (United States)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  11. Designing and visualizing the water-energy-food nexus system

    Science.gov (United States)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  12. Situation Awareness with Systems of Systems

    NARCIS (Netherlands)

    Laar, P. van de; Tretmans, J.; Borth, M.

    2013-01-01

    This book discusses various aspects, challenges, and solutions for developing systems-of-systems for situation awareness, using applications in the domain of maritime safety and security. Topics include advanced, multi-objective visualization methods for situation awareness, stochastic outlier

  13. ATTENTIONAL NETWORKS AND SELECTIVE VISUAL SYSTEM

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CASTILLO MORENO

    2006-05-01

    Full Text Available In this paper we checked the principal researches and theories to explain the attention system functioning.We are going to start reviewing along time about the concept of attention, from filter theories andresources distributor theories, to the current theories in which attention is conceived as a control system.From this last point of view, we will emphasize on the attentional networks theory of Posner, thatproposes different systems to explain diverse aspects of attention, but they are related to each other. Atlast in this paper, we will mention experimental results that have been important to characterize theselective attentional mechanisms of the human visual system, using the attentional spotlight model forthis aim.

  14. Visual perception and memory systems: from cortex to medial temporal lobe.

    Science.gov (United States)

    Khan, Zafar U; Martín-Montañez, Elisa; Baxter, Mark G

    2011-05-01

    Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

  15. Advanced worker protection system

    International Nuclear Information System (INIS)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-01-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D ampersand D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D ampersand D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D ampersand D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration

  16. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  17. Human-system safety methods for development of advanced air traffic management systems

    International Nuclear Information System (INIS)

    Nelson, William R.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems (author) (ml)

  18. Advancing Knowledge and Practice to Systems Thinking to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Extrants. Articles de revue. Advancing the application of systems thinking in health: advice seeking behavior among primary health care physicians in Pakistan. Articles de revue. Advancing the application of systems thinking in health : a realist evaluation of a capacity building programme for district managers in Tumkur, ...

  19. Visualization of hierarchically structured information for human-computer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Suh Hyun; Lee, J. K.; Choi, I. K.; Kye, S. C.; Lee, N. K. [Dongguk University, Seoul (Korea)

    2001-11-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchically structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance. In this report, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks. 15 refs., 19 figs., 32 tabs. (Author)

  20. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  1. Art, illusion and the visual system.

    Science.gov (United States)

    Livingstone, M S

    1988-01-01

    The verve of op art, the serenity of a pointillist painting and the 3-D puzzlement of an Escher print derive from the interplay of the art with the anatomy of the visual system. Color, shape and movement are each processed separately by different structures in the eye and brain and then are combined to produce the experience we call perception.

  2. High Performance Interactive System Dynamics Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duckworth, Jonathan C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  3. High Performance Interactive System Dynamics Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duckworth, Jonathan C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  4. Research on metallic material defect detection based on bionic sensing of human visual properties

    Science.gov (United States)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  5. The audio and visual communication systems for suited engineering activities on JET

    International Nuclear Information System (INIS)

    Pearce, R.J.H.; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J.

    2001-01-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced

  6. The audio and visual communication systems for suited engineering activities on JET

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, R.J.H. E-mail: robert.pearce@jet.uk; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J

    2001-11-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced.

  7. Scalable Inference and Learning in Very Large Graphical Models Patterned after the Primate Visual Cortex

    National Research Council Canada - National Science Library

    Dean, Thomas

    2008-01-01

    Human-level visual performance has remained largely beyond the reach of engineered systems despite decades of research and significant advances in problem formulation, algorithms and computing power...

  8. Visual languages and applications

    CERN Document Server

    Zhang, Kang

    2010-01-01

    Visual languages have long been a pursuit of effective communication between human and machine. With rapid advances of the Internet and Web technology, human-human communication through the Web or electronic mobile devices is becoming more and more prevalent. Visual Languages and Applications is a comprehensive introduction to diagrammatical visual languages. This book discusses what visual programming languages are, and how such languages and their underlying foundations can be usefully applied to other fields in computer science. It also covers a broad range of contents from the underlying t

  9. VisTool: A user interface and visualization development system

    DEFF Research Database (Denmark)

    Xu, Shangjin

    system – to simplify user interface development. VisTool allows user interface development without real programming. With VisTool a designer assembles visual objects (e.g. textboxes, ellipse, etc.) to visualize database contents. In VisTool, visual properties (e.g. color, position, etc.) can be formulas...... programming. However, in Software Engineering, software engineers who develop user interfaces do not follow it. In many cases, it is desirable to use graphical presentations, because a graphical presentation gives a better overview than text forms, and can improve task efficiency and user satisfaction....... However, it is more difficult to follow the classical usability approach for graphical presentation development. These difficulties result from the fact that designers cannot implement user interface with interactions and real data. We developed VisTool – a user interface and visualization development...

  10. Advanced remote handling for future applications: The advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  11. HI-VISUAL: A language supporting visual interaction in programming

    International Nuclear Information System (INIS)

    Monden, N.; Yoshino, Y.; Hirakawa, M.; Tanaka, M.; Ichikawa, T.

    1984-01-01

    This paper presents a language named HI-VISUAL which supports visual interaction in programming. Following a brief description of the language concept, the icon semantics and language primitives characterizing HI-VISUAL are extensively discussed. HI-VISUAL also shows a system extensively discussed. HI-VISUAL also shows a system extendability providing the possibility of organizing a high level application system as an integration of several existing subsystems, and will serve to developing systems in various fields of applications supporting simple and efficient interactions between programmer and computer. In this paper, the authors have presented a language named HI-VISUAL. Following a brief description of the language concept, the icon semantics and language primitives characterizing HI-VISUAL were extensively discussed

  12. ALPS - advanced limiter-divertor plasma-facing systems

    International Nuclear Information System (INIS)

    Allain, J. P.; Bastasz, R.; Brooks, J. N.; Evans, T.; Hassanein, A.; Luckhardt, S.; Maingi, R.; Mattas, R. F.; McCarthy, K.; Mioduszewski, P.; Mogahed, E.; Moir, R.; Molokov, S.; Morely, N.; Nygren, R.; Reed, C.; Rognlien, T.; Ruzic, D.; Sviatoslavsky, I.; Sze, D.; Tillack, M.; Ulrickson, M.; Wade, P. M.; Wong, C.; Wooley, R.

    1999-01-01

    The Advanced Limiter-divertor Plasma-facing Systems (ALPS) program was initiated in order to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/divertor systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m 2 ,elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency (approximately40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies. The current emphasis for the work is on the effects of free surface liquids on plasma edge performance

  13. An architecture design and realization of the industrial CT visualization system

    International Nuclear Information System (INIS)

    Gao Long; Li Zheng; Zhang Li; Gao Wenhuan; Kang Kejun

    2003-01-01

    The Industrial Computer Tomography (ICT) is an ideal and powerful technique for inspecting and evaluating the integrity of many large and complex structures. Three dimension visualization system is the main component of ICT inspection. This paper gives an architecture design and the realization of ICT visualization system on the basis of the system analysis. A new adaptive precision algorithm is brought out to solve the main problem of interactive speed. The paper also discussed the future research intention

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  15. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  16. Sensory system plasticity in a visually specialized, nocturnal spider.

    Science.gov (United States)

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  17. Advanced analysis of free visual exploration patterns in schizophrenia

    Directory of Open Access Journals (Sweden)

    Andreas eSprenger

    2013-10-01

    Full Text Available Background: Visual scanpath analyses provide important information about attention allocation and attention shifting during visual exploration of social situations. This study investigated whether patients with schizophrenia simply show restricted free visual exploration behaviour reflected by reduced saccade frequency and increased fixation duration or whether patients use qualitatively different exploration strategies than healthy controls. Methods: Scanpaths of 32 patients with schizophrenia and age-matched 33 healthy controls were assessed while participants freely explored six photos of daily life situations (20 seconds/photo evaluated for cognitive complexity and emotional strain. Using fixation and saccade parameters, we compared temporal changes in exploration behaviour, cluster analyses, attentional landscapes and analyses of scanpath similarities between both groups. Results: We found fewer fixation clusters, longer fixation durations within a cluster, fewer changes between clusters, and a greater increase of fixation duration over time in patients compared to controls. Scanpath patterns and attentional landscapes in patients also differed significantly from those of controls. Generally, cognitive complexity and emotional strain had significant effects on visual exploration behaviour. This effect was similar in both groups as were physical properties of fixation locations.Conclusions: Longer attention allocation to a given feature in a scene and less attention shifts in patients suggest a more focal processing mode compared to a more ambient exploration strategy in controls. These visual exploration alterations were present in patients independently of cognitive complexity, emotional strain or physical properties of visual cues implying that they represent a rather general deficit. Despite this impairment, patients were able to adapt their scanning behaviour to changes in cognitive complexity and emotional strain similar to controls.

  18. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  19. Teach yourself visually complete OS X Mavericks

    CERN Document Server

    McFedries, Paul

    2013-01-01

    A deep dive into OS X Mavericks If you want to quickly cover the basics of Apple's new operating system, OS X Mavericks, and then delve deeper into the topic, this is the book for you. Using clear, step-by-step screenshots, Teach Yourself VISUALLY Complete OS X Mavericks shows you how to tackle not only beginning but also intermediate and more advanced functions. Two-page, side-by-side lessons break big topics into smaller bits, and you'll find helpful sidebars with plenty of practical tips and tricks. If you're a visual learner looking for enhanced coverage of OS X Mavericks, this new guide

  20. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  1. Graphics and visualization principles & algorithms

    CERN Document Server

    Theoharis, T; Platis, Nikolaos; Patrikalakis, Nicholas M

    2008-01-01

    Computer and engineering collections strong in applied graphics and analysis of visual data via computer will find Graphics & Visualization: Principles and Algorithms makes an excellent classroom text as well as supplemental reading. It integrates coverage of computer graphics and other visualization topics, from shadow geneeration and particle tracing to spatial subdivision and vector data visualization, and it provides a thorough review of literature from multiple experts, making for a comprehensive review essential to any advanced computer study.-California Bookw

  2. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  3. Advanced Traveler Information Systems (ATIS) 2.0 Precursor System: Final Report

    Science.gov (United States)

    2018-03-01

    Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...

  4. Wearable Smart System for Visually Impaired People

    OpenAIRE

    Ali Jasim Ramadhan

    2018-01-01

    In this paper, we present a wearable smart system to help visually impaired persons (VIPs) walk by themselves through the streets, navigate in public places, and seek assistance. The main components of the system are a microcontroller board, various sensors, cellular communication and GPS modules, and a solar panel. The system employs a set of sensors to track the path and alert the user of obstacles in front of them. The user is alerted by a sound emitted through a buzzer and by vibrations o...

  5. Swim pacemakers in box jellyfish are modulated by the visual input

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Bielecki, Jan

    2008-01-01

    A major part of the cubozoan central nervous system is situated in the eye-bearing rhopalia. One of the neuronal output channels from the rhopalia carries a swim pacemaker signal, which has a one-to-one relation with the swim contractions of the bell shaped body. Given the advanced visual system...... of box jellyfish and that the pacemaker signal originates in the vicinity of these eyes, it seems logical to assume that the pacemakers are modified by the visual input. Here, the firing frequency and distribution of inter-signal intervals (ISIs) of single pacemakers are examined in the Caribbean box...

  6. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  7. Visual Inertial Navigation and Calibration

    OpenAIRE

    Skoglund, Martin A.

    2011-01-01

    Processing and interpretation of visual content is essential to many systems and applications. This requires knowledge of how the content is sensed and also what is sensed. Such knowledge is captured in models which, depending on the application, can be very advanced or simple. An application example is scene reconstruction using a camera; if a suitable model of the camera is known, then a model of the scene can be estimated from images acquired at different, unknown, locations, yet, the qual...

  8. Status of advanced UT systems for the nuclear industry

    International Nuclear Information System (INIS)

    Behravesh, M.; Avioli, M.; Dau, G.; Liu, S.

    1987-01-01

    An advanced ultrasonic testing (UT) system is a configuration of hardware that includes some type of computer. The computer may be hardwired to perform specific functions or have appropriate software. It may typically be used for data acquisition, signal processing, image generation, pattern recognition and data analysis. Additionally, advanced systems have data storage and are, therefore, different from the standard transducer-pulser/receiver systems that rely on human filtering and written documentation of the filtered data. The number of systems becoming commercially available is growing each year. The NDE managers of utilities, the end users of these systems, are often faced with the decision as to What system is right for my inspection problem? Is an advanced UT system a cost effective way to go? To help this group, the Electric Power Research Institute (EPRI) has initiated a project whose end product will be a Utility NDE Manager's Guide to Advanced UT Systems. A short summary of the available data to date presented here. Tables are used to give an immediate overview of capabilities

  9. Software engineering methods for the visualization in the modeling of radiation imaging system

    International Nuclear Information System (INIS)

    Tang Jie; Zhang Li; Chen Zhiqiang; Zhao Ziran; XiaoYongshun

    2003-01-01

    This thesis has accomplished the research in visualization in the modeling of radiation imaging system, and a visualize software was developed using OpenGL and Visual C++ tools. It can load any model files, which are made by the user for every component of the radiation image system, and easily manages the module dynamic link library (DLL) designed by the user for possible movements of those components

  10. Advanced public transportation systems : evaluation guidelines

    Science.gov (United States)

    1994-01-01

    The Federal Transit Administration has developed the Advanced Public Transportation Systems (APTS) Program which is an integral part of the overall U.S. DOT Intelligent Vehicle Highway Systems (IVHS) effort. A major aim of the APTS Program is to prom...

  11. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  12. An Indoor Navigation System for the Visually Impaired

    Directory of Open Access Journals (Sweden)

    Luis A. Guerrero

    2012-06-01

    Full Text Available Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user’s trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  13. An indoor navigation system for the visually impaired.

    Science.gov (United States)

    Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  14. Online Voting System Based on Image Steganography and Visual Cryptography

    Directory of Open Access Journals (Sweden)

    Biju Issac

    2017-01-01

    Full Text Available This paper discusses the implementation of an online voting system based on image steganography and visual cryptography. The system was implemented in Java EE on a web-based interface, with MySQL database server and Glassfish application server as the backend. After considering the requirements of an online voting system, current technologies on electronic voting schemes in published literature were examined. Next, the cryptographic and steganography techniques best suited for the requirements of the voting system were chosen, and the software was implemented. We have incorporated in our system techniques like the password hashed based scheme, visual cryptography, F5 image steganography and threshold decryption cryptosystem. The analysis, design and implementation phase of the software development of the voting system is discussed in detail. We have also used a questionnaire survey and did the user acceptance testing of the system.

  15. A new tool for virtual scientific and autostereoscopic visualization of EAST

    International Nuclear Information System (INIS)

    Li, Dan; Xiao, B.J.; Xia, J.Y.; Wang, K.R.; Chen, S.L.; Luo, W.L.

    2016-01-01

    Highlights: • 3D effect of the virtual EAST has been improved and data visualization has been realized in the ASEAST system. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, data visualization and model visualization. • QT libraries are adopted to realize the cross-platform and impressive graphical interface. • In order to manage the models, the web-based model manager system is constructed. - Abstract: The Experimental Advanced Superconducting Tokamak (EAST) Device began operation in 2006. EAST visualization work has been paid more and more attention for simulating its running state and inner structure. The VEAST system had been developed to display the 3D model of EAST facility and some diagnostic data based on Java3D. Compared with the VEAST system, a new system named autosterescopic scientific EAST (ASEAST) using C/S (Client/Server) structure in combination with the technology of OpenGL and an open-source software system for 3D computer graphics and visualization called VTK (Visualization Toolkit) and the Qt5 libraries for the graphical user interface (GUI) has been developed to improve the 3D effect of the virtual EAST and visualize the experimental data. The ASEAST can be used to get access to the information of EAST and physical properties. In addition, as a general system, ASEAST supports a wide variety of 3D formats. The visualization result can be output in the corresponding format of the input. In order to improve the rendering speed, we used the classic QEM algorithm to simplify the models in preprocess stage. As for the 3D effect, we made an investigation and the survey revealed that the system had good 3D effect.

  16. A new tool for virtual scientific and autostereoscopic visualization of EAST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J.; Xia, J.Y.; Wang, K.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Chen, S.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Luo, W.L. [709th Research lnstitute, China Shipbuilding lndustry Corporation, Wuhan, Hubei (China)

    2016-11-15

    Highlights: • 3D effect of the virtual EAST has been improved and data visualization has been realized in the ASEAST system. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, data visualization and model visualization. • QT libraries are adopted to realize the cross-platform and impressive graphical interface. • In order to manage the models, the web-based model manager system is constructed. - Abstract: The Experimental Advanced Superconducting Tokamak (EAST) Device began operation in 2006. EAST visualization work has been paid more and more attention for simulating its running state and inner structure. The VEAST system had been developed to display the 3D model of EAST facility and some diagnostic data based on Java3D. Compared with the VEAST system, a new system named autosterescopic scientific EAST (ASEAST) using C/S (Client/Server) structure in combination with the technology of OpenGL and an open-source software system for 3D computer graphics and visualization called VTK (Visualization Toolkit) and the Qt5 libraries for the graphical user interface (GUI) has been developed to improve the 3D effect of the virtual EAST and visualize the experimental data. The ASEAST can be used to get access to the information of EAST and physical properties. In addition, as a general system, ASEAST supports a wide variety of 3D formats. The visualization result can be output in the corresponding format of the input. In order to improve the rendering speed, we used the classic QEM algorithm to simplify the models in preprocess stage. As for the 3D effect, we made an investigation and the survey revealed that the system had good 3D effect.

  17. Customizable Time-Oriented Visualizations

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin; Pantazos, Kostas; Lauesen, Søren

    2012-01-01

    Most commercial visualization tools support an easy and quick creation of conventional time-oriented visualizations such as line charts, but customization is limited. In contrast, some academic visualization tools and programming languages support the creation of some customizable time......-oriented visualizations but it is time consuming and hard. To combine efficiency, the effort required to develop a visualization, and customizability, the ability to tailor a visualization, we developed time-oriented building blocks that address the specifics of time (e.g. linear vs. cyclic or point-based vs. interval......-based) and consist of inner customizable parts (e.g. ticks). A combination of the time-oriented and other primitive graphical building blocks allowed the creation of several customizable advanced time-oriented visualizations. The appearance and behavior of the blocks are specified using spreadsheet-like formulas. We...

  18. A General Provincial Situation Visualization System Based on iPhone Operating System of Shandong Province

    Science.gov (United States)

    Ye, Z.; Xiang, H.

    2014-04-01

    The paper discusses the basic principles and the problem solutions during the design and implementation of the mobile GIS system, and base on the research result, we developed the General Provincial Situation Visualization System Based on iOS of Shandong Province. The system is developed in the Objective-C programming language, and use the ArcGIS Runtime SDK for IOS as the development tool to call the "World-map Shandong" services to implement the development of the General Provincial Situation Visualization System Based on iOS devices. The system is currently available for download in the Appstore and is chosen as the typical application case of ESRI China ArcGIS API for iOS.

  19. Advanced Controllers for Electromechanical Motion Systems

    NARCIS (Netherlands)

    Nguyen, Duy Cuong

    2008-01-01

    The aim of this research is to develop advanced controllers for electromechanical motion systems. In order to increase efficiency and reliability, these control systems are required to achieve high performance and robustness in the face of model uncertainty, measurement noise, and reproducible

  20. Subjective visual vertical assessment with mobile virtual reality system

    Directory of Open Access Journals (Sweden)

    Ingrida Ulozienė

    Full Text Available Background and objective: The subjective visual vertical (SVV is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. Materials and methods: In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions – static, dynamic and an immersive real-world (“boat in the sea” SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. Results: There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two

  1. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Liu, Cheng [ORNL; Thomas, Neil [ORNL; Bhaduri, Budhendra L [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK)

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  2. Advanced nuclear control and protection system ANCAP-80

    International Nuclear Information System (INIS)

    Asai, Takashi; Okano, Michihiko; Ishibashi, Kengo; Hasegawa, Masakoto; Fukuda, Hiroyoshi; Hosomichi, Renichi.

    1983-01-01

    Advanced reactor protection systems were developed to improve operational reliability and availability and to ease the burden of operators of Mitsubishi PWR Nuclear Power Stations. (Called ANCAP-80; Advanced Nuclear Control And Protection System) For the PWR plants now being planned and in future plans, Mitsubishi will adopt these systems with the following functional features; (1) Four channel protection logic, (2) Automatic bypass logic, (3) Automatic test provision, (4) Optical isolators. (author)

  3. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  4. Human visual system automatically represents large-scale sequential regularities.

    Science.gov (United States)

    Kimura, Motohiro; Widmann, Andreas; Schröger, Erich

    2010-03-04

    Our brain recordings reveal that large-scale sequential regularities defined across non-adjacent stimuli can be automatically represented in visual sensory memory. To show that, we adopted an auditory paradigm developed by Sussman, E., Ritter, W., and Vaughan, H. G. Jr. (1998). Predictability of stimulus deviance and the mismatch negativity. NeuroReport, 9, 4167-4170, Sussman, E., and Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory. NeuroReport, 16, 1519-1523 to the visual domain by presenting task-irrelevant infrequent luminance-deviant stimuli (D, 20%) inserted among task-irrelevant frequent stimuli being of standard luminance (S, 80%) in randomized (randomized condition, SSSDSSSSSDSSSSD...) and fixed manners (fixed condition, SSSSDSSSSDSSSSD...). Comparing the visual mismatch negativity (visual MMN), an event-related brain potential (ERP) index of memory-mismatch processes in human visual sensory system, revealed that visual MMN elicited by deviant stimuli was reduced in the fixed compared to the randomized condition. Thus, the large-scale sequential regularity being present in the fixed condition (SSSSD) must have been represented in visual sensory memory. Interestingly, this effect did not occur in conditions with stimulus-onset asynchronies (SOAs) of 480 and 800 ms but was confined to the 160-ms SOA condition supporting the hypothesis that large-scale regularity extraction was based on perceptual grouping of the five successive stimuli defining the regularity. 2010 Elsevier B.V. All rights reserved.

  5. Reading impairment in schizophrenia: dysconnectivity within the visual system.

    Science.gov (United States)

    Vinckier, Fabien; Cohen, Laurent; Oppenheim, Catherine; Salvador, Alexandre; Picard, Hernan; Amado, Isabelle; Krebs, Marie-Odile; Gaillard, Raphaël

    2014-01-01

    Patients with schizophrenia suffer from perceptual visual deficits. It remains unclear whether those deficits result from an isolated impairment of a localized brain process or from a more diffuse long-range dysconnectivity within the visual system. We aimed to explore, with a reading paradigm, the functioning of both ventral and dorsal visual pathways and their interaction in schizophrenia. Patients with schizophrenia and control subjects were studied using event-related functional MRI (fMRI) while reading words that were progressively degraded through word rotation or letter spacing. Reading intact or minimally degraded single words involves mainly the ventral visual pathway. Conversely, reading in non-optimal conditions involves both the ventral and the dorsal pathway. The reading paradigm thus allowed us to study the functioning of both pathways and their interaction. Behaviourally, patients with schizophrenia were selectively impaired at reading highly degraded words. While fMRI activation level was not different between patients and controls, functional connectivity between the ventral and dorsal visual pathways increased with word degradation in control subjects, but not in patients. Moreover, there was a negative correlation between the patients' behavioural sensitivity to stimulus degradation and dorso-ventral connectivity. This study suggests that perceptual visual deficits in schizophrenia could be related to dysconnectivity between dorsal and ventral visual pathways. © 2013 Published by Elsevier Ltd.

  6. Visualizing Terrestrial and Aquatic Systems in 3D - in IEEE VisWeek 2014

    Science.gov (United States)

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  7. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    Science.gov (United States)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  8. Thoracic ROM measurement system with visual bio-feedback: system design and biofeedback evaluation.

    Science.gov (United States)

    Ando, Takeshi; Kawamura, Kazuya; Fujitani, Junko; Koike, Tomokazu; Fujimoto, Masashi; Fujie, Masakatsu G

    2011-01-01

    Patients with diseases such as chronic obstructive pulmonary disease (COPD) need to improve their thorax mobility. Thoracic ROM is one of the simplest and most useful indexes to evaluate the respiratory function. In this paper, we have proposed the prototype of a simple thoracic ROM measurement system with real-time visual bio-feedback in the chest expansion test. In this system, the thoracic ROM is measured using a wire-type linear encoder whose wire is wrapped around the thorax. In this paper, firstly, the repeatability and reliability of measured thoracic ROM was confirmed as a first report of the developed prototype. Secondly, we analyzed the effect of the bio-feedback system on the respiratory function. The result of the experiment showed that it was easier to maintain a large and stable thoracic ROM during deep breathing by using the real-time visual biofeedback system of the thoracic ROM.

  9. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  10. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  11. Advanced Information Processing System (AIPS)

    Science.gov (United States)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  12. Advanced technologies, systems, and applications

    CERN Document Server

    Avdaković, Samir

    2017-01-01

    This volume spans a wide range of technical disciplines and technologies, including complex systems, biomedical engineering, electrical engineering, energy, telecommunications, mechanical engineering, civil engineering, and computer science. The papers included in this volume were presented at the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT), held in Neum, Bosnia and Herzegovina on June 26 and 27, 2016. This highly interdisciplinary volume is devoted to various aspects and types of systems. Systems thinking is crucial for successfully building and understanding man-made, natural, and social systems. .

  13. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  14. The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations.

    Science.gov (United States)

    Kim, Jonghyeon; Dally, Leonard G; Ederer, Fred; Gaasterland, Douglas E; VanVeldhuisen, Paul C; Blackwell, Beth; Sullivan, E Kenneth; Prum, Bruce; Shafranov, George; Beck, Allen; Spaeth, George L

    2004-11-01

    To determine the least worsening of a visual field (VF) and the least number of confirming tests needed to identify progression of glaucomatous VF defects. Cohort study of participants in a clinical trial. Seven hundred fifty-two eyes of 565 patients with advanced glaucoma. Visual field tests were quantified with the Advanced Glaucoma Intervention Study (AGIS) VF defect score and the Humphrey Field Analyzer mean deviation (MD). Follow-up was 8 to 13 years. Two measures based on the AGIS VF defect score: (1) sustained decrease of VF (SDVF), a worsening from baseline by 2 (alternatively, 3 or 4) or more units and sustained for 2 (alternatively, 3) consecutive 6-month visits and (2) after the occurrence of SDVF, the average percent of eyes with worsening by 2 (alternatively, 3 or 4) or more units from baseline. Two similar measures based on MD. Based on the original AGIS criteria for SDVF (a worsening of 4 units in the AGIS score sustained during 3 consecutive 6-month visits), 31% of eyes had an SDVF. The percent of eyes with a sustained event increases by approximately 10% when either the minimum number of units of field loss or the minimum number of 6-month visits during which the loss is sustained decreases by 1. During 3 years of follow-up after a sustained event, a worsening of at least 2 units was found in 72% of eyes that had a 2-visit sustained event. The same worsening was found in 84% of eyes that had a 3-visit sustained event. Through the next 10 years after a sustained event, based on worsening of 2, 3, or 4 units at 2 or 3 consecutive tests, the loss reoccurred, on average, in >/=75% of study eyes. Results for MD are similar. In patients with advanced glaucoma, a single confirmatory test 6 months after a VF worsening indicates with at least 72% probability a persistent defect when the worsening is defined by at least 2 units of AGIS score or by at least 2 decibels of MD. When the number of confirmatory tests is increased from 1 to 2, the percentage of

  15. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    Science.gov (United States)

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  16. Exploring the connectome: Petascale volume visualization of microscopy data streams

    KAUST Repository

    Beyer, Johanna; Hadwiger, Markus; Al-Awami, Ali K.; Jeong, Wonki; Kasthuri, Narayanan; Lichtman, Jeff W M D; Pfister, Hanspeter

    2013-01-01

    Recent advances in high-resolution microscopy let neuroscientists acquire neural-tissue volume data of extremely large sizes. However, the tremendous resolution and the high complexity of neural structures present big challenges to storage, processing, and visualization at interactive rates. A proposed system provides interactive exploration of petascale (petavoxel) volumes resulting from high-throughput electron microscopy data streams. The system can concurrently handle multiple volumes and can support the simultaneous visualization of high-resolution voxel segmentation data. Its visualization-driven design restricts most computations to a small subset of the data. It employs a multiresolution virtual-memory architecture for better scalability than previous approaches and for handling incomplete data. Researchers have employed it for a 1-teravoxel mouse cortex volume, of which several hundred axons and dendrites as well as synapses have been segmented and labeled. © 1981-2012 IEEE.

  17. Exploring the connectome: Petascale volume visualization of microscopy data streams

    KAUST Repository

    Beyer, Johanna

    2013-07-01

    Recent advances in high-resolution microscopy let neuroscientists acquire neural-tissue volume data of extremely large sizes. However, the tremendous resolution and the high complexity of neural structures present big challenges to storage, processing, and visualization at interactive rates. A proposed system provides interactive exploration of petascale (petavoxel) volumes resulting from high-throughput electron microscopy data streams. The system can concurrently handle multiple volumes and can support the simultaneous visualization of high-resolution voxel segmentation data. Its visualization-driven design restricts most computations to a small subset of the data. It employs a multiresolution virtual-memory architecture for better scalability than previous approaches and for handling incomplete data. Researchers have employed it for a 1-teravoxel mouse cortex volume, of which several hundred axons and dendrites as well as synapses have been segmented and labeled. © 1981-2012 IEEE.

  18. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  19. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  20. The value of filmed interviews: issues of visualization, visual transcrips and the reading of visual texts

    NARCIS (Netherlands)

    Witteveen, L.; Lie, R.

    2013-01-01

    The increased access to video technology advances the use of visual methodologies in research. Following these developments, researchers are confronted with new challenges. Video recordings of interviews, as compared to audio recordings, are gaining interest in qualitative field research in the

  1. Computer visualization for enhanced operator performance for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Simon, B.H.; Raghavan, R.

    1993-01-01

    The operators of nuclear power plants are presented with an often uncoordinated and arbitrary array of displays and controls. Information is presented in different formats and on physically dissimilar instruments. In an accident situation, an operator must be very alert to quickly diagnose and respond to the state of the plant as represented by the control room displays. Improvements in display technology and increased automation have helped reduce operator burden; however, too much automation may lead to operator apathy and decreased efficiency. A proposed approach to the human-system interface uses modern graphics technology and advances in computational power to provide a visualization or ''virtual reality'' framework for the operator. This virtual reality comprises a simulated perception of another existence, complete with three-dimensional structures, backgrounds, and objects. By placing the operator in an environment that presents an integrated, graphical, and dynamic view of the plant, his attention is directly engaged. Through computer simulation, the operator can view plant equipment, read local displays, and manipulate controls as if he were in the local area. This process not only keeps an operator involved in plant operation and testing procedures, but also reduces personnel exposure. In addition, operator stress is reduced because, with realistic views of plant areas and equipment, the status of the plant can be accurately grasped without interpreting a large number of displays. Since a single operator can quickly ''visit'' many different plant areas without physically moving from the control room, these techniques are useful in reducing labor requirements for surveillance and maintenance activities. This concept requires a plant dynamic model continuously updated via real-time process monitoring. This model interacts with a three-dimensional, solid-model architectural configuration of the physical plant

  2. Recent Advances in Geospatial Visualization with the New Google Earth

    Science.gov (United States)

    Anderson, J. C.; Poyart, E.; Yan, S.; Sargent, R.

    2017-12-01

    Google Earth's detailed, world-wide imagery and terrain data provide a rich backdrop for geospatial visualization at multiple scales, from global to local. The Keyhole Markup Language (KML) is an open standard that has been the primary way for users to author and share data visualizations in Google Earth. Despite its ease of use and flexibility for relatively small amounts of data, users can quickly run into difficulties and limitations working with large-scale or time-varying datasets using KML in Google Earth. Recognizing these challenges, we present our recent work toward extending Google Earth to be a more powerful data visualization platform. We describe a new KML extension to simplify the display of multi-resolution map tile pyramids - which can be created by analysis platforms like Google Earth Engine, or by a variety of other map tile production pipelines. We also describe how this implementation can pave the way to creating novel data visualizations by leveraging custom graphics shaders. Finally, we present our investigations into native support in Google Earth for data storage and transport formats that are well-suited for big raster and vector data visualization. Taken together, these capabilities make it easier to create and share new scientific data visualization experiences using Google Earth, and simplify the integration of Google Earth with existing map data products, services, and analysis pipelines.

  3. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  4. Toward a visual cognitive system using active top-down saccadic control

    NARCIS (Netherlands)

    LaCroix, J.; Postma, E.; van den Herik, J.; Murre, J.

    2008-01-01

    The saccadic selection of relevant visual input for preferential processing allows the efficient use of computational resources. Based on saccadic active human vision, we aim to develop a plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial steps

  5. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and

  6. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors

    International Nuclear Information System (INIS)

    Martel, Mary Kaye; Sandler, Howard M.; Cornblath, Wayne T.; Marsh, Lon H.; Hazuka, Mark B.; Roa, Wilson H.; Fraass, Benedict A.; Lichter, Allen S.

    1997-01-01

    Purpose: The purpose of the present work was to relate dose and volume information to complication data for visual pathway structures in patients with advanced paranasal sinus tumors. Methods and Materials: Three-dimensional (3D) dose distributions for chiasm, optic nerve, and retina were calculated and analyzed for 20 patients with advanced paranasal sinus malignant tumors. 3D treatment planning with beam's eye view capability was used to design beam and block arrangements, striving to spare the contralateral orbit (to lessen the chance of unilateral blindness) and frequently the ipsilateral orbit (to help prevent bilateral blindness). Point doses, dose-volume histogram analysis, and normal tissue complication probability (NTCP) calculations were performed. Published tolerance doses that indicate significant risk of complications were used as guidelines for analysis of the 3D dose distributions. Results: Point doses, percent volume exceeding a specified published tolerance dose, and NTCP calculations are given in detail for patients with complications versus patients without complications. Two optic nerves receiving maximum doses below the published tolerance dose sustained damage (mild vision loss). Three patients (of 13) without optic nerve sparing and/or chiasm sparing had moderate or severe vision loss. Complication data, including individual patient analysis to estimate overall risk for loss of vision, are given. Conclusion: 3D treatment planning techniques were used successfully to provide bilateral sparing of the globe for most patients. It was more difficult to spare the optic nerves, especially on the ipsilateral side, when prescription dose exceeded the normal tissue tolerance doses. NTCP calculations may be useful in assessing complication risk better than point dose tolerance criteria for the chiasm, optic nerve, and retina. It is important to assess the overall risk of blindness for the patient in addition to the risk for individual visual pathway

  7. Visual Data Analysis in the TJ-II Remote Participation System

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, E.; Porta, A.; Pereira, A.; Vega, J.

    2007-07-20

    A general-purpose data visualization tool has been developed to provide the TJ-II remote participation system with the same visualization capabilities already available in the TJ-II local environment. The visualization software has been developed in the Java language. It provides a user-friendly graphical interface that permits users on-demand plotting of time traces in a very flexible manner. In order to facilitate on-line tracking of experimental operation, the application also allows automatic refreshing of data. This software has been integrated into the TJ-II remote participation system distributed environment. Data are accessed remotely using web technologies and HTTP protocol and are transferred in a compressed format, which reduces bandwidth requirements. Both metadata and binary compressed data are transported in multi part messages. Message oriented middle ware software is used to distribute information on-line, in particular notifications of data availability for automatic data refreshing or local events. Plot layouts can be stored in a centralized database for subsequent recovery from anywhere. Finally, this software is integrated into the general security framework provided by the PAPI system. (Author) 16 refs.

  8. Visual Data Analysis in the TJ-II Remote Participation System

    International Nuclear Information System (INIS)

    Sanchez, E.; Porta, A.; Pereira, A.; Vega, J.

    2007-01-01

    A general-purpose data visualization tool has been developed to provide the TJ-II remote participation system with the same visualization capabilities already available in the TJ-II local environment. The visualization software has been developed in the Java language. It provides a user-friendly graphical interface that permits users on-demand plotting of time traces in a very flexible manner. In order to facilitate on-line tracking of experimental operation, the application also allows automatic refreshing of data. This software has been integrated into the TJ-II remote participation system distributed environment. Data are accessed remotely using web technologies and HTTP protocol and are transferred in a compressed format, which reduces bandwidth requirements. Both metadata and binary compressed data are transported in multi part messages. Message oriented middle ware software is used to distribute information on-line, in particular notifications of data availability for automatic data refreshing or local events. Plot layouts can be stored in a centralized database for subsequent recovery from anywhere. Finally, this software is integrated into the general security framework provided by the PAPI system. (Author) 16 refs

  9. Visual Data Analysis in the TJ-II Remote Participation System

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, E.; Portas, A.; Pereira, A.; Vega, J.

    2006-07-01

    A general-purpose data visualization tool has been developed to provide the TJ-II remote participation system with the same visualization capabilities already available in the TJ-II local environment. The visualization software has been developed in the Java language. It provides a user-friendly graphical interface that permits users on-demand plotting of time traces in a very flexible manner. In order to facilitate on-line tracking of experimental operation, the application also allows automatic refreshing of data. This software has been integrated into the TJ-II remote participation system distributed environment. Data are accessed remotely using web technologies and HTTP protocol and are transferred in a compressed format, which reduces bandwidth requirements. Both metadata and binary compressed data are transported in multipart messages. Message oriented middleware software is used to distribute information on-line, in particular notifications of data availability for automatic data refreshing or local events. Plot layouts can be stored in a centralized database for subsequent recovery from anywhere. Finally, this software is integrated into the general security framework provided by the PAPI system. (Author)

  10. Visual Data Analysis in the TJ-II Remote Participation System

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A.; Pereira, A.; Vega, J.

    2006-01-01

    A general-purpose data visualization tool has been developed to provide the TJ-II remote participation system with the same visualization capabilities already available in the TJ-II local environment. The visualization software has been developed in the Java language. It provides a user-friendly graphical interface that permits users on-demand plotting of time traces in a very flexible manner. In order to facilitate on-line tracking of experimental operation, the application also allows automatic refreshing of data. This software has been integrated into the TJ-II remote participation system distributed environment. Data are accessed remotely using web technologies and HTTP protocol and are transferred in a compressed format, which reduces bandwidth requirements. Both metadata and binary compressed data are transported in multipart messages. Message oriented middleware software is used to distribute information on-line, in particular notifications of data availability for automatic data refreshing or local events. Plot layouts can be stored in a centralized database for subsequent recovery from anywhere. Finally, this software is integrated into the general security framework provided by the PAPI system. (Author)

  11. Deep hierarchies in the primate visual cortex: what can we learn for computer vision?

    Science.gov (United States)

    Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz

    2013-08-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.

  12. Predicting the acceptance of advanced rider assistance systems.

    Science.gov (United States)

    Huth, Véronique; Gelau, Christhard

    2013-01-01

    The strong prevalence of human error as a crash causation factor in motorcycle accidents calls for countermeasures that help tackling this issue. Advanced rider assistance systems pursue this goal, providing the riders with support and thus contributing to the prevention of crashes. However, the systems can only enhance riding safety if the riders use them. For this reason, acceptance is a decisive aspect to be considered in the development process of such systems. In order to be able to improve behavioural acceptance, the factors that influence the intention to use the system need to be identified. This paper examines the particularities of motorcycle riding and the characteristics of this user group that should be considered when predicting the acceptance of advanced rider assistance systems. Founded on theories predicting behavioural intention, the acceptance of technologies and the acceptance of driver support systems, a model on the acceptance of advanced rider assistance systems is proposed, including the perceived safety when riding without support, the interface design and the social norm as determinants of the usage intention. Since actual usage cannot be measured in the development stage of the systems, the willingness to have the system installed on the own motorcycle and the willingness to pay for the system are analyzed, constituting relevant conditions that allow for actual usage at a later stage. Its validation with the results from user tests on four advanced rider assistance systems allows confirming the social norm and the interface design as powerful predictors of the acceptance of ARAS, while the extent of perceived safety when riding without support did not have any predictive value in the present study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  14. Visualization Techniques in Space and Atmospheric Sciences

    Science.gov (United States)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  15. Study of advanced fuel system concepts for commercial aircraft

    Science.gov (United States)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  16. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  17. Data-Driven Healthcare: Challenges and Opportunities for Interactive Visualization.

    Science.gov (United States)

    Gotz, David; Borland, David

    2016-01-01

    The healthcare industry's widespread digitization efforts are reshaping one of the largest sectors of the world's economy. This transformation is enabling systems that promise to use ever-improving data-driven evidence to help doctors make more precise diagnoses, institutions identify at risk patients for intervention, clinicians develop more personalized treatment plans, and researchers better understand medical outcomes within complex patient populations. Given the scale and complexity of the data required to achieve these goals, advanced data visualization tools have the potential to play a critical role. This article reviews a number of visualization challenges unique to the healthcare discipline.

  18. Route Descriptions : The Role of Intersection Type and Visual Clutter for Spatial Reference

    NARCIS (Netherlands)

    Baltaretu, A.A.; Krahmer, E.J.; Maes, Alfons

    2014-01-01

    New technological advances (e.g., Google Glasses) enable context aware pedestrian navigation systems to generate instructions making use of all (variable and stable) environmental information. We know little about how the visual surroundings influence the turn-by-turn production of pedestrian

  19. Telling the story of ancient coins by means of interactive RTI images visualization

    OpenAIRE

    Palma, Gianpaolo; Siotto, Eliana; Proesmans, Marc; Baldassarri, Monica; Baracchini, Clara; Batino, Sabrina; Scopigno, Roberto

    2012-01-01

    Methodologies for virtual examination of Cultural Heritage artifacts through Reflectance Transformation Imaging (RTI) are gaining interest. Although at the beginning this techniques were designed to aid Cultural Heritage specialists in the inspection and interpretation process, the recent advances of 3D web visualization platforms are increasing our capability to open this type of visual inspection to the ordinary public. We present the design and implementation of a system that provide the a...

  20. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  1. Central visual system of the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Crish, Samuel D; Dengler-Crish, Christine M; Catania, Kenneth C

    2006-02-01

    Naked mole-rats are fossorial rodents native to eastern Africa that spend their lives in extensive subterranean burrows where visual cues are poor. Not surprisingly, they have a degenerated eye and optic nerve, suggesting they have poor visual abilities. However, little is known about their central visual system. To investigate the organization of their central visual system, we injected a neuronal tracer into the eyes of naked mole-rats and mice to compare the neural structures mediating vision. We found that the superior colliculus and lateral geniculate nucleus were severely atrophied in the naked mole-rat. The olivary pretectal nucleus was reduced but still retained its characteristic morphology, possibly indicating a role in light detection. In addition, the suprachiasmatic nucleus is well innervated and resembles the same structure in other rodents. The naked mole-rat appears to have selectively lost structures that mediate form vision while retaining structures needed for minimal entrainment of circadian rhythms. Similar results have been reported for other mole-rat species. Taken together, these data suggest that light detection may still play an important role in the lives of these "blind" animals: most likely for circadian entrainment or setting seasonal rhythms.

  2. Design and implementation of visualization methods for the CHANGES Spatial Decision Support System

    Science.gov (United States)

    Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan

    2014-05-01

    The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison

  3. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  4. Advanced Green Micropropulsion System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima in collaboration with University of Washington is developing a high performance injection system for advanced green monopropellant AF-M315E micropropulsion...

  5. The Two Visual Systems Hypothesis: new challenges and insights from visual form agnosic patient DF

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2014-12-01

    Full Text Available Patient DF, who developed visual form agnosia following carbon monoxide poisoning, is still able to use vision to adjust the configuration of her grasping hand to the geometry of a goal object. This striking dissociation between perception and action in DF provided a key piece of evidence for the formulation of Goodale and Milner’s Two Visual Systems Hypothesis (TVSH. According to the TVSH, the ventral stream plays a critical role in constructing our visual percepts, whereas the dorsal stream mediates the visual control of action, such as visually guided grasping. In this review, we discuss recent studies of DF that provide new insights into the functional organization of the dorsal and ventral streams. We confirm recent evidence that DF has dorsal as well as ventral brain damage – and that her dorsal-stream lesions and surrounding atrophy have increased in size since her first published brain scan. We argue that the damage to DF’s dorsal stream explains her deficits in directing actions at targets in the periphery. We then focus on DF’s ability to accurately adjust her in-flight hand aperture to changes in the width of goal objects (grip scaling whose dimensions she cannot explicitly report. An examination of several studies of DF’s grip scaling under natural conditions reveals a modest though significant deficit. Importantly, however, she continues to show a robust dissociation between form vision for perception and form vision for action. We also review recent studies that explore the role of online visual feedback and terminal haptic feedback in the programming and control of her grasping. These studies make it clear that DF is no more reliant on visual or haptic feedback than are neurologically-intact individuals. In short, we argue that her ability to grasp objects depends on visual feedforward processing carried out by visuomotor networks in her dorsal stream that function in the much the same way as they do in neurologically

  6. Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?

    OpenAIRE

    Kruger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodriguez-Sanchez, Antonio J.; Wiskott, Laurenz

    2013-01-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition or vision-based navigation and manipulation. This article reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer ...

  7. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  8. User-assisted video segmentation system for visual communication

    Science.gov (United States)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  9. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  10. Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system

    Directory of Open Access Journals (Sweden)

    Kita M

    2018-02-01

    Full Text Available Mihori Kita, Yuki Mori, Sachiyo Hama Department of Ophthalmology, National Organization Kyoto Medical Center, Kyoto, Japan Purpose: To introduce a hybrid wide-angle viewing-endoscopic vitrectomy, which we have reported, using a 3D visualization system developed recently. Subjects and methods: We report a single center, retrospective, consecutive surgical case series of 113 eyes that underwent 25 G vitrectomy (rhegmatogenous retinal detachment or proliferative vitreoretinopathy, 49 eyes; epiretinal membrane, 18 eyes; proliferative diabetic retinopathy, 17 eyes; vitreous opacity or vitreous hemorrhage, 11 eyes; macular hole, 11 eyes; vitreomacular traction syndrome, 4 eyes; and luxation of intraocular lens, 3 eyes. Results: This system was successfully used to perform hybrid vitrectomy in the difficult cases, such as proliferative vitreoretinopathy and proliferative diabetic retinopathy. Conclusion: Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system appears to be a valuable and promising method for managing various types of vitreoretinal disease. Keywords: 25 G vitrectomy, endoscope, wide-angle viewing system, 3D visualization system, hybrid

  11. Radiation Counting System Software Using Visual Basic

    International Nuclear Information System (INIS)

    Nanda Nagara; Didi Gayani

    2009-01-01

    It has been created a Gamma Radiation Counting System using interface card, which paired with Personal Computer (PC) and operated by the Visual Basic program. The program was set through varied menu selections such as ”Multi Counting” , ”Counting and Record” and ”View Data”. An interface card for data acquisition was formed by using AMD9513 components as a counter and timer which can be programmed. This counting system was tested and used in waste facility in PTNBR and the result is quite good. (author)

  12. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction

    Directory of Open Access Journals (Sweden)

    Geoff Boeing

    2016-11-01

    Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.

  13. Aurally Aided Visual Search Performance Comparing Virtual Audio Systems

    DEFF Research Database (Denmark)

    Larsen, Camilla Horne; Lauritsen, David Skødt; Larsen, Jacob Junker

    2014-01-01

    Due to increased computational power, reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between a HRTF enhanced audio system (3D) and an...... with white dots. The results indicate that 3D audio yields faster search latencies than panning audio, especially with larger amounts of distractors. The applications of this research could fit virtual environments such as video games or virtual simulations.......Due to increased computational power, reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between a HRTF enhanced audio system (3D...

  14. Aurally Aided Visual Search Performance Comparing Virtual Audio Systems

    DEFF Research Database (Denmark)

    Larsen, Camilla Horne; Lauritsen, David Skødt; Larsen, Jacob Junker

    2014-01-01

    Due to increased computational power reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between an HRTF enhanced audio system (3D) and an...... with white dots. The results indicate that 3D audio yields faster search latencies than panning audio, especially with larger amounts of distractors. The applications of this research could fit virtual environments such as video games or virtual simulations.......Due to increased computational power reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between an HRTF enhanced audio system (3D...

  15. Molecular simulations and visualization: introduction and overview.

    Science.gov (United States)

    Hirst, Jonathan D; Glowacki, David R; Baaden, Marc

    2014-01-01

    Here we provide an introduction and overview of current progress in the field of molecular simulation and visualization, touching on the following topics: (1) virtual and augmented reality for immersive molecular simulations; (2) advanced visualization and visual analytic techniques; (3) new developments in high performance computing; and (4) applications and model building.

  16. Reading wiring diagrams made easier for maintenance operators: contribution from research in visual attention and visual search; Aide a la lecture des schemas electriques pour le depannage: apport de la recherche sur l`attention visuelle

    Energy Technology Data Exchange (ETDEWEB)

    Ponthieu, L; Wolfe, J M

    1994-07-01

    This work has been carried out while the author was visiting the Visual Psychophysics lab at the Center for Ophthalmic Research, Harvard Medical School. The general framework is the design of a wiring diagrams visualization system for maintenance operators in electric plants. This study concentrates on how knowledge and experimental techniques from visual attention can help this goal. From this standpoint, the visualization system must best exploit the human visual system abilities. As electronic databases containing all the diagrams will soon be available, it is important to think in advance the display techniques. Presently, maintenance operators favor working with paper printouts even where such databases are already available. The study shows why such an approach is valuable for the design of a display that fits the operator`s tasks. Beyond that, this work has been a mean to learn the experimental techniques of cognitive sciences in an applied frame. (authors). 9 figs., 5 annexes.

  17. Modern Methods of Multidimensional Data Visualization: Analysis, Classification, Implementation, and Applications in Technical Systems

    Directory of Open Access Journals (Sweden)

    I. K. Romanova

    2016-01-01

    Full Text Available The article deals with theoretical and practical aspects of solving the problem of visualization of multidimensional data as an effective means of multivariate analysis of systems. Several classifications are proposed for visualization techniques, according to data types, visualization objects, the method of transformation of coordinates and data. To represent classification are used charts with links to the relevant work. The article also proposes two classifications of modern trends in display technology, including integration of visualization techniques as one of the modern trends of development, along with the introduction of interactive technologies and the dynamics of development processes. It describes some approaches to the visualization problem, which are concerned with fulfilling the needs. The needs are generated by the relevant tasks such as information retrieval in global networks, development of bioinformatics, study and control of business processes, development of regions, etc. The article highlights modern visualization tools, which are capable of improving the efficiency of the multivariate analysis and searching for solutions in multi-objective optimization of technical systems, but are not very actively used for such studies. These are horizontal graphs, graphics "quantile-quantile", etc. The paper proposes to use Choropleth cards traditionally used in cartography for simultaneous presentation of the distribution parameters of several criteria in the space. It notes that visualizations of graphs in network applications can be more actively used to describe the control system. The article suggests using the heat maps to provide graphical representation of the sensitivity of the system quality criteria under variations of options (multivariate analysis of technical systems. It also mentions that it is useful to extend the supervising heat maps to the task of estimating quality of identify in constructing system models. A

  18. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  19. NATO Advanced Research Institute on Health Services Systems

    CERN Document Server

    Werff, Albert; Hirsch, Gary; Barnard, Keith

    1984-01-01

    The Advanced Research Institute on "Health Services Systems" was held under the auspices of the NATO Special Programme Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. A special word is said in this respect supra by Pro­ fessor Checkland, Chairman of the Systems Science Panel. The Advanced Research Institute (ARI) was organized for the purpose of bringing together senior scientists to seek a consensus on the assessment of the present state of knowledge on the specific topic of "health services systems" and to present views and recom­ mendations for future health services research directions, which should be of value to both the scientific community and the people in charge of reorienting health services. The conference was structured so as to permit the assembly of a variety of complementary viewpoints through intensive group discussions to be the basis of this final report. Invitees were selected fr...

  20. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    Science.gov (United States)

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  1. Man-machine interface requirements - advanced technology

    Science.gov (United States)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  2. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  3. The visual system in migraine: from the bench side to the office.

    Science.gov (United States)

    Kowacs, Pedro A; Utiumi, Marco A; Piovesan, Elcio J

    2015-02-01

    Throughout history, migraine-associated visual symptoms have puzzled patients, doctors, and neuroscientists. The visual aspects of migraine extend far beyond the aura phenomena, and have several clinical implications. A narrative review was conducted, beginning with migraine mechanisms, then followed by pertinent aspects of the anatomy of visual pathways, clinical features, implications of the visual system on therapy, migraine on visually impaired populations, treatment of visual auras and ocular (retinal) migraine, effect of prophylactic migraine treatments on visual aura, visual symptoms induced by anti-migraine or anti-headache drugs, and differential diagnosis. A comprehensive narrative review from both basic and clinical standpoints on the visual aspects of migraine was attained; however, the results were biased to provide any useful information for the clinician. This paper achieved its goals of addressing and condensing information on the pathophysiology of the visual aspects of migraine and its clinical aspects, especially with regards to therapy, making it useful not only for those unfamiliar to the theme but to experienced physicians as well. © 2015 American Headache Society.

  4. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Giraldez, Julieta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Harris, Tom [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baggu, Murali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gantz, Jesse [GE Grid Solutions, Fairfield, CT (United States); Boardman, Ethan [GE Grid Solutions, Fairfield, CT (United States)

    2016-11-01

    Duke Energy, Alstom Grid, and the National Renewable Energy Laboratory teamed up to better understand the impacts of solar photovoltaics (PV) on distribution system operations. The core goal of the project is to compare the operational - specifically, voltage regulation - impacts of three classes of PV inverter operations: 1.) Active power only (Baseline); 2.) Local inverter control (e.g., PF...not equal...1, Q(V), etc.); and 3.) Integrated volt-VAR control (centralized through the distribution management system). These comparisons were made using multiple approaches, each of which represents an important research-and-development effort on its own: a) Quasi-steady-state time-series modeling for approximately 1 year of operations using the Alstom eTerra (DOTS) system as a simulation engine, augmented by Python scripting for scenario and time-series control and using external models for an advanced inverter; b) Power-hardware-in-the-loop (PHIL) testing of a 500-kVA-class advanced inverter and traditional voltage regulating equipment. This PHIL testing used cosimulation to link full-scale feeder simulation using DOTS in real time to hardware testing; c) Advanced visualization to provide improved insights into time-series results and other PV operational impacts; and d) Cost-benefit analysis to compare the financial and business-model impacts of each integration approach.

  5. The Functions of Visual Management

    OpenAIRE

    Tezel, Algan; Koskela, Lauri; Tzortzopoulos, Patricia

    2009-01-01

    Visual Management has been evolving and effectively employed in some manufacturing and service organisations for a long time. In order to facilitate a cross-industrial learning process and to advance in detailed research the understanding of how the Visual Management concept may serve in an organisation is necessary. The aim of this paper is to identify Visual Management functions and the theoretical base for the construction industry. A detailed literature review and an analysis of the findi...

  6. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    Science.gov (United States)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  7. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  8. An Artificial Flexible Visual Memory System Based on an UV-Motivated Memristor.

    Science.gov (United States)

    Chen, Shuai; Lou, Zheng; Chen, Di; Shen, Guozhen

    2018-02-01

    For the mimicry of human visual memory, a prominent challenge is how to detect and store the image information by electronic devices, which demands a multifunctional integration to sense light like eyes and to memorize image information like the brain by transforming optical signals to electrical signals that can be recognized by electronic devices. Although current image sensors can perceive simple images in real time, the image information fades away when the external image stimuli are removed. The deficiency between the state-of-the-art image sensors and visual memory system inspires the logical integration of image sensors and memory devices to realize the sensing and memory process toward light information for the bionic design of human visual memory. Hence, a facile architecture is designed to construct artificial flexible visual memory system by employing an UV-motivated memristor. The visual memory arrays can realize the detection and memory process of UV light distribution with a patterned image for a long-term retention and the stored image information can be reset by a negative voltage sweep and reprogrammed to the same or an other image distribution, which proves the effective reusability. These results provide new opportunities for the mimicry of human visual memory and enable the flexible visual memory device to be applied in future wearable electronics, electronic eyes, multifunctional robotics, and auxiliary equipment for visual handicapped. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Psychophysical research progress of interocular suppression in amblyopic visual system

    OpenAIRE

    Jing-Jing Li; Yi Huang

    2016-01-01

    Some recent animal experiments and psychophysical studies indicate that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression, and interocular suppression is a key mechanism in visual deficits experienced by patients with amblyopia. The aim of this review is to provide an overview of recent psychophysical findings that have investigated the important role of interocular suppression in amblyopia, the measurement an...

  10. Development of the updated system of city underground pipelines based on Visual Studio

    Science.gov (United States)

    Zhang, Jianxiong; Zhu, Yun; Li, Xiangdong

    2009-10-01

    Our city has owned the integrated pipeline network management system with ArcGIS Engine 9.1 as the bottom development platform and with Oracle9i as basic database for storaging data. In this system, ArcGIS SDE9.1 is applied as the spatial data engine, and the system was a synthetic management software developed with Visual Studio visualization procedures development tools. As the pipeline update function of the system has the phenomenon of slower update and even sometimes the data lost, to ensure the underground pipeline data can real-time be updated conveniently and frequently, and the actuality and integrity of the underground pipeline data, we have increased a new update module in the system developed and researched by ourselves. The module has the powerful data update function, and can realize the function of inputting and outputting and rapid update volume of data. The new developed module adopts Visual Studio visualization procedures development tools, and uses access as the basic database to storage data. We can edit the graphics in AutoCAD software, and realize the database update using link between the graphics and the system. Practice shows that the update module has good compatibility with the original system, reliable and high update efficient of the database.

  11. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  12. An Advanced Commanding and Telemetry System

    Science.gov (United States)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  13. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  14. Information visualization to user-friendly interface construction for information retrieval systems

    Directory of Open Access Journals (Sweden)

    Jessica Monique de Lira Vieira

    2011-10-01

    Full Text Available The information presented through visualization help the Information Retrieval System (IRS to reach its main goal: to retrieve relevant information that meets the informational needs of its users. The objective of this article is to describe and analyze techniques proposed by the Information Visualization area and interface models discussed in Information Science Literature, which applied to graphical interface construction would facilitate the appropriation of information by the users of IRS and would help them to search, browse and retrieve information. The methodology consists of a literature review focusing on the potential contribution of the visual representation of information in the development of user-friendly interfaces to IRS, as well as identification and analyses of visualizations used as interfaces by IRS. The use of visualizations is of great importance in the communication between SRI and users, because the information presented through visual representation are better understood by user and allow the discovery of new knowledge.

  15. System Architecture of Small Unmanned Aerial System for Flight Beyond Visual Line-of-Sight

    Science.gov (United States)

    2015-09-17

    International Conference on Mechatronic and Embedded Systems and Applications (MESA 2011), 28-31 (August 2011) Maddalon Jeffrey M., Kelly J... SYSTEM ARCHITECTURE OF SMALL UNMANNED AERIAL SYSTEM FOR FLIGHT BEYOND VISUAL LINE-OF-SIGHT THESIS...is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-S-047 SYSTEM

  16. Advanced Control of Wheeled Inverted Pendulum Systems

    CERN Document Server

    Li, Zhijun; Fan, Liping

    2013-01-01

    Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics,dynamics modeling, advanced control design techniques,and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by.   The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation met...

  17. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  18. Development of guidelines to review advanced human-system interfaces

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1993-01-01

    Advanced control rooms (ACRs) will utilize advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than 10 yr ago, considerably prior to these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this paper is to discuss the development, evaluation, and current status of the Advanced HSI Design Review Guideline

  19. Examining the Use of a Visual Analytics System for Sensemaking Tasks: Case Studies with Domain Experts.

    Science.gov (United States)

    Kang, Youn-Ah; Stasko, J

    2012-12-01

    While the formal evaluation of systems in visual analytics is still relatively uncommon, particularly rare are case studies of prolonged system use by domain analysts working with their own data. Conducting case studies can be challenging, but it can be a particularly effective way to examine whether visual analytics systems are truly helping expert users to accomplish their goals. We studied the use of a visual analytics system for sensemaking tasks on documents by six analysts from a variety of domains. We describe their application of the system along with the benefits, issues, and problems that we uncovered. Findings from the studies identify features that visual analytics systems should emphasize as well as missing capabilities that should be addressed. These findings inform design implications for future systems.

  20. Advanced alarm management system

    International Nuclear Information System (INIS)

    Easter, J.R.

    1995-01-01

    The Westinghouse Advanced Alarm Management System (AWARE) is one of the Man-Machine Design Interfaces (MMI) which has great flexibility with regard to hardware type and configuration, alarm system concept, plant scope, engineering scope and installation. The AWARE System provides the capability to better manage the quantity prioritization and presentation of real-time process alarm messages in the control room. The messages are specific, precise and dynamic. The AWARE System can provide a large reduction in the number of messages that the control room staff must address at any one time, thus making the alarm message system a useful tool for the operators during situations that normally produce a high volume of messages as well as improving the clarity of the presentation of process abnormalities during small disturbances. The operating staff is now provided with the basis for a better understanding of the current plant state and for taking the appropriate control actions. (2 refs., 3 figs.)

  1. Social Set Visualizer (SoSeVi) II

    DEFF Research Database (Denmark)

    Flesch, Benjamin; Vatrapu, Ravi

    2016-01-01

    This paper reports the second iteration of the Social Set Visualizer (SoSeVi), a set theoretical visual analytics dashboard of big social data. In order to further demonstrate its usefulness in large-scale visual analytics tasks of individual and collective behavior of actors in social networks......, the current iteration of the Social Set Visualizer (SoSeVi) in version II builds on recent advancements in visualizing set intersections. The development of the SoSeVi dashboard involved cutting-edge open source visual analytics libraries (D3.js) and creation of new visualizations such as of actor mobility...

  2. An investigation of fluid mixing with safety injection in advanced reactors

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Won, Soon Yean; Chung, Moon Ki; Jun, Hyung Gil

    1994-01-01

    The objective of this work is to investigate the fluid mixing phenomena in aspect of pressurized thermal shock(PTS) in an advanced PWR vessel downcomer during transient cooldown with safety injection. It provides comparison of fluid mixing characteristics between AP 600 DVI, designed by Westinghouse, and ABB CE System 80+ DVI, and the effects of deflector at the reactor downcomer. In order to investigate the fluid mixing phenomena in the downcomer of an advanced PWR, the flow visualization tests and the salt concentration tests were conducted in a 1/7-scale acrylic transparent model, which was designed and built based on AP 600 reactor geometry. The behaviour of the safety injection flow in downcomer associated with mixing phenomenon can be observed during visualization test, and time-dependent mixing rate between safety injection fluid and existing coolant can be determined with concentration test. Visualization tests were performed by the dye injection method. The results of concentration measurements were compared with the calculation using the REMIX code. During the tests, difference between AP 600 DVI flow and ABB CE System 80+ DVI flow and the effect of the deflector were observed

  3. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This collection of research papers on visual cognition first appeared as a special issue of Cognition: International Journal of Cognitive Science. The study of visual cognition has seen enormous progress in the past decade, bringing important advances in our understanding of shape perception, visual imagery, and mental maps. Many of these discoveries are the result of converging investigations in different areas, such as cognitive and perceptual psychology, artificial intelligence, and neuropsychology. This volume is intended to highlight a sample of work at the cutting edge of this research area for the benefit of students and researchers in a variety of disciplines. The tutorial introduction that begins the volume is designed to help the nonspecialist reader bridge the gap between the contemporary research reported here and earlier textbook introductions or literature reviews.

  4. Freight advanced traveler information system : functional requirements.

    Science.gov (United States)

    2012-08-01

    This report describes the System Requirement Specifications (SyRS) for a Freight Advanced Traveler Information System : (FRATIS). The SyRS is based on user needs described in the FRATIS Concept of Operations (ConOps), which cover the essential : func...

  5. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  6. Supporting interactive visual analytics of energy behavior in buildings through affine visualizations

    DEFF Research Database (Denmark)

    Nielsen, Matthias; Brewer, Robert S.; Grønbæk, Kaj

    2016-01-01

    Domain experts dealing with big data are typically not familiar with advanced data mining tools. This especially holds true for domain experts within energy management. In this paper, we introduce a visual analytics approach that empowers such users to visually analyze energy behavior based......Viz, that interactively maps data from real world buildings. It is an overview +detail inter-active visual analytics tool supporting both rapid ad hoc explorations and structured evaluation of hypotheses about patterns and anomalies in resource consumption data mixed with occupant survey data. We have evaluated...... the approach with five domain experts within energy management, and further with 10 data analytics experts and found that it was easily attainable and that it supported visual analysis of mixed consumption and survey data. Finally, we discuss future perspectives of affine visual analytics for mixed...

  7. Visual Localization by Place Recognition Based on Multifeature (D-λLBP++HOG

    Directory of Open Access Journals (Sweden)

    Yongliang Qiao

    2017-01-01

    Full Text Available Visual localization is widely used in the autonomous navigation system and Advanced Driver Assistance Systems (ADAS. This paper presents a visual localization method based on multifeature fusion and disparity information using stereo images. We integrate disparity information into complete center-symmetric local binary patterns (CSLBP to obtain a robust global image description (D-CSLBP. In order to represent the scene in depth, multifeature fusion of D-CSLBP and HOG features provides valuable information and permits decreasing the effect of some typical problems in place recognition such as perceptual aliasing. It improves visual recognition performance by taking advantage of depth, texture, and shape information. In addition, for real-time visual localization, local sensitive hashing method (LSH was used to compress the high-dimensional multifeature into binary vectors. It can thus speed up the process of image matching. To show its effectiveness, the proposed method is tested and evaluated using real datasets acquired in outdoor environments. Given the obtained results, our approach allows more effective visual localization compared with the state-of-the-art method FAB-MAP.

  8. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces

    Directory of Open Access Journals (Sweden)

    Eva Mayr

    2018-03-01

    Full Text Available Stories are an essential mode, not only of human communication—but also of thinking. This paper reflects on the internalization of stories from a cognitive perspective and outlines a visualization framework for supporting the analysis of narrative geotemporal data. We discuss the strengths and limitations of standard techniques for representing spatiotemporal data (coordinated views, animation or slideshow, layer superimposition, juxtaposition, and space-time cube representation and think about their effects on mental representations of a story. Many current visualization systems offer multiple views and allow the user to investigate different aspects of a story. From a cognitive point of view, it is important to assist users in reconnecting these multiple perspectives into a coherent picture—e.g., by utilizing coherence techniques like seamless transitions. A case study involving visualizing biographical narratives illustrates how the design of advanced visualization systems can be cognitively and conceptually grounded to support the construction of an integrated internal representation.

  9. Modern Geodata Management: Application of Interdisciplinary Interpretation and Visualization in Central America

    Directory of Open Access Journals (Sweden)

    T. Damm

    2009-01-01

    Full Text Available In the last years new methods of data acquisition and processing in geosciences, inspired by growing computer performance, have led to an increased amount of data, and this development will proceed surely. In this paper we present the conception and technical realization of an interdisciplinary research group's geodata management as a combination of a metadata catalog together with web mapping technology. Clearly related with the storage and retrieval of different datasets is the need of visualization. 3D visualization in geoscientific interpretation is a useful tool, if numerous, heterogenic datasets have to be visualized at the same time. Moreover, advanced sensing technology often generates native three-dimensional datasets. Using a case study from the Collaborative Research Centre “SFB 574”, we present the possibilities of our stereoscopic projection system and want to explain the benefit of 3D visualization for research in general and university education in particular, as low-cost systems become available nowadays.

  10. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    Science.gov (United States)

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. Unification of three linear models for the transient visual system

    NARCIS (Netherlands)

    Brinker, den A.C.

    1989-01-01

    Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

  14. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  15. Guidelines to Visualize Vessels in a Geographic Information System

    OpenAIRE

    Rodighiero, Dario

    2010-01-01

    In information systems the data representation covers a great importance. In fact the visualization of information is the last point of contact between the user and the information system. This is the space where the communication takes place. In real-time monitoring systems, this passage covers a great importance, especially for reasons related to the time and the transparency of relevant information. These factors are fundamental to vessel monitoring systems. This is the beginning where we ...

  16. Smart-system of distance learning of visually impaired people based on approaches of artificial intelligence

    Science.gov (United States)

    Samigulina, Galina A.; Shayakhmetova, Assem S.

    2016-11-01

    Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.

  17. Open Source Next Generation Visualization Software for Interplanetary Missions

    Science.gov (United States)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  18. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.; Albers, D.; Walker, R.; Jusufi, I.; Hansen, C. D.; Roberts, J. C.

    2011-01-01

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  19. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  20. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  1. Design and implementation of an interface supporting information navigation tasks using hyperbolic visualization technique

    International Nuclear Information System (INIS)

    Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.

    2001-01-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks

  2. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  3. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  4. Development of guidelines to review advanced human-system interfaces

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1993-01-01

    Advanced control rooms (ACRS) will utilize advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operators overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well prior to these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this paper is to discuss the development, evaluation, and current status of the Advanced HSI Design Review Guideline, hereafter referred to as the ''Guideline.''

  5. Advanced approaches to intelligent information and database systems

    CERN Document Server

    Boonjing, Veera; Chittayasothorn, Suphamit

    2014-01-01

    This book consists of 35 chapters presenting different theoretical and practical aspects of Intelligent Information and Database Systems. Nowadays both Intelligent and Database Systems are applied in most of the areas of human activities which necessitates further research in these areas. In this book various interesting issues related to the intelligent information models and methods as well as their advanced applications, database systems applications, data models and their analysis, and digital multimedia methods and applications are presented and discussed both from the practical and theoretical points of view. The book is organized in four parts devoted to intelligent systems models and methods, intelligent systems advanced applications, database systems methods and applications, and multimedia systems methods and applications. The book will be interesting for both practitioners and researchers, especially graduate and PhD students of information technology and computer science, as well more experienced ...

  6. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  7. Advanced handling-systems with enhanced performance flexibility

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the results of a project related to future applications and requirements for advanced handling systems. This report consists of six chapters. Following the description of the aims the tools for setting up the requirements for the handling systems including the experience during the data acquisition process is described. Furthermore some information is given about the current state of the art of robotics and manipulators. Of paramount importance are the descriptions of applications and related concepts in the following chapters leading to specific categories of advanced handling units. The paper closes with the description of the first concepts for realization. (orig./HP) [de

  8. [Perimetric changes in advanced glaucoma].

    Science.gov (United States)

    Feraru, Crenguta Ioana; Pantalon, Anca

    2011-01-01

    The evaluation of various perimetric aspects in advanced glaucoma stages correlated to morpho-functional changes. MATHERIAL AND METHOD: Retrospective clinical trial over a 10 months time period that included patients with advanced glaucoma stages, for which there have been recorded several computerised visual field tests (central 24-2 strategy, 10-2 strategy with either III or V--Goldman stimulus spot size) along with other morpho-funtional ocular paramaters: VA, lOP optic disk analysis. We included in our study 56 eyes from 45 patients. In most cases 89% it was an open angle glaucoma (either primary or secondary) Mean visual acuity was 0.45 +/- 0.28. Regarding the perimetric deficit 83% had advanced deficit, 9% moderate and 8% early visual changes. As perimetric type of defect we found a majority with general reduction of sensitivity (33 eyes) + ring shape scotoma. In 6 eyes (10.7%) having left only a central isle of vision we performed the central 10-2 strategy with III or V Goldmann stimulus spot size. Statistic analysis showed scarce correlation between the visual acuity and the quantitative perimetric parameters (MD and PSD), and variance analysis found present a multiple correlation parameter p = 0.07 that proves there is no liniary correspondence between the morpho-functional parameters: VA-MD(PSD) and C/D ratio. In advanced glaucoma stages, the perimetric changes are mostly severe. Perimetric evaluation is essential in these stages and needs to be individualised.

  9. Advanced public transportation system deployment in the United States

    Science.gov (United States)

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  10. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  11. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  12. Collaborative visual analytics of radio surveys in the Big Data era

    Science.gov (United States)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  13. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  14. Head Worn Display System for Equivalent Visual Operations

    Science.gov (United States)

    Cupero, Frank; Valimont, Brian; Wise, John; Best. Carl; DeMers, Bob

    2009-01-01

    Head-Worn Displays or so-called, near-to-eye displays have potentially significant advantages in terms of cost, overcoming cockpit space constraints, and for the display of spatially-integrated information. However, many technical issues need to be overcome before these technologies can be successfully introduced into commercial aircraft cockpits. The results of three activities are reported. First, the near-to-eye display design, technological, and human factors issues are described and a literature review is presented. Second, the results of a fixed-base piloted simulation, investigating the impact of near to eye displays on both operational and visual performance is reported. Straight-in approaches were flown in simulated visual and instrument conditions while using either a biocular or a monocular display placed on either the dominant or non-dominant eye. The pilot's flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested. The data generally supports a monocular design with minimal impact due to eye dominance. Finally, a method for head tracker system latency measurement is developed and used to compare two different devices.

  15. Evaluating the Cognitive Aspects of User Interaction with 2D Visual Tagging Systems

    Directory of Open Access Journals (Sweden)

    Samuel Olugbenga King

    2008-04-01

    Full Text Available There has been significant interest in thedevelopment and deployment of visual taggingapplications in recent times. But user perceptions aboutthe purpose and function of visual tagging systems havenot received much attention. This paper presents a userexperience study that investigates the cognitive modelsthat novice users have about interacting with visualtagging applications. The results of the study show thatalthough most users are unfamiliar with visual taggingtechnologies, they could accurately predict the purposeand mode of retrieval of data stored in visual tags. Thestudy concludes with suggestions on how to improve therecognition, ease of recall and design of visual tags.

  16. Can Global Visual Features Improve Tag Recommendation for Image Annotation?

    Directory of Open Access Journals (Sweden)

    Oge Marques

    2010-08-01

    Full Text Available Recent advances in the fields of digital photography, networking and computing, have made it easier than ever for users to store and share photographs. However without sufficient metadata, e.g., in the form of tags, photos are difficult to find and organize. In this paper, we describe a system that recommends tags for image annotation. We postulate that the use of low-level global visual features can improve the quality of the tag recommendation process when compared to a baseline statistical method based on tag co-occurrence. We present results from experiments conducted using photos and metadata sourced from the Flickr photo website that suggest that the use of visual features improves the mean average precision (MAP of the system and increases the system's ability to suggest different tags, therefore justifying the associated increase in complexity.

  17. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    Directory of Open Access Journals (Sweden)

    Andrés Cela

    2012-12-01

    Full Text Available The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  18. The Visual System

    Medline Plus

    Full Text Available ... of visual function, preservation of sight, and the special health problems and requirements of the blind.” News & ... Emily Y. Chew, M.D., Deputy Clinical Director Education Programs National Eye Health Education Program (NEHEP) Diabetic ...

  19. A Cooking Recipe Recommendation System with Visual Recognition of Food Ingredients

    Directory of Open Access Journals (Sweden)

    Keiji Yanai

    2014-04-01

    Full Text Available In this paper, we propose a cooking recipe recommendation system which runs on a consumer smartphone as an interactive mobile application. The proposed system employs real-time visual object recognition of food ingredients, and recommends cooking recipes related to the recognized food ingredients. Because of visual recognition, by only pointing a built-in camera on a smartphone to food ingredients, a user can get to know a related cooking recipes instantly. The objective of the proposed system is to assist people who cook to decide a cooking recipe at grocery stores or at a kitchen. In the current implementation, the system can recognize 30 kinds of food ingredient in 0.15 seconds, and it has achieved the 83.93% recognition rate within the top six candidates. By the user study, we confirmed the effectiveness of the proposed system.

  20. End-User Development of Information Visualization

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Lauesen, Søren; Vatrapu, Ravi

    2013-01-01

    such as data manipulation, but no formal training in programming. 18 visualization tools were surveyed from an enduser developer perspective. The results of this survey study show that end-user developers need better tools to create and modify custom visualizations. A closer collaboration between End......This paper investigates End-User Development of Information Visualization. More specifically, we investigated how existing visualization tools allow end-user developers to construct visualizations. End-user developers have some developing or scripting skills to perform relatively advanced tasks......-User Development and Information Visualization researchers could contribute towards the development of better tools to support custom visualizations. In addition, as empirical evaluations of these tools are lacking both research communities should focus more on this aspect. The study serves as a starting point...

  1. Advanced public transportation systems : the state of the art

    Science.gov (United States)

    1991-03-01

    This report documents one of the early initiatives of UMTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communi...

  2. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  3. A Spot Reminder System for the Visually Impaired Based on a Smartphone Camera

    Directory of Open Access Journals (Sweden)

    Hotaka Takizawa

    2017-02-01

    Full Text Available The present paper proposes a smartphone-camera-based system to assist visually impaired users in recalling their memories related to important locations, called spots, that they visited. The memories are recorded as voice memos, which can be played back when the users return to the spots. Spot-to-spot correspondence is determined by image matching based on the scale invariant feature transform. The main contribution of the proposed system is to allow visually impaired users to associate arbitrary voice memos with arbitrary spots. The users do not need any special devices or systems except smartphones and do not need to remember the spots where the voice memos were recorded. In addition, the proposed system can identify spots in environments that are inaccessible to the global positioning system. The proposed system has been evaluated by two experiments: image matching tests and a user study. The experimental results suggested the effectiveness of the system to help visually impaired individuals, including blind individuals, recall information about regularly-visited spots.

  4. Measuring the Influence of Galilean Loupe System on Near Visual Acuity of Dentists under Simulated Clinical Conditions

    Directory of Open Access Journals (Sweden)

    Iris Urlić

    2016-01-01

    Full Text Available Aim: The purpose of this study was to compare near visual acuity of dentists without optical aids (VSC with near visual acuity of those using the Galilean telescope system (VGA2 with magnification of x 2.5, and the distance of 350 mm in simulated clinical conditions. Methods: The study included 46 dentists (visual acuity 1.0 without correction. A visual acuity testing was carried out using a miniaturized Snellen visual acuity chart which was placed in the cavity of molar teeth mounted in a phantom head in simulated clinical conditions. Near visual acuity for the vicinity was examined: 1 without correction at a distance of 300-400 mm (VSC; 2 with Galilean loupes with magnification of x2.5, focal length of 350mm. Results: The distributions of near visual acuity recorded using VSC and VGA2, 5 systems were compared by the Wilcoxon Signed Rank test. The results obtained by Wilcoxon Signed Rank test pointed to a statistically significant difference in the distribution of recorded visual acuity between the VSC and VGA2 optical systems (W = - 403.5; p <0.001. Conclusion: If using the VGA2, 5 systems, higher values of the near visual acuity were recorded and subsequently compared to near visual acuity without magnifying aids (VSC.

  5. Bronchial intubation could be detected by the visual stethoscope techniques in pediatric patients.

    Science.gov (United States)

    Kimura, Tetsuro; Suzuki, Akira; Mimuro, Soichiro; Makino, Hiroshi; Sato, Shigehito

    2012-12-01

    We created a system that allows the visualization of breath sounds (visual stethoscope). We compared the visual stethoscope technique with auscultation for the detection of bronchial intubation in pediatric patients. In the auscultation group, an anesthesiologist advanced the tracheal tube, while another anesthesiologist auscultated bilateral breath sounds to detect the change and/or disappearance of unilateral breath sounds. In the visualization group, the stethoscope was used to detect changes in breath sounds and/or disappearance of unilateral breath sounds. The distance from the edge of the mouth to the carina was measured using a fiberoptic bronchoscope. Forty pediatric patients were enrolled in the study. At the point at which irregular breath sounds were auscultated, the tracheal tube was located at 0.5 ± 0.8 cm on the bronchial side from the carina. When a detectable change of shape of the visualized breath sound was observed, the tracheal tube was located 0.1 ± 1.2 cm on the bronchial side (not significant). At the point at which unilateral breath sounds were auscultated or a unilateral shape of the visualized breath sound was observed, the tracheal tube was 1.5 ± 0.8 or 1.2 ± 1.0 cm on the bronchial side, respectively (not significant). The visual stethoscope allowed to display the left and the right lung sound simultaneously and detected changes of breath sounds and unilateral breath sound as a tracheal tube was advanced. © 2012 Blackwell Publishing Ltd.

  6. Economic benefits of advanced materials in nuclear power systems

    International Nuclear Information System (INIS)

    Busby, J.T.

    2009-01-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  7. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    Science.gov (United States)

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  8. Addressing the future of clinical information systems--Web-based multilayer visualization.

    Science.gov (United States)

    Poh, Chueh-Loo; Kitney, Richard I; Shrestha, Rasu B K

    2007-03-01

    This paper addresses some key issues relating to the development of new technology for clinical information systems (CIS) in relation to imaging and visualizing data. With the increasing importance of molecular and cellular biology, a new type of medicine, molecular based medicine, is now developing. This will significantly alter the way in which medicine is practiced. The view is presented that CIS will need to operate seamlessly across the Biological Continuum, i.e., the hierarchy of the human organism comprising systems, viscera, tissue, cells, proteins, and genes. We propose a multilayered visualization interface, which operates across the Biological Continuum, based on Web-based technology. A visualization interface package for two-dimensional and three-dimensional image data at the visceral and cellular levels is described. Two application examples are presented: 1) MR knee images, at the visceral level and 2) endothelial nuclei images, acquired from confocal laser microscopy, at the cellular level.

  9. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  10. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  11. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  12. Advanced radiology information system.

    Science.gov (United States)

    Kolovou, L; Vatousi, M; Lymperopoulos, D; Koukias, M

    2005-01-01

    The innovative features of an advanced Radiology Information System (RIS) are presented in this paper. The interoperability of RIS with the other Intra-hospital Information Systems that interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms [1]. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol's specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The same mechanism allows the secure and HL7-compatible interactions with the Hospital Information System (HIS) too. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS). The whole structure ensures the automation of the every-day procedures that the ;medical protocol' specifies and provides its services through a friendly and easy to manage graphical user interface.

  13. Advanced Wastewater Photo-oxidation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  14. A web-mapping system for real-time visualization of the global terrain

    Science.gov (United States)

    Zhang, Liqiang; Yang, Chongjun; Liu, Donglin; Ren, Yingchao; Rui, Xiaoping

    2005-04-01

    In this paper, we mainly present a web-based 3D global terrain visualization application that provides more powerful transmission and visualization of global multiresolution data sets across networks. A client/server architecture is put forward. The paper also reports various relevant research work, such as efficient data compression methods to reduce the physical size of these data sets and accelerate network delivery, streaming transmission for progressively downloading data, and real-time multiresolution terrain surface visualization with a high visual quality by M-band wavelet transforms and a hierarchical triangulation technique. Finally, an experiment is performed using different levels of detailed data to verify that the system works appropriately.

  15. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  16. Customizable Visualizations with Formula-Linked Building Blocks

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin; Lauesen, Søren

    different appearance or behavior than what the widgets support. Another approach is to combine primitive graphical elements using traditional programming or visualization toolkits. Traditional programming allows high customizability, but it is time consuming and hard to develop advanced visualizations......One approach to visualization construction is to use complex blocks (widgets) that are tailored for specific visualizations, and customize the visualizations by setting the properties of the widgets. This approach allows fast and easy visualization construction but falls short if the user wants....... Visualization toolkits allow easier visualization creation in some cases, but customization and interaction are tedious. As an alternative, we developed uVis visualization tool that uses spreadsheet-like formulas to connect building blocks. uVis formulas can refer to building blocks and database tables. We...

  17. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  18. Flow visualization system for wind turbines without blades applied to micro reactors; Sistema de visualização de escoamento para turbinas sem lâminas aplicada a microrreatores

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.S.B., E-mail: siqueira.gsb@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), São José dos Campos, SP (Brazil); Guimarães, L.N.F. [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Departamento de Ciência e Tecnologia Aeroespacial; Placco, G.M. [Instituto Tecnológico de Aeronáutica (PG/CTE/ITA), São José dos Campos, SP (Brazil). Departamento de Ciência e Tecnologia Aeroespacial

    2017-07-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work.

  19. Digital control system of advanced reactor

    International Nuclear Information System (INIS)

    Peng Huaqing; Zhang Rui; Liu Lixin

    2001-01-01

    This article produced the Digital Control System For Advanced Reactor made by NPIC. This system uses Siemens SIMATIC PCS 7 process control system and includes five control system: reactor power control system, pressurizer level control system, pressurizer pressure control system, steam generator water level control system and dump control system. This system uses three automatic station to realize the function of five control system. Because the safety requisition of reactor is very strict, the system is redundant. The system configuration uses CFC and SCL. the human-machine interface is configured by Wincc. Finally the system passed the test of simulation by using RETRAN 02 to simulate the control object. The research solved the key technology of digital control system of reactor and will be very helpful for the nationalization of digital reactor control system

  20. Teach yourself visually complete Excel

    CERN Document Server

    McFedries, Paul

    2013-01-01

    Get the basics of Excel and then go beyond with this new instructional visual guide While many users need Excel just to create simple worksheets, many businesses and professionals rely on the advanced features of Excel to handle things like database creation and data analysis. Whatever project you have in mind, this visual guide takes you step by step through what each step should look like. Veteran author Paul McFedries first presents the basics and then gradually takes it further with his coverage of designing worksheets, collaborating between worksheets, working with visual data

  1. Recent Advances in System Reliability Signatures, Multi-state Systems and Statistical Inference

    CERN Document Server

    Frenkel, Ilia

    2012-01-01

    Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications.  The topics include: concepts and different definitions of signatures (D-spectra),  their  properties and applications  to  reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. Recent Advances in System Reliability presents many examples to illustrate the theoretical results. Real world multi-state systems...

  2. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  3. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  4. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  5. A Low-Cost Audio Prescription Labeling System Using RFID for Thai Visually-Impaired People.

    Science.gov (United States)

    Lertwiriyaprapa, Titipong; Fakkheow, Pirapong

    2015-01-01

    This research aims to develop a low-cost audio prescription labeling (APL) system for visually-impaired people by using the RFID system. The developed APL system includes the APL machine and APL software. The APL machine is for visually-impaired people while APL software allows caregivers to record all important information into the APL machine. The main objective of the development of the APL machine is to reduce costs and size by designing all of the electronic devices to fit into one print circuit board. Also, it is designed so that it is easy to use and can become an electronic aid for daily living. The developed APL software is based on Java and MySQL, both of which can operate on various operating platforms and are easy to develop as commercial software. The developed APL system was first evaluated by 5 experts. The APL system was also evaluated by 50 actual visually-impaired people (30 elders and 20 blind individuals) and 20 caregivers, pharmacists and nurses. After using the APL system, evaluations were carried out, and it can be concluded from the evaluation results that this proposed APL system can be effectively used for helping visually-impaired people in terms of self-medication.

  6. System Level Analysis of LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Yuanye

    This PhD thesis focuses on system level analysis of Multi-Component Carrier (CC) management for Long Term Evolution (LTE)-Advanced. Cases where multiple CCs are aggregated to form a larger bandwidth are studied. The analysis is performed for both local area and wide area networks. In local area...... reduction. Compared to the case of reuse-1, they achieve a gain of 50∼500% in cell edge user throughput, with small or no loss in average cell throughput. For the wide area network, effort is devoted to the downlink of LTE-Advanced. Such a system is assumed to be backwards compatible to LTE release 8, i...... scheme is recommended. It reduces the CQI by 94% at low load, and 79∼93% at medium to high load, with reasonable loss in downlink performance. To reduce the ACK/NACK feedback, multiple ACK/NACKs can be bundled, with slightly degraded downlink throughput....

  7. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  8. Development of real-time visualization system for Computational Fluid Dynamics on parallel computers

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    1998-03-01

    A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)

  9. Development of 4D jaw movement visualization system for dental diagnosis support

    Science.gov (United States)

    Aoki, Yoshimitsu; Terajima, Masahiko; Nakasima, Akihiko

    2004-10-01

    A person with an asymmetric morphology of maxillofacial skeleton reportedly possesses an asymmetric jaw function and the risk to express temporomandibular disorder is high. A comprehensive analysis from the point of view of both the morphology and the function such as maxillofacial or temporomandibular joint morphology, dental occlusion, and features of mandibular movement pathways is essential. In this study, the 4D jaw movement visualization system was developed to visually understand the characteristic jaw movement, 3D maxillofacial skeleton structure, and the alignment of the upper and lower teeth of a patient. For this purpose, the 3D reconstructed images of the cranial and mandibular bones, obtained by computed tomography, were measured using a non-contact 3D measuring device, and the obtained morphological images of teeth model were integrated and activated on the 6 DOF jaw movement data. This system was experimentally applied and visualized in a jaw deformity patient and its usability as a clinical diagnostic support system was verified.

  10. Design and Development of a Linked Open Data-Based Health Information Representation and Visualization System: Potentials and Preliminary Evaluation

    Science.gov (United States)

    Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur

    2014-01-01

    -based health information representation, querying, and visualization system by using Linked Data tools. We imported more than 20,000 HIV-related data elements on mortality, prevalence, incidence, and related variables, which are freely available from the WHO global health observatory database. Additionally, we automatically linked 5312 data elements from DBpedia, Bio2RDF, and LinkedCT using the Silk framework. The system users can retrieve and visualize health information according to their interests. For users who are not familiar with SPARQL queries, we integrated a Linked Data search engine interface to search and browse the data. We used the system to represent and store the data, facilitating flexible queries and different kinds of visualizations. The preliminary user evaluation score by public health data managers and users was 82 on the SUS usability measurement scale. The need to write queries in the interface was the main reported difficulty of LOD-based systems to the end user. Conclusions The system introduced in this article shows that current LOD technologies are a promising alternative to represent heterogeneous health data in a flexible and reusable manner so that they can serve intelligent queries, and ultimately support decision-making. However, the development of advanced text-based search engines is necessary to increase its usability especially for nontechnical users. Further research with large datasets is recommended in the future to unfold the potential of Linked Data and Semantic Web for future health information systems development. PMID:25601195

  11. Design and development of a linked open data-based health information representation and visualization system: potentials and preliminary evaluation.

    Science.gov (United States)

    Tilahun, Binyam; Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur

    2014-10-25

    , and visualization system by using Linked Data tools. We imported more than 20,000 HIV-related data elements on mortality, prevalence, incidence, and related variables, which are freely available from the WHO global health observatory database. Additionally, we automatically linked 5312 data elements from DBpedia, Bio2RDF, and LinkedCT using the Silk framework. The system users can retrieve and visualize health information according to their interests. For users who are not familiar with SPARQL queries, we integrated a Linked Data search engine interface to search and browse the data. We used the system to represent and store the data, facilitating flexible queries and different kinds of visualizations. The preliminary user evaluation score by public health data managers and users was 82 on the SUS usability measurement scale. The need to write queries in the interface was the main reported difficulty of LOD-based systems to the end user. The system introduced in this article shows that current LOD technologies are a promising alternative to represent heterogeneous health data in a flexible and reusable manner so that they can serve intelligent queries, and ultimately support decision-making. However, the development of advanced text-based search engines is necessary to increase its usability especially for nontechnical users. Further research with large datasets is recommended in the future to unfold the potential of Linked Data and Semantic Web for future health information systems development.

  12. A visual stethoscope to detect the position of the tracheal tube.

    Science.gov (United States)

    Kato, Hiromi; Suzuki, Akira; Nakajima, Yoshiki; Makino, Hiroshi; Sanjo, Yoshimitsu; Nakai, Takayoshi; Shiraishi, Yoshito; Katoh, Takasumi; Sato, Shigehito

    2009-12-01

    Advancing a tracheal tube into the bronchus produces unilateral breath sounds. We created a Visual Stethoscope that allows real-time fast Fourier transformation of the sound signal and 3-dimensional (frequency-amplitude-time) color rendering of the results on a personal computer with simultaneous processing of 2 individual sound signals. The aim of this study was to evaluate whether the Visual Stethoscope can detect bronchial intubation in comparison with auscultation. After induction of general anesthesia, the trachea was intubated with a tracheal tube. The distance from the incisors to the carina was measured using a fiberoptic bronchoscope. While the anesthesiologist advanced the tracheal tube from the trachea to the bronchus, another anesthesiologist auscultated breath sounds to detect changes of the breath sounds and/or disappearance of bilateral breath sounds for every 1 cm that the tracheal tube was advanced. Two precordial stethoscopes placed at the left and right sides of the chest were used to record breath sounds simultaneously. Subsequently, at a later date, we randomly entered the recorded breath sounds into the Visual Stethoscope. The same anesthesiologist observed the visualized breath sounds on the personal computer screen processed by the Visual Stethoscope to examine changes of breath sounds and/or disappearance of bilateral breath sound. We compared the decision made based on auscultation with that made based on the results of the visualized breath sounds using the Visual Stethoscope. Thirty patients were enrolled in the study. When irregular breath sounds were auscultated, the tip of the tracheal tube was located at 0.6 +/- 1.2 cm on the bronchial side of the carina. Using the Visual Stethoscope, when there were any changes of the shape of the visualized breath sound, the tube was located at 0.4 +/- 0.8 cm on the tracheal side of the carina (P Stethoscope (not significant). During advancement of the tracheal tube, alterations of the shape of the

  13. The Visual System

    Medline Plus

    Full Text Available ... visual function, preservation of sight, and the special health problems and requirements of the blind.” News & Events Events ... maintained by the NEI Office of Science Communications, Public Liaison, and Education. ... of Health and Human Services | The National Institutes of Health | ...

  14. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  15. VISUAL: a software package for plotting data in the RADHEAT-V4 code system

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Yamano, Naoki

    1984-03-01

    In this report, the features, the capabilities and the constitution of the VISUAL Software Package are presented. The one of the features is that the VISUAL provides a versatile graphic display tool to plot a wide variety of data of the RADHEAT-V4 code system. And the other is to enable a user to handle easily the executing data in the Conversational Management Mode named ''CMM''. The program adopts the adjustable dimension system to increase its flexibility. VISUAL generates two-dimensional drawing, contour line map and three dimensional drawing on TSS (Time Sharing System) digital graphic equipment, NLP (Nihongo Laser Printer) or COM(Computer Output Microfilm). It is easily possible to display the calculated and experimental data in a DATA-POOL by using these functions. The purpose of this report is to describe sufficient information to enable a user to use VISUAL profitabily. (author)

  16. A concurrent visualization system for large-scale unsteady simulations. Parallel vector performance on an NEC SX-4

    International Nuclear Information System (INIS)

    Takei, Toshifumi; Doi, Shun; Matsumoto, Hideki; Muramatsu, Kazuhiro

    2000-01-01

    We have developed a concurrent visualization system RVSLIB (Real-time Visual Simulation Library). This paper shows the effectiveness of the system when it is applied to large-scale unsteady simulations, for which the conventional post-processing approach may no longer work, on high-performance parallel vector supercomputers. The system performs almost all of the visualization tasks on a computation server and uses compressed visualized image data for efficient communication between the server and the user terminal. We have introduced several techniques, including vectorization and parallelization, into the system to minimize the computational costs of the visualization tools. The performance of RVSLIB was evaluated by using an actual CFD code on an NEC SX-4. The computational time increase due to the concurrent visualization was at most 3% for a smaller (1.6 million) grid and less than 1% for a larger (6.2 million) one. (author)

  17. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  18. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems.

    Science.gov (United States)

    Erclik, Ted; Hartenstein, Volker; Lipshitz, Howard D; McInnes, Roderick R

    2008-09-09

    Components of the genetic network specifying eye development are conserved from flies to humans, but homologies between individual neuronal cell types have been difficult to identify. In the vertebrate retina, the homeodomain-containing transcription factor Chx10 is required for both progenitor cell proliferation and the development of the bipolar interneurons, which transmit visual signals from photoreceptors to ganglion cells. We show that dVsx1 and dVsx2, the two Drosophila homologs of Chx10, play a conserved role in visual-system development. DVSX1 is expressed in optic-lobe progenitor cells, and, in dVsx1 mutants, progenitor cell proliferation is defective, leading to hypocellularity. Subsequently, DVSX1 and DVSX2 are coexpressed in a subset of neurons in the medulla, including the transmedullary neurons that transmit visual information from photoreceptors to deeper layers of the visual system. In dVsx mutant adults, the optic lobe is reduced in size, and the medulla is small or absent. These results suggest that the progenitor cells and photoreceptor target neurons of the vertebrate retina and fly optic lobe are ancestrally related. Genetic and functional homology may extend to the neurons directly downstream of the bipolar and transmedullary neurons, the vertebrate ganglion cells and fly lobula projection neurons. Both cell types project to visual-processing centers in the brain, and both sequentially express the Math5/ATO and Brn3b/ACJ6 transcription factors during their development. Our findings support a monophyletic origin for the bilaterian visual system in which the last common ancestor of flies and vertebrates already contained a primordial visual system with photoreceptors, interneurons, and projection neurons.

  19. Visualizing request-flow comparison to aid performance diagnosis in distributed systems.

    Science.gov (United States)

    Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R

    2013-12-01

    Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.

  20. JackIn Head: Immersive Visual Telepresence System with Omnidirectional Wearable Camera.

    Science.gov (United States)

    Kasahara, Shunichi; Nagai, Shohei; Rekimoto, Jun

    2017-03-01

    Sharing one's own immersive experience over the Internet is one of the ultimate goals of telepresence technology. In this paper, we present JackIn Head, a visual telepresence system featuring an omnidirectional wearable camera with image motion stabilization. Spherical omnidirectional video footage taken around the head of a local user is stabilized and then broadcast to others, allowing remote users to explore the immersive visual environment independently of the local user's head direction. We describe the system design of JackIn Head and report the evaluation results of real-time image stabilization and alleviation of cybersickness. Then, through an exploratory observation study, we investigate how individuals can remotely interact, communicate with, and assist each other with our system. We report our observation and analysis of inter-personal communication, demonstrating the effectiveness of our system in augmenting remote collaboration.

  1. Iterative development of visual control systems in a research vivarium.

    Science.gov (United States)

    Bassuk, James A; Washington, Ida M

    2014-01-01

    The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected Principles

  2. Iterative development of visual control systems in a research vivarium.

    Directory of Open Access Journals (Sweden)

    James A Bassuk

    Full Text Available The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation, would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and

  3. Investigation of an advanced fault tolerant integrated avionics system

    Science.gov (United States)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  4. a Three-Dimensional Simulation and Visualization System for Uav Photogrammetry

    Science.gov (United States)

    Liang, Y.; Qu, Y.; Cui, T.

    2017-08-01

    Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with manned aircraft, UAVs are more cost-effective and responsive. However, UAVs are usually more sensitive to wind condition, which greatly influences their positions and orientations. The flight height of a UAV is relative low, and the relief of the terrain may result in serious occlusions. Moreover, the observations acquired by the Position and Orientation System (POS) are usually less accurate than those acquired in manned aerial photogrammetry. All of these factors bring in uncertainties to UAV photogrammetry. To investigate these uncertainties, a three-dimensional simulation and visualization system has been developed. The system is demonstrated with flight plan evaluation, image matching, POS-supported direct georeferencing, and ortho-mosaicing. Experimental results show that the presented system is effective for flight plan evaluation. The generated image pairs are accurate and false matches can be effectively filtered. The presented system dynamically visualizes the results of direct georeferencing in three-dimensions, which is informative and effective for real-time target tracking and positioning. The dynamically generated orthomosaic can be used in emergency applications. The presented system has also been used for teaching theories and applications of UAV photogrammetry.

  5. Advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Naito, Norio; Kato, Kanji.

    1990-01-01

    Recent development of artificial intelligence(AI) seems to offer new possibility to strengthen the performance of the operator support system. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plant (MMS-NPP) has been carried out since 1984 as 8-year project. This project aims at establishing advanced operator support functions which support operators in their knowledge-based behaviors and smoother interface with the system. This paper describes the role of MMS-NPP, the support functions and the main feature of the MMS-NPP detailed design with its focus placed on the realization methods using AI technology of the support functions for BWR and PWR plants. (author)

  6. Psychophysical research progress of interocular suppression in amblyopic visual system

    Directory of Open Access Journals (Sweden)

    Jing-Jing Li

    2016-03-01

    Full Text Available Some recent animal experiments and psychophysical studies indicate that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression, and interocular suppression is a key mechanism in visual deficits experienced by patients with amblyopia. The aim of this review is to provide an overview of recent psychophysical findings that have investigated the important role of interocular suppression in amblyopia, the measurement and modulation of suppression, and new dichoptic treatment intervention that directly target suppression.

  7. Automated visual inspection system based on HAVNET architecture

    Science.gov (United States)

    Burkett, K.; Ozbayoglu, Murat A.; Dagli, Cihan H.

    1994-10-01

    In this study, the HAusdorff-Voronoi NETwork (HAVNET) developed at the UMR Smart Engineering Systems Lab is tested in the recognition of mounted circuit components commonly used in printed circuit board assembly systems. The automated visual inspection system used consists of a CCD camera, a neural network based image processing software and a data acquisition card connected to a PC. The experiments are run in the Smart Engineering Systems Lab in the Engineering Management Dept. of the University of Missouri-Rolla. The performance analysis shows that the vision system is capable of recognizing different components under uncontrolled lighting conditions without being effected by rotation or scale differences. The results obtained are promising and the system can be used in real manufacturing environments. Currently the system is being customized for a specific manufacturing application.

  8. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  9. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    Science.gov (United States)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  10. [Development of performance evaluation and management system on advanced schistosomiasis medical treatment].

    Science.gov (United States)

    Zhou, Xiao-Rong; Huang, Shui-Sheng; Gong, Xin-Guo; Cen, Li-Ping; Zhang, Cong; Zhu, Hong; Yang, Jun-Jing; Chen, Li

    2012-04-01

    To construct a performance evaluation and management system on advanced schistosomiasis medical treatment, and analyze and evaluate the work of the advanced schistosomiasis medical treatment over the years. By applying the database management technique and C++ programming technique, we inputted the information of the advanced schistosomiasis cases into the system, and comprehensively evaluated the work of the advanced schistosomiasis medical treatment through the cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. We made a set of software formula about cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. This system had many features such as clear building, easy to operate, friendly surface, convenient information input and information search. It could benefit the performance evaluation of the province's advanced schistosomiasis medical treatment work. This system can satisfy the current needs of advanced schistosomiasis medical treatment work and can be easy to be widely used.

  11. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Xu, Lifei; Chen, Weidong

    2016-01-01

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  12. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  13. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    Science.gov (United States)

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  14. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  15. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  16. Assessment of core protection and monitoring systems for an advanced reactor SMART

    International Nuclear Information System (INIS)

    In, Wang Kee; Hwang, Dae Hyun; Yoo, Yeon Jong; Zee, Sung Qunn

    2002-01-01

    Analogue and digital core protection/monitoring systems were assessed for the implementation in an advanced reactor. The core thermal margins to nuclear fuel design limits (departure from nucleate boiling and fuel centerline melting) were estimated using the design data for a commercial pressurized water reactor and an advanced reactor. The digital protection system resulted in a greater power margin to the fuel centerline melting by at least 30% of rated power for both commercial and advanced reactors. The DNB margin with the digital system is also higher than that for the analogue system by 8 and 12.1% of rated power for commercial and advanced reactors, respectively. The margin gain with the digital system is largely due to the on-line calculations of DNB ratio and peak local power density from the live sensor signals. The digital core protection and monitoring systems are, therefore, believed to be more appropriate for the advanced reactor

  17. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  18. ARIES: Enabling Visual Exploration and Organization of Art Image Collections.

    Science.gov (United States)

    Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio

    2018-01-01

    Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.

  19. Visual Hybrid Development Learning System (VHDLS) framework for children with autism.

    Science.gov (United States)

    Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina

    2015-10-01

    The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework.

  20. A distributed system for visualizing and analyzing multivariate and multidisciplinary data

    Science.gov (United States)

    Jacobson, Allan S.; Allen, Mark; Bailey, Michael; Blom, Ronald; Blume, Leo; Elson, Lee

    1993-01-01

    THe Linked Windows Interactive Data System (LinkWinds) is being developed with NASA support. The objective of this proposal is to adapt and apply that system in a complex network environment containing elements to be found by scientists working multidisciplinary teams on very large scale and distributed data sets. The proposed three year program will develop specific visualization and analysis tools, to be exercised locally and remotely in the LinkWinds environment, to demonstrate visual data analysis, interdisciplinary data analysis and cooperative and interactive televisualization and analysis of data by geographically separated science teams. These demonstrators will involve at least two science disciplines with the aim of producing publishable results.