WorldWideScience

Sample records for advanced vectorial simulation

  1. Advanced vectorial simulation of VCSELs with nano structures invited paper

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....

  2. General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory

    Science.gov (United States)

    van Haver, Sven; Janssen, Olaf T. A.; Braat, Joseph J. M.; Janssen, Augustus J. E. M.; Urbach, H. Paul; Pereira, Silvania F.

    2008-03-01

    In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of diffraction. An introduction to ENZ-theory and its application in general imaging is provided after which we describe the mask imaging scheme that can be derived from it. The remainder of the paper is devoted to illustrating the advantages of the new method over existing methods (Hopkins-based). To this extent several simulation results are included that illustrate advantages arising from: the accurate incorporation of isolated structures, the rigorous treatment of the object (mask topography) and the fully vectorial through-focus image formation of the ENZ-based algorithm.

  3. Advanced Simulation Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Simulation Center consists of 10 individual facilities which provide missile and submunition hardware-in-the-loop simulation capabilities. The following...

  4. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  5. Towards advanced code simulators

    International Nuclear Information System (INIS)

    Scriven, A.H.

    1990-01-01

    The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5

  6. Advances in social simulation 2015

    CERN Document Server

    Verbrugge, Rineke; Flache, Andreas; Roo, Gert; Hoogduin, Lex; Hemelrijk, Charlotte

    2017-01-01

    This book highlights recent developments in the field, presented at the Social Simulation 2015 conference in Groningen, The Netherlands. It covers advances both in applications and methods of social simulation. Societal issues addressed range across complexities in economic systems, opinion dynamics and civil violence, changing mobility patterns, different land-use, transition in the energy system, food production and consumption, ecosystem management and historical processes. Methodological developments cover how to use empirical data in validating models in general, formalization of behavioral theory in agent behavior, construction of artificial populations for experimentation, replication of models, and agent-based models that can be run in a web browser. Social simulation is a rapidly evolving field. Social scientists are increasingly interested in social simulation as a tool to tackle the complex non-linear dynamics of society. Furthermore, the software and hardware tools available for social simulation ...

  7. Diatomic Metasurface for Vectorial Holography.

    Science.gov (United States)

    Deng, Zi-Lan; Deng, Junhong; Zhuang, Xin; Wang, Shuai; Li, Kingfai; Wang, Yao; Chi, Yihui; Ye, Xuan; Xu, Jian; Wang, Guo Ping; Zhao, Rongkuo; Wang, Xiaolei; Cao, Yaoyu; Cheng, Xing; Li, Guixin; Li, Xiangping

    2018-05-09

    The emerging metasurfaces with the exceptional capability of manipulating an arbitrary wavefront have revived the holography with unprecedented prospects. However, most of the reported metaholograms suffer from limited polarization controls for a restrained bandwidth in addition to their complicated meta-atom designs with spatially variant dimensions. Here, we demonstrate a new concept of vectorial holography based on diatomic metasurfaces consisting of metamolecules formed by two orthogonal meta-atoms. On the basis of a simply linear relationship between phase and polarization modulations with displacements and orientations of identical meta-atoms, active diffraction of multiple polarization states and reconstruction of holographic images are simultaneously achieved, which is robust against both incident angles and wavelengths. Leveraging this appealing feature, broadband vectorial holographic images with spatially varying polarization states and dual-way polarization switching functionalities have been demonstrated, suggesting a new route to achromatic diffractive elements, polarization optics, and ultrasecure anticounterfeiting.

  8. Vectorial-tensorial conservative theory of gravitation

    International Nuclear Information System (INIS)

    Mociutchi, C.; Ionescu-Pallas, N.

    1975-01-01

    Gravitation is considered as a mixing of interactions and a suggestion for a vectorial-tensorial theory with parametric coupling is given. The self consistent character of the theory leads to a system of equations for the proposed tensorial-vectorial theory of gravitation. If the weight of the vectorial component is low enough i.e. epsilon much smaller than 1, then this theory can correctly reproduce all the experimental verifications

  9. Upgraded operator training by using advanced simulators

    International Nuclear Information System (INIS)

    Iwashita, Akira; Toeda, Susumu; Fujita, Eimitsu; Moriguchi, Iwao; Wada, Kouji

    1991-01-01

    BWR Operator Training Center Corporation (BTC) has been conducting the operator training for all BWR utilities in Japan using fullscope simulators. Corresponding to increasing quantitative demands and higher qualitative needs of operator training, BTC put advanced simulators in operation (BTC-2 simulator in 1983 and BTC-3 simulator in 1989). This paper describes the methods and the effects of upgraded training contents by using these advanced simulators. These training methods are applied to the 'Advanced Operator Training course,' the 'Operator Retraining Course' and also the 'Family (crew) Training Course.' (author)

  10. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  11. Coherence for vectorial waves and majorization

    OpenAIRE

    Luis, Alfredo

    2016-01-01

    We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.

  12. Advanced simulators for France's NPPs

    International Nuclear Information System (INIS)

    Zerbino, H.; Renault, P.

    1997-01-01

    The training capabilities of the new generation of full-scope simulators have been greatly enhanced by the massive application of graphic information displays. In a parallel development, the simulation models have attained such a level of performance that real-time simulators are increasingly becoming ideal tools for certain engineering tasks. Their applications should soon extend well beyond the training activities to which they have been restricted in the past

  13. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  14. Advanced Vadose Zone Simulations Using TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  15. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  16. Advancements in simulations of lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Lippert, T.

    2008-01-01

    An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)

  17. Optoelectronic Devices Advanced Simulation and Analysis

    CERN Document Server

    Piprek, Joachim

    2005-01-01

    Optoelectronic devices transform electrical signals into optical signals and vice versa by utilizing the sophisticated interaction of electrons and light within micro- and nano-scale semiconductor structures. Advanced software tools for design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics, who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help to better understand internal device physics. The software packages used in the book are available to the public, on a commercial or noncommercial basis, so that the interested r...

  18. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  19. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  20. Advanced ST Plasma Scenario Simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Harvey, R.W.; Kaye, S.M.; Mau, T.K.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.

    2004-01-01

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA, and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2) 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations

  1. Advanced ST plasma scenario simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Kaye, S.M.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.; Harvey, R.W.; Mau, T.K.

    2005-01-01

    Integrated scenario simulations are done for NSTX that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high βfor flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal startup and plasma current rampup. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam (NB) deposition profile and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2 ) = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations (author)

  2. Vectorial diffraction properties of THz vortex Bessel beams.

    Science.gov (United States)

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  3. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  4. Nociones de geometría vectorial

    OpenAIRE

    Ospina Arteaga, Omar Evelio

    1990-01-01

    Las presentes notas de geometría vectorial pretenden ser una ayuda para los estudiantes que se inician en el tema de vectores y deberá ser complementado con ejercicios sobre el tema. Este texto contiene temas de interés tales como: Espacios euclidianos, Distancian entre dos puntos, Concepto de vector, Igualdad de vectores, entre otros relacionados con el estudio de vectores.

  5. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  6. Vectorial Modeling Of NH In Comet 2P/Encke

    Science.gov (United States)

    Dorman, Garrett; Pierce, D.; Cochran, A.

    2010-10-01

    Encke is an ideal comet for studying the relationship of radicals to their photodissociative parent molecules due to its low dust content. On 2003 October 22 - 24, we used the the 2.7 m telescope at the McDonald Observatory of the University of Texas to obtain spectra of several cometary radical species. Using a version of the Vectorial Model that has been modified to simulate Encke's prominent sunward-facing fan, we examined the spacial distribution of NH in the coma. Potential photochemical parents of NH were studied in order to understand its production and spacial distribution in the coma. Derived production rates are compared to values in other comets to constrain the primary parent of NH in Encke.

  7. Evidence of vectorial photoelectric effect on Copper

    International Nuclear Information System (INIS)

    Pedersoli, E.; Banfi, F.; Ressel, B.; Pagliara, S.; Giannetti, C.; Galimberti, G.; Lidia, S.; Corlett, J.; Ferrini, G.; Parmigiani, F.

    2005-01-01

    Quantum efficiency (QE) measurements of single photon photoemission from a Cu(111) single crystal and a Cu polycrystal photocathodes, irradiated by 150 fs-6.28 eV laser pulses, are reported over a broad range of incidence angle, both in s and p polarizations. The maximum QE (≅4x10 -4 ) for polycrystalline Cu is obtained in p polarization at an angle of incidence θ=65 deg. . We observe a QE enhancement in p polarization which cannot be explained in terms of optical absorption, a phenomenon known as vectorial photoelectric effect. Issues concerning surface roughness and symmetry considerations are addressed. An explanation in terms of nonlocal conductivity tensor is proposed

  8. CLASS: Core Library for Advanced Scenario Simulations

    International Nuclear Information System (INIS)

    Mouginot, B.; Thiolliere, N.

    2015-01-01

    The nuclear reactor simulation community has to perform complex electronuclear scenario simulations. To avoid constraints coming from the existing powerful scenario software such as COSI, VISION or FAMILY, the open source Core Library for Advanced Scenario Simulation (CLASS) has been developed. The main asset of CLASS is its ability to include any type of reactor, whether the system is innovative or standard. A reactor is fully described by its evolution database which should contain a set of different validated fuel compositions in order to simulate transitional scenarios. CLASS aims to be a useful tool to study scenarios involving Generation-IV reactors as well as innovative fuel cycles, like the thorium cycle. In addition to all standard key objects required by an electronuclear scenario simulation (the isotopic vector, the reactor, the fuel storage and the fabrication units), CLASS also integrates two new specific modules: fresh fuel evolution and recycled fuel fabrication. The first module, dealing with fresh fuel evolution, is implemented in CLASS by solving Bateman equations built from a database induced cross-sections. The second module, which incorporates the fabrication of recycled fuel to CLASS, can be defined by user priorities and/or algorithms. By default, it uses a linear Pu equivalent-method, which allows predicting, from the isotopic composition, the maximum burn-up accessible for a set type of fuel. This paper presents the basis of the CLASS scenario, the fuel method applied to a MOX fuel and an evolution module benchmark based on the French electronuclear fleet from 1977 to 2012. Results of the CLASS calculation were compared with the inventory made and published by the ANDRA organisation in 2012. For UOX used fuels, the ANDRA reported 12006 tonnes of heavy metal in stock, including cooling, versus 18500 tonnes of heavy metal predicted by CLASS. The large difference is easily explained by the presence of 56 tonnes of plutonium already separated

  9. The vectorial control of magnetization by light.

    Science.gov (United States)

    Kanda, Natsuki; Higuchi, Takuya; Shimizu, Hirokatsu; Konishi, Kuniaki; Yoshioka, Kosuke; Kuwata-Gonokami, Makoto

    2011-06-21

    Application of coherent light-matter interactions has recently been extended to the ultrafast control of magnetization. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multidimensional trajectory. Here we demonstrate a full manipulation of two-dimensional magnetic oscillations in antiferromagnetic NiO with a pair of polarization-twisted femtosecond laser pulses. We employ Raman-type nonlinear optical processes, wherein magnetic oscillations are impulsively induced with a controlled initial phase. Their azimuthal angle follows well-defined selection rules that have been determined by the symmetries of the materials. We emphasize that the temporal variation of the laser-pulse polarization angle enables us to control the phase and amplitude of the two degenerate modes, independently. These results lead to a new concept of the vectorial control of magnetization by light.

  10. Simulation of advanced ultrasound systems using Field II

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2004-01-01

    impulse responses is explained. A simulation example for a synthetic aperture spread spectrum flow systems is described. It is shown how the advanced coded excitation can be set up, and how the simulation can be parallelized to reduce the simulation time from 17 months to 391 hours using a 32 CPU Linux...

  11. Recent advances in nuclear power plant simulation

    International Nuclear Information System (INIS)

    Zerbino, H.; Plisson, P.; Friant, J.Y.

    1997-01-01

    The field of industrial simulation has experienced very significant progress in recent years, and power plant simulation in particular has been an extremely active area. Improvements may be recorded in practically all simulator subsystems. In Europe, the construction of new full- or optimized-scope nuclear power plant simulators during the middle 1990's has been remarkable intense. In fact, it is possible to identify a distinct simulator generation, which constitutes a new de facto simulation standard. Thomson Training and Simulation has taken part in these developments by designing, building, and validation several of these new simulators for Dutch, German and French nuclear power plants. Their characteristics are discussed in this paper. The following main trends may be identified: Process modeling is clearly evolving towards obtaining engineering-grade performance, even under the added constraints of real-time operation and a very wide range of operating conditions to be covered; Massive use of modern graphic user interfaces (GUI) ensures an unprecedented flexibility and user-friendliness for the Instructor Station; The massive use of GUIs also allows the development of Trainee Stations (TS), which significantly enhance the in-depth training value of the simulators; The development of powerful Software Development Environments (SDE) enables the simulator maintenance teams to keep abreast of modifications carried out in the reference plants; Finally, simulator maintenance and its compliance with simulator fidelity requirements are greatly enhanced by integrated Configuration Management Systems (CMS). In conclusion, the power plant simulation field has attained a strong level of maturity, which benefits its approximately forty years of service to the power generation industry. (author)

  12. Simulation and Advanced Practice Nursing Education

    Science.gov (United States)

    Blue, Dawn I.

    2016-01-01

    This quantitative study compared changes in level of confidence resulting from participation in simulation or traditional instructional methods for BSN (Bachelor of Science in Nursing) to DNP (Doctor of Nursing Practice) students in a nurse practitioner course when they entered the clinical practicum. Simulation has been used in many disciplines…

  13. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  14. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    the water phase. The biofilm formation implies that the concentration of bacteria near the inlet increases. In combination with surfactant production, the biofilm results in a higher surfactant concentration in the initial part of the reservoir. The oil that is initially bypassed in connection...... simulator. In the streamline simulator, the effect of gravity is introduced using an operator splitting technique. The gravity effect stabilizes oil displacement causing markedly improvement of the oil recovery, when the oil density becomes relatively low. The general characteristics found for MEOR in one......-dimensional simulations are also demonstrated both in two and three dimensions. Overall, this MEOR process conducted in a heterogeneous reservoir also produces more oil compared to waterflooding, when the simulations are run in multiple dimensions. The work presented in this thesis has resulted in two publications so far....

  15. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Science.gov (United States)

    2010-01-01

    ... minimum of 4 hours of training each year to become familiar with the operator's advanced simulation training program, or changes to it, and to emphasize their respective roles in the program. Training for...

  16. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  17. An Advanced Simulation Framework for Parallel Discrete-Event Simulation

    Science.gov (United States)

    Li, P. P.; Tyrrell, R. Yeung D.; Adhami, N.; Li, T.; Henry, H.

    1994-01-01

    Discrete-event simulation (DEVS) users have long been faced with a three-way trade-off of balancing execution time, model fidelity, and number of objects simulated. Because of the limits of computer processing power the analyst is often forced to settle for less than desired performances in one or more of these areas.

  18. An advanced simulator for orthopedic surgical training.

    Science.gov (United States)

    Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel

    2018-02-01

    The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.

  19. Advanced feeder control using fast simulation models

    NARCIS (Netherlands)

    Verheijen, O.S.; Op den Camp, O.M.G.C.; Beerkens, R.G.C.; Backx, A.C.P.M.; Huisman, L.; Drummond, C.H.

    2005-01-01

    For the automatic control of glass quality in glass production, the relation between process variable and product or glass quality and process conditions/process input parameters must be known in detail. So far, detailed 3-D glass melting simulation models were used to predict the effect of process

  20. Advanced Simulation and Computing Business Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  1. Interactive visualization to advance earthquake simulation

    Science.gov (United States)

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  2. Advances in NLTE Modeling for Integrated Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  3. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  4. Advances in X-Ray Simulator Technology

    Science.gov (United States)

    1995-07-01

    d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS

  5. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  6. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  7. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  8. Polarimetric and angular light-scattering from dense media: Comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches

    International Nuclear Information System (INIS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2013-01-01

    Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented

  9. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.

    1997-01-01

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  10. Monte Carlo simulation models of breeding-population advancement.

    Science.gov (United States)

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  11. Simulation training in neurosurgery: advances in education and practice

    Directory of Open Access Journals (Sweden)

    Konakondla S

    2017-07-01

    Full Text Available Sanjay Konakondla, Reginald Fong, Clemens M Schirmer Department of Neurosurgery and Neuroscience Institute, Geisinger Medical Center, Geisinger Health System, Danville, PA, USA Abstract: The current simulation technology used for neurosurgical training leaves much to be desired. Significant efforts are thoroughly exhausted in hopes of developing simulations that translate to give learners the “real-life” feel. Though a respectable goal, this may not be necessary as the application for simulation in neurosurgical training may be most useful in early learners. The ultimate uniformly agreeable endpoint of improved outcome and patient safety drives these investments. We explore the development, availability, educational taskforces, cost burdens and the simulation advancements in neurosurgical training. The technologies can be directed at achieving early resident milestones placed by the Accreditation Council for Graduate Medical Education. We discuss various aspects of neurosurgery disciplines with specific technologic advances of simulation software. An overview of the scholarly landscape of the recent publications in the realm of medical simulation and virtual reality pertaining to neurologic surgery is provided. We analyze concurrent concept overlap between PubMed headings and provide a graphical overview of the associations between these terms. Keywords: residency education, simulation, neurosurgery training, virtual reality, haptic feedback, task analysis, ACGME 

  12. Free-boundary simulations of ITER advanced scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Besseghir, K.

    2013-06-15

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  13. Free-boundary simulations of ITER advanced scenarios

    International Nuclear Information System (INIS)

    Besseghir, K.

    2013-06-01

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  14. Advanced on-site conceptual simulator for Forsmark 3

    International Nuclear Information System (INIS)

    Johansson, G.; Sjoestrand, K.

    1984-01-01

    On-site conceptual simulators have been extensively used at Swedish nuclear power plants. Despite having access to identical replica simulators, both the Swedish State Power Board and the Swedish private power industry have ordered conceptual simulators during 1982. The motivation has been that a complete training programme requires access to both a replica and a conceptual simulator. The replica simulator is perfect for training in control room behaviour but less appropriate for ensuring deeper process understanding. On the other hand, the conceptual simulator is not well suited for getting the personnel acquainted with the control room but is perfect for extending their knowledge of the plant processes. In order to give a realistic description of these processes, the conceptual simulator model must be fairly advanced. The Forsmark 3 conceptual simulator simulates the entire primary system, including the details of the steam and feedwater systems. Considerable attention has also been devoted to the presentation of calculated variables. For example, all the variables in the data base (approx. 6600) can be presented on colour-graphic CRTs as functions of time. (author)

  15. Simulation training in neurosurgery: advances in education and practice

    Science.gov (United States)

    Konakondla, Sanjay; Fong, Reginald; Schirmer, Clemens M

    2017-01-01

    The current simulation technology used for neurosurgical training leaves much to be desired. Significant efforts are thoroughly exhausted in hopes of developing simulations that translate to give learners the “real-life” feel. Though a respectable goal, this may not be necessary as the application for simulation in neurosurgical training may be most useful in early learners. The ultimate uniformly agreeable endpoint of improved outcome and patient safety drives these investments. We explore the development, availability, educational taskforces, cost burdens and the simulation advancements in neurosurgical training. The technologies can be directed at achieving early resident milestones placed by the Accreditation Council for Graduate Medical Education. We discuss various aspects of neurosurgery disciplines with specific technologic advances of simulation software. An overview of the scholarly landscape of the recent publications in the realm of medical simulation and virtual reality pertaining to neurologic surgery is provided. We analyze concurrent concept overlap between PubMed headings and provide a graphical overview of the associations between these terms. PMID:28765716

  16. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2009-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof

  17. Advanced Helmet Mounted Display (AHMD) for simulator applications

    Science.gov (United States)

    Sisodia, Ashok; Riser, Andrew; Bayer, Michael; McGuire, James P.

    2006-05-01

    The Advanced Helmet Mounted Display (AHMD), augmented reality visual system first presented at last year's Cockpit and Future Displays for Defense and Security conference, has now been evaluated in a number of military simulator applications and by L-3 Link Simulation and Training. This paper presents the preliminary results of these evaluations and describes current and future simulator and training applications for HMD technology. The AHMD blends computer-generated data (symbology, synthetic imagery, enhanced imagery) with the actual and simulated visible environment. The AHMD is designed specifically for highly mobile deployable, minimum resource demanding reconfigurable virtual training systems to satisfy the military's in-theater warrior readiness objective. A description of the innovative AHMD system and future enhancements will be discussed.

  18. An on-line advanced plant simulator (OLAPS)

    International Nuclear Information System (INIS)

    Samuels, J.W.

    1989-01-01

    A PC based on-line advanced plant simulator (OLAPS) for high quality simulations of Portland General Electric's Trojan Nuclear Facility is presented. OLAPS is designed to simulate the thermal-hydraulics of the primary system including core, steam generators, pumps, piping and pressurizer. The simulations are based on a five equation model that has two mass equations, two energy equations, two energy equations, and one momentum equation with a drift flux model to provide closure. A regionwise point reactor kinetics model is used to model the neutron kinetics in the core. The conservation equations, constitutive models and the numerical methods used to solve them are described. OLAPS results are compared with data from chapter 15 of the Trojan Nuclear Facility's final safety analysis report

  19. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  20. SSAGES: Software Suite for Advanced General Ensemble Simulations

    Science.gov (United States)

    Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2018-01-01

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

  1. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  2. SSAGES: Software Suite for Advanced General Ensemble Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sidky, Hythem [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA; Colón, Yamil J. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA; Helfferich, Julian [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Steinbuch Center for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Sikora, Benjamin J. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA; Bezik, Cody [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Chu, Weiwei [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Giberti, Federico [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Guo, Ashley Z. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Jiang, Xikai [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Lequieu, Joshua [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Li, Jiyuan [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Moller, Joshua [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Quevillon, Michael J. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA; Rahimi, Mohammad [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Ramezani-Dakhel, Hadi [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA; Rathee, Vikramjit S. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA; Reid, Daniel R. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Sevgen, Emre [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Thapar, Vikram [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Webb, Michael A. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA; Whitmer, Jonathan K. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA; de Pablo, Juan J. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA; Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

    2018-01-28

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.

  3. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  4. An age-structured extension to the vectorial capacity model.

    Directory of Open Access Journals (Sweden)

    Vasiliy N Novoseltsev

    Full Text Available Vectorial capacity and the basic reproductive number (R(0 have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention.Based on survival analysis we derived new equations for vectorial capacity and R(0 that are valid for any pattern of age-dependent (or age-independent vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1 lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2 encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3 provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies.Accounting for age-dependent vector mortality in estimates of vectorial capacity and R(0 was most important when (1 vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R(0 is above or below 1, (2 vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3 the vector exhibits complex patterns of age-dependent mortality and R(0 ∼ 1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality

  5. 2D Poisson sigma models with gauged vectorial supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)

    2015-08-12

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  6. An Age-Structured Extension to the Vectorial Capacity Model

    Science.gov (United States)

    Novoseltsev, Vasiliy N.; Michalski, Anatoli I.; Novoseltseva, Janna A.; Yashin, Anatoliy I.; Carey, James R.; Ellis, Alicia M.

    2012-01-01

    Background Vectorial capacity and the basic reproductive number (R0) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Methodology/Principal Findings Based on survival analysis we derived new equations for vectorial capacity and R0 that are valid for any pattern of age-dependent (or age–independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Conclusions/Significance Accounting for age-dependent vector mortality in estimates of vectorial capacity and R0 was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R0 is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R0∼1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the

  7. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  8. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    OpenAIRE

    Maier, G.; Collaboration, for the AGIS

    2009-01-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gammaray emmission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collect...

  9. Advanced 3D Photocathode Modeling and Simulations Final Report

    International Nuclear Information System (INIS)

    Dimitre A Dimitrov; David L Bruhwiler

    2005-01-01

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process

  10. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea

    Directory of Open Access Journals (Sweden)

    Valiente Moro C.

    2005-06-01

    Full Text Available Among transmissible diseases, vectorial diseases represent a major problem for public health. In the group of acarina, while ticks are the most commonly implicated vectors, other arthropods and notably Dermanyssoidea are also involved in the transmission of pathogenic agents. Since the role of this superfamily is at present largely unknown, we have reviewed the vectorial role of these mites in the appearance, survival and propagation of pathogens. Various authors have shown that Dermanyssoidea are implicated in the transmission of both bacteria (Salmonella, Spirocheta, Rickettsia or Pasteurella and viruses (equine encephalitis viruses, West Nile virus, Fowl pox virus, the virus causing Newcastle disease and tick borne encephalitis viruses or hantaviruses. Finally, some authors have also shown their role in the transmission of some protozoa and filaria. As the vectorial character of such mites has been more clearly demonstrated (Dermanyssus gallinae, Ornithonyssus bacoti and Allodermanyssus sanguineus, it would be interesting to continue studies to better understand the role of this superfamily in the epidemiology of certain zoonoses.

  11. [Arthropods with vectorial interest in spanish public health].

    Science.gov (United States)

    Bueno Marí, Rubén; Moreno Marí, Josefa; Oltra Moscardó, M Teresa; Jiménez Peydró, Ricardo

    2009-01-01

    Fifteen of the thirty-one Obligatory Communicable Diseases in Spain, exempting those of congenital or neonatal types, can be transmitted by several species of arthropods that are present in our country. Several arthropod orders are the suitable transmitters of tens of bacteria, fungi, virus and protozoa. This fact demands a through of the biology knowledge of these vectors in order to adopt efficient control measures that allow us to reduce the incidence levels of these diseases. Nevertheless, the epidemiological studies shouldn't remain only restricted to the diseases with active transmission cycles in our country. It is necessary to acquire a global vision because of allochton diseases that are perfectly extensible to our territory in the globalization context in which we are situated. All this information is important to know which factors are preventing the disease presence. The aim is to provide the National Epidemiological Surveillance Network with a valuable predictive capacity that allows it to predict the potential arrival of diseases and the consequent strengthening of the spanish Public Health. The goal of this work is to carry out a review of the spanish arthropod fauna with any vectorial interest. The current situation of some of the more important vectorial diseases in our country and the factors related to a resurgence reappearance and/or intensification of those ones are also discussed. Therefore, the study of these inappealable protagonists in our Public Health as an articulatory element in the complex network that any vectorial disease entails is absolutely necessary.

  12. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  13. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    Science.gov (United States)

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  14. Vectorial analysis of the collimated beam of a small Gaussian source

    Science.gov (United States)

    Cao, Changqing; Wang, Ting; Zeng, Xiaodong; Feng, Zhejun; Zhang, Wenrui; Zhang, Xiaobing; Chen, Kun

    2018-03-01

    A vectorial analysis method to describe the collimated beam is proposed, the formulas of the intensity distribution and divergence angles represented in terms of Bessel functions are derived, and the propagation properties such as the vectorial structure of the collimated field and the shape of the beam spot are discussed in detail. Omitting the vectorial nature of the collimated beam can cause an error of 7.6% in determining the intensity distribution on the optical axis of the collimated beam.

  15. Multi-purpose use of the advanced CANDU compact simulator

    International Nuclear Information System (INIS)

    Lam, K.Y.; MacBeth, M.J.

    1997-01-01

    A near full-scope dynamic model of a CANDU-PHWR (Canadian Deuterium Uranium Pressurized Heavy Water) nuclear power plant was constructed as a multi-purpose advanced Compact Simulator using CASSIM (Cassiopeia Simulation) development system. This Compact Simulator has played an integral part in the design and verification of the CANDU 900 MW control centre mock-up located in the Atomic Energy of Canada (AECL) design office, providing CANDU plant process dynamic data to the Plant Display System (PDS) and the Distributed Control System (DCS), as well as mock-up panel devices. As a design tool, the Compact Simulator is intended to be used for control strategy development, human factors studies, analysis of overall plant control performance, tuning estimates for major control loops. As a plant commissioning and operational strategy development tool, the simulation is intended to be used to evaluate routine and non-routine operational procedures, practice 'what-if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities

  16. Interoperable mesh and geometry tools for advanced petascale simulations

    International Nuclear Information System (INIS)

    Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M S; Tautges, T; Trease, H

    2007-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and data-structure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications

  17. Advance simulation capability for environmental management (ASCEM) - 59065

    International Nuclear Information System (INIS)

    Dixon, Paul; Keating, Elizabeth; Moulton, David; Williamson, Mark; Collazo, Yvette; Gerdes, Kurt; Freshley, Mark; Gorton, Ian; Meza, Juan

    2012-01-01

    The United States Department Energy (DOE) Office of Environmental Management (EM) determined that uniform application of advanced modeling in the subsurface could help reduce the cost and risks associated with its environmental cleanup mission. In response to this determination, the EM Office of Technology Innovation and Development (OTID), Groundwater and Soil Remediation (GW and S) began the program Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for integrating data and scientific understanding to enable prediction of contaminant fate and transport in natural and engineered systems. This initiative supports the reduction of uncertainties and risks associated with EM?s environmental cleanup and closure programs through better understanding and quantifying the subsurface flow and contaminant transport behavior in complex geological systems. This involves the long-term performance of engineered components, including cementitious materials in nuclear waste disposal facilities that may be sources for future contamination of the subsurface. This paper describes the ASCEM tools and approach and the ASCEM programmatic accomplishments completed in 2010 including recent advances and technology transfer. The US Department of Energy Office of Environmental Management has begun development of an Advanced Simulation Capability for Environmental Management, (ASCEM). This program will provide predictions of the end states of contaminated areas allowing for cost and risk reduction of EM remedial activities. ASCEM will provide the tools and approaches necessary to standardize risk and performance assessments across the DOE complex. Through its Phase One demonstration, the ASCEM team has shown value to the EM community in the areas of High Performance Computing, Data Management, Visualization, and Uncertainty Quantification. In 2012, ASCEM will provide an initial limited release of a community code for

  18. Simulated herbivory advances autumn phenology in Acer rubrum.

    Science.gov (United States)

    Forkner, Rebecca E

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ∼7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  19. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  20. New Developments in the Simulation of Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-01-01

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating and gt;10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ∼2,000 as compared to standard particle-in-cell.

  1. Advanced radiometric and interferometric milimeter-wave scene simulations

    Science.gov (United States)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  2. Conjugate heat transfer simulations of advanced research reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.H.A., E-mail: pirom@aecl.ca; Leitch, B.W.

    2014-07-01

    Highlights: • Temperature predictions are enhanced by coupling heat transfer in solid and fluid zones. • Seven different cases are considered to observe trends in predicted temperature and pressure. • The seven cases consider high/medium/low power, flow, burnup, fuel material and geometry. • Simulations provide temperature predictions for performance/safety. Boiling is unlikely. • Simulations demonstrate that a candidate geometry can enhance performance/safety. - Abstract: The current work presents numerical simulations of coupled fluid flow and heat transfer of advanced U–Mo/Al and U–Mo/Mg research reactor fuels in support of performance and safety analyses. The objective of this study is to enhance predictions of the flow regime and fuel temperatures through high fidelity simulations that better capture various heat transfer pathways and with a more realistic geometric representation of the fuel assembly in comparison to previous efforts. Specifically, thermal conduction, convection and radiation mechanisms are conjugated between the solid and fluid regions. Also, a complete fuel element assembly is represented in three dimensional space, permitting fluid flow and heat transfer to be simulated across the entire domain. Seven case studies are examined that vary the coolant inlet conditions, specific power, and burnup to investigate the predicted changes in the pressure drop in the coolant and the fuel, clad and coolant temperatures. In addition, an alternate fuel geometry is considered with helical fins (replacing straight fins in the existing design) to investigate the relative changes in predicted fluid and solid temperatures. Numerical simulations predict that the clad temperature is sensitive to changes in the thermal boundary layer in the coolant, particularly in simultaneously developing flow regions, while the temperature in the fuel is anticipated to be unaffected. Finally, heat transfer between fluid and solid regions is enhanced with

  3. Álgebra vectorial y geometría euclidiana

    OpenAIRE

    Salazar Caicedo, José Alonso

    1992-01-01

    Las leyes del álgebra vectorial asociadas al conjunto de los segmentos dirigidos del plano (o del espacio), en conexión con un producto interior, permiten demostrar una gran variedad de proposiciones y teoremas de la geometría clásica euclidiana, utilizando procedimientos y técnicas relativamente simples. Desde un punto de vista didáctico y pedagógico, surge el problema de examinar hasta qué punto es posible recuperar gran parte del arsenal de ideas fructíferas que proporcionaban a otras g...

  4. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  5. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  6. Advancement in tritium transport simulations for solid breeding blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Alice, E-mail: ying@fusion.ucla.edu [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Zhang, Hongjie [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Merrill, Brad J. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    In this paper, advancement on tritium transport simulations was demonstrated for a solid breeder blanket HCCR TBS, where multi-physics and detailed engineering descriptions are considered using a commercial simulation code. The physics involved includes compressible purge gas fluid flow, heat transfer, chemical reaction, isotope swamping effect, and tritium isotopes mass transport. The strategy adopted here is to develop numerical procedures and techniques that allow critical details of material, geometric and operational heterogeneity in a most complete engineering description of the TBS being incorporated into the simulation. Our application focuses on the transient assessment in view of ITER being pulsed operations. An immediate advantage is a more realistic predictive and design analysis tool accounting pulsed operations induced temperature variations which impact helium purge gas flow as well as Q{sub 2} composition concentration time and space evolutions in the breeding regions. This affords a more accurate prediction of tritium permeation into the He coolant by accounting correct temperature and partial pressure effects and realistic diffusion paths. The analysis also shows that by introducing by-pass line to accommodate ITER pulsed operations in the TES loop allows tritium extraction design being more cost effective.

  7. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  8. The generalized vectorial laws of reflection and refraction

    International Nuclear Information System (INIS)

    Bhattacharjee, Pramode Ranjan

    2005-01-01

    This paper discloses two important discoveries. These are: (i) discovery of ambiguity in the well-established laws of reflection and refraction of light which have been in regular use for many years, and (ii) discovery of generalized vectorial laws of reflection and refraction of light. The existing definitions of angle of incidence, angle of reflection and angle of refraction are considered first. Each of these definitions is found to be ambiguous, not in compliance with the fundamental definition of angle in geometry. Two typical questions (one in the case of reflection and the other for refraction) have been addressed, which cannot be dealt with by using the existing laws of reflection and refraction of light. Thus, the existing laws of reflection and refraction of light seem to be ambiguous in respect of generality and their validity in a broad sense is questionable. With a view to removing the ambiguities, proper definitions of the above three angles are given first and then the statement of the generalized vectorial law of reflection (as well as that of refraction) has been offered

  9. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  10. Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration

    International Nuclear Information System (INIS)

    Meza, Juan; Hubbard, Susan; Freshley, Mark D.; Gorton, Ian; Moulton, David; Denham, Miles E.

    2011-01-01

    The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high performance computing tool will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. As part of the initial development process, a series of demonstrations were defined to test ASCEM components and provide feedback to developers, engage end users in applications, and lead to an outcome that would benefit the sites. The demonstration was implemented for a sub-region of the Savannah River Site General Separations Area that includes the F-Area Seepage Basins. The physical domain included the unsaturated and saturated zones in the vicinity of the seepage basins and Fourmile Branch, using an unstructured mesh fit to the hydrostratigraphy and topography of the site. The calculations modeled variably saturated flow and the resulting flow field was used in simulations of the advection of non-reactive species and the reactive-transport of uranium. As part of the demonstrations, a new set of data management, visualization, and uncertainty quantification tools were developed to analyze simulation results and existing site data. These new tools can be used to provide summary statistics, including information on which simulation parameters were most important in the prediction of uncertainty and to visualize the relationships between model input and output.

  11. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  12. Numerical simulation of abutment pressure redistribution during face advance

    Science.gov (United States)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  13. A study of reset mode in advanced alarm system simulator

    International Nuclear Information System (INIS)

    Yenn, T. C.; Hwang, S. L.; Huang, F. H.; Yu, A. C.; Hsu, C. C.; Huang, H. W.

    2006-01-01

    An automation function has been widely applied in main control room of nuclear power plants. That leads to a new issue of human-automation interaction, which considers human operational performance in automated systems. In this research is the automation alarm reset in the advanced alarm system (AAS) of Advanced Nuclear Power Plant in Taiwan. Since alarms are very crucial for the understanding of the status of the plant as well as the reset function of alarm system will be changed from fully manual to fully automatic, it is very important to test and evaluate the performance and the effect of reset modes in AAS. The purpose of this paper is to evaluate the impact of the auto-reset alarm system on the plant performance and on operators' preference and task load. To develop a dynamic simulator as an AAS was conducted to compare manual and automatic reset function of alarm system on task performance and subjective ratings of task workload, comprehension, and preference. The simulation includes PCTRAN model and alarm software processing. The final results revealed that, using the auto-reset mode, participants had lower task load index (TLX) on effort in the first test trial and was more satisfied in multiple tasks condition. In contrast, using manual reset mode, participants were more satisfied on alarm handling, monitoring, and decision making. In other words, either reset mode in the study has unique features to assist operator, but is insufficient. The reset function in AAS therefore should be very flexible. Additionally, the experimental results also pointed out that the user interfaces need to be improved. Those experiences will be helpful for human factors verification and validation in the near future. (authors)

  14. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Advancing Simulation-Based Education in Pain Medicine.

    Science.gov (United States)

    Singh, Naileshni; Nielsen, Alison A; Copenhaver, David J; Sheth, Samir J; Li, Chin-Shang; Fishman, Scott M

    2018-02-27

    The Accreditation Council for Graduate Medical Education (ACGME) has recently implemented milestones and competencies as a framework for training fellows in Pain Medicine, but individual programs are left to create educational platforms and assessment tools that meet ACGME standards. In this article, we discuss the concept of milestone-based competencies and the inherent challenges for implementation in pain medicine. We consider simulation-based education (SBE) as a potential tool for the field to meet ACGME goals through advancing novel learning opportunities, engaging in clinically relevant scenarios, and mastering technical and nontechnical skills. The sparse literature on SBE in pain medicine is highlighted, and we describe our pilot experience, which exemplifies a nascent effort that encountered early difficulties in implementing and refining an SBE program. The many complexities in offering a sophisticated simulated pain curriculum that is valid, reliable, feasible, and acceptable to learners and teachers may only be overcome with coordinated and collaborative efforts among pain medicine training programs and governing institutions.

  16. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  17. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  18. Reduction of product platform complexity by vectorial Euclidean algorithm

    International Nuclear Information System (INIS)

    Navarrete, Israel Aguilera; Guzman, Alejandro A. Lozano

    2013-01-01

    In traditional machine, equipment and devices design, technical solutions are practically independent, thus increasing designs cost and complexity. Overcoming this situation has been tackled just using designer's experience. In this work, a product platform complexity reduction is presented based on a matrix representation of technical solutions versus product properties. This matrix represents the product platform. From this matrix, the Euclidean distances among technical solutions are obtained. Thus, the vectorial distances among technical solutions are identified in a new matrix of order of the number of technical solutions identified. This new matrix can be reorganized in groups with a hierarchical structure, in such a way that modular design of products is now more tractable. As a result of this procedure, the minimum vector distances are found thus being possible to identify the best technical solutions for the design problem raised. Application of these concepts is shown with two examples.

  19. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  20. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  1. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Hubbard, Susan S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  2. Design and simulation of advanced charge recovery piezoactuator drivers

    International Nuclear Information System (INIS)

    Biancuzzi, G; Lemke, T; Woias, P; Goldschmidtboeing, F; Ruthmann, O; Schrag, H J; Vodermayer, B; Schmid, T

    2010-01-01

    The German Artificial Sphincter System project aims at the development of an implantable sphincter prosthesis driven by a piezoelectrically actuated micropump. The system has been designed to be fully implantable, i.e. the power supply is provided by a rechargeable lithium polymer battery. In order to provide sufficient battery duration and to limit battery dimensions, special effort has to be made to minimize power consumption of the whole system and, in particular, of the piezoactuator driver circuitry. Inductive charge recovery can be used to recover part of the charge stored within the actuator. We are going to present a simplified inductor-based circuit capable of voltage inversion across the actuator without the need of an additional negative voltage source. The dimension of the inductors required for such a concept is nevertheless significant. We therefore present a novel alternative concept, called direct switching, where the equivalent capacitance of the actuator is charged directly by a step-up converter and discharged by a step-down converter. We achieved superior performance compared to a simple inductor-based driver with the advantage of using small-size chip inductors. As a term of comparison, the performance of the aforementioned drivers is compared to a conventional driver that does not implement any charge recovery technique. With our design we have been able to achieve more than 50% reduction in power consumption compared to the simplest conventional driver. The new direct switching driver performs 15% better than an inductor-based driver. A novel, whole-system SPICE simulation is presented, where both the driving circuit and the piezoactuator are modeled making use of advanced nonlinear models. Such a simulation is a precious tool to design and optimize piezoactuator drivers

  3. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Perego, A. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt (Germany); Cabezón, R. M. [Physics Department, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de [Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich (Switzerland)

    2016-04-15

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  4. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Science.gov (United States)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  5. The Vienna LTE-advanced simulators up and downlink, link and system level simulation

    CERN Document Server

    Rupp, Markus; Taranetz, Martin

    2016-01-01

    This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiple...

  6. A vectorial description of electromagnetic scattering by large bodies of spherical shape

    International Nuclear Information System (INIS)

    Bourrely, C.; Lemaire, T.; Chiappetta, P.; Centre National de la Recherche Scientifique, 13 - Marseille

    1989-10-01

    We present a new method to obtain a vectorial solution of Helmholtz equation for large homogeneous scatterers having a cylindrical symmetry and a shape approximately spherical. Limitations of the method for arbitrarily shaped particles are discussed

  7. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  8. Vectorial Ekeland Variational Principles and Inclusion Problems in Cone Quasi-Uniform Spaces

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    2012-01-01

    principle, vectorial quasiequilibrium principle are obtained. Also, several other important principles in nonlinear analysis are extended to cone quasi-uniform spaces. The results of this paper extend, generalize, and improve the corresponding results for Ekeland's variational principles of the directed vectorial perturbation type and other generalizations of Ekeland's variational principles in the setting of F-type topological space and quasi-metric spaces in the literatures. Even in usual real metric spaces, some of our results are new.

  9. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T

  10. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  11. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo; Sun, Shuyu; Salama, Amgad

    2015-01-01

    and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately

  12. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu [North Carolina State University, PO Box 7926, Raleigh, NC 27695-7926 (United States); Kothe, Douglas B., E-mail: kothe@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6164 (United States)

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL

  13. Multiplexed optical data storage and vectorial ray tracing

    Directory of Open Access Journals (Sweden)

    Foreman M.R.

    2010-06-01

    Full Text Available With the motivation of creating a terabyte-sized optical disk, a novel imaging technique is implemented. This technique merges two existing technologies: confocal microscopy and Mueller matrix imaging. Mueller matrix images from a high numerical space are obtained. The acquisition of these images makes the exploration of polarisation properties in a sample possible. The particular case of optical data storage is used as an example in this presentation. Since we encode information into asymmetric datapits (see Figure 1, the study of the polarisation of the scattered light can then be used to recover the orientation of the pit. It is thus possible to multiplex information by changing the angle of the mark. The storage capacity in the system is hence limited by the number of distinct angles that the optical system can resolve. This presentation thus answers the question; what is the current storage capacity of a polarisation sensitive optical disk? After a brief introduction to polarisation, the decoding method and experimental results are presented so as to provide an answer to this question. With the aim of understanding high NA focusing, an introduction to vectorial ray tracing is then given.

  14. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  15. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    Science.gov (United States)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  16. New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy

    Directory of Open Access Journals (Sweden)

    Ivan Masmitja

    2018-04-01

    Full Text Available Autonomous Underwater Vehicles (AUV are proving to be a promising platform design for multidisciplinary autonomous operability with a wide range of applications in marine ecology and geoscience. Here, two novel contributions towards increasing the autonomous navigation capability of a new AUV prototype (the Guanay II as a mix between a propelled vehicle and a glider are presented. Firstly, a vectorial propulsion system has been designed to provide full vehicle maneuverability in both horizontal and vertical planes. Furthermore, two controllers have been designed, based on fuzzy controls, to provide the vehicle with autonomous navigation capabilities. Due to the decoupled system propriety, the controllers in the horizontal plane have been designed separately from the vertical plane. This class of non-linear controllers has been used to interpret linguistic laws into different zones of functionality. This method provided good performance, used as interpolation between different rules or linear controls. Both improvements have been validated through simulations and field tests, displaying good performance results. Finally, the conclusion of this work is that the Guanay II AUV has a solid controller to perform autonomous navigation and carry out vertical immersions.

  17. New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy.

    Science.gov (United States)

    Masmitja, Ivan; Gonzalez, Julian; Galarza, Cesar; Gomariz, Spartacus; Aguzzi, Jacopo; Del Rio, Joaquin

    2018-04-17

    Autonomous Underwater Vehicles (AUV) are proving to be a promising platform design for multidisciplinary autonomous operability with a wide range of applications in marine ecology and geoscience. Here, two novel contributions towards increasing the autonomous navigation capability of a new AUV prototype (the Guanay II) as a mix between a propelled vehicle and a glider are presented. Firstly, a vectorial propulsion system has been designed to provide full vehicle maneuverability in both horizontal and vertical planes. Furthermore, two controllers have been designed, based on fuzzy controls, to provide the vehicle with autonomous navigation capabilities. Due to the decoupled system propriety, the controllers in the horizontal plane have been designed separately from the vertical plane. This class of non-linear controllers has been used to interpret linguistic laws into different zones of functionality. This method provided good performance, used as interpolation between different rules or linear controls. Both improvements have been validated through simulations and field tests, displaying good performance results. Finally, the conclusion of this work is that the Guanay II AUV has a solid controller to perform autonomous navigation and carry out vertical immersions.

  18. Simulation of an advanced small aperture track system

    Science.gov (United States)

    Williams, Tommy J.; Crockett, Gregg A.; Brunson, Richard L.; Beatty, Brad; Zahirniak, Daniel R.; Deuto, Bernard G.

    2001-08-01

    Simulation development for EO Systems has progressed to new levels with the advent of COTS software tools such as Matlab/Simulink. These tools allow rapid reuse of simulation library routines. We have applied these tools to newly emerging Acquisition Tracking and Pointing (ATP) systems using many routines developed through a legacy to High Energy Laser programs such as AirBorne Laser, Space Based Laser, Tactical High Energy Laser, and The Air Force Research Laboratory projects associated with the Starfire Optical Range. The simulation architecture allows ease in testing various track algorithms under simulated scenes with the ability to rapidly vary system hardware parameters such as track sensor and track loop control systems. The atmospheric turbulence environment and associated optical distortion is simulated to high fidelity levels through the application of an atmospheric phase screen model to produce scintillation of the laser illuminator uplink. The particular ATP system simulated is a small transportable system for tracking satellites in a daytime environment and projects a low power laser and receives laser return from retro-reflector equipped satellites. The primary application of the ATP system (and therefore the simulation) is the determination of the illuminator beam profile, jitter, and scintillation of the low power laser at the satellite. The ATP system will serve as a test bed for satellite tracking in a high background during daytime. Of particular interest in this simulation is the ability to emulate the hardware modelogic within the simulation to test and refine system states and mode change decisions. Additionally, the simulation allows data from the hardware system tests to be imported into Matlab and to thereby drive the simulation or to be easily compared to simulation results.

  19. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  20. Vision and Displays for Military and Security Applications The Advanced Deployable Day/Night Simulation Project

    CERN Document Server

    Niall, Keith K

    2010-01-01

    Vision and Displays for Military and Security Applications presents recent advances in projection technologies and associated simulation technologies for military and security applications. Specifically, this book covers night vision simulation, semi-automated methods in photogrammetry, and the development and evaluation of high-resolution laser projection technologies for simulation. Topics covered include: advances in high-resolution projection, advances in image generation, geographic modeling, and LIDAR imaging, as well as human factors research for daylight simulation and for night vision devices. This title is ideal for optical engineers, simulator users and manufacturers, geomatics specialists, human factors researchers, and for engineers working with high-resolution display systems. It describes leading-edge methods for human factors research, and it describes the manufacture and evaluation of ultra-high resolution displays to provide unprecedented pixel density in visual simulation.

  1. ALICES: an advanced object-oriented software workshop for simulators

    International Nuclear Information System (INIS)

    Sayet, R.L.; Rouault, G.; Pieroux, D.; Houte, U. Van

    1999-01-01

    Reducing simulator development costs while improving model quality, user-friendliness and teaching capabilities, is a major target for many years in the simulation industry. It has led to the development of specific software tools which have been improved progressively following the new features and capabilities offered by the software industry. Unlike most of these software tools, ALICES (which is a French acronym for 'Interactive Software Workshop for the Design of Simulators') is not an upgrade of a previous generation of tools, like putting a graphical front-end to a classical code generator, but a really new development. Its design specification is based on previous experience with different tools as well as on new capabilities of software technology, mainly in Object Oriented Design. This allowed us to make a real technological 'jump' in the simulation industry, beyond the constraints of some traditional approaches. The main objectives behind the development of ALICES were the following: (1) Minimizing the simulator development time and costs: a simulator development consists mainly in developing software. One way to reduce costs is to facilitate reuse of existing software by developing standard components, and by defining interface standards, (2) Insuring that the produced simulator can be maintained and updated at a minimal cost: a simulator must evolve along with the simulated process, and it is then necessary to update periodically the simulator. The cost of an adequate maintenance is highly dependent of the quality of the software workshop, (3) Covering the whole simulator development process: from the data package to the acceptance tests and for maintenance and upgrade activities; with the whole development team, even if it is dispatched at different working sites; respecting the Quality Assurance rules and procedures (CORYS T.E.S.S. and TRACTEBEL are ISO-9001 certified). The development of ALICES was also done to comply with the following two main

  2. Vectorial loading of processive motor proteins: implementing a landscape picture

    International Nuclear Information System (INIS)

    Kim, Young C; Fisher, Michael E

    2005-01-01

    Individual processive molecular motors, of which conventional kinesin is the most studied quantitatively, move along polar molecular tracks and, by exerting a force F = (F x ,F y ,F z ) on a tether, drag cellular cargoes, in vivo, or spherical beads, in vitro, taking up to hundreds of nanometre-scale steps. From observations of velocities and the dispersion of displacements with time, under measured forces and controlled fuel supply (typically ATP), one may hope to obtain insight into the molecular motions undergone in the individual steps. In the simplest situation, the load force F may be regarded as a scalar resisting force, F x z >0, while more recently Block and co-workers (2002 Biophys. J. 83 491, 2003 Proc. Natl Acad. Sci. USA 100 2351) and Carter and Cross (2005 Nature 435 308) have studied assisting (or reverse) loads, F x >0, and also sideways (or transverse) loads F y ≠ 0. We extend previous mechanochemical kinetic models by explicitly implementing a free-energy landscape picture in order to allow for the full vectorial nature of the force F transmitted by the tether. The load-dependence of the various forward and reverse transition rates is embodied in load distribution vectors, θ j + and θ j - , which relate to substeps of the motor, and in next order, in compliance matrices η j + and η j - . The approach is applied specifically to discuss the experiments of Howard and co-workers (1996 Biophys.?J. 70 418) in which the buckling of partially clamped microtubules was measured under the action of bound kinesin molecules which induced determined perpendicular loads. But in the normal single-bead assay it also proves imperative to allow for F z >0: the appropriate analysis for kinesin, suggesting that the motor 'crouches' on binding ATP prior to stepping, is sketched. It yields an expression for the velocity, V (F x ,F z ;[ATP]), needed to address the buckling experiments

  3. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo

    2015-09-13

    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  4. ATC-lab(Advanced): an air traffic control simulator with realism and control.

    Science.gov (United States)

    Fothergill, Selina; Loft, Shayne; Neal, Andrew

    2009-02-01

    ATC-lab(Advanced) is a new, publicly available air traffic control (ATC) simulation package that provides both realism and experimental control. ATC-lab(Advanced) simulations are realistic to the extent that the display features (including aircraft performance) and the manner in which participants interact with the system are similar to those used in an operational environment. Experimental control allows researchers to standardize air traffic scenarios, control levels of realism, and isolate specific ATC tasks. Importantly, ATC-lab(Advanced) also provides the programming control required to cost effectively adapt simulations to serve different research purposes without the need for technical support. In addition, ATC-lab(Advanced) includes a package for training participants and mathematical spreadsheets for designing air traffic events. Preliminary studies have demonstrated that ATC-lab(Advanced) is a flexible tool for applied and basic research.

  5. Advanced High and Low Fidelity HPC Simulations of FCS Concept Designs for Dynamic Systems

    National Research Council Canada - National Science Library

    Sandhu, S. S; Kanapady, R; Tamma, K. K

    2004-01-01

    ...) resources of many Army initiatives. In this paper we present a new and advanced HPC based rigid and flexible modeling and simulation technology capable of adaptive high/low fidelity modeling that is useful in the initial design concept...

  6. Advances in Discrete-Event Simulation for MSL Command Validation

    Science.gov (United States)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  7. Advancing botnet modeling techniques for military and security simulations

    Science.gov (United States)

    Banks, Sheila B.; Stytz, Martin R.

    2011-06-01

    Simulation environments serve many purposes, but they are only as good as their content. One of the most challenging and pressing areas that call for improved content is the simulation of bot armies (botnets) and their effects upon networks and computer systems. Botnets are a new type of malware, a type that is more powerful and potentially dangerous than any other type of malware. A botnet's power derives from several capabilities including the following: 1) the botnet's capability to be controlled and directed throughout all phases of its activity, 2) a command and control structure that grows increasingly sophisticated, and 3) the ability of a bot's software to be updated at any time by the owner of the bot (a person commonly called a bot master or bot herder.) Not only is a bot army powerful and agile in its technical capabilities, a bot army can be extremely large, can be comprised of tens of thousands, if not millions, of compromised computers or it can be as small as a few thousand targeted systems. In all botnets, their members can surreptitiously communicate with each other and their command and control centers. In sum, these capabilities allow a bot army to execute attacks that are technically sophisticated, difficult to trace, tactically agile, massive, and coordinated. To improve our understanding of their operation and potential, we believe that it is necessary to develop computer security simulations that accurately portray bot army activities, with the goal of including bot army simulations within military simulation environments. In this paper, we investigate issues that arise when simulating bot armies and propose a combination of the biologically inspired MSEIR infection spread model coupled with the jump-diffusion infection spread model to portray botnet propagation.

  8. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    Liu Keyang; Li Jingsong

    2011-01-01

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  9. Advancements on the simulation of the micro injection moulding process

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new......Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...

  10. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

    Science.gov (United States)

    Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping

    2018-06-01

    Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.

  11. Safety Assessment of Advanced Imaging Sequences II: Simulations

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    .6%, when using the impulse response of the probe estimated from an independent measurement. The accuracy is increased to between -22% to 24.5% for MI and between -33.2% to 27.0% for Ispta.3, when using the pressure response measured at a single point to scale the simulation. The spatial distribution of MI...... Mechanical Index (MI) and Ispta.3 as required by FDA. The method is performed on four different imaging schemes and compared to measurements conducted using the SARUS experimental scanner. The sequences include focused emissions with an F-number of 2 with 64 elements that generate highly non-linear fields....... The simulation time is between 0.67 ms to 2.8 ms per emission and imaging point, making it possible to simulate even complex emission sequences in less than 1 s for a single spatial position. The linear simulations yield a relative accuracy on MI between -12.1% to 52.3% and for Ispta.3 between -38.6% to 62...

  12. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-03

    The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  13. Advanced Simulation and Computing Co-Design Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ang, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoang, Thuc T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Rob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  14. Physics-based simulation models for EBSD: advances and challenges

    Science.gov (United States)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  15. Development of a Motion System for an Advanced Sailing Simulator

    NARCIS (Netherlands)

    Mulder, F.A.; Verlinden, J.C.

    2013-01-01

    To train competitive sailing in a virtual setting, motion of the boat as well as haptic feedback of the sail lines is essential. When discussing virtual environments (VEs) the concept of presence is often used. In this study we develop a sailing simulator motion system to research what factors

  16. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra,

  17. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    Energy Technology Data Exchange (ETDEWEB)

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  18. Formas armónicas con valores en un fibrado vectorial e inmersiones de variedades riemannianas

    OpenAIRE

    Llauce Santamaría, Edwin Edilberto

    2014-01-01

    El propósito de este trabajo es discutir la aplicación de la teoría de las formas armónicas con valores en un fibrado vectorial y su relación con las inmersiones en una variedad riemanniana. Sea M una variedad riemanniana y E un fibrado vectorial riemanniano sobre M, entonces podemos definir de manera natural el operador laplaciano en las formas diferenciales con valores en E y expresaremos el producto escalar ⟨θ, θ⟩, donde θ es una p-forma con valores en E, en términos de la curvatura y la d...

  19. Vectorial Resilient PC(l) of Order k Boolean Functions from AG-Codes

    Institute of Scientific and Technical Information of China (English)

    Hao CHEN; Liang MA; Jianhua LI

    2011-01-01

    Propagation criteria and resiliency of vectorial Boolean functions are important for cryptographic purpose (see [1- 4, 7, 8, 10, 11, 16]). Kurosawa, Stoh [8] and Carlet [1]gave a construction of Boolean functions satisfying PC(l) of order k from binary linear or nonlinear codes. In this paper, the algebraic-geometric codes over GF(2m) are used to modify the Carlet and Kurosawa-Satoh's construction for giving vectorial resilient Boolean functions satisfying PC(l) of order k criterion. This new construction is compared with previously known results.

  20. [Chagas's disease and deep ecology: the anti-vectorial fight in question].

    Science.gov (United States)

    Siqueira-Batista, Rodrigo; Gomes, Andréia Patrícia; Rôças, Giselle; Cotta, Rosângela Minardi Mitre; Rubião, Eduardo Cárdenas Nogueira; Pissinatti, Alcides

    2011-02-01

    The inter-relations between man and the environment are among the main themes currently debated by the Brazilian public health. On such horizon, the questions concerning Chagas's disease are found to remain specially in the scope of the directed actions of control to the triatomine, the anti-vectorial fight , though already a century since its first description by Carlos Chagas, a major epidemiological problem in Latin America. Based on these considerations the present article will seek to discuss the main ecological aspects related to the American trypanosomiasis, emphasizing the control of the vectorial transmission in the context of the deep ecology.

  1. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  2. Advances in the realtime simulation of synthetic clutter for radar testing and evaluation

    CSIR Research Space (South Africa)

    Strydom, JJ

    2010-10-01

    Full Text Available measures. Recent developments in processing power have allowed for a ground clutter simulation capability to be added to this list. RadaR ClutteR Simulation Radar clutter simulation is computationally expensive as a single range line can contain... and correlation functions require more processing power to simulate. RefeRenCeS [1] B. Manz, ?DRFMs Grow to Meet New Threats,? The Journal of Electronic Defense, August 2010, pp. 43-48. K-8430 [www.kashan.co.za] Advances in the Realtime Simulation...

  3. Use of simulators for validation of advanced plant monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Uytterhoeven, G.; Vlaminck, M. De [Belgatom, Brussels (Belgium); Javaux, D. [Cognitive Ergonomics Work-Psychology Department, University of Liege, Sart-Tilman (Belgium)

    1999-07-01

    This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)

  4. Simulation and modelling of advanced Argentinian nuclear fuels

    International Nuclear Information System (INIS)

    Marino, A.; Losada, E.; Demarco, G.; Garces, J.; Marino, A.; Jaroszewicz, S.; Mosca, H.; Demarco, G.

    2011-01-01

    The BaCo code (Barra Combustible, Spanish expression for 'fuel rod') was developed to simulate the nuclear fuel rods behaviour under irradiation. The generation of nucleo electricity in Argentina is based on PHWR NPP and, as a consequence, BaCo is focused on PHWR fuels keeping full compatibility with PWR, WWER, among others type of fuels (commercial, experimental or prototypes). BaCo includes additional extensions for 3D calculations, statistical improvements, fuel design and batch analysis. Research on new fuels and cladding materials properties based on ab initio and multiscale modelling are currently under development to be included in BaCo simulations in order to be applied to Generation IV reactors. The ab initio and multiscale modelling can enhance the field of application of the code by including a strong physical basement covering the unavailable data needed for those improvements. (authors)

  5. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, R. E; CANDY, J; HINTON, F. L; ESTRADA-MILA, C; KINSEY, J.E

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated

  6. Use of simulators for validation of advanced plant monitoring systems

    International Nuclear Information System (INIS)

    Uytterhoeven, G.; Vlaminck, M. De; Javaux, D.

    1999-01-01

    This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)

  7. Use of advanced simulations in fuel performance codes

    International Nuclear Information System (INIS)

    Van Uffelen, P.

    2015-01-01

    The simulation of the cylindrical fuel rod behaviour in a reactor or a storage pool for spent fuel requires a fuel performance code. Such tool solves the equations for the heat transfer, the stresses and strains in fuel and cladding, the evolution of several isotopes and the behaviour of various fission products in the fuel rod. The main equations along with their limitations are briefly described. The current approaches adopted for overcoming these limitations and the perspectives are also outlined. (author)

  8. Advanced Technology for SAM Systems Analysis Synthesis and Simulation

    Science.gov (United States)

    1984-05-01

    radiofrequency, 0 nonimaging infrared and electro- optical bands are described and discussed. Examples of recent simulation results and their contribution to cost...arrays, C.C.D. or not, with an increasing number of detectinq cells, make the electro- optical techniques the rival of radar or its complement in shorl...can ne used to test the system or the missile and its seeker in their complete electro- optical , infrared and microwave environment, with a dynamic

  9. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, RE; CANDY, J; HINTON, FL; ESTRADA-MILA, C; KINSEY, JE.

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed

  10. Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2011-11-01

    Full Text Available and Evaluation of Airborne Radar through Realtime Simulation of Synthetic Clutter Presenter: Jurgen Strydom Systems Engineer & Signal Analyst Experimental EW Systems, CSIR Email: jjstrydom@csir.co.za Co-authors: Jacques Cilliers, CSIR 48th AOC Conference... environment simulation domain ? CSIR 2011 Slide 2 ? Technological advancements and challenges in the simulation of clutter for an airborne radar platform is discussed Where we are from: South Africa ? CSIR 2011 Slide 3 Health Natural Environment...

  11. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  12. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    Science.gov (United States)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  13. Advanced flight deck/crew station simulator functional requirements

    Science.gov (United States)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  14. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    Science.gov (United States)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  15. Apparatus to simulate nuclear heating in advanced fuels

    International Nuclear Information System (INIS)

    Wrona, B.J.; Galvin, T.M.; Johanson, E.

    1976-10-01

    A direct-electrical-heating apparatus has been built to simulate in-reactor temperature gradients and heating conditions in both the mixed nitrides and carbides of uranium and plutonium. The apparatus has the capability for the investigation and direct observation of fuel-behavior phenomena that should significantly enlarge the data base on mixed carbides and nitrides at temperatures near and above their melting points. In addition to heating UC, results of prooftests showed that the apparatus has the capability to heat graphite, 30 vol % ZrC in graphite, B 4 C control-rod pellets, and stainless steel

  16. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-01-01

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  17. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  18. Advanced solid elements for sheet metal forming simulation

    Science.gov (United States)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  19. An advanced modelling tool for simulating complex river systems.

    Science.gov (United States)

    Trancoso, Ana Rosa; Braunschweig, Frank; Chambel Leitão, Pedro; Obermann, Matthias; Neves, Ramiro

    2009-04-01

    The present paper describes MOHID River Network (MRN), a 1D hydrodynamic model for river networks as part of MOHID Water Modelling System, which is a modular system for the simulation of water bodies (hydrodynamics and water constituents). MRN is capable of simulating water quality in the aquatic and benthic phase and its development was especially focused on the reproduction of processes occurring in temporary river networks (flush events, pools formation, and transmission losses). Further, unlike many other models, it allows the quantification of settled materials at the channel bed also over periods when the river falls dry. These features are very important to secure mass conservation in highly varying flows of temporary rivers. The water quality models existing in MOHID are base on well-known ecological models, such as WASP and ERSEM, the latter allowing explicit parameterization of C, N, P, Si, and O cycles. MRN can be coupled to the basin model, MOHID Land, with computes runoff and porous media transport, allowing for the dynamic exchange of water and materials between the river and surroundings, or it can be used as a standalone model, receiving discharges at any specified nodes (ASCII files of time series with arbitrary time step). These features account for spatial gradients in precipitation which can be significant in Mediterranean-like basins. An interface has been already developed for SWAT basin model.

  20. Simulation models and designs for advanced Fischer-Tropsch technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  1. Advances in comprehensive gyrokinetic simulations of transport in tokamaks

    International Nuclear Information System (INIS)

    Waltz, R.E.; Candy, J.; Hinton, F.L.; Estrada-Mila, C.; Kinsey, J.E.

    2005-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)

  2. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  3. NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals

    CERN Document Server

    Zannoni, Claudio

    2000-01-01

    Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.

  4. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  5. Advanced Wear Simulation for Bulk Metal Forming Processes

    Directory of Open Access Journals (Sweden)

    Behrens Bernd-Arno

    2016-01-01

    Full Text Available In the recent decades the finite element method has become an essential tool for the cost-efficient virtual process design in the metal forming sector in order to counter the constantly increasing quality standards, particularly from the automotive industry as well as intensified international competition in the forging industry. An optimized process design taking precise tool wear prediction into account is a way to increase the cost-efficiency of the bulk metal forming processes. The main objective of the work presented in this paper is a modelling algorithm, which allows predicting die wear with respect to a geometry update during the forming simulation. Changes in the contact area caused by geometry update lead to the different die wear distribution. It primarily concerns the die areas, which undergo high thermal and mechanical loads.

  6. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  7. Numerical Forming Simulations and Optimisation in Advanced Materials

    International Nuclear Information System (INIS)

    Huetink, J.; Boogaard, A. H. van den; Geijselears, H. J. M.; Meinders, T.

    2007-01-01

    With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem

  8. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  9. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    Science.gov (United States)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  10. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    Science.gov (United States)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  11. Methodological advances: using greenhouses to simulate climate change scenarios.

    Science.gov (United States)

    Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A

    2014-09-01

    Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology

    Science.gov (United States)

    Barthe, Jean; Hugon, Régis; Nicolai, Jean Philippe

    2007-12-01

    The integrated project MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) under contract with the European Commission in life sciences FP6 (LSHC-CT-2004-503564), concerns innovative research to develop and validate in clinical conditions, advanced methods and equipment needed in cancer treatment for new modalities in high-conformal external radiotherapy using electrons, photons and protons beams of high energy.

  13. Validation of the USNTPS simulator for the advanced flight controls design exercise

    OpenAIRE

    Jurta, Daniel S.

    2005-01-01

    This thesis explores the fidelity of the ground based simulator used at USNTPS during the Advanced Flight Controls Design exercise. A Simulink model is developed as a test platform and used to compare the longitudinal flight characteristics of the simulator. The model is also compared to the same characteristics of a Learjet in the approach configuration. The Simulink model is modified with the aim of yielding a better training aid for the students as well as providing a means of comparison b...

  14. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    Science.gov (United States)

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  15. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    International Nuclear Information System (INIS)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-01-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized

  16. Advanced hybrid transient stability and EMT simulation for VSC-HVDC systems

    NARCIS (Netherlands)

    Van Der Meer, A.A.; Gibescu, M.; Van Der Meijden, M.A.M.M.; Kling, W.L.; Ferreira, J.A.

    2015-01-01

    This paper deals with advanced hybrid transient stability and electromagnetic-transient (EMT) simulation of combined ac/dc power systems containing large amounts of renewable energy sources interfaced through voltage-source converter-high-voltage direct current (VSC-HVDC). The concerning transient

  17. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    Science.gov (United States)

    Daniel Buscombe,; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  18. Simulation of advanced accumulator and its application in CPR1000 LBLOCA analysis

    International Nuclear Information System (INIS)

    Hu, Hongwei; Shan, Jianqiang; Gou, Junli; Cao, Jianhua; Shen, Yonggang; Fu, Xiangang

    2014-01-01

    Highlights: • The analysis model was developed for advanced accumulator. • The sensitivity analysis of each key parameter was performed. • The LBLOCA was analyzed for the CPR1000 with advanced accumulator. • The analysis shows that advanced accumulator can improve CPR1000 safety performance. - Abstract: The advanced accumulator is designed to improve the safety and reliability of CPR1000 by providing a small injection flow to keep the reactor core in flooded condition. Thus, the core still stays in a cooling state without the intervention of low pressure safety injection and the startup grace time of the low pressure safety injection pump can be greatly extended. A new model for the advanced accumulator, which is based on the basic conservation equations, is developed and incorporated into RELAP5/MOD 3.3. The simulation of the advanced accumulator can be carried out and results show that the behavior of the advanced accumulator satisfied its primary design target. There is a large flow in the advanced accumulator at the initial stage. When the accumulator water level is lower than the stand pipe, a vortex appears in the damper, which results in a large pressure drop and a small flow. And then the sensitivity analysis is performed and the major factors which affected the flow rate of the advanced accumulator were obtained, including the damper diameter, the initial volume ratio of the water and the nitrogen and the diameter ratio of the standpipe and the small pipe. Additionally, the primary coolant loop cold leg double-ended guillotine break LBLOCA in CPR1000 with advanced accumulator is analyzed. The results show that the criterion for maximum cladding temperature limit (1477 K) (NRC, 1992) can be met ever with 200 s after the startup of the low pressure safety injection. From this point of view, passive advanced accumulator can strive a longer grace time for LPSI. Thus the reliability, safety and economy of the reactor system can be improved

  19. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  20. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  1. The vectorial photoelectric effect under solar irradiance and its application to sun sensing

    International Nuclear Information System (INIS)

    Hechenblaikner, Gerald; Ziegler, Tobias

    2014-01-01

    Sun sensors are an integral part of the attitude and orbit control system onboard almost any spacecraft. While the majority of standard analogue sun sensors is based on photo-detectors which produce photo-currents proportional to the cosine of the incidence angle (cosine detectors), we propose an alternative scheme where the vectorial photoelectric effect is exploited to achieve a higher sensitivity of the sensed photo-current to the incidence angle. The vectorial photo-effect is investigated in detail for metal cathode detectors in a space environment. Besides long operational lifetimes without significant degradation, metal cathode detectors are insensitive to earth albedo, which may significantly reduce the errors affecting attitude measurements in low earth orbits. Sensitivity curves are calculated and trade-offs performed with the aim of optimizing the sensitivity whilst also providing currents sufficient for detection. Simple applications and detector configurations are also discussed and compared to the existing designs. (paper)

  2. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.

    Science.gov (United States)

    Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-10-17

    The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.

  3. Vectorial near-field imaging of a GaN based photonic crystal cavity

    International Nuclear Information System (INIS)

    La China, F.; Intonti, F.; Caselli, N.; Lotti, F.; Vinattieri, A.; Gurioli, M.; Vico Triviño, N.; Carlin, J.-F.; Butté, R.; Grandjean, N.

    2015-01-01

    We report a full optical deep sub-wavelength imaging of the vectorial components of the electric local density of states for the confined modes of a modified GaN L3 photonic crystal nanocavity. The mode mapping is obtained with a scanning near-field optical microscope operating in a resonant forward scattering configuration, allowing the vectorial characterization of optical passive samples. The optical modes of the investigated cavity emerge as Fano resonances and can be probed without the need of embedded light emitters or evanescent light coupling into the nanocavity. The experimental maps, independently measured in the two in-plane polarizations, turn out to be in excellent agreement with numerical predictions

  4. The role of numerical simulation for the development of an advanced HIFU system

    Science.gov (United States)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  5. The Osseus platform: a prototype for advanced web-based distributed simulation

    Science.gov (United States)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  6. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  7. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Julia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wampler, Cheryl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meisner, Robert [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2010-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality, and scientific details); to quantify critical margins and uncertainties; and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  8. [Current status of the knowledge on Moroccan anophelines (Diptera: Culicidae): systematic, geographical distribution and vectorial competence].

    Science.gov (United States)

    Faraj, C; Ouahabi, S; Adlaoui, E; Elaouad, R

    2010-10-01

    This bibliographical study, based on published works, ministry of Health Reports, exploitation of the database relative to the entomological surveillance conducted in the framework of the National Malaria Control Program, as well as unpublished results obtained within the framework of the European project "Emerging disease in a changing European environment", summarizes and completes with new data current knowledge on the systematics, the distribution and the vectorial competence of moroccan anophelines. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Editorial: Advances in Health Education Applying E-Learning, Simulations and Distance Technologies

    Directory of Open Access Journals (Sweden)

    Andre W. Kushniruk

    2011-03-01

    Full Text Available This special issue of the KM&EL international journal is dedicated to coverage of novel advances in health professional education applying e-Learning, simulations and distance education technologies. Modern healthcare is beginning to be transformed through the emergence of new information technologies and rapid advances in health informatics. Advances such as electronic health record systems (EHRs, clinical decision support systems and other advanced information systems such as public health surveillance systems are rapidly being deployed worldwide. The education of health professionals such as medical, nursing and allied health professionals will require an improved understanding of these technologies and how they will transform their healthcare practice. However, currently there is a lack of integration of knowledge and skills related to such technology in health professional education. In this issue of the journal we present articles that describe a set of novel approaches to integrating essential health information technology into the education of health professionals, as well as the use of advanced information technologies and e-Learning approaches for improving health professional education. The approaches range from use of simulations to development of novel Web-based platforms for allowing students to interact with the technologies and healthcare practices that are rapidly changing healthcare.

  10. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    Science.gov (United States)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  11. [Dynamic study of the female levator ani muscle using MRI 3D vectorial modeling].

    Science.gov (United States)

    Delmas, Vincent; Ami, Olivier; Iba-Zizen, Marie-Thérèse

    2010-06-01

    The levator ani muscle has a major role in the female pelvic floor, and is involved in the pathophysiology of pelvic prolapse and stress urinary incontinence. We conducted an anatomical and morphological study of this muscle using dynamic 3D vectorial reconstruction MRI, in order to analyze the contraction of two major components of the levator ani: the iliococcygeus and pubococcygeus. Three volunteer healthy continent nulliparous women aged from 19 to 22 underwent dynamic pelvic MRI. Coronal T2-weighted pelvic images were obtained in the supine position, at rest, holding back, and during Valsalva stress effort. 3D vectorial models were reconstructed by manual segmentation of the source images, and were set up on bony anatomic marks. Iliococcygeus and pubococcygeus volumes were measured in the three positions. Volumetrics, displacement and dynamic morphing changes were analyzed with 3D vectorial animation software. The urogenital hiatus extended more holding back (mean +4.31 mm) than on effort (mean +2.78 mm). The iliococcygeus lowered (mean -3.95 mm) and deviated outward (mean +3.01 mm). The basic tone of the iliococcygeus muscle gives it a dome shape, and its reflex contraction against abdominal strain ensures anal and urinary continence The levator ani is more than a pelvic diaphragm: it is a truly dynamic pelvic floor. Its points of support on the stiff osseous frame allow it to retain the pelvic organs. The levator ani muscle seems to prevent anal prolapse during stress strain.

  12. [Vectorial and congenital transmission of Trypanosoma cruzi in Las Lomitas, Formosa].

    Science.gov (United States)

    Sosa-Estani, Sergio; Dri, Lucía; Touris, Cecilia; Abalde, Sergio; Dell'arciprete, Ana; Braunstein, Jose

    2009-01-01

    Chagas disease, caused by Trypanosoma cruzi, is a major cause of morbidity and mortality in Latin America. The objective of this study was to describe the rate of infestation in four aboriginal communities in Las Lomitas (Great Chaco Region), Formosa, Argentina; the rate of infection in children residing in these communities, in blood donors and in pregnant women who received care at the Hospital Las Lomitas, as well as the rate of congenital infection in children born to women infected during the study period. The rate of infestation of 172 households evaluated in 2006 reached 32%. Prevalence of infection among 445 people was 17.5% and in children under 5 years old it was 8.6%. The rate of infection reached 18.6% in blood donors and 29.1% in pregnant women. The rate of infection among 47 children born to infected women, and living in residences under vectorial surveillance was 17.0%. These infections were considered as congenital. This study showed indexes compatible with active vectorial transmission at the beginning. After vectorial control with insecticides the infestation rate has been reduced to 3.3%. The local health system has introduced high impact procedures of primary and secondary prevention in order to prevent new cases and to treat infected people.

  13. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method

    International Nuclear Information System (INIS)

    Ye, Huapeng; Qiu, Cheng-Wei; Huang, Kun; Yeo, Swee Ping; Teng, Jinghua; Luk’yanchuk, Boris

    2013-01-01

    This letter shows how a longitudinally polarized hotspot can be created by a planar ultra-thin lens that beats the diffraction limit. On the imaging plane, a subwavelength optical resolution 0.39λ with almost purely longitudinal electric component has been demonstrated in air ambient. This novel paradigm addresses simultaneously both longitudinal polarization and deep sub-diffraction imaging, by a planar lens composed of ultra-thin opaque concentric annuli. The vectorial Rayleigh–Sommerfeld (VRS) approach, offering the advantage of significant reduction in computation, has been developed for a particular optimization of a flat lens with full control of polarization. Empowered by the robustness of VRS in dealing with polarization states, the proposed roadmap may be universally and efficiently integrated with other optimization algorithms to design super-resolution imaging with controlled polarization states at any wavelength without luminescence of the object. The lens, which is empowered by the proposed method, opens an avenue for the first time toward a highly integrated imaging system with advanced functionalities in far-field super-imaging, tailored polarization states and flat ultra-thin geometry simultaneously. (letter)

  14. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  15. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    International Nuclear Information System (INIS)

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-01-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  16. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  17. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  18. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  19. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  20. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  1. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  2. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    Science.gov (United States)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  3. Computer simulation of a 20-kHz power system for advanced launch systems

    Science.gov (United States)

    Sudhoff, S. D.; Wasynczuk, O.; Krause, P. C.; Kenny, B. H.

    1993-01-01

    The performance of two 20-kHz actuator power systems being built for an advanced launch system are evaluated for typical launch senario using an end-to-end system simulation. Aspects of system performance ranging from the switching of the power electronic devices to the vehicle aerodynamics are represented in the simulation. It is shown that both systems adequately stabilize the vehicle against a wind gust during launch. However, it is also shown that in both cases there are bus voltage and current fluctuations which make system power quality a concern.

  4. Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference

    CERN Document Server

    Takizawa, Kenji

    2016-01-01

    This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...

  5. Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL

    Science.gov (United States)

    2017-12-01

    then comparing the positions in the simulation . This required going through the mesh generation and conversion process multiple times. b. One of the...ARL-TR-8254 ● DEC 2017 US Army Research Laboratory Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation : How...TR-8254 ● DEC 2017 US Army Research Laboratory Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation : How to Operate the SIL

  6. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators

    Science.gov (United States)

    Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten

    2017-08-01

    Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.

  7. Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems

    OpenAIRE

    Herrera, Manuel; Meniconi, Silvia; Alvisi, Stefano; Izquierdo, Joaquin

    2018-01-01

    This document is intended to be a presentation of the Special Issue “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems”. The final aim of this Special Issue is to propose a suitable framework supporting insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system design, optimization of network perf...

  8. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    Science.gov (United States)

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  9. Modeling And Simulation Of Highly Advanced Multilevel Inverter For Speed Control Of Induction Motor

    Directory of Open Access Journals (Sweden)

    Ravi Raj

    2017-02-01

    Full Text Available In this Paper the problem of removing Power dissipation from single phase Induction Motor with DC sources is considered by the speed control of Induction Motor with highly advanced 9-Level multi-level Inverter which having approximate zero Harmonics. As the demand of power is increasing day by day. So that we must introduced very advanced Electrical Instruments which having high efficiency and less dissipation of power. The requirement of very advanced Inverter is necessary. Here we are designing a Multi-level Inverter up to the 9-level using IGBT Insulated-gate bipolar transistor by Mat lab which having negligible total harmonic distortion THD thats why it will control the speed of single phase Induction motor which is presently widely used in our daily needs. Also several informative Simulation results verify the authority and truthiness of the proposed Model.

  10. Planning of development strategy for establishment of advanced simulation of nuclear system

    International Nuclear Information System (INIS)

    Chung, Bubdong; Ko, Wonil; Kwon Junhyun

    2013-12-01

    In this product, the long term development plan in each technical area has been prosed with the plan of coupled code system. The consolidated code system for safety analysis has been proposing for future needs. The computing hardware needed for te advanced simulation is also proposing. The best approach for future safety analysis simulation capabilities may be a dual-path program. i. e. the development programs for an integrated analysis tool and multi-scale/multi-physic analysis tools, where the former aims at reducing uncertainty and the latter at enhancing accuracy. Integrated analysis tool with risk informed safety margin quantification It requires a significant extension of the phenomenological and geometric capabilities of existing reactor safety analysis software, capable of detailed simulations that reduce the uncertainties. Multi-scale, multi-physics analysis tools. Simplifications of complex phenomenological models and dependencies have been made in current safety analyses to accommodate computer hardware limitations. With the advent of modern computer hardware, these limitations may be removed to permit greater accuracy in representation of physical behavior of materials in design basis and beyond design basis conditions, and hence more accurate assessment of the true safety margins based on first principle methodology. The proposals can be utilized to develop the advanced simulation project and formulation of organization and establishment of high performance computing system in KAERI

  11. Recent advances in leishmaniosis in pet animals: epidemiology, diagnostics and anti-vectorial prophylaxis.

    Science.gov (United States)

    Gramiccia, M

    2011-09-08

    The leishmanioses are diseases caused by protozoa of the genus Leishmania, parasites infecting numerous mammal species, including humans, and transmitted by the bite of phlebotomine sand flies. They are a large group of diseases ranging over inter-tropical zones of America and Africa, and extend into temperate regions of Latin America, Europe and Asia. Pet animals are found infected with different Leishmania species but Leishmania infantum is the most widespread being dogs the main reservoir of zoonotic visceral leishmaniosis (ZVL). Dogs are very susceptible to this parasite and may suffer from a complex syndrome, canine leishmaniosis (CanL), one of the major zoonoses globally causing severe fatal disease in this animal. Infections in cats and horses have also been reported in areas where CanL is diagnosed. In Europe dogs and cats are common companion animals and their health is of great concern, therefore management of leishmaniosis in pets generally follows that of human ZVL. The recent spread of Leishmania infections in non-endemic territories has been monitored by means of canine surveys, which represent a suitable approach because of the dog's role as a sentinel host. New tools have been developed for the surveillance and control of ZVL. A number of insecticide-based preparations have been specifically registered for dog protection against sand fly bites, with elevated efficacy for both individual and mass protection. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  13. Impact of an Advanced Cardiac Life Support Simulation Laboratory Experience on Pharmacy Student Confidence and Knowledge.

    Science.gov (United States)

    Maxwell, Whitney D; Mohorn, Phillip L; Haney, Jason S; Phillips, Cynthia M; Lu, Z Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R

    2016-10-25

    Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated.

  14. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    Science.gov (United States)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  15. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  16. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    Science.gov (United States)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  17. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  18. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  20. The importance of simulation facilities for the development of review criteria for advanced human system interfaces

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Wachtel, J.

    1994-01-01

    Advanced control room (ACR) concepts are being developed in the commercial nuclear industry as part of future reactor designs. The ACRs will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role (function) in the system, the method of information presentation, the ways in which the operator interacts with the system, and the requirements on the operator to understand and supervise an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The NRC is developing guidelines to support their review of these advanced designs. As part of this effort, a methodology for guidance development was established, and topics in need of further research were identified. Simulators of various kinds are likely to play important roles in the development of review guidelines and in the evaluation of ACRs. This paper describes a general approach to review criteria development, and discusses the role of simulators in addressing research needs

  1. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  2. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    Science.gov (United States)

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  3. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  4. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  5. Improving advanced cardiovascular life support skills in medical students: simulation-based education approach

    Directory of Open Access Journals (Sweden)

    Hamidreza Reihani

    2015-01-01

    Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.

  6. Annual Performance Assessment of Complex Fenestration Systems in Sunny Climates Using Advanced Computer Simulations

    Directory of Open Access Journals (Sweden)

    Chantal Basurto

    2015-12-01

    Full Text Available Complex Fenestration Systems (CFS are advanced daylighting systems that are placed on the upper part of a window to improve the indoor daylight distribution within rooms. Due to their double function of daylight redirection and solar protection, they are considered as a solution to mitigate the unfavorable effects due to the admission of direct sunlight in buildings located in prevailing sunny climates (risk of glare and overheating. Accordingly, an adequate assessment of their performance should include an annual evaluation of the main aspects relevant to the use of daylight in such regions: the indoor illuminance distribution, thermal comfort, and visual comfort of the occupant’s. Such evaluation is possible with the use of computer simulations combined with the bi-directional scattering distribution function (BSDF data of these systems. This study explores the use of available methods to assess the visible and thermal annual performance of five different CFS using advanced computer simulations. To achieve results, an on-site daylight monitoring was carried out in a building located in a predominantly sunny climate location, and the collected data was used to create and calibrate a virtual model used to carry-out the simulations. The results can be employed to select the CFS, which improves visual and thermal interior environment for the occupants.

  7. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  8. Generation of large scale urban environments to support advanced sensor and seeker simulation

    Science.gov (United States)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  9. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  10. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  13. The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies

    Science.gov (United States)

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  14. Advanced numerical simulation based on a non-local micromorphic model for metal forming processes

    Directory of Open Access Journals (Sweden)

    Diamantopoulou Evangelia

    2016-01-01

    Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.

  15. Advanced graphical user interface for multi-physics simulations using AMST

    Science.gov (United States)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  16. Comprehensive simulation-enhanced training curriculum for an advanced minimally invasive procedure: a randomized controlled trial.

    Science.gov (United States)

    Zevin, Boris; Dedy, Nicolas J; Bonrath, Esther M; Grantcharov, Teodor P

    2017-05-01

    There is no comprehensive simulation-enhanced training curriculum to address cognitive, psychomotor, and nontechnical skills for an advanced minimally invasive procedure. 1) To develop and provide evidence of validity for a comprehensive simulation-enhanced training (SET) curriculum for an advanced minimally invasive procedure; (2) to demonstrate transfer of acquired psychomotor skills from a simulation laboratory to live porcine model; and (3) to compare training outcomes of SET curriculum group and chief resident group. University. This prospective single-blinded, randomized, controlled trial allocated 20 intermediate-level surgery residents to receive either conventional training (control) or SET curriculum training (intervention). The SET curriculum consisted of cognitive, psychomotor, and nontechnical training modules. Psychomotor skills in a live anesthetized porcine model in the OR was the primary outcome. Knowledge of advanced minimally invasive and bariatric surgery and nontechnical skills in a simulated OR crisis scenario were the secondary outcomes. Residents in the SET curriculum group went on to perform a laparoscopic jejunojejunostomy in the OR. Cognitive, psychomotor, and nontechnical skills of SET curriculum group were also compared to a group of 12 chief surgery residents. SET curriculum group demonstrated superior psychomotor skills in a live porcine model (56 [47-62] versus 44 [38-53], Ppsychomotor skills in the live porcine model and in the OR in a human patient (56 [47-62] versus 63 [61-68]; P = .21). SET curriculum group demonstrated inferior knowledge (13 [11-15] versus 16 [14-16]; P<.05), equivalent psychomotor skill (63 [61-68] versus 68 [62-74]; P = .50), and superior nontechnical skills (41 [38-45] versus 34 [27-35], P<.01) compared with chief resident group. Completion of the SET curriculum resulted in superior training outcomes, compared with conventional surgery training. Implementation of the SET curriculum can standardize training

  17. 3rd International Workshop on Advances in Simulation-Driven Optimization and Modeling

    CERN Document Server

    Leifsson, Leifur; Yang, Xin-She

    2016-01-01

    This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the...

  18. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  19. Rate of detection of advanced neoplasms in proximal colon by simulated sigmoidoscopy vs fecal immunochemical tests.

    Science.gov (United States)

    Castells, Antoni; Quintero, Enrique; Álvarez, Cristina; Bujanda, Luis; Cubiella, Joaquín; Salas, Dolores; Lanas, Angel; Carballo, Fernando; Morillas, Juan Diego; Hernández, Cristina; Jover, Rodrigo; Hijona, Elizabeth; Portillo, Isabel; Enríquez-Navascués, José M; Hernández, Vicent; Martínez-Turnes, Alfonso; Menéndez-Villalva, Carlos; González-Mao, Carmen; Sala, Teresa; Ponce, Marta; Andrés, Mercedes; Teruel, Gloria; Peris, Antonio; Sopeña, Federico; González-Rubio, Francisca; Seoane-Urgorri, Agustín; Grau, Jaume; Serradesanferm, Anna; Pozo, Àngels; Pellisé, Maria; Balaguer, Francesc; Ono, Akiko; Cruzado, José; Pérez-Riquelme, Francisco; Alonso-Abreu, Inmaculada; Carrillo-Palau, Marta; de la Vega-Prieto, Mariola; Iglesias, Rosario; Amador, Javier; Blanco, José Manuel; Sastre, Rocio; Ferrándiz, Juan; González-Hernández, Ma José; Andreu, Montserrat; Bessa, Xavier

    2014-10-01

    We compared the ability of biennial fecal immunochemical testing (FIT) and one-time sigmoidoscopy to detect colon side-specific advanced neoplasms in a population-based, multicenter, nationwide, randomized controlled trial. We identified asymptomatic men and women, 50-69 years old, through community health registries and randomly assigned them to groups that received a single colonoscopy examination or biennial FIT. Sigmoidoscopy yield was simulated from results obtained from the colonoscopy group, according to the criteria proposed in the UK Flexible Sigmoidoscopy Trial for colonoscopy referral. Patients who underwent FIT and were found to have ≥75 ng hemoglobin/mL were referred for colonoscopy. Data were analyzed from 5059 subjects in the colonoscopy group and 10,507 in the FIT group. The main outcome was rate of detection of any advanced neoplasm proximal to the splenic flexure. Advanced neoplasms were detected in 317 subjects (6.3%) in the sigmoidoscopy simulation group compared with 288 (2.7%) in the FIT group (odds ratio for sigmoidoscopy, 2.29; 95% confidence interval, 1.93-2.70; P = .0001). Sigmoidoscopy also detected advanced distal neoplasia in a higher percentage of patients than FIT (odds ratio, 2.61; 95% confidence interval, 2.20-3.10; P = .0001). The methods did not differ significantly in identifying patients with advanced proximal neoplasms (odds ratio, 1.17; 95% confidence interval, 0.78-1.76; P = .44). This was probably due to the lower performance of both strategies in detecting patients with proximal lesions (sigmoidoscopy detected these in 19.1% of patients and FIT in 14.9% of patients) vs distal ones (sigmoidoscopy detected these in 86.8% of patients and FIT in 33.5% of patients). Sigmoidoscopy, but not FIT, detected proximal lesions in lower percentages of women (especially those 50-59 years old) than men. Sigmoidoscopy and FIT have similar limitations in detecting advanced proximal neoplasms, which depend on patients' characteristics

  20. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  1. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    Science.gov (United States)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good

  2. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  3. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC)

    International Nuclear Information System (INIS)

    Schultz, Peter Andrew

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V and V) is required throughout the system to establish evidence-based metrics for the level of confidence in M and S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V and V challenge at the subcontinuum scale, an approach to incorporate V and V concepts into subcontinuum scale modeling and simulation (M and S), and a plan to incrementally incorporate effective V and V into subcontinuum scale M and S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  4. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

    DEFF Research Database (Denmark)

    Guo, Kai; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers......, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new...

  5. A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa

    Science.gov (United States)

    Ceccato, Pietro; Vancutsem, Christelle; Klaver, Robert; Rowland, James; Connor, Stephen J.

    2012-01-01

    Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe) and high altitude (highland-fringe) epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP) was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.

  6. Demonstration of a vectorial optical field generator with adaptive close loop control.

    Science.gov (United States)

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  7. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control.

    Science.gov (United States)

    Mitchell, Sara N; Catteruccia, Flaminia

    2017-12-01

    Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Perkins, T Alex; Reiner, Robert C; Tusting, Lucy S; Sinka, Marianne E; Moyes, Catherine L; Eckhoff, Philip A; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2016-02-01

    Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  9. Advanced CFD simulation for the assessment of nuclear safety issues at EDF. Some examples

    International Nuclear Information System (INIS)

    Vare, Christophe

    2014-01-01

    EDF R and D has computer power that puts it amongst the top industrial research centers in the world. Its supercomputers and in-house codes as well as its experts represent important capabilities to support EDF activities (safety analyses, support to the design of new reactors, analysis of accidental situations non reproducible by experiments, better understanding of physics or complex system response, effects of uncertainties and identification of prominent parameters, qualification and optimization of processes and materials...). Advanced numerical simulation is a powerful tool allowing EDF to increase its competitiveness, improve its performance and the safety of its plants. On this issue, EDF made the choice to develop its own in-house codes, instead of using commercial software, in order to be able to capitalize its expertise and methodologies. This choice allowed as well easier technological transfer to the concerned business units or engineering divisions, fast adaptation of our simulation tools to emerging needs and the development of specific physics or functionalities not addressed by the commercial offer. During the last ten years, EDF has decided to open its in-house codes, through the Open Source way. This is the case for Code – Aster (structure analysis), Code – Saturne (computational fluid dynamics, CFD), TELEMAC (flow calculations in aquatic environment), SALOME (generic platform for Pre and Post-Processing) and SYRTHES (heat transfer in complex geometries), among others. The 3 open source software: Code – Aster, Code – Saturne and TELEMAC, are certified by the French Nuclear Regulatory Authority for many «Important to Safety» studies. Advanced simulation, which treats complex, multi-field and multi-physics problems, is of great importance for the assessment of nuclear safety issues. This paper will present 2 examples of advanced simulation using Code – Saturne for safety issues of nuclear power plants in the fields of R and D and

  10. Design and development of a virtual reality simulator for advanced cardiac life support training.

    Science.gov (United States)

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  11. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  12. Propagation-invariant vectorial Bessel beams by use of sub wavelength quantized Pancharatnam-Berry phase optics

    International Nuclear Information System (INIS)

    Niv, A.; Biener, G.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Propagation-invariant scalar fields have been extensively studied both theoretically and experimentally, since they were proposed by Durnin et al. These fields were employed in applications such as optical tweezers and for transport and guiding of microspheres. Although there has recently been considerable theoretical interest in propagation-invariant vectorial beams, experimental studies of such beams have remained somewhat limited. One of the most interesting types of propagation-invariant vectorial beam is the linearly polarized axially symmetric beam (LPASB) [l]. Recently, we introduced and experimentally demonstrated propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized Pancharatnam-Berry phase optical elements (QPBOEs) [21 and an axicon. QP-BOEs utilize the geometric phase that accompanies space-variant polarization manipulations to achieve a desired phase modification [31. To test our approach we formed QPBOEs with different polarization orders as computer-generated space-variant sub wavelength gratings upon GaAs wafers for use with 10.6 micron laser radiation. The resultant beams were also transmitted through a polarizer that produced a unique propagation-invariant scalar beam. This beam has a propeller-shaped intensity pattern that can be rotated by simple rotation of the polarizer. We therefore have demonstrated the formation of a vectorial Bessel beam by using simple, lightweight thin elements and exploited that beam to perform a controlled rotation of a propeller-shaped intensity pattern that can be suitable for optical tweezers

  13. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    Science.gov (United States)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  14. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  15. Assessment of driving-related performance in chronic whiplash using an advanced driving simulator.

    Science.gov (United States)

    Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Rakotonirainy, Andry; Haines, Andrew; Jull, Gwendolen

    2013-11-01

    Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤-2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (-0.3±0.3; Pdriving. There were no differences in the reaction time and missed response ratio in divided

  16. Numerical simulation of flow field in the China advanced research reactor flow-guide tank

    International Nuclear Information System (INIS)

    Xu Changjiang

    2002-01-01

    The flow-guide tank in China advanced research reactor (CARR) acts as a reactor inlet coolant distributor and play an important role in reducing the flow-induced vibration of the internal components of the reactor core. Numerical simulations of the flow field in the flow-guide tank under different conceptual designing configurations are carried out using the PHOENICS3.2. It is seen that the inlet coolant is well distributed circumferentially into the flow-guide tank with the inlet buffer plate and the flow distributor barrel. The maximum cross-flow velocity within the flow-guide tank is reduced significantly, and the reduction of flow-induced vibration of reactor internals is expected

  17. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    Science.gov (United States)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  18. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrickson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individual work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.

  19. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  20. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    International Nuclear Information System (INIS)

    Morgan, D. V.; Iversen, S.; Hilko, R. A.

    2002-01-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value

  1. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets.

    Science.gov (United States)

    Le Menach, Arnaud; Takala, Shannon; McKenzie, F Ellis; Perisse, Andre; Harris, Anthony; Flahault, Antoine; Smith, David L

    2007-01-25

    Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects. Using an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted changes are illustrated as a function of the frequency of ITN use for four different vector populations using parameter estimates from the literature. The model demonstrates that ITNs simultaneously reduce mosquitoes' lifespans, lengthen the feeding cycle, and by discouraging human biting divert more bites onto non-human hosts. ITNs can substantially reduce vectorial capacity through small changes to all of these quantities. The total reductions in vectorial capacity differ, moreover, depending on baseline behavior in the absence of ITNs. Reductions in lifespan and vectorial capacity are strongest for vector species with high baseline survival. Anthropophilic and zoophilic species are affected differently by ITNs; the feeding cycle is lengthened more for anthrophilic species, and the proportion of bites that are diverted onto non-human hosts is higher for zoophilic species. This model suggests that the efficacy of ITNs should be measured as a total reduction in transmission intensity, and that the quantitative effects will differ by species and by transmission intensity. At very high rates of ITN use, ITNs can generate large reductions in transmission intensity that could provide very large reductions in transmission intensity, and effective malaria control in some areas, especially when used in combination with other control measures. At high EIR, ITNs will probably not substantially reduce the parasite rate, but when transmission intensity is low, reductions in vectorial capacity combine with reductions in

  2. Systemic Analysis, Mapping, Modeling, and Simulation of the Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Guan, Yue; Laidler, James J.; Morman, James A.

    2002-01-01

    Advanced chemical separations methods envisioned for use in the Department of Energy Advanced Accelerator Applications (AAA) program have been studied using the Systemic Analysis, Mapping, Modeling, and Simulation (SAMMS) method. This integrated and systematic method considers all aspects of the studied process as one dynamic and inter-dependent system. This particular study focuses on two subjects: the chemical separation processes for treating spent nuclear fuel, and the associated non-proliferation implications of such processing. Two levels of chemical separation models are developed: level 1 models treat the chemical process stages by groups; and level 2 models depict the details of each process stage. Models to estimate the proliferation risks based on proliferation barrier assessment are also developed. This paper describes the research conducted for the single-stratum design in the AAA program. Further research conducted for the multi-strata designs will be presented later. The method and models described in this paper can help in the design of optimized processes that fulfill the chemical separation process specifications and non-proliferation requirements. (authors)

  3. Technical tips and advancements in pediatric minimally invasive surgical training on porcine based simulations.

    Science.gov (United States)

    Narayanan, Sarath Kumar; Cohen, Ralph Clinton; Shun, Albert

    2014-06-01

    Minimal access techniques have transformed the way pediatric surgery is practiced. Due to various constraints, surgical residency programs have not been able to tutor adequate training skills in the routine setting. The advent of new technology and methods in minimally invasive surgery (MIS), has similarly contributed to the need for systematic skills' training in a safe, simulated environment. To enable the training of the proper technique among pediatric surgery trainees, we have advanced a porcine non-survival model for endoscopic surgery. The technical advancements over the past 3 years and a subjective validation of the porcine model from 114 participating trainees using a standard questionnaire and a 5-point Likert scale have been described here. Mean attitude scores and analysis of variance (ANOVA) were used for statistical analysis of the data. Almost all trainees agreed or strongly agreed that the animal-based model was appropriate (98.35%) and also acknowledged that such workshops provided adequate practical experience before attempting on human subjects (96.6%). Mean attitude score for respondents was 19.08 (SD 3.4, range 4-20). Attitude scores showed no statistical association with years of experience or the level of seniority, indicating a positive attitude among all groups of respondents. Structured porcine-based MIS training should be an integral part of skill acquisition for pediatric surgery trainees and the experience gained can be transferred into clinical practice. We advocate that laparoscopic training should begin in a controlled workshop setting before procedures are attempted on human patients.

  4. Comprehensive support for nuclear decommissioning based on 3D simulation and advanced user interface technologies

    International Nuclear Information System (INIS)

    Szőke, István; Louka, Michael N.; Bryntesen, Tom-Robert; Edvardsen, Svein-Tore; Bratteli, Joachim

    2015-01-01

    There is an increasing international focus on the need to optimise decommissioning strategies, driven by the anticipation of high costs and major effort for the decommissioning of nuclear facilities in the coming decades. The goals are to control and mitigate costs and negative impacts on workers, the general public, and the environment. The methods presently employed for many decommissioning tasks do not apply the latest advancements of science and technology. Therefore, there is growing interest in research and development into the adoption of novel techniques for improving safety, reducing costs, and increasing transparency. This paper provides a comprehensive overview of the authors' results from investigating how current and emerging technologies can be applied to enhance the international decommissioning strategy, focussing in particular on three-dimensional simulation, virtual reality, advanced user interfaces, mobile and wearable devices, and geographical information systems. Our results demonstrate that emerging technologies have great potential for supporting adoption of new instrumentation, improving data and knowledge management, optimising project plans, briefing and training field operators, and for communication, surveillance, and education in general. (author)

  5. Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya

    Science.gov (United States)

    Afrane, Yaw A.; Little, Tom J.; Lawson, Bernard W.; Githeko, Andrew K.

    2008-01-01

    We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher temperatures and relative humidities, and the overall infection rate of mosquitoes was increased compared with that in forested sites. Sporozoites appeared on average 1.1 days earlier in deforested areas. Vectorial capacity was estimated to be 77.7% higher in the deforested site than in the forested site. We showed that deforestation changes microclimates, leading to more rapid sporogonic development of P. falciparum and to a marked increase of malaria risk in the western Kenyan highland. PMID:18826815

  6. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity.

    Science.gov (United States)

    King, Jessica G; Souto-Maior, Caetano; Sartori, Larissa M; Maciel-de-Freitas, Rafael; Gomes, M Gabriela M

    2018-04-16

    Wolbachia has been introduced into Aedes aegypti mosquitoes to control the spread of arboviruses, such as dengue, chikungunya and Zika. Studies showed that certain Wolbachia strains (such as wMel) reduce replication of dengue viruses in the laboratory, prompting the release of mosquitoes carrying the bacterium into the field, where vectorial capacity can be realistically assessed in relation to native non-carriers. Here we apply a new analysis to two published datasets, and show that wMel increases the mean and the variance in Ae. aegypti susceptibility to dengue infection when introgressed into Brazil and Vietnam genetic backgrounds. In the absence of other processes, higher mean susceptibility should lead to enhanced viral transmission. The increase in variance, however, widens the basis for selection imposed by unexplored natural forces, retaining the potential for reducing transmission overall.

  7. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  8. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria

    Science.gov (United States)

    Alexandre, Adolfo; Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H+ are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H+/2e- ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H+/2e- ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H+/2e- ratio for site 3 was close to 4. The H+/ATP ratio (number of vectorial H+ ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H+ ejection and ATP hydrolysis were measured in the presence of K+ + valinomycin. The H+/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H+ equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H+ equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H+ is used to bring about the energy-requiring electrogenic expulsion of ATP4- in exchange for extramitochondrial ADP3-, via the H+/H2PO4- symporter. PMID:31621

  9. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.

    Science.gov (United States)

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-07-01

    To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Normal subjects and patients with glaucoma with mean deviation glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (pglaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (pglaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein

    2012-01-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a 137 Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  11. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-02-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  12. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  13. Effect of Advanced Trauma Life Support program on medical interns' performance in simulated trauma patient management.

    Science.gov (United States)

    Ahmadi, Koorosh; Sedaghat, Mohammad; Safdarian, Mahdi; Hashemian, Amir-Masoud; Nezamdoust, Zahra; Vaseie, Mohammad; Rahimi-Movaghar, Vafa

    2013-01-01

    Since appropriate and time-table methods in trauma care have an important impact on patients'outcome, we evaluated the effect of Advanced Trauma Life Support (ATLS) program on medical interns' performance in simulated trauma patient management. A descriptive and analytical study before and after the training was conducted on 24 randomly selected undergraduate medical interns from Imam Reza Hospital in Mashhad, Iran. On the first day, we assessed interns' clinical knowledge and their practical skill performance in confronting simulated trauma patients. After 2 days of ATLS training, we performed the same study and evaluated their score again on the fourth day. The two findings, pre- and post- ATLS periods, were compared through SPSS version 15.0 software. P values less than 0.05 were considered statistically significant. Our findings showed that interns'ability in all the three tasks improved after the training course. On the fourth day after training, there was a statistically significant increase in interns' clinical knowledge of ATLS procedures, the sequence of procedures and skill performance in trauma situations (P less than 0.001, P equal to 0.016 and P equal to 0.01 respectively). ATLS course has an important role in increasing clinical knowledge and practical skill performance of trauma care in medical interns.

  14. Simulation and design method in advanced nanomaterials fine-tuning for some perovskites type AHE study

    International Nuclear Information System (INIS)

    Mohorianu, S.; Lozovan, M.; Rusu, F.-V.

    2009-01-01

    Nanostructured materials with tailored properties are now essential for future applications in the current industrial manufacturing. Extracting valuable information from data by using the distributed computer processing and storage technologies, as well the Artificial Neural Network (ANN) and the development of advanced algorithms for knowledge discovery are the purpose of our work. We describe how a Simulation and Design Method (SDM) attempt, based on our last results, is applied on two perovskites type materials, La 0.7 Ca 0.3 MnO 3 and La 0.7 Sr 0.3 MnO 3 in order to study the Anomalous Hall Effect (AHE). Our new ANN model, is intended to contribute to the effort to improve some properties of new materials. It implements and uses the basic building blocks of neural computation, such as multi-layer perceptrons. ANN can learn associative patterns and approximate the functional relationship between a set of input and output. Modeling and simulation techniques affect all stages in the development and improvement of new materials, from the initial formation of concepts to synthesis and characterization of properties. A new SDM with ANN for some nanomagnetic materials was given. Neural networks have been applied successfully in the identification and classification of some nanomagnetic characteristics from a large amount of data. (authors)

  15. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  16. Simulating and quantifying legacy topographic data uncertainty: an initial step to advancing topographic change analyses

    Science.gov (United States)

    Wasklewicz, Thad; Zhu, Zhen; Gares, Paul

    2017-12-01

    Rapid technological advances, sustained funding, and a greater recognition of the value of topographic data have helped develop an increasing archive of topographic data sources. Advances in basic and applied research related to Earth surface changes require researchers to integrate recent high-resolution topography (HRT) data with the legacy datasets. Several technical challenges and data uncertainty issues persist to date when integrating legacy datasets with more recent HRT data. The disparate data sources required to extend the topographic record back in time are often stored in formats that are not readily compatible with more recent HRT data. Legacy data may also contain unknown error or unreported error that make accounting for data uncertainty difficult. There are also cases of known deficiencies in legacy datasets, which can significantly bias results. Finally, scientists are faced with the daunting challenge of definitively deriving the extent to which a landform or landscape has or will continue to change in response natural and/or anthropogenic processes. Here, we examine the question: how do we evaluate and portray data uncertainty from the varied topographic legacy sources and combine this uncertainty with current spatial data collection techniques to detect meaningful topographic changes? We view topographic uncertainty as a stochastic process that takes into consideration spatial and temporal variations from a numerical simulation and physical modeling experiment. The numerical simulation incorporates numerous topographic data sources typically found across a range of legacy data to present high-resolution data, while the physical model focuses on more recent HRT data acquisition techniques. Elevation uncertainties observed from anchor points in the digital terrain models are modeled using "states" in a stochastic estimator. Stochastic estimators trace the temporal evolution of the uncertainties and are natively capable of incorporating sensor

  17. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  18. SIROCCO project: 15 advanced instructor desk and 4 simulated control room for 900MW and 1300MW EDF power plant simulators

    International Nuclear Information System (INIS)

    Alphonse, J.; Roth, P.; Sicard, Y.; Rudelli, P.

    2006-01-01

    This presentation describes the fifteen advanced instructors station and four simulated control delivered to EDF in the frame of the SIROCCO project by the Consortium formed by ATOS Origin, CORYS Tess, for the Electricite de France (EDF). These instructor stations are installed on fifteen replica training simulators located on different sites throughout France for the purposes of improving the job-related training of the EDF PWR nuclear power plant operating teams. This covers all 900 MW and 1300MW nuclear power plant of EDF. The simulated control rooms are installed on maintenance platform located at EDF and the consortium facilities. The consortium uses it to maintain and upgrade the simulators. EDF uses it to validate the upgrade delivered by the consortium before on site installation and to perform engineering analysis. This presentation sets out successively: - The major advantages of the generic and configurable connected module concept for flexible and quick adaptation to different simulators; - The innovative functionalities of the advanced Instructor Desk (IS) which make the instructor's tasks of preparation, monitoring and postanalysis of a training session easier and more homogeneous; - The use of the Simulated Control Room (SCR) for training purposes but also for those of maintenance and design studies for upgrades of existing control rooms

  19. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, Alex [ORNL; Billings, Jay Jay [ORNL; de Almeida, Valmor F [ORNL

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  20. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  1. Advanced Research and Education in Electrical Drives by Using Digital Real-Time Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Bojoi, R.; Profumo, F.; Griva, G.

    2002-01-01

    The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...

  2. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  3. An expanded framework for the advanced computational testing and simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  4. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms

    International Nuclear Information System (INIS)

    Ethier, S; Tang, W M; Lin, Z

    2005-01-01

    Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors

  5. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption desalination cycle that employs internal heat recovery between the evaporator and the condenser, utilizing an encapsulated evaporator-condenser unit for effective heat transfer. A simulation model has been developed based on the actual sorption characteristics of the adsorbent-adsorbate pair, energy and mass balances applied to the components of the AD cycle. With an integrated design, the temperature in the evaporator and the vapor pressurization of the adsorber are raised due to the direct heat recovery from the condenser, resulting in the higher water production rates, typically improved by as much as three folds of the conventional AD cycle. In addition, the integrated design eliminates two pumps, namely, the condenser cooling water and the chilled water pumps, lowering the overall electricity consumption. The performance of the cycle is analyzed at assorted heat source and cooling water temperatures, and different cycle times as well as the transient heat transfer coefficients of the evaporation and condensation. © 2012 Elsevier B.V.

  6. Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    Science.gov (United States)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.

  7. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  8. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Nuijts, Roeland; Bjorn, Lars Lange

    2014-01-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division ......This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength......-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi...

  9. Advanced simulation capability for environmental management - current status and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark; Scheibe, Timothy [Pacific Northwest National Laboratory, Richland, Washington (United States); Robinson, Bruce; Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Marble, Justin; Gerdes, Kurt [U.S. Department of Energy, Office of Environmental Management, Washington DC (United States); Stockton, Tom [Neptune and Company, Inc, Los Alamos, New Mexico (United States); Seitz, Roger [Savannah River National Laboratory, Aiken, South Carolina (United States); Black, Paul [Neptune and Company, Inc, Lakewood, Colorado (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater (EM-12), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach that is currently aimed at understanding and predicting contaminant fate and transport in natural and engineered systems. ASCEM is a modular and open source high-performance computing tool. It will be used to facilitate integrated approaches to modeling and site characterization, and provide robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, with current emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) multi-process simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The integration of the Platform and HPC capabilities were tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities in 2012. The current maturity of the ASCEM computational and analysis capabilities has afforded the opportunity for collaborative efforts to develop decision analysis tools to support and optimize radioactive waste disposal. Recent advances in computerized decision analysis frameworks provide the perfect opportunity to bring this capability into ASCEM. This will allow radioactive waste

  10. Simulació de tècniques de control vectorial d'un motor síncron

    OpenAIRE

    Valls Peralbo, Víctor

    2016-01-01

    L'objecte del projecte és simular diferents tècniques de control vectorial d'una màquina síncrona d’ imants permanents funcionant com a motor a l'entorn Matlab-Simulink. Es buscarà un mètode de control que permeti que la intensitat directe de la intensitat de camp sigui igual a zero

  11. Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) is a dynamic, spatially-resolved, differential mass balance fate and transport modeling framework. WASP is used to develop models to simulate concentrations of environmental contaminants in surface waters and sediments. As a mo...

  12. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    Science.gov (United States)

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  13. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions.

    Science.gov (United States)

    Acevedo, Orlando; Jorgensen, William L

    2010-01-19

    Application of combined quantum and molecular mechanical (QM/MM) methods focuses on predicting activation barriers and the structures of stationary points for organic and enzymatic reactions. Characterization of the factors that stabilize transition structures in solution and in enzyme active sites provides a basis for design and optimization of catalysts. Continued technological advances allowed for expansion from prototypical cases to mechanistic studies featuring detailed enzyme and condensed-phase environments with full integration of the QM calculations and configurational sampling. This required improved algorithms featuring fast QM methods, advances in computing changes in free energies including free-energy perturbation (FEP) calculations, and enhanced configurational sampling. In particular, the present Account highlights development of the PDDG/PM3 semi-empirical QM method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo (MC) simulations, and a polynomial quadrature method for efficient modeling of proton-transfer reactions. The utility of this QM/MM/MC/FEP methodology is illustrated for a variety of organic reactions including substitution, decarboxylation, elimination, and pericyclic reactions. A comparison to experimental kinetic results on medium effects has verified the accuracy of the QM/MM approach in the full range of solvents from hydrocarbons to water to ionic liquids. Corresponding results from ab initio and density functional theory (DFT) methods with continuum-based treatments of solvation reveal deficiencies, particularly for protic solvents. Also summarized in this Account are three specific QM/MM applications to biomolecular systems: (1) a recent study that clarified the mechanism for the reaction of 2-pyrone derivatives catalyzed by macrophomate synthase as a tandem Michael-aldol sequence rather than a Diels-Alder reaction, (2) elucidation of the mechanism of action of fatty

  14. Preface: Research advances in vadose zone hydrology through simulations with the TOUGH codes

    International Nuclear Information System (INIS)

    Finsterle, Stefan; Oldenburg, Curtis M.

    2004-01-01

    Numerical simulators are playing an increasingly important role in advancing our fundamental understanding of hydrological systems. They are indispensable tools for managing groundwater resources, analyzing proposed and actual remediation activities at contaminated sites, optimizing recovery of oil, gas, and geothermal energy, evaluating subsurface structures and mining activities, designing monitoring systems, assessing the long-term impacts of chemical and nuclear waste disposal, and devising improved irrigation and drainage practices in agricultural areas, among many other applications. The complexity of subsurface hydrology in the vadose zone calls for sophisticated modeling codes capable of handling the strong nonlinearities involved, the interactions of coupled physical, chemical and biological processes, and the multiscale heterogeneities inherent in such systems. The papers in this special section of ''Vadose Zone Journal'' are illustrative of the enormous potential of such numerical simulators as applied to the vadose zone. The papers describe recent developments and applications of one particular set of codes, the TOUGH family of codes, as applied to nonisothermal flow and transport in heterogeneous porous and fractured media (http://www-esd.lbl.gov/TOUGH2). The contributions were selected from presentations given at the TOUGH Symposium 2003, which brought together developers and users of the TOUGH codes at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, for three days of information exchange in May 2003 (http://www-esd.lbl.gov/TOUGHsymposium). The papers presented at the symposium covered a wide range of topics, including geothermal reservoir engineering, fracture flow and vadose zone hydrology, nuclear waste disposal, mining engineering, reactive chemical transport, environmental remediation, and gas transport. This Special Section of ''Vadose Zone Journal'' contains revised and expanded versions of selected papers from the

  15. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array

  16. Advanced Approach to Consider Aleatory and Epistemic Uncertainties for Integral Accident Simulations

    International Nuclear Information System (INIS)

    Peschke, Joerg; Kloos, Martina

    2013-01-01

    The use of best-estimate codes together with realistic input data generally requires that all potentially important epistemic uncertainties which may affect the code prediction are considered in order to get an adequate quantification of the epistemic uncertainty of the prediction as an expression of the existing imprecise knowledge. To facilitate the performance of the required epistemic uncertainty analyses, methods and corresponding software tools are available like, for instance, the GRS-tool SUSA (Software for Uncertainty and Sensitivity Analysis). However, for risk-informed decision-making, the restriction on epistemic uncertainties alone is not enough. Transients and accident scenarios are also affected by aleatory uncertainties which are due to the unpredictable nature of phenomena. It is essential that aleatory uncertainties are taken into account as well, not only in a simplified and supposedly conservative way but as realistic as possible. The additional consideration of aleatory uncertainties, for instance, on the behavior of the technical system, the performance of plant operators, or on the behavior of the physical process provides a quantification of probabilistically significant accident sequences. Only if a safety analysis is able to account for both epistemic and aleatory uncertainties in a realistic manner, it can provide a well-founded risk-informed answer for decision-making. At GRS, an advanced probabilistic dynamics method was developed to address this problem and to provide a more realistic modeling and assessment of transients and accident scenarios. This method allows for an integral simulation of complex dynamic processes particularly taking into account interactions between the plant dynamics as simulated by a best-estimate code, the dynamics of operator actions and the influence of epistemic and aleatory uncertainties. In this paper, the GRS method MCDET (Monte Carlo Dynamic Event Tree) for probabilistic dynamics analysis is explained

  17. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  18. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    International Nuclear Information System (INIS)

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-01-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  19. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.

    Science.gov (United States)

    Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall

    2014-10-01

    Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and

  20. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.

    Science.gov (United States)

    Lounibos, Leon Philip; Kramer, Laura D

    2016-12-15

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R 0 ), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. A Fast Alternating Minimization Algorithm for Nonlocal Vectorial Total Variational Multichannel Image Denoising

    Directory of Open Access Journals (Sweden)

    Rubing Xi

    2014-01-01

    Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.

  2. There and back again: putting the vectorial movement planning hypothesis to a critical test.

    Science.gov (United States)

    Kobak, Eva-Maria; Cardoso de Oliveira, Simone

    2014-01-01

    Based on psychophysical evidence about how learning of visuomotor transformation generalizes, it has been suggested that movements are planned on the basis of movement direction and magnitude, i.e., the vector connecting movement origin and targets. This notion is also known under the term "vectorial planning hypothesis". Previous psychophysical studies, however, have included separate areas of the workspace for training movements and testing the learning. This study eliminates this confounding factor by investigating the transfer of learning from forward to backward movements in a center-out-and-back task, in which the workspace for both movements is completely identical. Visual feedback allowed for learning only during movements towards the target (forward movements) and not while moving back to the origin (backward movements). When subjects learned the visuomotor rotation in forward movements, initial directional errors in backward movements also decreased to some degree. This learning effect in backward movements occurred predominantly when backward movements featured the same movement directions as the ones trained in forward movements (i.e., when opposite targets were presented). This suggests that learning was transferred in a direction specific way, supporting the notion that movement direction is the most prominent parameter used for motor planning.

  3. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)

    2005-07-01

    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  4. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  5. On the Predictability of Computer simulations: Advances in Verification and Validation

    KAUST Repository

    Prudhomme, Serge

    2014-01-06

    We will present recent advances on the topics of Verification and Validation in order to assess the reliability and predictability of computer simulations. The first part of the talk will focus on goal-oriented error estimation for nonlinear boundary-value problems and nonlinear quantities of interest, in which case the error representation consists of two contributions: 1) a first contribution, involving the residual and the solution of the linearized adjoint problem, which quantifies the discretization or modeling error; and 2) a second contribution, combining higher-order terms that describe the linearization error. The linearization error contribution is in general neglected with respect to the discretization or modeling error. However, when nonlinear effects are significant, it is unclear whether ignoring linearization effects may produce poor convergence of the adaptive process. The objective will be to show how both contributions can be estimated and employed in an adaptive scheme that simultaneously controls the two errors in a balanced manner. In the second part of the talk, we will present novel approach for calibration of model parameters. The proposed inverse problem not only involves the minimization of the misfit between experimental observables and their theoretical estimates, but also an objective function that takes into account some design goals on specific design scenarios. The method can be viewed as a regularization approach of the inverse problem, one, however, that best respects some design goals for which mathematical models are intended. The inverse problem is solved by a Bayesian method to account for uncertainties in the data. We will show that it shares the same structure as the deterministic problem that one would obtain by multi-objective optimization theory. The method is illustrated on an example of heat transfer in a two-dimensional fin. The proposed approach has the main benefit that it increases the confidence in predictive

  6. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  7. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  8. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2014-07-31

    This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of

  9. An Advanced, Interactive, High-Performance Liquid Chromatography Simulator and Instructor Resources

    Science.gov (United States)

    Boswell, Paul G.; Stoll, Dwight R.; Carr, Peter W.; Nagel, Megan L.; Vitha, Mark F.; Mabbott, Gary A.

    2013-01-01

    High-performance liquid chromatography (HPLC) simulation software has long been recognized as an effective educational tool, yet many of the existing HPLC simulators are either too expensive, outdated, or lack many important features necessary to make them widely useful for educational purposes. Here, a free, open-source HPLC simulator is…

  10. Distance-Learning for Advanced Military Education: Using Wargame Simulation Course as an Example

    Science.gov (United States)

    Keh, Huan-Chao; Wang, Kuei-Min; Wai, Shu-Shen; Huang, Jiung-yao; Hui, Lin; Wu, Ji-Jen

    2008-01-01

    Distance learning in advanced military education can assist officers around the world to become more skilled and qualified for future challenges. Through well-chosen technology, the efficiency of distance-learning can be improved significantly. In this paper we present the architecture of Advanced Military Education-Distance Learning (AME-DL)…

  11. Run-time coupling advanced control software with building simulation environment

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Hensen, J.L.M.; Lain, M.

    2004-01-01

    The use of advanced control technologies and intelligence in buildings and infrastructure could make the current high performance system much more efficient and reliable. The integration of advanced control strategies into the building will certainly produce significant results for better building

  12. An advanced configuration management system for full scope power plant simulators

    International Nuclear Information System (INIS)

    Storm, J.; Goemann, A.

    1996-01-01

    In August 1993 KSG Kraftwerks-Simulator-Gesellschaft, Germany, awarded a contract to STN ATLAS Elektronik for the delivery of two full scope replica training simulators for the German BWR plants Isar 1 and Philipsburg 1, known as the double simulator project S30 (S31/S32). For both projects a computer based Configuration Management System (CMS) was required to overcome deficiencies of older simulator systems in terms of limited upgrade and maintenance capabilities and incomplete documentation. The CMS allows complete control over the entire simulator system covering all software- and hardware-items and therewith exceed quality assurance requirements as defined in ISO 9000-3 which gives recommendations for software configuration management only. The system is realized under the project using the UNIX based relational database system EMPRESS and is in use as a development- and maintenance-tool to improve simulator quality and ensure simulator configuration integrity

  13. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  14. Modelo Vectorial para la Inferencia del Estado Cognitivo de Pacientes en Estados Derivados del Coma

    Directory of Open Access Journals (Sweden)

    Esteban Velásquez R.

    2014-06-01

    Full Text Available La forma tradicional de evaluar el estado de conciencia de un individuo, ha sido mediante la aplicación de estímulos y el análisis de sus respuestas, sin embargo, esta técnica se ve limitada cuando el individuo es incapaz de responder evidentemente ante un estímulo, como es el caso de los pacientes en estados derivados del coma. En estos casos, se requiere de una conexión directa con el cerebro del paciente para detectar una respuesta. Por consiguiente, en este artículo se desarrolla y analiza un modelo computacional basado en los principios de las máquinas de soporte vectorial (MSV, para inferir el estado cognitivo de pacientes en estados derivados del coma, mediante la utilización de un equipo de electroencefalografía comercial. Los resultados obtenidos, mostraron que el modelo logró clasificar correctamente una tarea cognitiva en al menos cuatro de cada cinco pruebas en pacientes de control, lo que se traduce en la obtención de un sistema de bajo costo para el análisis del estado de conciencia y para la posible comunicación con algunos pacientes en estados derivados del coma mediante protocolos médicos definidos. De esta manera, este sistema se presenta como un gran aporte para las clínicas y centros hospitalarios, como herramienta potencial de diagnóstico para este tipo de pacientes.

  15. Theoretical and experimental study of stochastic effects on polarization rotation in a vectorial bistable laser

    International Nuclear Information System (INIS)

    Singh, Kamal P.; Ropars, Guy; Brunel, Marc; Le Floch, Albert

    2006-01-01

    We investigate the two-dimensional optical rotor of a weakly modulated vectorial bistable laser submitted to a single or multiple stochastic perturbations. In the Langevin-type equation of the rotor the role of an even or odd input forcing function on the system dynamics is isolated. Through these two inputs of optical and magnetic natures we verify that the stochastic resonance exists only when the periodic modulation acts on the even parity optical input. When two mutually correlated noises are simultaneously submitted to the input functions of opposite parities, we find a critical regime of the noise interplay whereby one stable state becomes noise-free. In this case, the residence time of the light vector in the noise-free state diverges which leads to a collapse of the output signal-to-noise ratio. But, in this critical regime also obtained when one noise drives both the even and odd functions, if the system symmetry is broken through an independent lever control, we can recover the switching cycle due to a new response mechanism, namely, the dual stochastic response, with a specific output signal-to-noise ratio expression. Both the theoretical analysis and the experiment show that the signal-to-noise ratio now displays a robust behavior for a large range of the input noise amplitude, and a plateau with respect to the input signal amplitude. Furthermore, we isolate an original signature of this synchronization mechanism in the residence-time distribution leading to a broadband forcing frequency range. These noise interplay effects in a double well potential are of generic nature and could be found in other nonlinear systems

  16. Ukraine’s Multi-Vectorial Foreign Policy: Looking West while not Overlooking its Eastern Neighbour

    Directory of Open Access Journals (Sweden)

    María Raquel Freire

    2009-05-01

    Full Text Available La Ucrania post-soviética ha perseguido un curso independiente en su política exterior desde que lograse la independencia en 1991. Sin embargo su posición geográfica condicionó mucho el contorno de su política exterior. De hecho, mientras que un acercamiento al Oeste ha sido valorado grandemente, las relaciones con Rusia han seguido siendo el pilar central de Ucrania, intentándose por tanto, mirar hacia el Oeste sin perder de vista a su vecino oriental. En tal contexto, ¿cómo podrían conciliar las autoridades ucranianas los diferentes vectores de la política exterior de su país?¿En qué medida podrían pervivir los principios de la Revolución Naranja entre un contexto interior tan difícil y un contexto exterior complejo?¿En qué medida pueden afectar a las opciones en política exterior de Kiev la influencia occidental y las interferencias rusas? Intentando encontrar respuestas a tales preguntas, este artículo tiene como objetivo la deconstrucción de los varios círculos en la política exterior multi-vectorial de Kiev que se encargan de atender a la política exterior de una manera integrada y donde las formulaciones interiores se ven condicionadas por las opciones externas, echando luz de esta manera sobre cómo las interrelaciones e interconexiones se desarrollan en el proceso de toma de decisiones y en el curso elegido.

  17. Using simulation to improve the cognitive and psychomotor skills of novice students in advanced laparoscopic surgery: a meta-analysis.

    Science.gov (United States)

    Al-Kadi, Azzam S; Donnon, Tyrone

    2013-01-01

    Advances in simulation technologies have enhanced the ability to introduce the teaching and learning of laparoscopic surgical skills to novice students. In this meta-analysis, a total of 18 randomized controlled studies were identified that specifically looked at training novices in comparison with a control group as it pertains to knowledge retention, time to completion and suturing and knotting skills. The combined random-effect sizes (ESs) showed that novice students who trained on laparoscopic simulators have considerably developed better laparoscopic suturing and knot tying skills (d = 1.96, p < 0.01), conducted fewer errors (d = 2.13, p < 0.01), retained more knowledge (d = 1.57, p < 0.01) than their respective control groups, and were significantly faster on time to completion (d = 1.98, p < 0.01). As illustrated in corresponding Forest plots, the majority of the primary study outcomes included in this meta-analysis show statistically significant support (p < 0.05) for the use of laparoscopic simulators for novice student training on both knowledge and advanced surgical skill development (28 of 35 outcomes, 80%). The findings of this meta-analysis support strongly the use of simulators for teaching laparoscopic surgery skills to novice students in surgical residency programs.

  18. Accurately fitting advanced training. Flexible simulator training by modular training course concepts

    International Nuclear Information System (INIS)

    Sickora, Katrin; Cremer, Hans-Peter

    2010-01-01

    Every employee of a power plant contributes with his individual expertise to the success of the enterprise. Certainly personal skills of employees differ from each other as well as power plants are different. With respect to effective simulator training this means that no two simulator training courses can be identical. To exactly meet the requirements of our customers KWS has developed modules for simulation training courses. Each module represents either a technical subject or addresses a topic in the field of soft skills. An accurately fitting combination of several of these modules to the needs of our customers allows for most efficient simulator training courses. (orig.)

  19. Advances in HYDRA and its applications to simulations of inertial confinement fusion targets

    Directory of Open Access Journals (Sweden)

    Marinak M.M.

    2013-11-01

    Full Text Available A new set of capabilities has been implemented in the HYDRA 2D/3D multiphysics inertial confinement fusion simulation code. These include a Monte Carlo particle transport library. It models transport of neutrons, gamma rays and light ions, as well as products they generate from nuclear and coulomb collisions. It allows accurate simulations of nuclear diagnostic signatures from capsule implosions. We apply it to here in a 3D simulation of a National Ignition Facility (NIF ignition capsule which models the full capsule solid angle. This simulation contains a severely rough ablator perturbation and provides diagnostics signatures of capsule failure due to excessive instability growth.

  20. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw; Chakraborty, Anutosh; Kim, Youngdeuk; Myat, Aung; Saha, Bidyut Baran; Ng, Kim Choon

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption

  1. Augmented Reality Head-Up-Display for Advanced Driver Assistance System: A Driving Simulation Study

    OpenAIRE

    HALIT, Lynda; KEMENY, Andras; GARBAYA, Samir; MERIENNE, Frédéric; MICHELIN, Sylvain; ALBAUT, Valentin

    2014-01-01

    Research and technological advance in the field of Augmented Reality (AR) is growing rapidly (Mas, 2011). One of the new application domains is the automobile industry, linked to the necessary men machine aspects of Advanced Driving Assistance Systems (ADAS). Relevant road traffic as well as useful navigation or path planning information may be displayed using partially or totally the windshield surface thanks to these emerging technologies. However, the way road traffic, signs or vehicle inf...

  2. Augmented Reality Head-Up-Display for Advanced Driver Assistance System: A Driving Simulation Study

    OpenAIRE

    HALIT , Lynda; Kemeny , Andras; Mohellebi , Hakim; GARBAYA , Samir; Merienne , Frédéric; Michelin , Sylvain; ALBAUT , Valentin

    2014-01-01

    International audience; Research and technological advance in the field of Augmented Reality (AR) is growing rapidly (Mas, 2011). One of the new application domains is the automobile industry, linked to the necessary men machine aspects of Advanced Driving Assistance Systems (ADAS). Relevant road traffic as well as useful navigation or path planning information may be displayed using partially or totally the windshield surface thanks to these emerging technologies. However, the way road traff...

  3. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y; Paulot, F; Carter, WPL; Nolte, CG; Luecken, DJ; Hutzell, WT; Wennberg, PO; Cohen, RC; Pinder, RW

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation ch...

  4. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y.; Carter, W. P. L.; Nolte, C. G.; Luecken, D. J.; Hutzell, W. T.; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W.

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NO_x recycling rates. We incorporate recent advances in isoprene oxidation chemistry int...

  5. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  6. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  7. Aacsfi-PSC. Advanced accelerator concepts for strong field interaction simulated with the Plasma-Simulation-Code

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics

    2016-11-01

    Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.

  8. Cálculo vectorial discreto para problemas elípticos sobre retículas uniformes

    OpenAIRE

    Santos Gutiérrez, Roberto

    2004-01-01

    Esta tesina se enmarca dentro de los trabajos en el campo del análisis numérico denominados genéricamente como "discretizaciones miméticas de la mecánica del medio continuo". La idea consiste en establecer un cálculo vectorial sobre retículas uniformes siguiendo el modelo del caso continuo, de forma que se plantean los problemas elípticos directamente en medios discretos. Esto conduce a obtener operadores discretos análogos al gradiente, divergencia y laplaciano, y se demuestra que estos oper...

  9. El método de los elementos finitos para el modelado de ondas con un procesador vectorial

    OpenAIRE

    Sanz, F.; Serón, Francisco J.; Kindelan, M.; Pérez, C.

    1990-01-01

    El objetivo de este trabajo es analizar los aspectos computacionales del Método de los Eleinentos Finitos para la resolución de las ecuaciones de onda elásticas. Se analizan las técnicas nuinéricas necesarias desde el punto de vista de la precisión, prestaciones y necesidades de almacenamiento cuando se impleinentan en procesadores escalares y vectoriales con gran capacidad de almacenamiento. El método se ha iinplementado en un IBM 3090 con procesador vectorial usando diferentes algorit...

  10. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  11. Ophthalmoscopy simulation: advances in training and practice for medical students and young ophthalmologists

    Directory of Open Access Journals (Sweden)

    Ricci LH

    2017-06-01

    Full Text Available Lucas Holderegger Ricci,1 Caroline Amaral Ferraz2 1Department of Ophthalmology, School of Medicine, Laureate International Universities, São Paulo (SP, Brazil; 2Department of Ophthalmology, Federal University of São Paulo (UNIFESP, São Paulo (SP, Brazil Objective: To describe and appraise the latest simulation models for direct and indirect ophthalmoscopy as a learning tool in the medical field. Methods: The present review was conducted using four national and international databases – PubMed, Scielo, Medline and Cochrane. Initial set of articles was screened based on title and abstracts, followed by full text analysis. It comprises of articles that were published in the past fifteen years (2002–2017.Results: Eighty-three articles concerning simulation models for medical education were found in national and international databases, with only a few describing important aspects of ophthalmoscopy training and current application of simulation in medical education. After secondary analysis, 38 articles were included.Conclusion: Different ophthalmoscopy simulation models have been described, but only very few studies appraise the effectiveness of each individual model. Comparison studies are still required to determine best approaches for medical education and skill enhancement through simulation models, applied to both medical students as well as young ophthalmologists in training. Keywords: direct ophthalmoscopy, indirect ophthalmoscopy, skills, simulator, simulation models

  12. Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Science.gov (United States)

    Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.

    1989-01-01

    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.

  13. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery.

    Science.gov (United States)

    Chang, Kwang K; Kim, Ki Beom; McQuilling, Mark W; Movahed, Reza

    2018-06-01

    The purpose of this study was to analyze pharyngeal airflow using both computational fluid dynamics (CFD) and fluid structure interactions (FSI) in obstructive sleep apnea patients before and after maxillomandibular advancement (MMA) surgery. The airflow characteristics before and after surgery were compared with both CFD and FSI. In addition, the presurgery and postsurgery deformations of the airway were evaluated using FSI. Digitized pharyngeal airway models of 2 obstructive sleep apnea patients were generated from cone-beam computed tomography scans before and after MMA surgery. CFD and FSI were used to evaluate the pharyngeal airflow at a maximum inspiration rate of 166 ml per second. Standard steady-state numeric formulations were used for airflow simulations. Airway volume increased, pressure drop decreased, maximum airflow velocity decreased, and airway resistance dropped for both patients after the MMA surgery. These findings occurred in both the CFD and FSI simulations. The FSI simulations showed an area of marked airway deformation in both patients before surgery, but this deformation was negligible after surgery for both patients. Both CFD and FSI simulations produced airflow results that indicated less effort was needed to breathe after MMA surgery. The FSI simulations demonstrated a substantial decrease in airway deformation after surgery. These beneficial changes positively correlated with the large improvements in polysomnography outcomes after MMA surgery. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    International Nuclear Information System (INIS)

    Alves, J.L.; Oliveira, M.C.; Menezes, L.F.

    2004-01-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results

  15. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    International Nuclear Information System (INIS)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M.; Heikkinen, J.A.; Ogando, F.

    2010-01-01

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Progress and new advances in simulating electron microscopy datasets using MULTEM

    International Nuclear Information System (INIS)

    Lobato, I.; Van Aert, S.; Verbeeck, J.

    2016-01-01

    A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations. - Highlights: • We present a new version of the CPU/GPU open source program MULTEM. • A cross-platform graphical user interface is developed. • We include inelastic excitations for EFTEM/STEM-EELS calculations. • We add CPU multithreading functionality and single/double precision calculations.

  17. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Heikkinen, J.A. [VTT, Euratom-Tekes Association, Espoo (Finland); Ogando, F. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2010-05-15

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Progress and new advances in simulating electron microscopy datasets using MULTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, I., E-mail: Ivan.Lobato@uantwerpen.be; Van Aert, S.; Verbeeck, J.

    2016-09-15

    A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations. - Highlights: • We present a new version of the CPU/GPU open source program MULTEM. • A cross-platform graphical user interface is developed. • We include inelastic excitations for EFTEM/STEM-EELS calculations. • We add CPU multithreading functionality and single/double precision calculations.

  19. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    Science.gov (United States)

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  20. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Energy Technology Data Exchange (ETDEWEB)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)

    2010-10-01

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)

  1. Advanced modeling in positron emission tomography using Monte Carlo simulations for improving reconstruction and quantification

    International Nuclear Information System (INIS)

    Stute, Simon

    2010-01-01

    Positron Emission Tomography (PET) is a medical imaging technique that plays a major role in oncology, especially using "1"8F-Fluoro-Deoxyglucose. However, PET images suffer from a modest spatial resolution and from high noise. As a result, there is still no consensus on how tumor metabolically active volume and tumor uptake should be characterized. In the meantime, research groups keep producing new methods for such characterizations that need to be assessed. A Monte Carlo simulation based method has been developed to produce simulated PET images of patients suffering from cancer, indistinguishable from clinical images, and for which all parameters are known. The method uses high resolution PET images from patient acquisitions, from which the physiological heterogeneous activity distribution can be modeled. It was shown that the performance of quantification methods on such highly realistic simulated images are significantly lower and more variable than using simple phantom studies. Fourteen different quantification methods were also compared in realistic conditions using a group of such simulated patients. In addition, the proposed method was extended to simulate serial PET scans in the context of patient monitoring, including a modeling of the tumor changes, as well as the variability over time of non-tumoral physiological activity distribution. Monte Carlo simulations were also used to study the detection probability inside the crystals of the tomograph. A model of the crystal response was derived and included in the system matrix involved in tomographic reconstruction. The resulting reconstruction method was compared with other sophisticated methods for modeling the detector response in the image space, proposed in the literature. We demonstrated the superiority of the proposed method over equivalent approaches on simulated data, and illustrated its robustness on clinical data. For a same noise level, it is possible to reconstruct PET images offering a

  2. CORBA and MPI-based 'backbone' for coupling advanced simulation tools

    International Nuclear Information System (INIS)

    Seydaliev, M.; Caswell, D.

    2014-01-01

    There is a growing international interest in using coupled, multidisciplinary computer simulations for a variety of purposes, including nuclear reactor safety analysis. Reactor behaviour can be modeled using a suite of computer programs simulating phenomena or predicting parameters that can be categorized into disciplines such as Thermalhydraulics, Neutronics, Fuel, Fuel Channels, Fission Product Release and Transport, Containment and Atmospheric Dispersion, and Severe Accident Analysis. Traditionally, simulations used for safety analysis individually addressed only the behaviour within a single discipline, based upon static input data from other simulation programs. The limitation of using a suite of stand-alone simulations is that phenomenological interdependencies or temporal feedback between the parameters calculated within individual simulations cannot be adequately captured. To remove this shortcoming, multiple computer simulations for different disciplines must exchange data during runtime to address these interdependencies. This article describes the concept of a new framework, which we refer to as the 'Backbone', to provide the necessary runtime exchange of data. The Backbone, currently under development at AECL for a preliminary feasibility study, is a hybrid design using features taken from the Common Object Request Broker Architecture (CORBA), a standard defined by the Object Management Group, and the Message Passing Interface (MPI), a standard developed by a group of researchers from academia and industry. Both have well-tested and efficient implementations, including some that are freely available under the GNU public licenses. The CORBA component enables individual programs written in different languages and running on different platforms within a network to exchange data with each other, thus behaving like a single application. MPI provides the process-to-process intercommunication between these programs. This paper outlines the different CORBA and

  3. Achieving Accreditation Council for Graduate Medical Education duty hours compliance within advanced surgical training: a simulation-based feasibility assessment.

    Science.gov (United States)

    Obi, Andrea; Chung, Jennifer; Chen, Ryan; Lin, Wandi; Sun, Siyuan; Pozehl, William; Cohn, Amy M; Daskin, Mark S; Seagull, F Jacob; Reddy, Rishindra M

    2015-11-01

    Certain operative cases occur unpredictably and/or have long operative times, creating a conflict between Accreditation Council for Graduate Medical Education (ACGME) rules and adequate training experience. A ProModel-based simulation was developed based on historical data. Probabilistic distributions of operative time calculated and combined with an ACGME compliant call schedule. For the advanced surgical cases modeled (cardiothoracic transplants), 80-hour violations were 6.07% and the minimum number of days off was violated 22.50%. There was a 36% chance of failure to fulfill any (either heart or lung) minimum case requirement despite adequate volume. The variable nature of emergency cases inevitably leads to work hour violations under ACGME regulations. Unpredictable cases mandate higher operative volume to ensure achievement of adequate caseloads. Publically available simulation technology provides a valuable avenue to identify adequacy of case volumes for trainees in both the elective and emergency setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Discrete-event simulation of coordinated multi-point joint transmission in LTE-Advanced with constrained backhaul

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2014-01-01

    Inter-cell interference in LTE-Advanced can be mitigated using coordinated multi-point (CoMP) techniques with joint transmission of user data . However, this requires tight coordination of the eNodeBs, usin g the X2 interface. In this paper we use discrete-event simulation to evaluate the latency...... requirements for the X2 interface and investigate the consequences of a constrained ba ckhaul. Our simulation results show a gain of the system throug hput of up to 120% compared to the case without CoMP for low-latency backhaul. With X2 latencies above 5 ms CoMP is no longer a benefit to the network....

  5. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  6. Simulation of Heating with the Waves of Ion Cyclotron Range of Frequencies in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Yang Cheng; Zhu Sizheng; Zhang Xinjun

    2010-01-01

    Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high-field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3 He in D( 3 He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.

  7. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    International Nuclear Information System (INIS)

    Dahl, Pamela M.; Su, Jian

    2017-01-01

    Numerical simulations of a Pebble Bed nuclear reactor core are presented using the multi-physics tool-kit OpenFOAM. The HTR-PM is modeled using the porous media approach, accounting both for viscous and inertial effects through the Darcy and Forchheimer model. Initially, cylindrical 2D and 3D simulations are compared, in order to evaluate their differences and decide if the 2D simulations carry enough of the sought information, considering the savings in computational costs. The porous medium is considered to be isotropic, with the whole length of the packed bed occupied homogeneously with the spherical fuel elements. Steady-state simulations for normal equilibrium operation are performed, using a semi sine function of the power density along the vertical axis as the source term for the energy balance equation.Total pressure drop is calculated and compared with that obtained from literature for a similar case. At a second stage, transient simulations are performed, where relevant parameters are calculated and compared to those of the literature. (author)

  8. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Pamela M.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Numerical simulations of a Pebble Bed nuclear reactor core are presented using the multi-physics tool-kit OpenFOAM. The HTR-PM is modeled using the porous media approach, accounting both for viscous and inertial effects through the Darcy and Forchheimer model. Initially, cylindrical 2D and 3D simulations are compared, in order to evaluate their differences and decide if the 2D simulations carry enough of the sought information, considering the savings in computational costs. The porous medium is considered to be isotropic, with the whole length of the packed bed occupied homogeneously with the spherical fuel elements. Steady-state simulations for normal equilibrium operation are performed, using a semi sine function of the power density along the vertical axis as the source term for the energy balance equation.Total pressure drop is calculated and compared with that obtained from literature for a similar case. At a second stage, transient simulations are performed, where relevant parameters are calculated and compared to those of the literature. (author)

  9. Advanced Variance Reduction for Global k-Eigenvalue Simulations in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Edward W. Larsen

    2008-06-01

    to the correlations between fission source estimates. In the new FMC method, the eigenvalue problem (expressed in terms of the Boltzmann equation) is integrated over the energy and direction variables. Then these equations are multiplied by J special "tent" functions in space and integrated over the spatial variable. This yields J equations that are exactly satisfied by the eigenvalue k and J space-angle-energy moments of the eigenfunction. Multiplying and dividing by suitable integrals of the eigenfunction, one obtains J algebraic equations for k and the space-angle-energy moments of the eigenfunction, which contain nonlinear functionals that depend weakly on the eigenfunction. In the FMC method, information from the standard Monte Carlo solution for each active cycle is used to estimate the functionals, and at the end of each cycle the J equations for k and the space-angle-energy moments of the eigenfunction are solved. Finally, these results are averaged over N active cycles to obtain estimated means and standard deviations for k and the space-angle-energy moments of the eigenfunction. Our limited testing shows that for large single fissile systems such as a commercial reactor core, (i) the FMC estimate of the eigenvalue is at least one order of magnitude more accurate than estimates obtained from the standard Monte Carlo approach, (ii) the FMC estimate of the eigenfunction converges and is several orders of magnitude more accurate than the standard estimate, and (iii) the FMC estimate of the standard deviation in k is at least one order of magnitude closer to the correct standard deviation than the standard estimate. These advances occur because: (i) the Monte Carlo estimates of the nonlinear functionals are much more accurate than the direct Monte Carlo estimates of the eigenfunction, (ii) the system of discrete equations that determines the FMC estimates of k is robust, and (iii) the functionals are only very weakly correlated between different fission

  10. General imaging of advanced 3D mask objects based on the fully-vectorial Extended Nijboer-Zernike (ENZ) theory

    NARCIS (Netherlands)

    Haver, van S.; Janssen, O.T.A.; Braat, J.J.M.; Janssen, A.J.E.M.; Urbach, H.P.; Pereira, S.F.

    2008-01-01

    In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of

  11. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    International Nuclear Information System (INIS)

    Jošt, D; Škerlavaj, A; Lipej, A

    2012-01-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  12. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Science.gov (United States)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  13. Recent advances in the physics of collective excitations in the Paul trap simulator experiment

    International Nuclear Information System (INIS)

    Gilson, E.P.; Chung, M.; Davidson, R.C.; Dorf, M.; Efthimion, P.C.; Godbehere, A.B.; Majeski, R.

    2009-01-01

    The Paul trap simulator experiment (PTSX) is a compact laboratory linear Paul trap that simulates the transverse dynamics of a long charged-particle bunch propagating through a magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in the AG system in the beam's frame-of-reference and those of particles in PTSX are described by the same sets of equations, including all nonlinear space-charge effects. Initial experimental results are presented in which the collective transverse symmetric mode (m=0) and quadrupole mode (m=2) have been observed in pure-barium-ion plasmas in PTSX, with a depressed-tune ν/ν 0 ∼0.9, with the intent of identifying collective modes whose signature will serve as a robust diagnostic for key properties of the beam, such as line density and transverse emittance. The results of particle-in-cell simulations performed with the WARP code are compared to the experimental data.

  14. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  15. Learning by Computer Simulation Does Not Lead to Better Test Performance on Advanced Cardiac Life Support Than Textbook Study.

    Science.gov (United States)

    Kim, Jong Hoon; Kim, Won Oak; Min, Kyeong Tae; Yang, Jong Yoon; Nam, Yong Taek

    2002-01-01

    For an effective acquisition and the practical application of rapidly increasing amounts of information, computer-based learning has already been introduced in medical education. However, there have been few studies that compare this innovative method to traditional learning methods in studying advanced cardiac life support (ACLS). Senior medical students were randomized to computer simulation and a textbook study. Each group studied ACLS for 150 minutes. Tests were done one week before, immediately after, and one week after the study period. Testing consisted of 20 questions. All questions were formulated in such a way that there was a single best answer. Each student also completed a questionnaire designed to assess computer skills as well as satisfaction with and benefit from the study materials. Test scores improved after both textbook study and computer simulation study in both groups but the improvement in scores was significantly higher for the textbook group only immediately after the study. There was no significant difference between groups in their computer skill and satisfaction with the study materials. The textbook group reported greater benefit from study materials than did the computer simulation group. Studying ACLS with a hard copy textbook may be more effective than computer simulation for the acquisition of simple information during a brief period. However, the difference in effectiveness is likely transient.

  16. Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems

    International Nuclear Information System (INIS)

    Huseby, Arne B.; Natvig, Bent

    2013-01-01

    Discrete event models are frequently used in simulation studies to model and analyze pure jump processes. A discrete event model can be viewed as a system consisting of a collection of stochastic processes, where the states of the individual processes change as results of various kinds of events occurring at random points of time. We always assume that each event only affects one of the processes. Between these events the states of the processes are considered to be constant. In the present paper we use discrete event simulation in order to analyze a multistate network flow system of repairable components. In order to study how the different components contribute to the system, it is necessary to describe the often complicated interaction between component processes and processes at the system level. While analytical considerations may throw some light on this, a simulation study often allows the analyst to explore more details. By producing stable curve estimates for the development of the various processes, one gets a much better insight in how such systems develop over time. These methods are particulary useful in the study of advanced importancez measures of repairable components. Such measures can be very complicated, and thus impossible to calculate analytically. By using discrete event simulations, however, this can be done in a very natural and intuitive way. In particular significant differences between the Barlow–Proschan measure and the Natvig measure in multistate network flow systems can be explored

  17. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  18. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation.

  19. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    International Nuclear Information System (INIS)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation

  20. Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation

    Science.gov (United States)

    Chan, William M.

    2004-01-01

    This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.

  1. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    International Nuclear Information System (INIS)

    Weiland, Jan

    2014-01-01

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α d diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode

  2. Behavioral reactions to advanced cruise control: results of a driving simulator experiment

    NARCIS (Netherlands)

    Hoedemaeker, D.M.

    2000-01-01

    This chapter describes an experimental study that is conducted in the driving simulator at the Centre for Environmental and Traffic Psychology (COV) of the University of Groningen. In the experiment, two groups of drivers, who differed with respect to reported driving style in terms of speed, drove

  3. Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings

    International Nuclear Information System (INIS)

    Kling, A.; Barao, F.J.C.; Nakagawa, M.; Tavora, L.

    2001-01-01

    The following topics were dealt with: Electron and photon interactions and transport mechanisms, random number generation, applications in medical physisc, microdosimetry, track structure, radiobiological modeling, Monte Carlo method in radiotherapy, dosimetry, and medical accelerator simulation, neutron transport, high-energy hadron transport. (HSI)

  4. Comparison of simplified and advanced building simulation tool with measured data

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Schiønning, Peder; Dethlefsen, Espen

    2013-01-01

    In the future building design must progress to a format where CO 2 neutral societies are optimized as a whole and innovative technologies integrated. The purpose of this paper is to demonstrate the problems using a simplified design tool to simulate a complicated building and how this may not give...

  5. Data Collection Methods for Validation of Advanced Multi-Resolution Fast Reactor Simulations

    International Nuclear Information System (INIS)

    2015-01-01

    In pool-type Sodium Fast Reactors (SFR) the regions most susceptible to thermal striping are the upper instrumentation structure (UIS) and the intermediate heat exchanger (IHX). This project experimentally and computationally (CFD) investigated the thermal mixing in the region exiting the reactor core to the UIS. The thermal mixing phenomenon was simulated using two vertical jets at different velocities and temperatures as prototypic of two adjacent channels out of the core. Thermal jet mixing of anticipated flows at different temperatures and velocities were investigated. Velocity profiles are measured throughout the flow region using Ultrasonic Doppler Velocimetry (UDV), and temperatures along the geometric centerline between the jets were recorded using a thermocouple array. CFD simulations, using COMSOL, were used to initially understand the flow, then to design the experimental apparatus and finally to compare simulation results and measurements characterizing the flows. The experimental results and CFD simulations show that the flow field is characterized into three regions with respective transitions, namely, convective mixing, (flow direction) transitional, and post-mixing. Both experiments and CFD simulations support this observation. For the anticipated SFR conditions the flow is momentum dominated and thus thermal mixing is limited due to the short flow length associated from the exit of the core to the bottom of the UIS. This means that there will be thermal striping at any surface where poorly mixed streams impinge; rather unless lateral mixing is actively promoted out of the core, thermal striping will prevail. Furthermore we note that CFD can be considered a separate effects (computational) test and is recommended as part of any integral analysis. To this effect, poorly mixed streams then have potential impact on the rest of the SFR design and scaling, especially placement of internal components, such as the IHX that may see poorly mixed streams

  6. Data Collection Methods for Validation of Advanced Multi-Resolution Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akiro [Univ. of Idaho, Moscow, ID (United States); Ruggles, Art [Univ. of Tennessee, Knoxville, TN (United States); Pointer, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-22

    In pool-type Sodium Fast Reactors (SFR) the regions most susceptible to thermal striping are the upper instrumentation structure (UIS) and the intermediate heat exchanger (IHX). This project experimentally and computationally (CFD) investigated the thermal mixing in the region exiting the reactor core to the UIS. The thermal mixing phenomenon was simulated using two vertical jets at different velocities and temperatures as prototypic of two adjacent channels out of the core. Thermal jet mixing of anticipated flows at different temperatures and velocities were investigated. Velocity profiles are measured throughout the flow region using Ultrasonic Doppler Velocimetry (UDV), and temperatures along the geometric centerline between the jets were recorded using a thermocouple array. CFD simulations, using COMSOL, were used to initially understand the flow, then to design the experimental apparatus and finally to compare simulation results and measurements characterizing the flows. The experimental results and CFD simulations show that the flow field is characterized into three regions with respective transitions, namely, convective mixing, (flow direction) transitional, and post-mixing. Both experiments and CFD simulations support this observation. For the anticipated SFR conditions the flow is momentum dominated and thus thermal mixing is limited due to the short flow length associated from the exit of the core to the bottom of the UIS. This means that there will be thermal striping at any surface where poorly mixed streams impinge; rather unless lateral mixing is ‘actively promoted out of the core, thermal striping will prevail. Furthermore we note that CFD can be considered a ‘separate effects (computational) test’ and is recommended as part of any integral analysis. To this effect, poorly mixed streams then have potential impact on the rest of the SFR design and scaling, especially placement of internal components, such as the IHX that may see poorly mixed

  7. CFD simulations of moderator flow inside Calandria of the Passive Moderator Cooling System of an advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Eshita [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 India (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2015-10-15

    Highlights: • CFD simulations in the Calandria of an advanced reactor under natural circulation. • Under natural convection, majority of the flow recirculates within the Calandria. • Maximum temperature is located at the top and center of the fuel channel matrix. • During SBO, temperature inside Calandria is stratified. - Abstract: Passive systems are being examined for the future Advanced Nuclear Reactor designs. One of such concepts is the Passive Moderator Cooling System (PMCS), which is designed to remove heat from the moderator in the Calandria vessel passively in case of an extended Station Black Out condition. The heated heavy-water moderator (due to heat transferred from the Main Heat Transport System (MHTS) and thermalization of neutrons and gamma from radioactive decay of fuel) rises upward due to buoyancy, gets cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator temperature and pressure beyond safe limits. In an earlier study, a full-scale 1D transient simulation was performed for the reactor including the MHTS and the PMCS, in the event of a station blackout scenario (Kumar et al., 2013). The results indicate that the systems remain within the safe limits for 7 days. However, the flow inside a geometry like Calandria is quite complex due to its large size and inner complexities of dense fuel channel matrix, which was simplified as a 1D pipe flow in the aforesaid analysis. In the current work, CFD simulations are performed to study the temperature distributions and flow distribution of moderator inside the Calandria vessel using a three-dimensional CFD code, OpenFoam 2.2.0. First, a set of steady state simulation was carried out for a band of inlet mass flow rates, which gives the minimum mass flow rate required for removing the maximum heat load, by virtue of prediction of hot spots inside the Calandria

  8. Advanced methodology to simulate boiling water reactor transient using coupled thermal-hydraulic/neutron-kinetic codes

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph Oliver

    2016-06-13

    Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools. The generation of cross-section (XS) libraries, depending on the individual thermal-hydraulic state parameters, is of paramount importance for coupled simulations. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running commercial and user-friendly lattice codes such as CASMO and HELIOS. In this dissertation a computational route, based on the lattice code SCALE6/TRITON, the cross-section interface GenPMAXS, the best-estimate thermal-hydraulic system code TRACE and the core simulator PARCS, for best-estimate simulations of Boiling Water (BWR) transients has been developed and validated. The computational route has been supplemented by a subsequent uncertainty and sensitivity study based on Monte Carlo sampling and propagation of the uncertainties of input parameters to the output (SUSA code). The analysis of a single BWR fuel assembly depletion problem with PARCS using SCALE/TRITON cross-sections has been shown a good agreement with the results obtained with CASMO cross-section sets. However, to compensate the deficiencies of the interface program GenPMAXS, PYTHON scripts had to be developed to incorporate missing data, as the yields of Iodine, Xenon and Promethium, into the cross-section-data sets (PMAXS-format) generated by GenPMAXS from the SCALE/TRITON output. The results of the depletion analysis of a full BWR core with PARCS have indicated the importance of considering history effects, adequate modeling of the reflector region and the control rods, as the PARCS simulations for depleted fuel and all control rods inserted (ARI) differs significantly at the fuel assembly top and bottom. Systematic investigations with the coupled codes TRACE/PARCS have been performed to analyse the core behaviour at different thermal conditions using nuclear data (XS

  9. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  10. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  11. Advanced particle-in-cell simulation techniques for modeling the Lockheed Martin Compact Fusion Reactor

    Science.gov (United States)

    Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David

    2017-10-01

    We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.

  12. Use of Simulation to Integrate Cultural Humility Into Advanced Health Assessment for Nurse Practitioner Students.

    Science.gov (United States)

    Ndiwane, Abraham N; Baker, Nancy C; Makosky, Antonia; Reidy, Patricia; Guarino, Anthony J

    2017-09-01

    Increasing cultural humility among nursing students requires the application of knowledge and skills. The integration of an Objective Structured Clinical Examination (OSCE) offered nurse practitioner students practice in simulation. This learning activity included pre- and postassessments of knowledge regarding cultural issues and level of student satisfaction. Course content included an exemplar video and a simulation interview with an African American standardized patient. Of the 65 students enrolled, 97% completed OSCE interviews and 81% completed pre- and postsurveys. A 2-domain 3 × 2-time within-subjects ANOVA indicated a statistically significant interaction effect, reinforced by descriptive statistics. Follow-up paired t tests detected a significantly large knowledge increase. Standardized patient scenarios scored highest for satisfaction, followed by critical thinking, and with self-confidence scoring lowest. The favorable knowledge outcomes from this teaching intervention support future applications of OSCE methodology for teaching sensitive cross-cultural content. [J Nurs Educ. 2017;56(9):567-571.]. Copyright 2017, SLACK Incorporated.

  13. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    Science.gov (United States)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  14. The Effect of Time-Advance Mechanism in Modeling and Simulation

    Science.gov (United States)

    2011-09-01

    Lieberman, 2005). Today, there are tens of books and thousands of papers that study and evaluate queueing systems to provide the most accurate...know about through previous communications with other agents ( secondhand knowledge). Both firsthand and secondhand knowledge change an agent’s BVI...Simulation engineering: Build better embedded system faster. Gilroy, CA: CMP books . Lee, H., & Strawderman, L. (2009). An approximation for the system

  15. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  16. A Summary of Proceedings for the Advanced Deployable Day/Night Simulation Symposium

    Science.gov (United States)

    2009-07-01

    visible range. The development of full models of these variations, based on physical principles, is then proportionally important to the realism of... cinematic and Dark Ride techniques and tricks. Our Visual Flight Attachment (VFA) used intricate model boards and a mechanical tracking system to "fly...to support the story they wish to tell. Any cinematic technique that is used to simulate conditions in that world is acceptable so long as it does

  17. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  18. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    Science.gov (United States)

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  19. A Simulation-Based Program to Train Medical Residents to Lead and Perform Advanced Cardiovascular Life Support

    Science.gov (United States)

    Stefan, Mihaela S.; Belforti, Raquel K.; Langlois, Gerard; Rothberg, Michael B.

    2014-01-01

    Background Medical residents are often responsible for leading and performing cardiopulmonary resuscitation; however, their levels of expertise and comfort as leaders of advanced cardiovascular life support (ACLS) teams vary widely. While the current American Heart Association ACLS course provides education in recommended resuscitative protocols, training in leadership skills is insufficient. In this article, we describe the design and implementation in our institution of a formative curriculum aimed at improving residents’ readiness for being leaders of ACLS teams using human patient simulation. Human patient simulation refers to a variety of technologies using mannequins with realistic features, which allows learners to practice through scenarios without putting patients at risk. We discuss the limitations of the program and the challenges encountered in implementation. We also provide a description of the initiation and organization of the program. Case scenarios and assessment tools are provided. Description of the Institutional Training Program Our simulation-based training curriculum consists of 8 simulated patient scenarios during four 1-hour sessions. Postgraduate year–2 and 3 internal medicine residents participate in this program in teams of 4. Assessment tools are utilized only for formative evaluation. Debriefing is used as a teaching strategy for the individual resident leader of the ACLS team to facilitate learning and improve performance. To evaluate the impact of the curriculum, we administered a survey before and after the intervention. The survey consisted of 10 questions answered on a 5-point Likert scale, which addressed residents’ confidence in leading ACLS teams, management of the equipment, and management of cardiac rhythms. Respondents’ mean presimulation (ie, baseline) and postsimulation (outcome) scores were compared using a 2-sample t test. Residents’ overall confidence score improved from 2.8 to 3.9 (P simulation-based training

  20. Advances in continuum kinetic and gyrokinetic simulations of turbulence on open-field line geometries

    Science.gov (United States)

    Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg

    2017-10-01

    For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  1. Recent advances in the theory and simulation of pellet ablation and fast fuel relocation in tokamaks

    International Nuclear Information System (INIS)

    Parks, P.B.; Baylor, L.R.; Ishizaki, R.; Jardin, S.C.; Samtaney, R.

    2005-01-01

    This paper presents new theory and simulation of pellet ablation, and the rapid cross-field redistribution of the ionized pellet mass following pellet injection in tokamaks. The first 2-D time-dependent simulations describing the expansion of pellet ablation flow against the magnetic field is presented here using the Eulerian code CAP. The early-time expansion is characterized by the formation of an ellipsoidal diamagnetic cavity surrounding the pellet, which diverts heat flux around the pellet, thereby reducing the ablation rate. Near-pellet cloud properties from CAP provide initial conditions for the subsequent ExB advection of the ionized clouds caused by polarization in the inhomogeneous toroidal magnetic field. The first complete set of time-dependent equations describing mass redistribution has been developed and solved for numerically using the PRL code. New effects identified, including curvature drive by near sonic field-aligned flows, rotational transform of the magnetic field lines and magnetic shear are considered from the viewpoint of the parallel vorticity equation. Close agreement between theory and experimental fuel deposition profiles are obtained for both inner and outer wall pellet injection on the DIII-D tokamak, providing improved predictive capability for ITER. A new 3-D MHD simulation code AMR was started, which provides the required fine-scale mesh size needed for accurate modeling of pellet clouds having sharp perpendicular-to-B gradients. (author)

  2. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    Science.gov (United States)

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  3. Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets

    Science.gov (United States)

    Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.

    2008-11-01

    We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.

  4. Training simulator for advanced gas-cooled reactor (AGR) shutdown sequence equipment

    International Nuclear Information System (INIS)

    Shankland, J.P.; Nixon, G.L.

    1978-01-01

    Successful shutdown of nuclear plant is of prime importance for both safety and economic reasons and large sums of money are spent on equipment to make shutdowns fully automatic, thus removing the possibility of operator errors. While this aim can largely be realized, one must consider the possibility of automatic equipment or plant failures when operators are required to take manual action, and off-line training facilities should be available to operating staff to minimize the risk of incorrect actions being taken. This paper presents the practice adopted at Hunterston 'B' Nuclear Power Station to solve this problem and concerns the computer-based training simulator for the Reactor Shutdown Sequence Equipment (RSSE) which was commissioned in January 1977. The plant associated with shutdown is briefly described and the reasoning which shows the need for a simulator is outlined. The paper also gives details of the comprehensive facilities available on the simulator and goes on to describe the form that shutdown training takes and the experience gained at this time. (author)

  5. Monte Carlo simulation and scatter correction of the GE Advance PET scanner with SimSET and Geant4

    International Nuclear Information System (INIS)

    Barret, Olivier; Carpenter, T Adrian; Clark, John C; Ansorge, Richard E; Fryer, Tim D

    2005-01-01

    For Monte Carlo simulations to be used as an alternative solution to perform scatter correction, accurate modelling of the scanner as well as speed is paramount. General-purpose Monte Carlo packages (Geant4, EGS, MCNP) allow a detailed description of the scanner but are not efficient at simulating voxel-based geometries (patient images). On the other hand, dedicated codes (SimSET, PETSIM) will perform well for voxel-based objects but will be poor in their capacity of simulating complex geometries such as a PET scanner. The approach adopted in this work was to couple a dedicated code (SimSET) with a general-purpose package (Geant4) to have the efficiency of the former and the capabilities of the latter. The combined SimSET+Geant4 code (SimG4) was assessed on the GE Advance PET scanner and compared to the use of SimSET only. A better description of the resolution and sensitivity of the scanner and of the scatter fraction was obtained with SimG4. The accuracy of scatter correction performed with SimG4 and SimSET was also assessed from data acquired with the 20 cm NEMA phantom. SimG4 was found to outperform SimSET and to give slightly better results than the GE scatter correction methods installed on the Advance scanner (curve fitting and scatter modelling for the 300-650 keV and 375-650 keV energy windows, respectively). In the presence of a hot source close to the edge of the field of view (as found in oxygen scans), the GE curve-fitting method was found to fail whereas SimG4 maintained its performance

  6. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  7. Advances in model-based software for simulating ultrasonic immersion inspections of metal components

    Science.gov (United States)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; Engle, Brady J.; Roberts, Ronald A.

    2018-04-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was initiated in 2015 to repackage existing research-grade software into user-friendly tools for the rapid estimation of signal-to-noise ratio (SNR) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray measurement model for the response from an internal defect, and the Thompson-Margetan independent scatterer model for backscattered grain noise. This paper, the third in the series [1-2], provides an overview of the ongoing modeling effort with emphasis on recent developments. These include the ability to: (1) treat microstructures where grain size, shape and tilt relative to the incident sound direction can all vary with depth; and (2) simulate C-scans of defect signals in the presence of backscattered grain noise. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-square values of grain noise amplitudes, and SNR as functions of the depth of the defect within the metal component. At any particular depth, the user can view

  8. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    Science.gov (United States)

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  9. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  10. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  11. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    International Nuclear Information System (INIS)

    Seidel, Thomas E.; Goldberg, Alexander; Halls, Mat D.; Current, Michael I.

    2016-01-01

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si 9 H 12 truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF 3 , PCl 3 , and PBr 3 ) and disilane (Si 2 H 6 ). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF 3 and Si 2 H 6 reactions and featuring SiFH 3 as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactions for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated

  12. Advanced productivity forecast using petrophysical wireline data calibrated with MDT tests and numerical reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Carlos de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Low, Steven; Barreto, Wesley [Schlumberger, Houston, TX (United States)

    2004-07-01

    This paper describes an integrated and rigorous approach for viscous and middle oil reservoir productivity evaluation using petrophysical models calibrated with permeability derived from mini tests (Dual Packer) and Vertical Interference Tests (VIT) from open hole wire line testers (MDT SLB TM). It describes the process from Dual Packer Test and VIT pre-job design, evaluation via analytical and inverse simulation modeling, calibration and up scaling of petrophysical data into a numerical model, history matching of Dual Packer Tests and VIT with numerical simulation modeling. Finally, after developing a dynamic calibrated model, we perform productivity forecasts of different well configurations (vertical, horizontal and multilateral wells) for several deep offshore oil reservoirs in order to support well testing activities and future development strategies. The objective was to characterize formation static and dynamic properties early in the field development process to optimize well testing design, extended well test (EWT) and support the development strategies in deep offshore viscous oil reservoirs. This type of oil has limitations to flow naturally to surface and special lifting equipment is required for smooth optimum well testing/production. The integrated analysis gave a good overall picture of the formation, including permeability anisotropy and fluid dynamics. Subsequent analysis of different well configurations and lifting schemes allows maximizing formation productivity. The simulation and calibration results are compared to measured well test data. Results from this work shows that if the various petrophysical and fluid properties sources are integrated properly an accurate well productivity model can be achieved. If done early in the field development program, this time/knowledge gain could reduce the risk and maximize the development profitability of new blocks (value of the information). (author)

  13. Advances in Disaster Modeling, Simulation and Visualization for Sandstorm Risk Management in North China

    Directory of Open Access Journals (Sweden)

    Hang Lei

    2012-05-01

    Full Text Available Dust storms in North China result in high concentrations of airborne dust particles, which cause detrimental effects on human health as well as social and economic losses and environmental degradation. To investigate the impact of land surface processes on dust storms, we simulate two dust storm events in North China during spring 2002 using two versions of a dust storm prediction system developed by the Institute for Atmospheric Physics (IAP in Beijing, China. The primary difference between the IAP Sandstorm Prediction System (IAPS 1.0 and more recent version (IAPS 2.0 is the land surface modeling. IAPS 1.0 is based on the Oregon State University (OSU land surface model, whereas the latest version of the dust storm prediction (IAPS 2.0 uses NOAH land surface schemes for land surface modeling within a meteorological model, MM5. This work investigates whether the improved land surface modeling affects modeling of sandstorms. It is shown that an integrated sandstorm management system can be used to aid the following tasks: ensure sandstorm monitoring and warning; incorporate weather forecasts; ascertain the risk of a sandstorm disaster; integrate multiple technologies (for example, GIS, remote sensing, and information processing technology; track the progress of the storm in real-time; exhibit flexibility, accuracy and reliability (by using multiple sources of data, including in-situ meteorological observations; and monitor PM10 and PM2.5 dust concentrations in airborne dustfalls. The results indicate that with the new land surface scheme, the simulation of soil moisture is greatly improved, leading to a better estimate of the threshold frictional velocity, a key parameter for the estimating surface dust emissions. In this study, we also discuss specific mechanisms by which land surface processes affect dust storm modeling and make recommendations for further improvements to numerical dust storm simulations.

  14. Efficacy of standardized training on a virtual reality simulator to advance knee and shoulder arthroscopic motor skills.

    Science.gov (United States)

    Rahm, Stefan; Wieser, Karl; Bauer, David E; Waibel, Felix Wa; Meyer, Dominik C; Gerber, Christian; Fucentese, Sandro F

    2018-05-16

    Most studies demonstrated, that training on a virtual reality based arthroscopy simulator leads to an improvement of technical skills in orthopaedic surgery. However, how long and what kind of training is optimal for young residents is unknown. In this study we tested the efficacy of a standardized, competency based training protocol on a validated virtual reality based knee- and shoulder arthroscopy simulator. Twenty residents and five experts in arthroscopy were included. All participants performed a test including knee -and shoulder arthroscopy tasks on a virtual reality knee- and shoulder arthroscopy simulator. The residents had to complete a competency based training program. Thereafter, the previously completed test was retaken. We evaluated the metric data of the simulator using a z-score and the Arthroscopic Surgery Skill Evaluation Tool (ASSET) to assess training effects in residents and performance levels in experts. The residents significantly improved from pre- to post training in the overall z-score: - 9.82 (range, - 20.35 to - 1.64) to - 2.61 (range, - 6.25 to 1.5); p < 0.001. The overall ASSET score improved from 55 (27 to 84) percent to 75 (48 to 92) percent; p < 0.001. The experts, however, achieved a significantly higher z-score in the shoulder tasks (p < 0.001 and a statistically insignificantly higher z-score in the knee tasks with a p = 0.921. The experts mean overall ASSET score (knee and shoulder) was significantly higher in the therapeutic tasks (p < 0.001) compared to the residents post training result. The use of a competency based simulator training with this specific device for 3-5 h is an effective tool to advance basic arthroscopic skills of resident in training from 0 to 5 years based on simulator measures and simulator based ASSET testing. Therefore, we conclude that this sort of training method appears useful to learn the handling of the camera, basic anatomy and the triangulation with instruments.

  15. Recent advances of numerical simulation studies for radioactive cesium adsorption on soil materials

    International Nuclear Information System (INIS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2013-01-01

    Radiocesium (Cesium 134 and 137) emitted from destroyed Fukushima Daiichi Nuclear Power Production Station is known mostly to remain for a long time on earth's surfaces and to become sources of radiation exposure to habitants. Large scale decontamination work carried out by national and local governments inevitably produces tremendous amount of radioactive wastes of soils whose volume must be effectively and economically reduced based on a scientifically reliable technique. This paper employs the atomic and molecular simulation method applied to adsorption mechanism of soils and cesium ions and presents the examples of proposals with the results of this field. (S. Ohno)

  16. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, John W. [Leidos, Inc., San Diego, CA (United States)

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  17. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    Science.gov (United States)

    Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.

    2007-03-01

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  18. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  19. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  20. NATO Advanced Study Institute on Microscopic Simulations of Complex Hydrodynamic Phenomena

    CERN Document Server

    Holian, Brad

    1992-01-01

    This volume contains the proceedings of a NATO Advanced Study Institute which was held in Alghero, Sardinia, in July 1991. The development of computers in the recent years has lead to the emergence of unconventional ideas aiming at solving old problems. Among these, the possibility of computing directly fluid flows from the trajectories of constituent particles has been much exploited in the last few years: lattice gases cellular automata and more generally Molecular Dynamics have been used to reproduce and study complex flows. Whether or not these methods may someday compete with more traditional approaches is a question which cannot be answered at the present time: it will depend on the new computer architectures as well as on the possibility to develop very simple models to reproduce the most complex phenomena taking place in the approach of fully developed turbulence or plastic flows. In any event, these molecular methods are already used, and sometimes in an applied engineering context, to study strong s...

  1. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  2. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  3. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto

    2002-10-01

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  4. Measuring the Benefits of Public Chargers and Improving Infrastructure Deployments Using Advanced Simulation Tools: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric; Neubauer. Jeremy; Burton, Evan

    2015-02-01

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory developed BLAST-V -- the Battery Lifetime Analysis and Simulation Tool for Vehicles. The addition of high-resolution spatial-temporal travel histories enables BLAST-V to investigate user-defined infrastructure rollouts of publically accessible charging infrastructure, as well as quantify impacts on vehicle and station owners in terms of improved vehicle utility and station throughput. This paper presents simulation outputs from BLAST-V that quantify the utility improvements of multiple distinct rollouts of publically available Level 2 electric vehicle supply equipment (EVSE) in the Seattle, Washington, metropolitan area. Publically available data on existing Level 2 EVSE are also used as an input to BLAST-V. The resulting vehicle utility is compared to a number of mock rollout scenarios. Discussion focuses on the estimated number of Level 2 stations necessary to substantially increase vehicle utility and how stations can be strategically sited to maximize their potential benefit to prospective electric vehicle owners.

  5. An "intermediate curriculum" for advanced laparoscopic skills training with virtual reality simulation.

    Science.gov (United States)

    Schreuder, Henk W R; van Hove, P Diederick; Janse, Juliënne A; Verheijen, Rene R M; Stassen, Laurents P S; Dankelman, Jenny

    2011-01-01

    To estimate face and construct validity for a novel curriculum designed for intermediately skilled laparoscopic surgeons on a virtual reality simulator. It consists of 5 exercises that focus on training precision and coordination between both hands. Prospective study (Canadian Task Force II-2). Three university hospitals and 4 teaching hospitals in the Netherlands. Residents, consultants, and laparoscopic experts (n = 69) in the fields of general surgery, gynecology, and urology participated. Participants were divided into 4 groups on the basis of their level of laparoscopic experience: resident, years 1-3 (n = 15); resident, years 4-6 (n = 17); consultant (n = 19); and laparoscopic experts (n = 18). Participants completed 3 runs of 5 exercises. The first run was an introduction, and the second and third runs were used for analysis. The parameters time, path length, collisions, and displacement were compared between groups. Afterward the participants completed a questionnaire to evaluate their laparoscopic experience and identify issues concerning the simulator and exercises. The expert group was significantly faster (p virtual reality curriculum for intermediately skilled laparoscopic surgeons. The results indicate that the curriculum is suitable for training of residents and consultants and to assess and maintain their laparoscopic skills. Copyright © 2011 AAGL. Published by Elsevier Inc. All rights reserved.

  6. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.

    Science.gov (United States)

    Voelker, C; Alsaad, H

    2018-05-01

    This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S., E-mail: alexandrossilva@ifba.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil); Mazaira, Leorlen Y.R., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Dominguez, Dany S.; Hernandez, Carlos R.G., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Programa de Pos-Graduacao em Modelagem Computacional; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  8. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Mazaira, Leorlen Y.R.; Dominguez, Dany S.; Hernandez, Carlos R.G.

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  9. On the solution of a vectorial radiative transfer equation in an arbitrary three-dimensional turbid medium with anisotropic scattering

    International Nuclear Information System (INIS)

    Budak, Vladimir P.; Korkin, Sergey V.

    2008-01-01

    The authors developed a numerical method of the boundary-value problem solution in the vectorial radiative transfer theory applicable to the turbid media with an arbitrary three-dimensional geometry. The method is based on the solution representation as the sum of an anisotropic part that contains all the singularities of the exact solution and a smooth regular part. The regular part of the solution could be found numerically by the finite element method that enables to extend the approach to the arbitrary medium geometry. The anisotropic part of the solution is determined analytically by the special form of the small-angle approximation. The method development is performed by the examples of the boundary-value problems for the plane unidirectional and point isotropic sources in a turbid medium slab

  10. Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems

    International Nuclear Information System (INIS)

    Casalini, Stefano; Berto, Marcello; Kovtun, Alessandro; Operamolla, Alessandra; Di Rocco, Giulia; Facci, Paolo; Liscio, Andrea; Farinola, Gianluca M.; Borsari, Marco; Bortolotti, Carlo A.

    2015-01-01

    A model system for the electrochemical investigation of vectorial electron transfer in biological systems was designed, assembled and characterized. Gold electrodes, functionalized with a -OCH_3 terminated, aromatic self-assembled monolayer, were used as a substrate for the adsorption of variants of copper-containing, redox metalloprotein azurin. The engineered azurin bears a polyhistidine tag at its C-terminus. Thanks to the presence of the solvent exposed tag, which chelates Cu"2"+ ions in solution, we introduced an exogenous redox centre. The different reduction potentials of the two redox centres and their positioning with respect to the surface are such that electron transfer from the exogenous copper centre and the electrode is mediated by the native azurin active site, closely paralleling electron transfer processes in naturally occurring multicentre metalloproteins.

  11. Modulación Vectorial de Inversores Multinivel con Diodos de Enclavamiento con Balance del Bus de Continua

    Directory of Open Access Journals (Sweden)

    Santiago A. Verne

    2009-04-01

    Full Text Available Resumen: En este trabajo se presenta un algoritmo de modulación para convertidores multinivel de enclavamiento por diodos que optimiza el balance del bus de continua. Se describe el mecanismo de modulación vectorial para convertidores multinivel y se desarrolla un método que permite mantener equilibradas las tensiones del bus de continua utilizando la redundancia del convertidor. El presente algoritmo puede aplicarse a convertidores con un número arbitrario de niveles. Se consideran en el desarrollo dos situaciones prácticas: presencia o ausencia de una fuente de tensión continua sobre el bus. El desempeño del modulador es estudiado mediante simulaciones digitales. Palabras clave: convertidores multinivel, modulación, vector espacial

  12. Advances in quantum simulations of ATPase catalysis in the myosin motor.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2015-04-01

    During its contraction cycle, the myosin motor catalyzes the hydrolysis of ATP. Several combined quantum/classical mechanics (QM/MM) studies of this step have been published, which substantially contributed to our thinking about the catalytic mechanism. The methodological difficulties encountered over the years in the simulation of this complex reaction are now understood: (a) Polarization of the protein peptide groups surrounding the highly charged ATP(4-) cannot be neglected. (b) Some unsuspected protein groups need to be treated QM. (c) Interactions with the γ-phosphate versus the β-phosphate favor a concurrent versus a sequential mechanism, respectively. Thus, these practical aspects strongly influence the computed mechanism, and should be considered when studying other catalyzed phosphor-ester hydrolysis reactions, such as in ATPases or GTPases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Simulation Study of the Helical Superconducting Undulator Installation at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sajaev, V.; Borland, M.; Sun, Y.; Xiao, A.

    2017-06-25

    A helical superconducting undulator is planned for installation at the APS. Such an installation would be first of its kind – helical devices were never installed in synchrotron light sources before. Due to its reduced horizontal aperture, a lattice modification is required to accommodate for large horizontal oscillations during injection. We describe the lattice change details and show the new lattice experimental test results. To understand the effect of the undulator on single-particle dynamics, first, its kick maps were computed using different methods. We have found that often-used Elleaume formula* for kick maps gives wrong results for this undulator. We then used the kick maps obtained by other methods to simulate the effect of the undulator on injection and lifetime.

  14. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    International Nuclear Information System (INIS)

    Ter Maat, H.W.; Hutjes, R.W.A.; Miglietta, F.; Gioli, B.; Bosveld, F.C.; Vermeulen, A.T.; Fritsch, H.

    2010-08-01

    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

  15. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg–Landau formalism

    Energy Technology Data Exchange (ETDEWEB)

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa [Centro de Informática, Universidade Federal de Pernambuco, Av. Luiz Freire s/n, 50670-901, Recife, PE (Brazil); Stošić, Borko [Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE (Brazil); Milošević, Milorad V., E-mail: milorad.milosevic@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2016-10-01

    Ginzburg–Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100× compared to best available CPU implementations of the theory on a 256{sup 3} grid.

  16. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  17. Advances in simulating non-congruent phase transitions of hyperstoichiometric uranium dioxide fuel

    International Nuclear Information System (INIS)

    Welland, M.J.; Thompson, W.T.; Lewis, B.J.

    2007-01-01

    A model is being developed to simulate UO 2 at very high temperatures incorporating the effects of non-congruent phase transitions. In particular, the melting transformation and the possible 'Λ-transition' is being investigated to help support the design and analysis of experimental work being conducted as part of nuclear safety research. This work includes the interpretation of the behaviour of operating CANDU fuel under upset conditions, where centerline melting may potentially occur (particularly if the fuel is oxidized). The model presented here numerically solves a system of coupled nonlinear differential equations as derived from fundamental principles. The results of the model present here compare well against laser flash experiments in recently published literature. (author)

  18. Advancing interprofessional education through the use of high fidelity human patient simulators

    Directory of Open Access Journals (Sweden)

    Kane-Gill SL

    2013-06-01

    Full Text Available Background: Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered.Objective: We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues.Methods: Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS Assessment by 2 independent evaluators external to the project.Results: The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01, 2 to 3 (p = 0.035, and overall from 1 to 4 (p = 0.001. The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99. Students perceived the HFS improved: their ability to communicate with other professionals (median =4; confidence in patient care in an IP team (median=4. It also stimulated student interest in IP work (median=4.5, and was an efficient use of student time (median=4.5Conclusion: The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the

  19. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    Science.gov (United States)

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  20. An advanced three-dimensional simulation system for safety analysis of gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lapins, Janis

    2016-07-01

    The neutron transport programme TORT-TD that solves the neutron transport equation in discrete ordinates for stationary as well as transient problems is used for neutronics calculations. The transient solution of the neutron transport equation is performed by making use of a time-dependent neutron source, xenon/iodine dynamics are implemented as well. The programme ATTICA{sup 3D} applies the porous medium approach for flow in packed beds according to Ergun. This approach uses a quasi-steady state formulation for the momentum equation while time dependent formulations are employed for mass conservation, and energy conservation for both, the solid and gaseous phase. For spatial discretisation of the conservation equations, the finite volume method is used. For material properties, gas densities, heat transfer etc. a set of constitutive equations completes the set of differential equations. Time integration in ATTICA{sup 3D} is realised applying a modified Newton-Raphson method which linearizes and subsequently solves the set of equations. It can automatically adapt the time step width within user specified limits. Within this work, the mass and energy conservation equations are modified so that chemical reactions as consequence of water or air ingress can be simulated, i.e. mass sources for CO, CO{sub 2}, H{sub 2} and sinks for H{sub 2}O and O{sub 2} or heat sources and enthalpy transport. The heat generated by chemical reaction is either added to the solid or the gaseous phase. The corrosion rates were implemented according to experimental findings for fuel and reflector graphite. Steam or air might enter the primary circuit through a break in the steam generator or an opening of the primary circuit. Steam entering the core region will moderate neutrons, reduce the leakage and thereby increase power. The corrosion was validated for the NACOK experiment performed within the RAPHAEL project where temperature evolution under corrosion and total burn-off had to be

  1. Advances in the simulation of personal protective equipment for the mitigation of exposure to radioactive particulates

    International Nuclear Information System (INIS)

    Roeterink, M.J.; Kelly, D.G.; Dickson, E.F.G; Corcoran, E.C.

    2014-01-01

    Airborne radioactive particulates represent a significant potential hazard to first responders in nuclear related incidents. Personal protective equipment (PPE), in particular radio-opaque fabrics, can be used to reduce wearer exposure to the emitted radiation, but do not offer complete protection. The objective of this project is to create a realistic dosimetric model of the human arm, protected by a sleeve, which can eventually be developed into a tool to assess the full-body dose imparted to the wearer in the event of radiological particulate exposure. A two-fold approach will be employed whereby: (1) a particulate transport model will be used to determine the regional radioactive particulate concentrations; and (2) these concentration data will then be incorporated into a dosimetric model that will use the Monte Carlo N-Particle (MCNP) transport code to determine the dose imparted to the tissue. Benchmarking experiments will be carried out to validate the results generated by the computer models. Such experimentation will be conducted for both the particulate transport and dosimetric models. Model advancement aims to consider whole body dose and will be invaluable in the development of future radiation exposure policies and procedures. (author)

  2. Advances in the simulation of toroidal gyro Landau fluid model turbulence

    International Nuclear Information System (INIS)

    Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.

    1994-12-01

    The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons

  3. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  4. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  5. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    Science.gov (United States)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  6. Science-Based Approach for Advancing Marine and Hydrokinetic Energy: Integrating Numerical Simulations with Experiments

    Science.gov (United States)

    Sotiropoulos, F.; Kang, S.; Chamorro, L. P.; Hill, C.

    2011-12-01

    The field of MHK energy is still in its infancy lagging approximately a decade or more behind the technology and development progress made in wind energy engineering. Marine environments are characterized by complex topography and three-dimensional (3D) turbulent flows, which can greatly affect the performance and structural integrity of MHK devices and impact the Levelized Cost of Energy (LCoE). Since the deployment of multi-turbine arrays is envisioned for field applications, turbine-to-turbine interactions and turbine-bathymetry interactions need to be understood and properly modeled so that MHK arrays can be optimized on a site specific basis. Furthermore, turbulence induced by MHK turbines alters and interacts with the nearby ecosystem and could potentially impact aquatic habitats. Increased turbulence in the wake of MHK devices can also change the shear stress imposed on the bed ultimately affecting the sediment transport and suspension processes in the wake of these structures. Such effects, however, remain today largely unexplored. In this work a science-based approach integrating state-of-the-art experimentation with high-resolution computational fluid dynamics is proposed as a powerful strategy for optimizing the performance of MHK devices and assessing environmental impacts. A novel numerical framework is developed for carrying out Large-Eddy Simulation (LES) in arbitrarily complex domains with embedded MHK devices. The model is able to resolve the geometrical complexity of real-life MHK devices using the Curvilinear Immersed Boundary (CURVIB) method along with a wall model for handling the flow near solid surfaces. Calculations are carried out for an axial flow hydrokinetic turbine mounted on the bed of rectangular open channel on a grid with nearly 200 million grid nodes. The approach flow corresponds to fully developed turbulent open channel flow and is obtained from a separate LES calculation. The specific case corresponds to that studied

  7. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    Science.gov (United States)

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  8. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    Science.gov (United States)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  9. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  10. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  11. ADVANCED COMPUTATIONALMETHODS FOR COMPLEX SIMULATION OF THERMAL PROCESSES IN POWER ENGINEERING

    Directory of Open Access Journals (Sweden)

    Risto V. Filkoski

    2007-04-01

    Full Text Available The overall frame and principal steps of complex numerical modelling of thermal processes in power boiler furnaces on pulverised coal with tangential disposition of the burners are presented in the paper. Computational fluid dynamics (CFD technique is used as a tool to perform comprehensive thermal analysis in two test cases. The methodology for creation of three-dimensional models of boiler furnaces is briefly described. Standard steady k- model is employed for description of the turbulent flow. The coupling of continuity and momentum is achieved by the SIMPLEC method. Coal combustion is modelled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Thermal radiation is computed by means of the simplified P-N model, based on expansion of the radiation intensity into an orthogonal series of spherical harmonics.Comparison between the simulation predictions and available site measurements leads to a conclusion that the model produces realistic insight into the furnace processes. Qualitative agreement of the results indicates reasonability of the calculations and validates the employed sub-models. The described test cases and other experiences with CFD modelling stress the advantages over a purely field data study, such as the ability to quickly and cheaply analyse a variety of design options without actually modifying the object and the availability of significantly more data to interpret the results.

  12. Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan

    2018-05-01

    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.

  13. A station blackout simulation for the Advanced Neutron Source Reactor using the integrated primary and secondary system model

    International Nuclear Information System (INIS)

    Schneider, E.A.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at Oak Ridge National Laboratory. This paper deals with thermal-hydraulic analysis of ANSR's cooling systems during nominal and transient conditions, with the major effort focusing upon the construction and testing of computer models of the reactor's primary, secondary and reflector vessel cooling systems. The code RELAP5 was used to simulate transients, such as loss of coolant accidents and loss of off-site power, as well as to model the behavior of the reactor in steady state. Three stages are involved in constructing and using a RELAP5 model: (1) construction and encoding of the desired model, (2) testing and adjustment of the model until a satisfactory steady state is achieved, and (3) running actual transients using the steady-state results obtained earlier as initial conditions. By use of the ANSR design specifications, a model of the reactor's primary and secondary cooling systems has been constructed to run a transient simulating a loss of off-site power. This incident assumes a pump coastdown in both the primary and secondary loops. The results determine whether the reactor can survive the transition from forced convection to natural circulation

  14. Developing a Simulation-Based Mastery Learning Curriculum: Lessons From 11 Years of Advanced Cardiac Life Support.

    Science.gov (United States)

    Barsuk, Jeffrey H; Cohen, Elaine R; Wayne, Diane B; Siddall, Viva J; McGaghie, William C

    2016-02-01

    Curriculum development in medical education should follow a planned, systematic approach fitted to the needs and conditions of a local institutional environment and its learners. This article describes the development and maintenance of a simulation-based medical education curriculum on advanced cardiac life support skills and its transformation to a mastery learning program. Curriculum development used the Kern 6-step model involving problem identification and general needs assessment, targeted needs assessment, goals and objectives, educational strategies, implementation, and evaluation and feedback. Curriculum maintenance and enhancement and dissemination are also addressed. Transformation of the simulation-based medical education curriculum to a mastery learning program was accomplished after a 2-year phase-in trial. A series of studies spanning 11 years was performed to adjust the curriculum, improve checklist outcome measures, and evaluate curriculum effects as learning outcomes among internal medicine residents and improved patient care practices. We anticipate wide adoption of the mastery learning model for skill and knowledge acquisition and maintenance in medical education settings.

  15. The role of advanced calculation and simulation tools in the evolution of fuel; El papel de las herramientas avanzadas de calculo y simulacion en la evolucion del combustible

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Reja, C.; Cerracin, A.; Corpa, R.

    2015-07-01

    This article is focused on the role of the advanced calculation/simulation tools on the development of the fuel designs as well as in the assessment of the effect of the changes in the operation. With this purpose, the article describes and shows some examples of the use by ENUSA of some of these tools in the fuel engineering. To conclude, the future on the evolution of the advanced tools is also presented. (Author)

  16. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  17. Development of an advanced real time simulation tool, ARTIST and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Cheol; Moon, S. K.; Yoon, B. J.; Sim, S. K.; Lee, W. J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-10-01

    A real time reactor system analysis code ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensables), two energy equations (steam and mixture) and one mixture equation constituted with the drift flux model. The drift flux model of ARTIST has been validated against the THETIS experimental data by comparing the void distribution in the system. Especially, the calculated void fraction by Chexal-Lellouche void fraction correlation at low pressure and low flow, is better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. When noncondensable gas exists, thermal-hydraulic state solution scheme and the calculation methods of the partial derivatives are developed. Numerical consistency and convergence was tested with the one volume problems and the manometric oscillation was assessed to examine the calculation methods of the partial derivatives. Calculated thermal-hydraulic state for each test shows the consistent and expected behaviour. In order to evaluate the ARTIST code capability in predicting the two phase thermal-hydraulic phenomena of the loss of RHR accident during midloop operation, BETHSY test 6.9d is simulated. From the results, it is judged that the reflux condensation model and the critical flow model for the noncondensable gas are necessary to correctly predict the thermal-hydraulic behaviour. Finally, the verification run was performed without the drift flux model and the noncondensable gas model for the postulated accidents of the real plants. The ARTIST code well reproduces the parametric trends which are calculated by TASS code. Therefore, the integrity of ARTIST code was verified. 35 refs., 70 figs., 3 tabs. (Author)

  18. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  19. Challenge problem and milestones for: Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC)

    International Nuclear Information System (INIS)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe Jr.

    2010-01-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  20. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    International Nuclear Information System (INIS)

    Tome, Carlos N.; Caro, J.A.; Lebensohn, R.A.; Unal, Cetin; Arsenlis, A.; Marian, J.; Pasamehmetoglu, K.

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  1. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  2. FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Sublet, J.-Ch., E-mail: jean-christophe.sublet@ukaea.uk [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eastwood, J.W.; Morgan, J.G. [Culham Electromagnetics Ltd, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gilbert, M.R.; Fleming, M.; Arter, W. [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2017-01-15

    Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2 and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation

  3. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  4. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  5. Simulation of Hawaiian Electric Companies Feeder Operations with Advanced Inverters and Analysis of Annual Photovoltaic Energy Curtailment

    Energy Technology Data Exchange (ETDEWEB)

    Giraldez Miner, Julieta I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ueda, Reid [Hawaiian Electric Company; Shindo, Jon [Hawaiian Electric Company; Asano, Marc [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-07-26

    The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems with grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.

  6. Predicción de la estructura secundaria de proteínas usando Máquinas de soporte Vectorial

    Directory of Open Access Journals (Sweden)

    Darío José Delgado

    2012-01-01

    Full Text Available Título en ingles: Protein secondary structure prediction    using  support vector machines Abstract : Among the computational methods used for predicting secondary structure proteins highlights the use of support vector machines. This research shows the predicted secondary structure of protein from its primary amino acid sequence using Support Vector Machines. As inputs, in the proposed methodology, features are used from different structural motifs or text strings associated with the primary structure which represents the secondary structure, such as R-group and the probability that the amino acid at position adopts a central particular secondary structure. For feature extraction method is used coding of sequences in which each symbol in the primary structure is associated with each symbol in the secondary structure. The use of this encoding method reduces the dimensionality of the data of thousands of characteristics only 220 of these. The results obtained are comparable to those reported in the literature, taking about 70% accuracy. Furthermore, it is possible to reduce computational cost in the construction of classifiers because this work models the problem of multi classification as a group of binary classifiers. Key words: coding methodology; support vector machines; prediction of protein secondary structure. Resumen: Entre los métodos computacionales utilizados para la predicción de la estructura secundaria de proteínas, se destaca el uso de máquinas de soporte vectorial. Este trabajo de investigación presenta la predicción de la estructura secundaria de proteínas desde su secuencia primaria de aminoácidos usando Máquinas de Soporte Vectorial. Como entradas, en la metodología propuesta, se utilizan características de los diferentes motivos estructurales o cadenas de texto asociadas a la estructura primaria que representa la estructura secundaria, tales como el R-grupo y la probabilidad de que el aminoácido en la posici

  7. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  8. Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa

    Directory of Open Access Journals (Sweden)

    Briolant Sébastien

    2011-08-01

    Full Text Available Abstract Background The effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs in this population that is particularly at risk because of their lack of immunity. Methods Compliance with wearing long clothing, sleeping under insecticide-impregnated bed nets (IIBNs and using insect repellent was estimated and analysed by questionnaires administered to 2,205 French military travellers from 20 groups before and after short-term missions (approximately four months in six tropical African countries (Senegal, Ivory Coast, Chad, Central African Republic, Gabon and Djibouti. For each AVPM, the association of "correct compliance" with individual and collective variables was investigated using random-effect mixed logistic regression models to take into account the clustered design of the study. Results The correct compliance rates were 48.6%, 50.6% and 18.5% for wearing long clothing, sleeping under bed nets and using repellents, respectively. Depending on the AVPM, correct compliance was significantly associated with the following factors: country, older than 24 years of age, management responsibilities, the perception of a personal malaria risk greater than that of other travellers, the occurrence of life events, early bedtime (i.e., before midnight, the type of stay (field operation compared to training, the absence of medical history of malaria, the absence of previous travel in malaria-endemic areas and the absence of tobacco consumption. There was no competition between compliance with the different AVPMs or between compliance with any AVPM and malaria chemoprophylaxis. Conclusion Interventions aimed at improving compliance with AVPMs should target young people without management responsibilities who are scheduled for non-operational activities in

  9. Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa.

    Science.gov (United States)

    Sagui, Emmanuel; Resseguier, Noémie; Machault, Vanessa; Ollivier, Lénaïck; Orlandi-Pradines, Eve; Texier, Gaetan; Pages, Frédéric; Michel, Remy; Pradines, Bruno; Briolant, Sébastien; Buguet, Alain; Tourette-Turgis, Catherine; Rogier, Christophe

    2011-08-10

    The effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs) in this population that is particularly at risk because of their lack of immunity. Compliance with wearing long clothing, sleeping under insecticide-impregnated bed nets (IIBNs) and using insect repellent was estimated and analysed by questionnaires administered to 2,205 French military travellers from 20 groups before and after short-term missions (approximately four months) in six tropical African countries (Senegal, Ivory Coast, Chad, Central African Republic, Gabon and Djibouti). For each AVPM, the association of "correct compliance" with individual and collective variables was investigated using random-effect mixed logistic regression models to take into account the clustered design of the study. The correct compliance rates were 48.6%, 50.6% and 18.5% for wearing long clothing, sleeping under bed nets and using repellents, respectively. Depending on the AVPM, correct compliance was significantly associated with the following factors: country, older than 24 years of age, management responsibilities, the perception of a personal malaria risk greater than that of other travellers, the occurrence of life events, early bedtime (i.e., before midnight), the type of stay (field operation compared to training), the absence of medical history of malaria, the absence of previous travel in malaria-endemic areas and the absence of tobacco consumption.There was no competition between compliance with the different AVPMs or between compliance with any AVPM and malaria chemoprophylaxis. Interventions aimed at improving compliance with AVPMs should target young people without management responsibilities who are scheduled for non-operational activities in countries with high risk of clinical malaria. Weak associations

  10. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae) in a malaria endemic area of Odisha State, India.

    Science.gov (United States)

    Gunasekaran, K; Sahu, S S; Jambulingam, P

    2014-11-01

    Anopheles minimus and An. fluviatilis were incriminated as the major malaria vectors in Keonjhar district of Odisha State recently. This study was carried out to elucidate the potential role of these two vector species in transmission of malaria during different seasons, and vectorial capacity of these species was also estimated. Three hilly and forested villages of Keonjhar district were randomly selected. Vectorial capacity (C) was calculated using the Macdonald's formula as modified by Garret-Jones. The human landing density of the vector species was obtained from all night human landing collections (bait protected by bed-net). Man feeding habit was estimated by multiplying the human blood index with feeding frequency, which was obtained on daily basis from the duration of gonotrophic cycle. The probability of survival through the extrinsic incubation cycle was calculated from the probability of survival through one day and duration of sporogonic cycle. The estimated vectorial capacity of An. minimus varied between 0.014 and 1.09 for Plasmodium falciparum (Pf) and between 0.1 and 1.46 for P. vivax (Pv). The C of An. minimus for both Pf and Pv was higher during rainy season than the other two seasons. The estimated C of An. fluviatilis varied between 0.04 and 1.28 for Pf and between 0.20 and 1.54 for Pv. Based on the estimated values of vectorial capacity of the two vector species, the area could be stratified and such stratification would reflect the difference in the intensity of transmission between different strata and accordingly the appropriate control strategy could be adopted for each stratum.

  11. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae in a malaria endemic area of Odisha State, India

    Directory of Open Access Journals (Sweden)

    K Gunasekaran

    2014-01-01

    Full Text Available Background & objectives: Anopheles minimus and An. fluviatilis were incriminated as the major malaria vectors in Keonjhar district of Odisha State recently. This study was carried out to elucidate the potential role of these two vector species in transmission of malaria during different seasons, and vectorial capacity of these species was also estimated. Methods: Three hilly and forested villages of Keonjhar district were randomly selected. Vectorial capacity (C was calculated using the Macdonald′s formula as modified by Garret-Jones. The human landing density of the vector species was obtained from all night human landing collections (bait protected by bed-net. Man feeding habit was estimated by multiplying the human blood index with feeding frequency, which was obtained on daily basis from the duration of gonotrophic cycle. The probability of survival through the extrinsic incubation cycle was calculated from the probability of survival through one day and duration of sporogonic cycle. Results: The estimated vectorial capacity of An. minimus varied between 0.014 and 1.09 for Plasmodium falciparum (Pf and between 0.1 and 1.46 for P. vivax (Pv. The C of An. minimus for both Pf and Pv was higher during rainy season than the other two seasons. The estimated C of An. fluviatilis varied between 0.04 and 1.28 for Pf and between 0.20 and 1.54 for Pv. Interpretation & conclusions: Based on the estimated values of vectorial capacity of the two vector species, the area could be stratified and such stratification would reflect the difference in the intensity of transmission between different strata and accordingly the appropriate control strategy could be adopted for each stratum.

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  13. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe; Dudarev, Sergei L.; Gilbert, Mark R.; Kurtz, Richard J.; Mason, Daniel R.; Nordlund, Kai; Sand, Andrea E.; Snead, Lance L.; Suzudo, Tomoaki; Wirth, Brian D.

    2017-06-09

    Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling of W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions

  14. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  15. Advanced Fluid System Simulation

    Science.gov (United States)

    1980-04-01

    and marketed commercially by the PULSCO Division, American Oil Filter Co., Louisville, Kentucky. MCAIR tested an ATP-I model sized for a steady state...TFINAL,PLTDEL,PI,TITLE(20),LEGN,ICON 3,KTEMP(99),LSTART(150),NLPT(150),LTYPE(99),NC(99),INX,INZ 4,INV, ISTEP, NLINE ,NEL,IND,IENTR,MNLINE,MNEL...ICON 3,KTEMP(99),LSTART(150),NLPT(150),LTYPE(99),NC(99),INX,INZ 4,INV,ISTEP, NLINE ,NEL,IND,IENTR,MNLINtl,MNEL,MNLEG,MNNODE,MNPLOT 5,4NLPTS,MDS DIMENSION

  16. Controlled Vectorial Electron Transfer and Photoelectrochemical Applications of Layered Relay/Photosensitizer-Imprinted Au Nanoparticle Architectures on Electrodes.

    Science.gov (United States)

    Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar

    2016-03-23

    Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Linealización de sistemas VSC-HVDC para el diseño de un controlador PI vectorial

    Directory of Open Access Journals (Sweden)

    Nelson Díaz Aldana

    2014-01-01

    Full Text Available Los sistemas VSC-HVDC son muy utilizados para la transmisión de energía en redes de interconexión eléctrica. Uno de los principales problemas que poseen estos sistemas es la complejidad de su modelo matemático, lo que conlleva grandes dificultades para el diseño de controladores que permitan la regulación de parámetros como la tensión DC de transmisión, así como la potencia activa y reactiva del sistema VSC-HVDC. En este artículo se presenta la linealización de un sistema VSC-HVDC y el posterior diseño de un controlador lineal PI vectorial a partir del modelo linealizado. Adicionalmente, se proponen dos estrategias para la validación de este tipo de controladores, la primera consiste en un único controlador PI para regular los estados del sistema para cada VSC, la segunda consiste en el diseño de controladores PI vectoriales independientes para la regulación de cada estado del VSC.

  18. Sobre el estado electro-tónico y su interpretación: el potencial vectorial

    Directory of Open Access Journals (Sweden)

    Mauricio Rozo Clavijo

    2015-10-01

    Full Text Available Se presenta un análisis acerca de las perspectivas que surgieron sobre el potencial vectorial a partir de los escritos originales de Faraday y Maxwell. Se muestran las primeras ideas sobre los experimentos y las explicaciones que Faraday desarrolló en torno a la inducción magnética, y la influencia que tuvo su concepto de estado electro-tónico en la primera explicación que formuló Maxwell, quien lo definió como el estado mediante el cual se ejecutan las acciones magnéticas a través de líneas de fuerza. Señala que ese concepto es la base para explicar el fenómeno de la inducción magnética en términos no newtonianos y lo formaliza mediante la variación temporal de la circulación del potencial vectorial a lo largo de una trayectoria cerrada. Este tipo de análisis muestra la manera en que estos pensadores representan el fenómeno, la cual no se evidencia en la literatura, sino que se muestra como una formalización alrededor del campo magnético. On the Electro-Tonic State and its Interpretation: The Vector Potential An analysis is presented on the emerging perspectives about the vector potential from Faraday and Maxwell’s original writings. This paper presents the initial observations about the experiments and explanations developed by Faraday on Magnetic Induction and the influence that his concept of Electrotonic State had on Maxwell’s first explanation. He defined it as the state by which magnetic actions are executed through lines of force. He pointed out that this concept is critical to explain the phenomenon of Magnetic Induction in non-Newtonian terms. Therefore, he formalized it by the circulation of vector potential throughout a closed trajectory. This kind of analysis shows how these researchers represented the phenomenon which is not evident in literature. It’s presented as a formalization around magnetic field instead. Sobre o estado electro-tônica e sua interpretação: o potencial vetor Mostra-se uma an

  19. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis.

    Science.gov (United States)

    Vinhaes, Márcio Costa; de Oliveira, Stefan Vilges; Reis, Priscilleyne Ouverney; de Lacerda Sousa, Ana Carolina; Silva, Rafaella Albuquerque E; Obara, Marcos Takashi; Bezerra, Cláudia Mendonça; da Costa, Veruska Maia; Alves, Renato Vieira; Gurgel-Gonçalves, Rodrigo

    2014-09-01

    Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Vectorial competence of larvae and adults of Alphitobius diaperinus in the transmission of Salmonella enteritidis in poultry.

    Science.gov (United States)

    Leffer, Andreia M; Kuttel, Javier; Martins, Lidiane M; Pedroso, Antonio Carlos; Astolfi-Ferreira, Claudete S; Ferreira, Fernando; Ferreira, Antonio J Piantino

    2010-06-01

    The ingestion of food products originating from poultry infected with Salmonella spp. is one of the major causes of food poisoning in humans. The control of poultry salmonellosis is particularly difficult since birds are asymptomatic and numerous factors may expedite the maintenance of bacteria in poultry production facilities. The aim of the study was to determine the vectorial capacity of adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in the experimental transmission of Salmonella Enteritidis phage type 4 to 1-day-old specific pathogen-free White Leghorn chicks. Adult insects and larvae were starved for 1 day, fed for 24 h or 7 days on sterile ration that had been treated with Salmonella Enteritidis phage type 4, and the levels of bacterial infection were determined. Infected adult insects and larvae were fed to groups of day-old chicks, after which bacteria were recovered from cecum, liver, and spleen samples over a 7-day period. Infected larvae were more efficient than adult insects in transmitting Salmonella Enteritidis to chicks. Higher concentrations of bacteria could be reisolated from the cecum, liver, and spleen of chicks that had ingested infected larvae compared with those that had ingested infected adults. The control of A. diaperinus, and particularly of the larvae, represents a critical factor in the reduction of Salmonella spp. in poultry farms.

  1. Phlebotomus (Paraphlebotomus) riouxi: a synonym of Phlebotomus chabaudi without any proven vectorial role in Tunisia and Algeria.

    Science.gov (United States)

    Tabbabi, A; Rhim, A; Ghrab, J; Martin, O; Aoun, K; Bouratbine, A; Ready, P D

    2014-08-01

    Phlebotomus (Paraphlebotomus) riouxi Depaquit, Léger & Killick-Kendrick (Diptera: Psychodidae) was described as a typological species based on a few morphological characters distinguishing it from Phlebotomus (Paraphlebotomus) chabaudi Croset, Abonnenc & Rioux. The naming of P. riouxi coincided with its incrimination as a rural vector of Leishmania tropica Wright (junior synonym: Leishmania killicki Rioux, Lanotte & Pratlong) in Tataouine governorate, an arid region of southern Tunisia. The current report finds insufficient evidence to incriminate either phlebotomine sandfly as a vector of L. tropica in North Africa. Phlebotomus riouxi was found not to have the characteristics of a phylogenetic or biological species, and therefore it is synonymized with P. chabaudi. Both taxa were recorded together for the first time in Tunisia, in Tataouine, where three of 12 males showed intermediate morphology and both sexes of each taxon were not characterized by specific lineages of the nuclear gene elongation factor-1α or the mitochondrial gene cytochrome b, for which a long 3' terminal fragment is recommended for phlebotomine phylogenetics. This case study indicates that the eco-epidemiology of leishmaniasis should focus more on identifying key components of vectorial transmission that are susceptible to interventions for disease control, rather than on defining sibling species of vectors. © 2014 The Royal Entomological Society.

  2. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions.

    Science.gov (United States)

    Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida

    2012-08-02

    The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply

  3. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  4. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  5. In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    International Nuclear Information System (INIS)

    G. R. Odette; G. E. Lucas

    2005-01-01

    This final report on ''In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation'' (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: (1) A Transport and Fate Model for Helium and Helium Management; (2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; (3) Multiscale Modeling of Fracture consisting of: (3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), (3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, (3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, (3d) A Model for the KJc(T) of a High Strength NFA MA957, (3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, (3f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; (4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and (5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES

  6. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  7. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  8. Development of an MMS/PC based real time simulation of the B and W NSS plant for advanced control system design

    International Nuclear Information System (INIS)

    Bartells, P.S.; Brownell, R.B.

    1990-01-01

    The development of this personal-computer-based simulation of the Babcock and Wilcox nuclear steam system (NSS) was prompted in part by the need for a real-time analysis tool to be used in evaluating advanced control concepts for the NSS. NSS control is currently accomplished via conventional analog systems that are becoming increasingly obsolete. With the widespread use of digital micro-processor-based control systems for fossil power and other applications, the B and W Owners Group Advanced Control System Task Force is developing a next-generation control system for upgrading existing B and W power plants. To take advantage of the digital control technology, it is desirable to have a flexible, cost-effective, and portable control analysis tool available that can simulate various postulated control strategies and algorithms and couple these with simulated plant responses in real time to determine overall effectiveness. To develop the desired capability, B and W has incorporated the simulation methodology of the Modular Modeling System (MMS) and the knowledge gained during development of a similar Department of Energy-funded project. The MMS-based NSS model was developed and then modified to increase execution speed, ported to an IBM Personal System 2 (Model 80) and interfaced with user-friendly graphics. The user can develop alternative control strategies and readily interface them with the NSS model for real-time display and evaluation. The paper addresses the key considerations and programming techniques used to accomplish the resulting simulation

  9. Bridging the gap between the Babinet principle and the physical optics approximation: Vectorial problem

    Science.gov (United States)

    Kubické, Gildas; Bourlier, Christophe; Delahaye, Morgane; Corbel, Charlotte; Pinel, Nicolas; Pouliguen, Philippe

    2013-09-01

    For a three-dimensional problem and by assuming perfectly electric conducting objects, this paper shows that the Babinet principle (BP) can be derived from the physical optics (PO) approximation. Indeed, following the same idea as Ufimtsev, from the PO approximation and in the far-field zone, the field scattered by an object can be split up into a field which mainly contributes around the specular direction (illuminated zone) and a field which mainly contributes around the forward direction (shadowed zone), which is strongly related to the scattered field obtained from the BP. The only difference resides in the integration surface. We show mathematically that the involved integral does not depend on the shape of the object but only on its contour. Simulations are provided to illustrate the link between BP and PO. The main gain of this work is that it provides a more complete physical insight into the connection between PO and BP.

  10. A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma

    Czech Academy of Sciences Publication Activity Database

    Valentini, F.; Trávníček, Pavel; Califano, F.; Hellinger, Petr; Mangeney, A.

    2007-01-01

    Roč. 225, č. 1 (2007), s. 753-770 ISSN 0021-9991 Institutional research plan: CEZ:AV0Z30420517 Keywords : numerical simulations * hybrid simulations * Vlasov simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2007

  11. Proceedings of Conference on 73 Easting: Lessons from Desert Storm Via Advanced Simulation Technology Held in Alexandria, Virginia on 27-29 August 1991

    Science.gov (United States)

    1992-04-01

    Corporation Santa Monica, CA Col Jack Thorpe, USAF Special Assistant for Simulation Defense Advanced Research Projects Agency, DIRO Arlington, VA GEN Max...4s. Ab, it says, what about A-4s? Point and click-- manufactured by K Mart corporation , last item delivered in 1972. What does it fly? It flies Mark A...armed forces of the United States, so we can get the sinergy out of training that simply is of an estimable value in combat. Thank you very much. RADM

  12. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  13. Acquisition of a Multi-Domain Advanced Real-Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB

    Science.gov (United States)

    2017-10-17

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...0704-0188 3. DATES COVERED (From - To) - Approved for public release; distribution is unlimited. UU UU UU UU 17-10-2017 25-Jul-2016 24-Jul-2017 Final...Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and

  14. Determination of Age and Vectorial Capacity of Anopheles Maculipennis Sensu Lato in the Central Plateau of Iran

    Directory of Open Access Journals (Sweden)

    Hamideh Edalat

    2016-06-01

    Full Text Available Background and Purpose: Islamic Republic of Iran has greatly reduced its malaria burden and has a national goal to eliminate malaria by 2025. The aim of this study was to determine the population dynamics of Anopheles maculipennis sensu lato, in relation to probable malaria transmission. For this purpose, the study was conducted in three villages in Isfahan Province of Iran, from April to March 2014. Materials and Methods: Two mosquitoes sampling methods were conducted, comprises human landing catch and human bed net collection. The results of this investigation were subjected to one-way ANOVA using SPSS. Results: A. maculipennis s.l. was found as a dominant vector with exophagic and endophilic behavior. Two peaks of blood feeding were observed, 9.00-10.00 p.m and 1.00-2.00 a.m. The gonotrophic cycle, survival rate, and life expectancy of the species were 4, 0.82, and 5 days, respectively. Malaria vectorial capacity of A. maculipennis was measured 0.0128 and 0.059 for Plasmodium vivax and Plasmodium Falciparum, respectively. Conclusion: The findings indicate that there is a negative correlation between the temperature and daily age of A. maculipennis s.l. The method described can be used as a standard method to determine the daily age of Anopheles, as well as of other mosquito species since it is fast and precise and needs small samples. Survey on the age structure of vectors is very important as it is useful in monitoring the success of large-scale vector control measures.

  15. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  16. Effect of High-Fidelity Simulation on Medical Students' Knowledge about Advanced Life Support: A Randomized Study.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available High-fidelity simulation (HFS is a learning method which has proven effective in medical education for technical and non-technical skills. However, its effectiveness for knowledge acquisition is less validated. We performed a randomized study with the primary aim of investigating whether HFS, in association with frontal lessons, would improve knowledge about advanced life support (ALS, in comparison to frontal lessons only among medical students. The secondary aims were to evaluate the effect of HFS on knowledge acquisition of different sections of ALS and personal knowledge perception. Participants answered a pre-test questionnaire consisting of a subjective (evaluating personal perception of knowledge and an objective section (measuring level of knowledge containing 100 questions about algorithms, technical skills, team working/early warning scores/communication strategies according to ALS guidelines. All students participated in 3 frontal lessons before being randomized in group S, undergoing a HFS session, and group C, receiving no further interventions. After 10 days from the end of each intervention, both groups answered a questionnaire (post-test with the same subjective section but a different objective one. The overall number of correct answers of the post-test was significantly higher in group S (mean 74.1, SD 11.2 than in group C (mean 65.5, SD 14.3, p = 0.0017, 95% C.I. 3.34 - 13.9. A significantly higher number of correct answers was reported in group S than in group C for questions investigating knowledge of algorithms (p = 0.0001; 95% C.I 2.22-5.99 and team working/early warning scores/communication strategies (p = 0.0060; 95% C.I 1.13-6.53. Students in group S showed a significantly higher score in the post-test subjective section (p = 0.0074. A lower proportion of students in group S confirmed their perception of knowledge compared to group C (p = 0.0079. HFS showed a beneficial effect on knowledge of ALS among medical students

  17. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wirth, B. D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. This allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to

  18. 35. Conference of the DVM Working Group on Fracture Processes: Advances in fracture and damage mechanics - simulation methods of fracture mechanics

    International Nuclear Information System (INIS)

    2003-01-01

    Subjects of the meeting were: Simulation of fatigue crack growth in real strucures using FEA (M. Fulland, Paderborn); Modelling of ductile crack growth (W. Brocks, Geesthacht); Advances in non-local modelling of ductile damage (F. Reusch et al., Berlin, Dortmund); Fracture mechanics of ceramics (D. Munz, Karlsruhe); From materials testing to vehicle crash testing (J.G. Blauel, Freiburg); Analytical simulation of crack growth in thin-walled structures (U. Zerbst, Geesthacht); The influence of intrinsic stresses on fatigue crack growth (C. Dalle Donne etc., Cologne, Dortmund, Pisa, and M. Sander, Paderborn); Fracture mechanical strength calculation in case of mixed mode loads on cracks (H.A. Richard, Paderborn); Numeric simulation of intrinsic stresses during welding (C. Veneziano, Freiburg); New research fields of the Fraunhofer-Institut fuer Werkstoffmechanik (P. Gumbsch, Head of the Institute, Freiburg); Modern developments and advances in fracture and damage mechanics; Numeric and experimental simulation of crack propagation and damage processes; Exemplary damage cases; Fracture mechanics in product development; Failure characteristics of lightweight constructional materials and joints [de

  19. Accurately fitting advanced training. Flexible simulator training by modular training course concepts; Passgenaue Weiterbildung. Flexibilitaet im Simulatortraining durch modulare Kurskonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Sickora, Katrin; Cremer, Hans-Peter [Kraftwerksschule e.V., Essen (Germany)

    2010-07-01

    Every employee of a power plant contributes with his individual expertise to the success of the enterprise. Certainly personal skills of employees differ from each other as well as power plants are different. With respect to effective simulator training this means that no two simulator training courses can be identical. To exactly meet the requirements of our customers KWS has developed modules for simulation training courses. Each module represents either a technical subject or addresses a topic in the field of soft skills. An accurately fitting combination of several of these modules to the needs of our customers allows for most efficient simulator training courses. (orig.)

  20. El método de los elementos finitos para el modelado de la ecuación de ondas con un procesador vectorial

    OpenAIRE

    Seron, F.; Sanz, F.; Kindelan, M.; C.Perez, C.Perez

    1990-01-01

    El objetivo de este trabajo es analizar los aspectos computacionales del Método de los Elementos Finitos para la resolución de las ecuaciones de onda elásticas. Se analizan las técnicas numéricas necesarias desde el punto de vista de la precisión, prestaciones y necesidades de almacenamiento cuando se implementan en procesadores escalares y vectoriales con gran capacidad de almacenamiento. El método se ha implementado en un IBM 3090 con procesador vectorial usando diferentes algoritmos para l...

  1. Grid-Free LES 3D Vortex Method for the Simulation of Tubulent Flows Over Advanced Lifting Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Turbulent flows associated with advanced aerodynamic designs represent a considerable challenge for accurate prediction. For example, the flow past low-speed wings...

  2. Preclinical endoscopic training using a part-task simulator: learning curve assessment and determination of threshold score for advancement to clinical endoscopy.

    Science.gov (United States)

    Jirapinyo, Pichamol; Abidi, Wasif M; Aihara, Hiroyuki; Zaki, Theodore; Tsay, Cynthia; Imaeda, Avlin B; Thompson, Christopher C

    2017-10-01

    Preclinical simulator training has the potential to decrease endoscopic procedure time and patient discomfort. This study aims to characterize the learning curve of endoscopic novices in a part-task simulator and propose a threshold score for advancement to initial clinical cases. Twenty novices with no prior endoscopic experience underwent repeated endoscopic simulator sessions using the part-task simulator. Simulator scores were collected; their inverse was averaged and fit to an exponential curve. The incremental improvement after each session was calculated. Plateau was defined as the session after which incremental improvement in simulator score model was less than 5%. Additionally, all participants filled out questionnaires regarding simulator experience after sessions 1, 5, 10, 15, and 20. A visual analog scale and NASA task load index were used to assess levels of comfort and demand. Twenty novices underwent 400 simulator sessions. Mean simulator scores at sessions 1, 5, 10, 15, and 20 were 78.5 ± 5.95, 176.5 ± 17.7, 275.55 ± 23.56, 347 ± 26.49, and 441.11 ± 38.14. The best fit exponential model was [time/score] = 26.1 × [session #] -0.615 ; r 2  = 0.99. This corresponded to an incremental improvement in score of 35% after the first session, 22% after the second, 16% after the third and so on. Incremental improvement dropped below 5% after the 12th session corresponding to the predicted score of 265. Simulator training was related to higher comfort maneuvering an endoscope and increased readiness for supervised clinical endoscopy, both plateauing between sessions 10 and 15. Mental demand, physical demand, and frustration levels decreased with increased simulator training. Preclinical training using an endoscopic part-task simulator appears to increase comfort level and decrease mental and physical demand associated with endoscopy. Based on a rigorous model, we recommend that novices complete a minimum of 12 training

  3. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  4. Blending technology in teaching advanced health assessment in a family nurse practitioner program: using personal digital assistants in a simulation laboratory.

    Science.gov (United States)

    Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia

    2012-09-01

    This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.

  5. Understanding interdisciplinary health care teams: using simulation design processes from the Air Carrier Advanced Qualification Program to identify and train critical teamwork skills.

    Science.gov (United States)

    Hamman, William R; Beaudin-Seiler, Beth M; Beaubien, Jeffrey M

    2010-09-01

    In the report "Five Years After 'To Err is Human' ", it was noted that "the combination of complexity, professional fragmentation, and a tradition of individualism, enhanced by a well-entrenched hierarchical authority structure and diffuse accountability, forms a daunting barrier to creating the habits and beliefs of common purpose, teamwork, and individual accountability for successful interdependence that a safe culture requires". Training physicians, nurses, and other professionals to work in teams is a concept that has been promoted by many patient safety experts. However the model of teamwork in healthcare is diffusely defined, no clear performance metrics have been established, and the use of simulation to train teams has been suboptimal. This paper reports on the first three years of work performed in the Michigan Economic Development Corporation (MEDC) Tri-Corridor life science grant to apply concepts and processes of simulation design that were developed in the air carrier industry to understand and train healthcare teams. This work has been monitored by the American Academy for the Advancement of Science (AAA) and is based on concepts designed in the Advanced Qualification Program (AQP) from the air carrier industry, which trains and assesses teamwork skills in the same manner as technical skills. This grant has formed the foundation for the Center of Excellence for Simulation Education and Research (CESR).

  6. Advancements in reactor physics modelling methodology of Monte Carlo Burnup Code MCB dedicated to higher simulation fidelity of HTR cores

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2014-01-01

    The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)

  7. Life cycle and vectorial competence of Triatoma williami (Galvão, Souza e Lima, 1965) under the influence of different blood meal sources.

    Science.gov (United States)

    Lunardi, Rosaline Rocha; Gomes, Letícia Pinho; Peres Câmara, Thaís; Arrais-Silva, Wagner Welber

    2015-09-01

    Triatoma williami is naturally infected by Trypanosoma cruzi, the ethiological agent of Chagas disease, the most significant cause of morbidity and mortality in South and Central America.The possibility of domiciliation of T. williami increases the risk of human T. cruzi vetorial transmission. Despite this, there is a lack of data demonstrating the bionomic aspects, the vectorial competence or the natural ecotope and the wild hosts of T. williami. This study describes for the first time the life cycle of T. williami under the influence of two blood meal sources and also evaluates the vectorial potential of the species. The development of two groups of hundred triatomines was followed over the nymphal stages and adulthood. Each group was exposed to a sole blood meal source, mammalian or bird. The average egg-to-adult development time in both groups was similar, except by shorter stages of N3 and N4 in triatomines fed on mammals. The group fed on birds needed more blood feedings to suffer the ecdysis and had higher cumulative mortality in the nymphal stages. Although the observed delay at defecation of adults after feeding, our results suggest that T. williami in the third and fifth nymphal stages may be good vectors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. First report of autochthonous non-vectorial canine leishmaniasis in New Caledonia, south-western Pacific: implications for new control measures and recommendations on importation of dogs.

    Science.gov (United States)

    Daval, Nathalie; Marchal, Céline; Guillaumot, Laurent; Hüe, Thomas; Ravel, Christophe; Keck, Nicolas; Kasbari, Mohamed

    2016-02-25

    Canine leishmaniasis (CanL), a parasitic zoonotic disease caused by Leishmania infantum and usually transmitted by phlebotomine sandflies, has rarely been reported in Pacific islands, which have been regarded until now as leishmaniasis-free territory. Here, we report the first autochthonous CanL case in New Caledonia (south-western Pacific) and the investigations carried out 1) to determine how infection was introduced into and transmitted among these dogs and 2) to assess the risks to animal and public health. Extensive epidemiological and entomological investigations in and around the focus were carried out. Leishmaniasis infection was confirmed by histopathology, indirect fluorescent antibody test, real-time PCR, and culture. Parasite strain was typed by the isoenzymatic technique. The survey revealed close contacts between the autochthonous dog and two infected bitches imported from Spain, but failed to find any possible vector or disease spreading to other animals or humans. L. infantum zymodeme MON-1, the most frequent type in the Mediterranean basin, was identified. Although transplacental and venereal transmissions could not be excluded, the evidence was in favour of non-