WorldWideScience

Sample records for advanced tokamak operation

  1. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    HUMPHREYS, DA; FERRON, JR; GAROFALO, AM; HYATT, AW; JERNIGAN, TC; JOHNSON, RD; LAHAYE, RJ; LEUER, JA; OKABAYASHI, M; PENAFLOR, BG; SCOVILLE, JT; STRAIT, EJ; WALKER, ML; WHYTE, DG

    2002-01-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response

  2. Advanced tokamak physics in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Luce, T.C.; Politzer, P.A.; Bray, B.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Gohil, P.; Greenfield, C.M.; Hsieh, C.-L.; Hyatt, A.W.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lin-Liu, Y.R.; Lohr, J.; Mahdavi, M.A.; Petrie, T.W.; Pinsker, R.I.; Prater, R.; Scoville, J.T.; Staebler, G.M.; Strait, E.J.; Taylor, T.S.; West, W.P. [General Atomics, PO Box 85608, San Diego, CA (United States); Wade, M.R.; Lazarus, E.A.; Murakami, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, S.L.; Casper, T.A.; Jayakumar, R.; Lasnier, C.J.; Makowski, M.A.; Rice, B.W.; Wolf, N.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Austin, M.E. [University of Texas, Austin, TX (United States); Fredrickson, E.D.; Gorelov, I.; Johnson, L.C.; Okabayashi, M.; Wong, K.-L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Garofalo, A.M.; Navratil, G.A. [Columbia University, New York (United States); Heidbrink, W. [University of California, Irvine, CA (United States); Kinsey, J.E. [Leheigh University, Bethlehem, PA (United States); McKee, G.R. [University of Wisconsin, Madison, WI (United States); Rettig, C.L.; Rhodes, T.L. [University of California, Los Angeles, CA (United States); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States)

    2000-12-01

    Advanced tokamaks seek to achieve a high bootstrap current fraction without sacrificing fusion power density or fusion gain. Good progress has been made towards the DIII-D research goal of demonstrating a high-{beta} advanced tokamak plasma in steady state with a relaxed, fully non-inductive current profile and a bootstrap current fraction greater than 50%. The limiting factors for transport, stability, and current profile control in advanced operating modes are discussed in this paper. (author)

  3. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  4. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    HUMPHREYS, D.A.; FERRON, J.R.; JOHNSON, R.D; LEUER, J.A.; PENAFLOR, B.G.; WALKER, M.L.; WELANDER, A.S.; KHAYRUTDINOV, R.R; DOKOUKA, V.; EDGELL, D.H.; FRANSSON, C.M.

    2004-03-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  5. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  6. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  7. SELF-CONSISTENT,INTEGRATED,ADVANCED TOKAMAK OPERATION ON DIII-D

    International Nuclear Information System (INIS)

    WADE, MR; MURAKAMI, M; LUCE, TC; FERRON, JR; PETTY, CC; BRENNAN, DP; GAROFALO, AM; GREENFIELD, CM; HYATT, AW; JAYAKUMAR, R; LAHAYE, RJ; LAO, LL; LOHR, J; POLITZER, PA; PRATER, R; STRAIT, EJ

    2002-01-01

    Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high β with q min >> 1, good energy confinement, and high current drive efficiency. Utilizing off-axis (ρ 0.4) electron cyclotron current drive (ECCD) to modify the current density profile in a plasma operating near the no-wall ideal stability limit with q min > 2.0, plasmas with β = 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with β = 3.3% and > 90% of the current driven non-inductively

  8. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  9. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  10. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  11. INTEGATED ADVANCED TOKAMAK OPERATION ON DIII-D

    International Nuclear Information System (INIS)

    WADE, M.R.; MURAKAMI, M.; LUCE, T.C.; FERRON, J.R.; PETTY, C.C.; BRENNEN, D.P.; GAROFALO, A.M.; GREENFIELD, C.M.; HYATT, A.W.; JAYAKUMAR, R.; KINSEY, J.E.; La HAYE, R.J.; LAO, L.L.; LOHR, J.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; WATKINS, J.G.

    2002-01-01

    Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high β with 1.5 min min > 2.0, plasmas with β ∼ 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Negative central magnetic shear is produced by the ECCD, leading to the formation of a weak internal transport barrier even in the presence of Type I ELMs. Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with β = 3.3% and > 90% of the current driven non-inductively. In addition, stable operation well above the ideal no-wall β limit has been sustained for several energy confinement times with the duration only limited by resistive relaxation of the current profile to an unstable state. Stability analysis indicates that the experimental β limit depends on the degree to which the no-wall limit can be exceeded and weakly on the actual no-wall limit. Achieving the necessary density levels required for adequate ECCD efficiency requires active divertor exhaust and reducing the wall inventory buildup prior to the high performance phase. Simulation studies indicate that the successful integration of high β operation with current profile control consistent with these experimental results should result in high β, fully non-inductive plasma operation

  12. Experimental and theoretical basis for advanced tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.

    1994-09-01

    In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments

  13. Advanced scenarios for ITER operation

    Energy Technology Data Exchange (ETDEWEB)

    Sips, A.C.C. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2004-07-01

    In thermonuclear fusion research using magnetic confinement, the tokamak is the leading candidate for achieving conditions required for a reactor. An international experiment, ITER is proposed as the next essential and critical step on the path to demonstrating the scientific and technological feasibility of fusion energy. ITER is to produce and study plasmas dominated by self heating. This would give unique opportunities to explore, in reactor relevant conditions, the physics of {alpha}-particle heating, plasma turbulence and turbulent transport, stability limits to the plasma pressure and exhaust of power and particles. Important new results obtained in experiments, theory and modelling, enable an improved understanding of the physical processes occurring in tokamak plasmas and give enhanced confidence in ITER achieving its goals. In particular, progress has been made in research to raise the performance of tokamaks, aimed to extend the discharge pulse length towards steady-state operation (advanced scenarios). Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Advanced scenarios on the other hand use a modified current density profile. Different advanced scenarios range from (i) plasmas that sustain a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure, to (ii) discharges with an off axis maximum of the current density profile (reversed magnetic shear in the core), able to form internal transport barriers, to increase the confinement of the plasma. The physics of advanced tokamak discharges is described, together with an overview of recent results from different tokamak experiments. International collaboration between experiments aims to provide a better understanding, control and optimisation of these plasmas. The ability to explore advanced scenarios in ITER is very desirable, in order to verify the result obtained in

  14. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-01-01

    This paper is an expository introduction to advanced statistics and scaling laws and their application to tokamak devices. Topics of discussion are as follows: implicit assumptions in the standard analysis; advanced regression techniques; specialized tools in statistics and their applications in fusion physics; and improved datasets for transport studies

  15. Facility approach to tokamak operation

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Gabbard, W.A.

    1981-01-01

    In anticipation of the appearance of more advanced tokamaks and other fusion relevant experiments, program has been established at ORNL to systemically identify the requirements of an effective machine operations group. This program is presently applied to the ISX-B experiment. With its continuing development, it is expected to provide major support in the identification of potential problem areas and to assist in the generation of the necessary procedures for forthcoming devices. The present and future generations of large plasma devices will function as facilities, operated by an operations group as service to the plasma physicists and diagnosticians. The purpose of the program discussed here is to develop and to encourage an orderly transition to the facility-like style of operation

  16. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  17. Overview of recent experimental results from the DIII-D advanced tokamak program

    International Nuclear Information System (INIS)

    Burrell, K.H.

    2003-01-01

    The D III-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: 1) We have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; 2) Using this rotational stabilization, we have achieved β N H 89 ≥ 10 for 4 τ E limited by the neoclassical tearing mode; 3) Using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased β T by 60%; 4) We have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; 5) We have made the first integrated AT demonstration discharges with current profile control using ECCD; 6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and 7) We have demonstrated stationary tokamak operation for 6.5 s (36 τ E ) at the same fusion gain parameter of β N H 89 /q 95 2 ≅ 0.4 as ITER but at much higher q 95 = 4.2. We have developed general improvements applicable to conventional and advanced tokamak operating modes: 1) We have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 τ E ) with constant density and constant radiated power; 2) We have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; 3) We have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. (author)

  18. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  19. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  20. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  1. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES ampersand H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power

  2. Lessons learned from the Tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety and health (ES ampersand H) characteristics of projected tokamak power plants. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances relative to present understanding in physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advanced tokamak plasmas configured in the second-stability regime that achieve both high β and bootstrap fractions near unity through strong profile control offer high promise in this regard

  3. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  4. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    Atzeni, S.; Vlad, G.

    1985-01-01

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D- 3 He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D- 3 He tokamak plasma

  5. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  6. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  7. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  8. System studies for quasi-steady-state advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated

  9. Realizing steady-state tokamak operation for fusion energy

    International Nuclear Information System (INIS)

    Luce, T. C.

    2011-01-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  10. Operational region and sawteeth oscillation in the EAST tokamak

    International Nuclear Information System (INIS)

    Liu, H Q; Gao, X; Zhao, J Y; Hu, L Q; Jie, Y X; Ling, B L; Xu, Q; Ti, A; Ming, T F; Yang, Y; Wu, Z W; Wang, J; Xu, G S; Gao, W; Zhong, G Q; Zang, Q; Shi, Y J; Shen, B; Zhou, Q; Li, Y D; Gong, X Z; Hu, J S; Sun, Y W; Zhao, Y P; Luo, J R; Mao, J S; Weng, P D; Wan, Y X; Zhang, X D; Wan, B N; Li, J

    2007-01-01

    The first plasma discharges were successfully achieved on the experimental advanced superconducting tokamak (EAST) in 2006. The sawteeth behaviours were observed by means of soft x-ray diagnostics and ECE signals in the EAST. The displacement and radius of the q = 1 surface was studied and compared with the result of equilibrium calculation. The density sawtooth oscillation was also observed by the HCN laser interferometer diagnostics. The structure of the EAST operational region was studied in detail. Plasma performance was obviously improved by the boronization and wall conditioning. It was observed that lower q a and a wider stable operating region is extended by the GDC boronization

  11. Remote operation of the GOLEM tokamak for Fusion Education

    Energy Technology Data Exchange (ETDEWEB)

    Grover, O.; Kocman, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Odstrcil, M. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Odstrcil, T. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Matusu, M. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Stöckel, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Institute of Plasma Physics AS CR, Prague CZ-182 21 (Czech Republic); Svoboda, V., E-mail: svoboda@fjfi.cvut.cz [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Vondrasek, G. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Zara, J. [Faculty of Electrical Engineering CTU Prague, CZ-166 27 (Czech Republic)

    2016-11-15

    Highlights: • The remote operation of the tokamak GOLEM for educational purposes. - Abstract: Practically oriented education in the field of thermonuclear fusion is highly requested. However, the high complexity of appropriate experiments makes it difficult to develop and maintain laboratories where students can take part in hands-on experiments in this field of study. One possible solution is to establish centres with specific high temperature plasma experiments where students can visit such a laboratory and perform their experiments in-situ. With the advancements of IT technologies it naturally follows to make a step forward and connect these with necessary plasma physics technologies and thus allow to access even sophisticated experiments remotely. Tokamak GOLEM is a small, modest device with its infrastructure linked to web technologies allowing students to set-up necessary discharge parameters, submit them into a queue and within minutes obtain the results in the form of a discharge homepage.

  12. Remote operation of the GOLEM tokamak for Fusion Education

    International Nuclear Information System (INIS)

    Grover, O.; Kocman, J.; Odstrcil, M.; Odstrcil, T.; Matusu, M.; Stöckel, J.; Svoboda, V.; Vondrasek, G.; Zara, J.

    2016-01-01

    Highlights: • The remote operation of the tokamak GOLEM for educational purposes. - Abstract: Practically oriented education in the field of thermonuclear fusion is highly requested. However, the high complexity of appropriate experiments makes it difficult to develop and maintain laboratories where students can take part in hands-on experiments in this field of study. One possible solution is to establish centres with specific high temperature plasma experiments where students can visit such a laboratory and perform their experiments in-situ. With the advancements of IT technologies it naturally follows to make a step forward and connect these with necessary plasma physics technologies and thus allow to access even sophisticated experiments remotely. Tokamak GOLEM is a small, modest device with its infrastructure linked to web technologies allowing students to set-up necessary discharge parameters, submit them into a queue and within minutes obtain the results in the form of a discharge homepage.

  13. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  14. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  15. Operating tokamaks with steady-state toroidal current

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  16. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  17. Feasibility study of advanced operation scenario in KSTAR using CRONOS

    International Nuclear Information System (INIS)

    Kim, H.-S.; Na, Y.-S.; Bae, Y.S.; Jeon, Y.M.; Kim, S.H.; Artaud, J.-F.

    2014-01-01

    We report the results of predictive modelling of advanced operation scenarios in KSTAR. Firstly, the operation windows are produced to explore the KSTAR advanced scenarios in the condition of upgrading H/CD mix. Using METIS code, the rough ranges of operation condition of I_P and B_T to utilize for the development of advanced operation scenario scenario are determined. Secondly, the advanced inductive and the advanced tokamak operation scenario of KSTAR are developing with the scaling based and the physics based transport model by using CRONOS to make a suggestion to on-going KSTAR experiment. Thirdly, the dependency of the time of L-H transition on q_0 an q_m_i_n is investigated for the advanced inductive operation scenario. These reliable results can become the useful database for exploring the advanced regime of KSTAR discharges in the future. (author)

  18. KTM Tokamak operation scenarios software infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.; Baystrukov, K.; Golobkov, YU.; Ovchinnikov, A.; Meaentsev, A.; Merkulov, S.; Lee, A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Tazhibayeva, I.; Shapovalov, G. [National Nuclear Center (NNC), Kurchatov (Kazakhstan)

    2014-10-15

    One of the largest problems for tokamak devices such as Kazakhstan Tokamak for Material Testing (KTM) is the operation scenarios' development and execution. Operation scenarios may be varied often, so a convenient hardware and software solution is required for scenario management and execution. Dozens of diagnostic and control subsystems with numerous configuration settings may be used in an experiment, so it is required to automate the subsystem configuration process to coordinate changes of the related settings and to prevent errors. Most of the diagnostic and control subsystems software at KTM was unified using an extra software layer, describing the hardware abstraction interface. The experiment sequence was described using a command language. The whole infrastructure was brought together by a universal communication protocol supporting various media, including Ethernet and serial links. The operation sequence execution infrastructure was used at KTM to carry out plasma experiments.

  19. Super high field ohmically heated tokamak operation

    International Nuclear Information System (INIS)

    Cohn, D.R.; Bromberg, L.; Leclaire, R.J.; Potok, R.E.; Jassby, D.L.

    1986-01-01

    The authors discuss a super high field mode of tokamak operation that uses ohmic heating or near ohmic heating to ignition. The super high field mode of operation uses very high values of Β/sup 2/α, where Β is the magnetic field and a is the minor radius (Β/sup 2/α > 100 T/sup 2/m). We analyze copper magnet devices with major radii from 1.7 to 3.0 meters. Minimizing or eliminating the need for auxiliary heating has the potential advantages of reducing uncertainty in extrapolating the energy confinement time of current tokamak devices, and reducing engineering problems associated with large auxiliary heating requirements. It may be possible to heat relatively short pulse, inertially cooled tokamaks to ignition with ohmic power alone. However, there may be advantages in using a very small amount of auxiliary power (less than the ohmic heating power) to boost the ohmic heating and provide a faster start-up, expecially in relatively compact devices

  20. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  1. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-06-01

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  2. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  3. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  4. Advanced tokamak research in DIII-D

    International Nuclear Information System (INIS)

    Greenfield, C M; Murakami, M; Ferron, J R

    2004-01-01

    Advanced tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and high poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization by plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining inductively driven current, mostly located near the half radius, with non-inductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining inductive current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with ELMing H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. An advanced plasma control system allows integrated control of these elements. Close coupling between modelling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. This approach has resulted in fully non-inductively driven plasmas with β N ≤ 3.5 and β T ≤ 3.6% sustained for up to 1 s, which is approximately equal to one current relaxation time. Progress in this area, and its implications for next-step devices, will be illustrated by

  5. Modelling of advanced tokamak physics scenarios in ALCATOR C-Mod

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Porkolab, M.; Ramos, J.

    2001-01-01

    Advanced tokamak modes of operation in Alcator C-Mod have been investigated using a simulation model which combines an MHD equilibrium and current profile control calculation with an ideal MHD stability analysis. Stable access to high β t operating modes with reversed shear current density profiles has been demonstrated using 2.4-3.0 MW of off-axis lower hybrid current drive (LHCD). Here β t =2μ 0 (p)/B 2 0 is the volume averaged toroidal plasma beta. Current profile control at the β-limit and beyond has also been demonstrated. The effects of LH power level as well as changes in the profiles of density and temperature on shear reversal radius have been quantified and are discussed. (author)

  6. Microwave tokamak experiment (MTX) first year of operation and future plans

    International Nuclear Information System (INIS)

    Jackson, M.C.

    1989-01-01

    The Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL) began plasma operations in November 1988, and our main goal is the study of electron-cyclotron heating (ECH) in plasma discharges. The MTX tokamak was relocated from the Massachusetts Institute of Technology (MIT), and we have re-created plasma parameters that are similar to those generated while the tokamak was at MIT. After stable ohmic operation was achieved, single-pulse FEL heating experiments began. During this phase, the FEL operated at low power levels on the way to its ultimate goal of 2 GW and 140 GHz with a 30-ns pulse length. We have developed a number of new diagnostics to measure these fast FEL pulses and the resulting plasma effects. In this paper, we present results that show the correlation of MTX data with MIT data, some of the operational modifications and procedures used, results to date from preliminary tokamak operations with the FEL, and our near-term operational plans. 7 refs., 8 figs., 1 tab

  7. Application of advanced composites in tokamak magnet systems

    International Nuclear Information System (INIS)

    Long, C.J.

    1977-11-01

    The use of advanced (high-modulus) composites in superconducting magnets for tokamak fusion reactors is discussed. The most prominent potential application is as the structure in the pulsed poloidal-field coil system, where a significant reduction in eddy currents could be achieved. Present low-temperature data on the advanced composites are reviewed briefly; they are too meager to do more than suggest a broad class of composites for a particular application

  8. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  9. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  10. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  11. Investigation on synergy of IBW and LHCD for integrated high performance operation in HT-7 tokamak

    International Nuclear Information System (INIS)

    Wan Baonian

    2002-01-01

    Control of the current density profile has been realized with off-axis current drive by LHW in the HT-7 tokamak predicted by a 2D FP code simulation and supported by measurements of a vertical HX array. IBW is explored to improve performance through heating electrons in the selected region. Strong synergy effect on driven current profile and increased driven efficiency was observed. Electron temperature shows an ITB-like profile with a significantly improved performance. Operation of IBW and LHCD synergetic discharges was optimized through moving the IBW resonant layer to maximize the plasma performance and to avoid the MHD activities. A variety of high performance discharges indicated by β N *H89=1∼ 4 was produced for several tens energy confinement times. This operation mode utilizing synergy effect of IBW and LHCD provide a new way to obtain steady-state operation in advanced tokamak scenario. (author)

  12. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  13. Characteristics of edge-localized modes in the experimental advanced superconducting tokamak (EAST)

    DEFF Research Database (Denmark)

    Jiang, M.; Xu, G.S.; Xiao, C.

    2012-01-01

    Edge-localized modes (ELMs) are the focus of tokamak edge physics studies because the large heat loads associated with ELMs have great impact on the divertor design of future reactor-grade tokamaks such as ITER. In the experimental advanced superconducting tokamak (EAST), the first ELMy high...... confinement modes (H-modes) were obtained with 1 MW lower hybrid wave power in conjunction with wall conditioning by lithium (Li) evaporation and real-time Li powder injection. The ELMs in EAST at this heating power are mostly type-III ELMs. They were observed close to the H-mode threshold power and produced...

  14. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  15. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs

  16. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  17. Economic comparison of MHD equilibrium options for advanced steady state tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kessel, C.E.; Jardin, S.C.; Krakowski, R.A.; Bathke, C.G.; Mau, T.K.; Najmabadi, F.

    1998-01-01

    Progress in theory and in tokamak experiments leads to questions of the optimal development path for commercial tokamak power plants. The economic prospects of future designs are compared for several tokamak operating modes: (high poloidal beta) first stability, second stability and reverse shear. Using a simplified economic model and selecting uniform engineering performance parameters, this comparison emphasizes the different physics characteristics - stability and non- inductive current drive - of the various equilibria. The reverse shear mode of operation is shown to offer the lowest cost of electricity for future power plants. (author)

  18. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    Science.gov (United States)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  19. ACHIEVING AND SUSTAINING STEADY-STATE ADVANCED TOKAMAK CONDITIONS ON DIII-D

    International Nuclear Information System (INIS)

    WADE, MR; MURAKAMI, M; BRENNAN, DP; CASPER, TA; FERRON, JR; GAROFALO, AM; GREENFIELD, CM; HYATT, AW; JAYAKUMAR, R; KINSEY, JE; LAHAYE, RJ; LAO, LL; LAZARUS, EA; LOHR, J; LUCE, TC; PETTY, CC; POLITZER, PA; PRATER, R; STRAIT, EJ; TURNBULL, AD; WATKINS, JG; WEST, WP

    2002-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼ 85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds

  20. Achieving and sustaining steady-state advanced tokamak conditions on DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Murakami, M.; Brennan, D.P.

    2003-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds. (author)

  1. Synergism between profile and cross section shape optimization for negative central shear advanced tokamaks

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Taylor, T.S.; Lao, L.L.

    1996-01-01

    The Advanced Tokamak (AT) concept is aimed at achieving high beta, high confinement, and a well aligned high bootstrap current fraction in a tokamak configuration consistent with steady state operation. The required improvements over the simple O-D scaling laws, normally used to predict standard, pulsed tokamak performance, axe obtained by taking into account the dependence of the stability and confinement on the 2-D equilibrium; the planned TPX experiment was designed to take full advantage of both advanced profiles and advanced cross-section shaping. Systematic stability studies of the promising Negative Central Shear (NCS) configuration have been performed for a wide variety of cross-section shapes and profile variations. The ideal MHD beta limit is found to be strongly dependent on both and, in fact, there is a clear synergistic relationship between the gains in beta from optimizing the profiles and optimizing the shape. Specifically, for a circular cross-section with highly peaked profiles, β is limited to normalized β values of β N = β/(I/aB) ∼ 2% (mT/MA). A small gain in beta can be achieved by broadening the pressure; however, the root-mean-square beta (β*) is slightly reduced. With peaked pressure profiles, a small increase in β N over that in a circular cross-section is also obtained by strong shaping. At fixed q, this translates to a much larger gain in β and β*. With both optimal profiles and strong shaping, however, the gain in all the relevant fusion performance parameters is dramatic; β and β* can be increased a factor 5 for example. Moreover, the bootstrap alignment is improved. For an optimized strongly shaped configuration, confinement, beta values, and bootstrap alignment adequate for a practical AT power plant appear to be realizable. Data from DIII-D supports these predictions and analysis of the DIII-D data will be presented

  2. Transport and stability studies in negative central shear advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.J.

    2003-01-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q min values. (orig.)

  3. Transport and stability studies in negative central shear advanced tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, R.J. [Lawrence Livermore National Laboratory (United States)

    2003-07-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q{sub min} values. (orig.)

  4. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  5. Recent advances in the HL-2A tokamak experiments

    International Nuclear Information System (INIS)

    Liu, Y.; Ding, X.T.; Yang, Q.W.; Yan, L.W.; Liu, D.Q.; Xuan, W.M.; Chen, L.Y.; Song, X.M.; Cao, Z.; Zhang, J.H.; Mao, W.C.; Zhou, C.P.; Li, X.D.; Wang, S.J.; Yan, J.C.; Bu, M.N.; Chen, Y.H.; Cui, C.H.; Cui, Z.Y.; Deng, Z.C.; Hong, W.Y.; Hu, H.T.; Huang, Y.; Kang, Z.H.; Li, B.; Li, W.; Li, F.Z.; Li, G.S.; Li, H.J.; Li, Q.; Li, Y.G.; Li, Z.J.; Liu, Yi; Liu, Z.T.; Luo, C.W.; Mao, X.H.; Pan, Y.D.; Rao, J.; Shao, K.; Song, X.Y.; Wang, M.; Wang, M.X.; Wang, Q.M.; Xiao, Z.G.; Xie, Y.F.; Yao, L.H.; Yao, L.Y.; Zheng, Y.J.; Zhong, G.W.; Zhou, Y.; Pan, C.H.

    2005-01-01

    Two experiment campaigns were conducted on the HL-2A tokamak in 2003 and 2004 after the first plasma was obtained at the end of 2002. Progresses in many aspects have been made, especially in the divertor discharge and feedback control of plasma configuration. Up to now, the following operation parameters have been achieved: I p = 320 kA, B t = 2.2 T and discharge duration T d = 1580 ms. With the feedback control of plasma current and horizontal position, an excellent repeatability of the discharge has been achieved. The tokamak has been operated at both limiter configuration and single null (SN) divertor configuration. The HL-2A SN divertor configuration is simulated with the MHD equilibrium code SWEQU. When the divertor configuration is formed, the impurity radiation in the main plasma decreases remarkably

  6. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor is discussed. The plasma size required to attain ignition is determined. Ignition is found to be possible in a relatively small system provided other design criteria are met. These criteria are described and the technology developments and operating procedures required by them are outlined. The parameters for such a system and its dynamic behavior during the operating cycle are also discussed

  7. Steady state operation of tokamaks. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-10-01

    The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition

  8. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  9. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  10. Progress in Developing a High-Availability Advanced Tokamak Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.; Goldston, R.; Kessel, C.; Neilson, G.; Menard, J.; Prager, S.; Scott, S.; Titus, P.; Zarnstorff, M., E-mail: tbrown@pppl.gov [Princeton University, Princeton Plasma Physics Laboratory, Princeton (United States); Costley, A. [Henley on Thames (United Kingdom); El-Guebaly, L. [University of Wisconsin, Madison (United States); Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Waganer, L. [St. Louis (United States)

    2012-09-15

    Full text: A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. In this paper the AT pilot plant design will be presented. The selected maintenance approach, the device arrangement and sizing of the in-vessel components and details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will be discussed. Efforts made to enhance the interaction of in-vessel maintenance activities, the hot cell and the transfer process to develop simplifying solutions will also be addressed. (author)

  11. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  12. First results on fast wave current drive in advanced tokamak discharges in DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Cary, W.P.; Baity, F.W.

    1995-07-01

    Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m 2

  13. Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation

    Science.gov (United States)

    Giruzzi, G.; Yoshida, M.; Artaud, J. F.; Asztalos, Ö.; Barbato, E.; Bettini, P.; Bierwage, A.; Boboc, A.; Bolzonella, T.; Clement-Lorenzo, S.; Coda, S.; Cruz, N.; Day, Chr.; De Tommasi, G.; Dibon, M.; Douai, D.; Dunai, D.; Enoeda, M.; Farina, D.; Figini, L.; Fukumoto, M.; Galazka, K.; Galdon, J.; Garcia, J.; Garcia-Muñoz, M.; Garzotti, L.; Gil, C.; Gleason-Gonzalez, C.; Goodman, T.; Granucci, G.; Hayashi, N.; Hoshino, K.; Ide, S.; Imazawa, R.; Innocente, P.; Isayama, A.; Itami, K.; Joffrin, E.; Kamada, Y.; Kamiya, K.; Kawano, Y.; Kawashima, H.; Kobayashi, T.; Kojima, A.; Kubo, H.; Lang, P.; Lauber, Ph.; de la Luna, E.; Maget, P.; Marchiori, G.; Mastrostefano, S.; Matsunaga, G.; Mattei, M.; McDonald, D. C.; Mele, A.; Miyata, Y.; Moriyama, S.; Moro, A.; Nakano, T.; Neu, R.; Nowak, S.; Orsitto, F. P.; Pautasso, G.; Pégourié, B.; Pigatto, L.; Pironti, A.; Platania, P.; Pokol, G. I.; Ricci, D.; Romanelli, M.; Saarelma, S.; Sakurai, S.; Sartori, F.; Sasao, H.; Scannapiego, M.; Shimizu, K.; Shinohara, K.; Shiraishi, J.; Soare, S.; Sozzi, C.; Stępniewski, W.; Suzuki, T.; Suzuki, Y.; Szepesi, T.; Takechi, M.; Tanaka, K.; Terranova, D.; Toma, M.; Urano, H.; Vega, J.; Villone, F.; Vitale, V.; Wakatsuki, T.; Wischmeier, M.; Zagórski, R.

    2017-08-01

    The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.

  14. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  15. Particle exhaust scheme using an in-vessel cryocondensation pump in the advanced divertor configuration of the DIII-D tokamak

    International Nuclear Information System (INIS)

    Menon, M.M.; Mioduszewski, P.K.; Owen, L.W.; Anderson, P.M.; Baxi, C.B.; Langhorn, A.; Luxon, J.L.; Mahdavi, M.A.; Schaffer, M.J.; Schaubel, K.M.; "" class="author-name" title=" (General Atomics Co., San Diego, CA (United States))" data-affiliation=" (General Atomics Co., San Diego, CA (United States))" >Smith, J.P>

    1992-01-01

    In this paper, a particle exhaust scheme using a cryocondensation pump in the advanced divertor configuration of the DIII-D tokamak is described. In this configuration, the pump is located inside a baffle chamber within the tokamak, designed to receive particles reflected off the divertor strike region. A concentric coaxial loop with forced-convection flow of two-phase helium is selected as the cryocondensation surface. The pumping configuration is optimized by Monte Carlo techniques to provide maximum exhaust efficiency while minimizing the deleterious effects of impingement of energetic plasma particles on cryogenic surfaces. Heat loading contributions from various sources on the cryogenic surfaces are estimated, based on which the cryogenic surfaces are estimated, based on which the cryogenic flow loop for the pump is designed. The mechanical aspects of the pump, designed to meet the many challenging requirements of operating the cryopump internal to the tokamak vacuum and in close proximity with the high-temperature plasma, are also outlined

  16. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  17. Commercial feasibility of fusion power based on the tokamak concept

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    The impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants is determined. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  18. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  19. Overview of recent experimental results from the DIII-D advanced tokamak program

    International Nuclear Information System (INIS)

    Allen, S.L.

    2001-01-01

    The goals of DIII-D Advanced Tokamak (AT) experiments are to investigate and optimize the upper limits of energy confinement and MHD stability in a tokamak plasma, and to simultaneously maximize the fraction of non-inductive current drive. Significant overall progress has been made in the past 2 years, as the performance figure of merit β N H 89P of 9 has been achieved in ELMing H-mode for over 16 τ E without sawteeth. We also operated at β N ∼7 for over 35 τ E or 3 τ R , with the duration limited by hardware. Real-time feedback control of β (at 95% of the stability boundary), optimizing the plasma shape (e.g., δ, divertor strike- and X-point, double/single null balance), and particle control (n e /n GW ∼0.3, Z eff N H 89P of 7. The QDB regime has been obtained to date only with counter neutral beam injection. Further modification and control of internal transport barriers (ITBs) has also been demonstrated with impurity injection (broader barrier), pellets, and ECH (strong electron barrier). The new Divertor-2000, a key ingredient in all these discharges, provides effective density, impurity and heat flux control in the high-triangularity plasma shapes. Discharges at n e /n GW ∼1.4 have been obtained with gas puffing by maintaining the edge pedestal pressure; this operation is easier with Divertor-2000. We are developing several other tools required for AT operation, including real-time feedback control of resistive wall modes (RWMs) with external coils, and control of neoclassical tearing modes (NTMs) with electron cyclotron current drive (ECCD). (author)

  20. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. M., E-mail: dmliu@live.cn; Zhao, W. Z.; He, Y. G.; Chen, B. [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China); Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  1. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  2. Statistical analysis of first period of operation of FTU Tokamak

    International Nuclear Information System (INIS)

    Crisanti, F.; Apruzzese, G.; Frigione, D.; Kroegler, H.; Lovisetto, L.; Mazzitelli, G.; Podda, S.

    1996-09-01

    On the FTU Tokamak the plasma physics operations started on the 20/4/90. The first plasma had a plasma current Ip=0.75 MA for about a second. The experimental phase lasted until 7/7/94, when a long shut-down begun for installing the toroidal limiter in the inner side of the vacuum vessel. In these four years of operations plasma experiments have been successfully exploited, e.g. experiments of single and multiple pellet injections; full current drive up to Ip=300 KA was obtained by using waves at the frequency of the Lower Hybrid; analysis of ohmic plasma parameters with different materials (from the low Z silicon to high Z tungsten) as plasma facing element was performed. In this work a statistical analysis of the full period of operation is presented. Moreover, a comparison with the statistical data from other Tokamaks is attempted

  3. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S K; Lee, K W; Hwang, C K; Hong, B G; Hong, G W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-05-01

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new.

  4. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, K. W.; Hwang, C. K.; Hong, B. G.; Hong, G. W.

    1995-05-01

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new

  5. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  6. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  7. Development of burning plasma and advanced scenarios in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.

    2005-01-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q ∼ 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque. (author)

  8. An advanced computational algorithm for systems analysis of tokamak power plants

    International Nuclear Information System (INIS)

    Dragojlovic, Zoran; Rene Raffray, A.; Najmabadi, Farrokh; Kessel, Charles; Waganer, Lester; El-Guebaly, Laila; Bromberg, Leslie

    2010-01-01

    A new computational algorithm for tokamak power plant system analysis is being developed for the ARIES project. The objective of this algorithm is to explore the most influential parameters in the physical, technological and economic trade space related to the developmental transition from experimental facilities to viable commercial power plants. This endeavor is being pursued as a new approach to tokamak systems studies, which examines an expansive, multi-dimensional trade space as opposed to traditional sensitivity analyses about a baseline design point. The new ARIES systems code consists of adaptable modules which are built from a custom-made software toolbox using object-oriented programming. The physics module captures the current tokamak physics knowledge database including modeling of the most-current proposed burning plasma experiment design (FIRE). The engineering model accurately reflects the intent and design detail of the power core elements including accurate and adjustable 3D tokamak geometry and complete modeling of all the power core and ancillary systems. Existing physics and engineering models reflect both near-term as well as advanced technology solutions that have higher performance potential. To fully assess the impact of the range of physics and engineering implementations, the plant cost accounts have been revised to reflect a more functional cost structure, supported by an updated set of costing algorithms for the direct, indirect, and financial cost accounts. All of these features have been validated against the existing ARIES-AT baseline case. The present results demonstrate visualization techniques that provide an insight into trade space assessment of attractive steady-state tokamaks for commercial use.

  9. q=1 advanced tokamak experiments in JET and comparison with ASDEX Upgrade

    International Nuclear Information System (INIS)

    Joffrin, E.; Wolf, R.; Alper, B.

    2002-01-01

    The ASDEX Upgrade advanced tokamak scenario with central q close to 1 has been reproduced on JET. For almost identical q profiles, the comparative analysis does show similar features like the fishbone activity and the current profile evolution. In JET, transport analyses indicates that an internal transport barrier (ITB) has been produced. Gradient length criterions based on the ion temperature gradient turbulence stabilization are used to characterize the ITBs in both devices. The trigger of ITBs is associated with rational surfaces in both devices although the underlying physics for this triggering seems different. This experiment has the prospect to get closer to identity experiments between the two tokamaks. (author)

  10. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  11. Multi-mode remote participation on the GOLEM tokamak

    International Nuclear Information System (INIS)

    Svoboda, V.; Huang, B.; Mlynar, J.; Pokol, G.I.; Stoeckel, J.; Vondrasek, G.

    2011-01-01

    The GOLEM tokamak (formerly CASTOR) at Czech Technical University is demonstrated as an educational tokamak device for domestic and foreign students. Remote participation of several foreign universities (in Hungary, Belgium, Poland and Costa Rica) has been successfully performed. A unique feature of the GOLEM device is functionality which enables complete remote participation and control, solely through Internet access. Basic remote control is possible either in online mode via WWW/SSH interface or offline mode using batch processing code. Discharge parameters are set in each case to configure the tokamak for a plasma discharge. Using the X11 protocol it is possible to control in an advanced mode many technological aspects of the tokamak operation, including: i) vacuum pump initialization, ii) chamber baking, iii) charging of power supplies, iv) plasma discharge scenario, v) data acquisition system.

  12. Experimental operation of the KT-5C tokamak in USTC

    International Nuclear Information System (INIS)

    Wen Yizhi; Wan Shude; Zhai Kan; Liu Wandong

    1995-01-01

    Experimental operation of the KT-5C tokamak was started in early 1991. More than 3 x 10 4 shots of discharges have been performed so far. The authors deals with the major features of operation control of the KT-5C device. As the machine is usually controlled by an experimenter himself without duty operator, an audible indicator makes it much easier to control and operate. Accident and interference prevention systems prove to be reliable, and the operation system works successfully

  13. Development on JET of Advanced Tokamak Operations for ITER

    International Nuclear Information System (INIS)

    Tuccillo, A.A.; Crisanti, F.; Litaudon, X.

    2005-01-01

    Recent research on Advanced Tokamak in JET has focused on scenarii with both monotonic and reversed shear q profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide ITBs, R∼3.7m, are formed at ITER relevant triangularity δ∼0.45, with n e /n G ∼60% and ELMs moderated by Ne injection. At higher current (I P ≤3.5MA, δ∼0.25) wide ITBs sitting at R≥ 3.5m (positive shear region) have been developed, generally MHD events terminate these barrier otherwise limited in strength by power availability. ITBs with core density close to Greenwald value are obtained with plasma target preformed by opportune timing of LHCD, pellet injection and small amount of NBI power. ITB start with toroidal rotation 4 times lower than the standard NBI heated ITBs. Full CD is achieved in reversed shear ITBs at 3T/1.8 MA, by using 10MW NBI, 5MW ICRH and 3MW LH. Wide ITBs located at R=3.6m, without impurity accumulation and type-III ELMs edge can be sustained for a time close to neo-classical resistive time. These discharges have been extended to the maximum duration allowed by subsystems (20s) with the JET record of injected energy: E∼330 MJ. Integrated control of pressure and current profile isit; feature used in these discharges. Central ICRF mode conversion electron heating, added to about 14MW NBI power, produced impressive ITBs with equivalent Q DT ∼ 0.25. Conversely ion ITBs are obtained with low torque injection, by ICRH 3 He minority heating of ions, on pure LHCD electron ITBs. Similarity experiments between JET and AUG have compared the dynamics of ITBs and have been the starting point of Hybrid Scenarios activity, then developed at ρ* as low as ρ*∼3*10 -3 . The development of hybrid regime with dominant electron heating has also started. Injection of trace of tritium and a mixture of Ar/Ne allowed studying fuel and impurities transport in many of the explored AT scenarios. (author)

  14. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Chung, Kyoo Sun [Hanyang Univ., Seoul (Korea, Republic of); Hong, Sang Heui [Seoul National Univ., Seoul (Korea, Republic of); Kang, Heui Dong [Kyungpook National Univ., Taegu (Korea, Republic of); Lee, Jae Koo [Pohang Inst. of Science and Technology, Kyungnam (Korea, Republic of)

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the `advanced tokamak` physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs.

  15. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    International Nuclear Information System (INIS)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub; Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui; Chung, Kyoo Sun; Hong, Sang Heui; Kang, Heui Dong; Lee, Jae Koo

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the 'advanced tokamak' physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs

  16. The generalized Balescu-Lenard collision operator: A unifying concept for tokamak transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1987-08-01

    The generalization of the Balescu-Lenard collision operator to its fully electromagnetic counterpart in Kaufman's action-angle formalism is derived and its properties investigated. The general form may be specialized to any particular geometry where the unperturbed particle motion is integrable, and thus includes cylindrical plasmas, inhomogeneous slabs with nonuniform magnetic fields, tokamaks, and the particularly simple geometry of the standard operator as special cases. The general form points to the commonality between axisymmetric, turbulent, and ripple transport, and implies properties (e.g., intrinsic ambipolarity) which should be shared by them, under appropriate conditions. Along with a turbulent ''anomalous diffusion coefficient'' calculated for tokamaks in previous work, an ''anomalous pinch'' term of closely related structure and scaling is also implied by the generalized operator. 20 refs

  17. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  18. Recent advancement in research and planning toward high beta steady state operation in KSTAR

    International Nuclear Information System (INIS)

    Park, Hyeon Keo; Hong, S.; Humphreys, D.

    2015-01-01

    The goal of Korean Superconducting Tokamak Advanced Research (KSTAR) research is to explore stable improved confinement regimes and technical challenge for superconducting tokamak operation and thus, to establish the basis for predictable high beta steady state tokamak plasma operation. To fulfil the goal, the current KSTAR research program is composed of three elements: 1) Exploration of anticipated engineering and technology for a stable long pulse operation of high beta plasmas including Edge Localized Mode (ELM) control with the low n (=1, 2) Resonant Magnetic Perturbation (RMP) using in-vessel control coils and innovative non-inductive current drives. The achieved long pulse operation up to ∼50s and fully non-inductive current drive will be combined in the future. Study of efficient heat exhaust will be combined with an innovative divertor design/operation. 2) Exploration of the operation boundary through establishment of true stability limits of the harmful MagnetoHydroDynamic (MHD) instabilities and confinement of the tokamak plasmas in KSTAR, making use of the lowest error field and magnetic ripple simultaneously achieved among all tokamaks ever built. The intrinsic machine error field has a long history of research as the source of MHD instabilities and magnetic ripple is known to be a cause of energy loss in the plasma. The achieved high beta discharges at β N ∼4 and stable discharges at q 95 (∼2) will be further improved. 3) Validation of theoretical modeling of MHD instabilities and turbulence toward predictive capability of stable high beta plasmas. In support of these research goals, the state of the art diagnostic systems, such as Electron Cyclotron Emission Imaging (ECEI) system in addition to accurate profile diagnostics, are deployed not only to provide precise 2D/3D information of the MHD instabilities and turbulence but also to challenge unresolved physics problems such as the nature of ELMs, ELM-crash dynamics and the role of the core

  19. Development and Operational Experiences of the JT-60U Tokamak and Power Supplies

    International Nuclear Information System (INIS)

    Hosogane, N.; Ninomiya, H.; Matsukawa, M.; Ando, T.; Neyatani, Y.; Horiike, H.; Sakurai, S.; Masaki, K.; Yamamoto, M.; Kodama, K.; Sasajima, T.; Terakado, T.; Ohmori, S.; Ohmori, Y.; Okano, J.

    2002-01-01

    The design of the JT-60U tokamak, the configuration of the coil power supplies, and the operational experiences gained to date are reviewed. JT-60U is a large tokamak upgraded from the original JT-60 in order to obtain high plasma current, large plasma volume, and highly elongated divertor configurations. All components inside the toroidal magnetic field coils, such as vacuum vessel, poloidal magnetic field coils, divertor, etc., were modified. Various technologies and ideas were introduced to develop these components; for example, a multi-arc double skin wall structure for the vacuum vessel and a functional poloidal magnetic field coil system with taps for obtaining various plasma configurations. Furthermore, boron-carbide coated carbon fiber composite (CFC) tiles were used as divertor tiles to reduce erosion of carbon-base tiles. Later, a semiclosed divertor with pumps, for which cryo-panels originally used for NBI units were converted, was installed in the replacement of the open divertor. These development and operational results provide data for future tokamaks. Major failures experienced in the long operational period of JT-60U, such as water leakage from the toroidal magnetic field coil, fracture of carbon tiles, and breakdown of a filter capacitor, are described. As a maintenance issue for tokamaks using deuterium fueling gas, a method for reducing radiation exposure of in-vessel workers is described

  20. A need for non-tokamak approaches to magnetic fusion energy

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1992-01-01

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested

  1. DIII-D research operations

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D. (ed.)

    1993-05-01

    This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R D; and collaborative efforts.

  2. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  3. The ARIES-AT advanced tokamak, Advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh; Abdou, A.; Bromberg, L.

    2006-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N . ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES

  4. An advanced plasma control system for the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J.; Lazarus, E.

    1991-11-01

    An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as β p , ell i and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 μs intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 μs

  5. DIII-D research operations

    International Nuclear Information System (INIS)

    Baker, D.

    1993-05-01

    This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R ampersand D; and collaborative efforts

  6. Low-temperature operating regime of the tokamak evacuating limiter

    International Nuclear Information System (INIS)

    Tokar', M.Z.

    1987-01-01

    The conditions for realizing the regime of strong recycling of a cold dense plasma of an evacuating limiter were determined based on a previously proposed model for describing the limiter layer of a tokamak. The scaling for the dependence of the gas pressure in the evacuation system on the average plasma density in the limiter layer was found, and agreed quantitatively with the results of measurements on the Alcator and ISX-B tokamaks. For the tokamak reactor of the INTOR scale the calculations show that the low-temperature operating regime of the evacuating limiter can be realized with a quite low pumping rate. It has the advantages of reduced erosion of the limiter and small fluxes of impurities into the working volume of the reactor. In addition, the relative concentration of the helium ash in the limiter layer does not exceed 2-3%, but the density of the main plasma is comparable to the proposed average density in the reactor. The concept of a stochastic limiter is of interest for lowering the plasma density in the limiter layer and lowering the thermal loads on the limiter

  7. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    International Nuclear Information System (INIS)

    MAKOWSKI, M.A.; CASPER, T.A.; FERRON, J.R.; TAYLOR, T.S.; TURNBULL, A.D.

    2003-01-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 / ∼ 2.0-4.5, weak negative central shear, high q min (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  8. Statistical analysis of first period of operation of FTU Tokamak; Analisi statistica del primo periodo di operazioni del Tokamak FTU

    Energy Technology Data Exchange (ETDEWEB)

    Crisanti, F; Apruzzese, G; Frigione, D; Kroegler, H; Lovisetto, L; Mazzitelli, G; Podda, S [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1996-09-01

    On the FTU Tokamak the plasma physics operations started on the 20/4/90. The first plasma had a plasma current Ip=0.75 MA for about a second. The experimental phase lasted until 7/7/94, when a long shut-down begun for installing the toroidal limiter in the inner side of the vacuum vessel. In these four years of operations plasma experiments have been successfully exploited, e.g. experiments of single and multiple pellet injections; full current drive up to Ip=300 KA was obtained by using waves at the frequency of the Lower Hybrid; analysis of ohmic plasma parameters with different materials (from the low Z silicon to high Z tungsten) as plasma facing element was performed. In this work a statistical analysis of the full period of operation is presented. Moreover, a comparison with the statistical data from other Tokamaks is attempted.

  9. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    Science.gov (United States)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  10. A conceptual design of a negative-ion-grounded advanced tokamak reactor

    International Nuclear Information System (INIS)

    Yamamoto, Shin; Ohara, Yoshihiro; Tani, Keiji

    1988-05-01

    The NAVIGATOR concept is based on the negative-ion-grounded 500 keV 20 MW neutral beam injection system (NBI system), which has been proposed and studied at JAERI. The NAVIGATOR concept contains two categories; one is the NAVIGATOR machine as a tokamak reactor, and the other is the NAVIGATOR philosophy as a guiding principle in fusion research. The NAVIGATOR machine implies an NBI heated and full inductive ramped-up reactor. The NAVIGATOR concept should be applied in a phased approach to and beyond the operating goal for the FER (Fusion Experimental Reactor, the next generation tokamak machine in Japan). The mission of the FER is to realize self-ignition and a long controlled burn of about 800 seconds and to develop and test fusion technologies, including the tritium fuel cycle, superconducting magnet, remote maintenance and breeding blanket test modules. The NAVIGATOR concept is composed of three major elements, that is, reliable operation scenarios, reliable maintenability and sufficient flexibility of the reactor. The NAVIGATOR concept well supports the ideas of phased operation and phased construction of the FER, which will result in the reduction of technological risk. The NAVIGATOR concept is expected to bring forth the fruits growing up in the present large tokamak machines in the form of next generation machines. In addition, the NAVIGATOR concept will supply many required databases for the DEMO reactor. The details of the NAVIGATOR concept is described in this paper, and the concept may indicate a feasible strategy for developing fusion research. (author)

  11. A new remote control room for tokamak operations

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P., E-mail: schissel@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA (United States); Abla, G.; Flanagan, S.; Kim, E.N. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2012-12-15

    This paper presents a summary of a new remote tokamak control room constructed near the offices of DIII-D's scientific staff. This integrated system combines hardware, software, data, and control of the room (R-232) into a unified package that has been designed and constructed in a generic fashion so that it can be used with any tokamak operating worldwide. The room is approximately 300 ft{sup 2} and can accommodate up to 12 seated participants. Mounted on the wall facing each scientist are five 52 Double-Prime LCD televisions and mounted to the wall on their right are six 24 Double-Prime LCD monitors. Each seat has associated with it a 24 Double-Prime monitor, network connection, and power and the scientist is either provided with a computer or they can use their own. The room has been used for operation of DIII-D, EAST, and KSTAR. Due to the long distances, data from EAST and KSTAR was brought back to local DIII-D computers in one large parallel network transfer and subsequently served to scientists in the remote control room to other US collaborators. This parallel data transfer allowed the data to be available to US participants between pulses making remote experimental participation highly effective.

  12. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  13. Development of high thermal flux components for continuous operation in Tokamaks

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Coston, J.F.; Deschamps, P.; Lipa, M.

    1991-01-01

    High heat flux plasma facing components are under development and appropriate experimental evaluations have been carried out in order to operate during cycles of several hundred seconds. In Tore Supra, a large tokamak with a plasma nominal duration in excess of 30 seconds, solutions are tested that could be later applied to the NET/ITER tokamak, where peaked heat flux values of 15 MW/m 2 on the divertor plates are foreseen. The proposed concept is a swirl square tube design protected with brazed CFC flat tiles. Development programs and validation tests are presented. The tests results are compared with calculations

  14. Development of Operation Scenario for Spherical Tokamak at SNU

    International Nuclear Information System (INIS)

    Sung, C. K.; Park, Y. S.; Lee, H. Y.; Kang, J.; Hwang, Y. S.

    2009-01-01

    Several concepts for nuclear fusion plant exist. In these concepts, tokamak is the most promising one to realize nuclear fusion plant. Though tokamak has leading concept, and this has world record in fusion heating power, tokamak has the critical drawback: low heating efficiency. That is the reason why we need another alternative concept which compensates tokamak's disadvantage. Spherical Torus(ST) is one of these kinds of concepts. ST is a kind of tokamak which has low aspect ratio. This feature gives ST advantages compared to conventional tokamak: high efficiency, compactness, low cost. However, ST lacks central region for solenoid that is needed to start-up and sustain. Since it is the most efficient that initializing and sustaining by using solenoid, this is ST's intrinsic limitation. To overcome this, a new device which can start-up and sustain ST plasmas by means of continuous tokamak plasma injection has been designed

  15. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    Energy Technology Data Exchange (ETDEWEB)

    MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD

    2003-08-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/

    {approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  16. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-07-07

    The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  17. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    International Nuclear Information System (INIS)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-01-01

    The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 /(l a ngle)P} ∼ 2.0-4.5, weak negative central shear, high q min (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  18. Design and construction of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.

    2001-01-01

    The extensive design effort has been focused on two major aspects of the KSTAR project mission, steady-state operation capability and 'advanced tokamak' physics. The steady-state aspect of mission is reflected in the choice of superconducting magnets, provision of actively cooled in-vessel components, and long-pulse current-drive and heating systems. The 'advanced tokamak' aspect of the mission is incorporated in the design features associated with flexible plasma shaping, double-null divertor and passive stabilizers, internal control coils , and a comprehensive set of diagnostics. Substantial progress in engineering has been made on superconducting magnets, vacuum vessel, plasma facing components, and power supplies. The new KSTAR experimental facility with cryogenic system and de-ionized water-cooling and main power systems has been designed, and the construction work has been on-going for completion in year 2004. (author)

  19. HT-7U superconducting tokamak: Physics design, engineering progress and schedule

    International Nuclear Information System (INIS)

    Wan Yuanxi

    2002-01-01

    The superconducting tokamak research program begun in China in ASIPP since 1994. The program is included in existent superconducting tokamak HT-7 and the next new superconducting tokamak HT-7U which is one of national key research projects in China. With the elongation cross-section, divertor and higher plasma parameter the main objectives of HT-7U are widely investigation both of the physics and technology for steady state advanced tokamak as well as the investigation of power and particle handle under steady-state operation condition. The physics and engineering design have been completed and significant progresses on R and D and fabrication have been achieved. HT-7U will begin assembly at 2003 and possible to get first plasma around 2004. (author)

  20. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  1. Ignition and time-dependent fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-01-01

    The eventual utilization of a tokamak fusion reactor for commercial power necessitates a thorough understanding of the operational requirements at full and fractional power levels and during transitions from one operating level to another. In this study we examine the role of burn control in maintaining the reactor plasma at equilibrium to avoid thermal runaway during fractional power operation. Because these requirements rely so heavily on the assumptions that govern the plasma transport, this study focuses on time-dependent analyses and a comparison of ignition requirements using a range of energy confinement

  2. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    International Nuclear Information System (INIS)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m 2 and a surface heat flux of 1 MW/m 2 . The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO 2 rods. The helium coolant pressure is 5 MPa, entering the module at 297 0 C and exiting at 550 0 C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter

  3. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  4. Overview of JT-60U progress towards steady-state advanced tokamak

    International Nuclear Information System (INIS)

    Ide, S.

    2005-01-01

    Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s I p flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (β N ) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high β p H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher β N ∼ 3 is maintained for 6.2 s in high β p H-mode plasmas. High bootstrap current fraction (f BS ) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high β N regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at β N ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)

  5. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  6. Understanding and Control of Transport in Advanced Tokamak Regimes in DIII-D

    International Nuclear Information System (INIS)

    C.M. Greenfield; J.C. DeBoo; T.C. Luce; B.W. Stallard; E.J. Synakowski; L.R. Baylor; K.H. Burrell; T.A. Casper; E.J. Doyle; D.R. Ernst; J.R. Ferron; P. Gohil; R.J. Groebner; L.L. Lao; M. Makowski; G.R. McKee; M. Murakami; C.C. Petty; R.I. Pinsker; P.A. Politzer; R. Prater; C.L. Rettig; T.L. Rhodes; B.W. Rice; G.L. Schmidt; G.M. Staebler; E.J. Strait; D.M. Thomas; M.R. Wade

    1999-01-01

    Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection takes place when the heating power exceeds a threshold value of about 9 MW, contrasting to CO-NBI injection, where P threshold N H 89 = 9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode edge and an ITB, and exhibiting ion thermal transport down to 2-3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency MHD activity is identified as the probable cause

  7. Pioneering superconducting magnets in large tokamaks: evaluation after 16 years of operating experience in tore supra

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Gravil, B.; Tena, E.; Henry, D.; Journeaux, J.Y.; Libeyre, P.

    2004-01-01

    The toroidal field (TF) system of Tore Supra (TS) is superconducting. After 16 years of operation it is possible to give an overview of the experience gained on a large superconducting system integrated in a large Tokamak. Quantitative data will be given, about the TF system for the cryogenic system and for the magnet system as well, concerning the number of plasmas shots and the availability of the machine. The origin and the number of breakdowns or incidents will be described, with emphasis on cryogenics, to document repairs and changes on the system components. Concerning the behaviour during operation, the Fast Safety Discharges (FSD) in operation are of particular interest for the Tokamak operation, as they interrupt it on a significant time of the order of one hour. This aspect is particularly documented. The approach followed to decrease the number of these FSD will be reported and explained. The Tore Supra Tokamak was the first important meeting between Superconductivity and Plasma Physics on a large scale. Overall, despite the differences in design and size, the accumulated experience over 16 years of operation is a useful tool to prepare the manufacturing and the operation of the ITER magnets. (authors)

  8. Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, V., E-mail: svoboda@fjfi.cvut.cz [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Kocman, J.; Grover, O. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Krbec, J.; Stöckel, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Institute of Plasma Physics AS CR, CZ-182 21 Prague (Czech Republic)

    2015-10-15

    Graphical abstract: * Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes.* Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform.* More than 20% plasma life prolongation with plasma position control in feedback mode. - Highlights: • Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes. • Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform. • More than 20% plasma life prolongation with plasma position control in feedback mode. - Abstract: The GOLEM tokamak at the Czech Technical University has been established as an educational tokamak device for domestic and foreign students. Remote participation in the scope of several laboratory practices, plasma physics schools and workshops has been successfully performed from abroad. A new enhancement allowing understandable remote control of vertical plasma position in two modes (i) predefined and (ii) feedback control is presented. It allows to drive the current in the stabilization coils in any time-dependent scenario, which can include as a parameter the actual plasma position measured by magnetic diagnostics. Arbitrary movement of the plasma column in a vertical direction, stabilization of the plasma column in the center of the tokamak vessel as well as prolongation/shortening of plasma life according to the remotely defined request are demonstrated.

  9. Thermal loads on tokamak plasma-facing components during normal operation and disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.

    1990-01-01

    Power loadings experienced by tokamak plasma-facing components during normal operation and during off-normal events are discussed. A model for power and particle flow in the tokamak boundary layer is presented and model predictions are compared to infrared measurements of component heating. The inclusion of the full three-dimensional geometry of the components and of the magnetic flux surface is very important in the modeling. Experimental measurements show that misalignment of component armour tile surfaces by only a millimeter can lead to significant localized heating. An application to the design of plasma-facing components for future machines is presented. Finally, thermal loads expected during tokamak disruptions are discussed. The primary problems are surface melting and vaporization due to localized intense heating during the disruption thermal quench and volumetric heating of the component armour and structure due to localised impact of runaway electrons. (author)

  10. Advanced fusion technologies developed for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Sakasai, Akira; Ishida, S.; Matsukawa, M.

    2003-01-01

    The modification of JT-60U is planned as a full superconducting tokamak (JT-60SC). The objectives of the JT-60SC program are to establish scientific and technological bases for the steady-state operation of high performance plasmas and utilization of reduced-activation materials in economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to DEMO reactor have been developed in the superconducting magnet technology and plasma facing components for the design of JT-60SC. To achieve a high current density in a superconducting strand, Nb 3 Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFC) of JT-60SC. The R and D to demonstrate applicability of Nb 3 Al conductor to the TFC by a react-and-wind technique have been carried out using a full-size Nb 3 Al conductor. A full-size NbTi conductor with low AC loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the CFC target was successfully demonstrated on the electron beam irradiation stand. (author)

  11. Software development of the KSTAR Tokamak Monitoring System

    International Nuclear Information System (INIS)

    Kim, K.H.; Lee, T.G.; Baek, S.; Lee, S.I.; Chu, Y.; Kim, Y.O.; Kim, J.S.; Park, M.K.; Oh, Y.K.

    2008-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) project, which is constructing a superconducting Tokamak, was launched in 1996. Much progress in instrumentation and control has been made since then and the construction phase will be finished in August 2007. The Tokamak Monitoring System (TMS) measures the temperatures of the superconducting magnets, bus-lines, and structures and hence monitors the superconducting conditions during the operation of the KSTAR Tokamak. The TMS also measures the strains and displacements on the structures in order to monitor the mechanical safety. There are around 400 temperature sensors, more than 240 strain gauges, 10 displacement gauges and 10 Hall sensors. The TMS utilizes Cernox sensors for low temperature measurement and each sensor has its own characteristic curve. In addition, the TMS needs to perform complex arithmetic operations to convert the measurements into temperatures for each Cernox sensor for this large number of monitoring channels. A special software development effort was required to reduce the temperature conversion time and multi-threading to achieve the higher performance needed to handle the large number of channels. We have developed the TMS with PXI hardware and with EPICS software. We will describe the details of the implementations in this paper

  12. Simulations of the operational control of a cryogenic plant for a superconducting burning-plasma tokamak

    CERN Document Server

    Mitchell, N

    2001-01-01

    In recent proposals for next generation superconducting tokamaks, such as the ITER project, the nuclear burning plasma is confined by magnetic fields generated from a large set (up to 100 GJ stored energy) of superconducting magnets. These magnets suffer heat loads in operation from thermal and nuclear radiation from the surrounding components and plasma as well as eddy currents and AC losses generated within the magnets, together with the heat conduction through supports and resistive heat generated at the current lead transitions to room temperature. The initial cryoplant for such a tokamak is expected to have a steady state capacity of up to about 85 kW at 4.5 K, comparable to the system installed for LHC at CERN. Experimental tokamaks are expected to operate at least initially in a pulsed mode with 20-30 short plasma pulses and plasma burn periods each day. A conventional cryoplant, consisting of a cold box and a set of primary heat exchangers, is ill-suited to such a mode of operation as the instantaneou...

  13. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  14. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.

    1999-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  15. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  16. Edge plasma diagnostics on Tore Supra tokamak

    International Nuclear Information System (INIS)

    Fujita, Junji

    1991-01-01

    From 1988 to 1991, the international scientific research 'Diagnosis of peripheral plasma in Tore Supra tokamak' was carried out as a three-year plan receiving the support of the scientific research expense of the Ministry of Education. This is to apply the method of measuring electron density distribution by neutral lithium beam probe spectroscopy to the measurement of the electron density distribution in the peripheral plasma in Tore Supra Tokamak in France. Among many tokamaks in operation doing respective characteristics researches, the Tore Supra generates the toroidal magnetic field by using superconducting coils, and aims at the long time discharge for 30 sec. for the time being, and for 300 sec. in future. In the plasma generators for long time discharge like this, the technology of particle control is a large problem. For this purpose, a divertor was added to the Tore Supra. In order to advance the research on particle control, it is necessary to examine the behavior of plasma in the peripheral part in detail. The measurement of peripheral plasma in tokamaks, beam probe spectroscopy, the Tore Supra tokamak, the progress of the joint research, the problems in the joint research and the perspective of hereafter are reported. (K.I.)

  17. Initial DEMO tokamak design configuration studies

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Christian, E-mail: christian.bachmann@efda.org [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Aiello, G. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Albanese, R.; Ambrosino, R. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Arbeiter, F. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Boccaccini, L.; Carloni, D. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Federici, G. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kovari, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Loving, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maione, I. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Mattei, M. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Mazzone, G. [ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Meszaros, B. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Riccardo, V. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    Highlights: • A definition of main DEMO requirements. • A description of the DEMO tokamak design configuration. • A description of issues yet to be solved. - Abstract: To prepare the DEMO conceptual design phase a number of physics and engineering assessments were carried out in recent years in the frame of EFDA concluding in an initial design configuration of a DEMO tokamak. This paper gives an insight into the identified engineering requirements and constraints and describes their impact on the selection of the technologies and design principles of the main tokamak components. The EU DEMO program aims at making best use of the technologies developed for ITER (e.g., magnets, vessel, cryostat, and to some degree also the divertor). However, other systems in particular the breeding blanket require design solutions and advanced technologies that will only partially be tested in ITER. The main differences from ITER include the requirement to breed, to extract, to process and to recycle the tritium needed for plasma operation, the two orders of magnitude larger lifetime neutron fluence, the consequent radiation dose levels, which limit remote maintenance options, and the requirement to use low-activation steel for in-vessel components that also must operate at high temperature for efficient energy conversion.

  18. Ion cyclotron system design for KSTAR tokamak

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H.

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs

  19. Ion cyclotron system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs.

  20. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    International Nuclear Information System (INIS)

    Drevlak, M.

    1998-01-01

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nuehrenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (MERKEL, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (HIRSHMAN, S.P., VAN RIJ, W.I., MERKEL, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak

  1. Pioneering superconducting magnets in large tokamaks: Evaluation after 16 years of operating experience in tore supra

    International Nuclear Information System (INIS)

    Libeyre, P.; Duchateau, J.L.; Gravil, B.; Tena, E.; Henry, D.; Journeaux, J.Y.

    2005-01-01

    The toroidal field (TF) system of TORE SUPRA (TS) is superconducting. After 16 years of operation it is possible to give an overview of the experience gained on a large superconducting system integrated in a large Tokamak. Quantitative data will be given, about the TF system for the cryogenic system and for the magnet system as well, concerning the number of plasmas shots and the availability of the machine. The origin and the number of breakdowns or incidents will be described, with emphasis on cryogenics and associated repairs and changes on the system components along the time. As concerns the behaviour during operation, the fast safety discharges (FSD) in operation are of particular interest for the Tokamak operation, as they interrupt it for a significant time of the order of 1 h. This aspect is particularly documented. The approach followed to decrease the number of these FSD will be reported and explained. The TORE SUPRA Tokamak was the first important application of superconductivity in plasma physics on a large scale. Overall, despite the differences in design and size, the accumulated experience over 16 years of operation is a useful tool to prepare the manufacture and the operation of the ITER magnets

  2. DIII-D research operations

    International Nuclear Information System (INIS)

    La Haye, R.J.

    1994-05-01

    The DIII-D tokamak research program is carried out by General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. In doing so, the DIII-D program provides physics and technology R ampersand D outputs to aid the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY93 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics. The major goals of the Divertor and Boundary Physics studies are the control of impurities, efficient heat removal and understanding the strong role that the edge plasma plays in the global energy confinement of the plasma. The advanced tokamak studies initiated the investigation into new techniques for improving energy confinement, controlling particle fueling and increasing plasma beta. The major goal of the Tokamak Physics Studies is the understanding of energy and particle transport in a reactor relevant plasma

  3. Second regime tokamak operation at large aspect ratio

    International Nuclear Information System (INIS)

    Navratil, G.A.

    1989-01-01

    This paper reviews the need for high beta in economic tokamak reactors and summarizes recent results on the scaling of the second regime beta limit for high-n ballooning modes using optimized pressure profiles as well as results on low-n mode stability at the first regime beta limit from the Columbia HBT tokamak. While several experiments have studied ballooning limits using high εβ p plasmas, the most important question for the use of the second stability regime for tokamak reactor improvement is how to achieve these high values of εβ p while at the same time increasing the value of beta to several times the Troyon beta limit. An approach to the study of this key question on beta limits using modest sized, large aspect ratio tokamaks is described. (author). 28 refs, 7 figs, 1 tab

  4. JT-60 power tests from mechanical and thermal viewpoints of tokamak machine

    International Nuclear Information System (INIS)

    Takatsu, H.; Yamamoto, M.; Ohkubo, M.

    1986-01-01

    JT-60 power tests were carried out, to demonstrate, in advance of actual plasma operation, satisfactory performance of the tokamak machine, power suppliers and control system in combination. The tests began with low power ones of individual coil systems, progressed to full power ones and concluded successfully. The present paper describes the principal results of JT-60 power tests from mechanical and thermal viewpoints of tokamak machine. All of the coil systems were raised up to full power operation in combination and system performance was verified including thermal and mechanical integrity of tokamak machine. Measured strain and displacement showed good agreements with those predicted in the design, which was an evidence that electromagnetic loads were supported adequately as expected in the design. Vibration of the vacuum vessel was found to be large up to 48 m/s/sup 2/ and caused excessive vibration of the lateral port gate-valves. A few limitations to machine operation were also made clear quantatively

  5. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  6. Configuration and engineering design of the ARIES-RS tokamak power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Malang, S.; Waganer, L.; Wang, X.R.; Sze, D.K.; El-Guebaly, L.; Wong, C.P.C.; Crowell, J.A.; Mau, T.K.; Bromberg, L.

    1997-01-01

    ARIES-RS is a conceptual design study which has examined the potential of an advanced tokamak-based power plant to compete with future energy sources and play a significant role in the future energy market. The design is a 1000 MWe, DT-burning fusion power plant based on the reversed-shear tokamak mode of plasma operation, and using moderately advanced engineering concepts such as lithium-cooled vanadium-alloy plasma-facing components. A steady-state reversed shear tokamak currently appears to offer the best combination of good economic performance and physics credibility for a tokamak-based power plant. The ARIES-RS engineering design process emphasized the attainment of the top-level mission requirements developed in the early part of the study in a collaborative effort between the ARIES Team and representatives from U.S. electric utilities and industry. Major efforts were devoted to develop a credible configuration that allows rapid removal of full sectors followed by disassembly in the hot cells during plant operation. This was adopted as the only practical means to meet availability goals. Use of an electrically insulating coating for the self-cooled blanket and divertor provides a wide design window and simplified design. Optimization of the shield, which is one of the larger cost items, significantly reduced the power core cost by using ferritic steel where the power density and radiation levels are low. An additional saving is made by radial segmentation of the blanket, such that large segments can be reused. The overall tokamak configuration is described here, together with each of the major fusion power core components: the first-wall, blanket and shield; divertor; heating, current drive and fueling systems; and magnet systems. (orig.)

  7. Structural analysis and manufacture for the vacuum vessel of experimental advanced superconducting tokamak (EAST) device

    International Nuclear Information System (INIS)

    Song Yuntao; Yao Damao; Wu Songata; Weng Peide

    2006-01-01

    The experimental advanced superconducting tokamak (EAST) is an advanced steady-state plasma physics experimental device, which has been approved by the Chinese government and is being constructed as the Chinese national nuclear fusion research project. The vacuum vessel, that is one of the key components, will have to withstand not only the electromagnetic force due to the plasma disruption and the Halo current, but also the pressure of boride water and the thermal stress due to the 250 deg. C baking out by the hot pressure nitrogen gas, or the 100 deg. C hot wall during plasma operation. This paper is a report of the mechanical analyses of the vacuum vessel. According to the allowable stress criteria of American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee (ASME), the maximum integrated stress intensity on the vacuum vessel is 396 MPa, less than the allowable design stress intensity 3S m (441 MPa). At the same time, some key R and D issues are presented, which include supporting system, bellows and the assembly of the whole vacuum vessel

  8. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  9. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  10. High beta, sawtooth-free tokamak operation using energetic trapped particles

    International Nuclear Information System (INIS)

    White, R.B.; Bussac, M.N.; Romanelli, F.

    1988-08-01

    It is shown that a population of high energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high beta. 13 refs., 2 figs

  11. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  12. Summary report on tokamak confinement experiments

    International Nuclear Information System (INIS)

    1982-03-01

    There are currently five major US tokamaks being operated and one being constructed under the auspices of the Division of Toroidal Confinement Systems. The currently operating tokamaks include: Alcator C at the Massachusetts Institute of Technology, Doublet III at the General Atomic Company, the Impurity Studies Experiment (ISX-B) at the Oak Ridge National Laboratory, and the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) at the Princeton Plasma Physics Laboratory. The Tokamak Fusion Test Reactor (TFTR) is under construction at Princeton and should be completed by December 1982. There is one major tokamak being funded by the Division of Applied Plasma Physics. The Texas Experimental Tokamak (TEXT) is being operated as a user facility by the University of Texas. The TEXT facility includes a complete set of standard diagnostics and a data acquisition system available to all users

  13. Commissioning and preliminary operation of HL-2A tokamak

    International Nuclear Information System (INIS)

    Liu Dequan; Liu Yong; Yan Jianchen; Cao Zeng; Yang Qingwei; Zhou Caipin; Li Xiaodong

    2005-01-01

    HL-2A is a divertor tokamak located at new site of Southwestern Institute of Physics (SWIP), Chengdu, China. It can be operated in double-null and single-null divertor with closed configurations. The effects of the divertor on impurity behaviors, MHD instabilities, transport, wall conditioning and divertor physics are key issues to be studied during the first step operation on HL-2A. Preliminary experiments with limiter and single null divertor configurations were carried out in 2003. Main parameters achieved are the plasma current 168 KA, duration time of 920 ms and plasma linear-averaged density of 1.7 x 10 19 m -3 . The impurities, especially of low Z, are clearly decreased during the divertor experiments

  14. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  15. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  16. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.

    2012-01-01

    advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera...

  17. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  18. Free-boundary simulations of ITER advanced scenarios

    International Nuclear Information System (INIS)

    Besseghir, K.

    2013-06-01

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  19. Free-boundary simulations of ITER advanced scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Besseghir, K.

    2013-06-15

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  20. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  1. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  2. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  3. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  4. Dynamic simulation of a planar flexible boom for tokamak in-vessel operations

    International Nuclear Information System (INIS)

    Ambrosino, G.; Celentano, G.; Garofalo, F.; Maisonnier, D.

    1991-01-01

    In this paper we present a dynamic model for the analysis of the vibrations of a planar articulated flexible boom to be used for tokamak in-vessel maintenance operations. The peculiarity of the mechanical structure of the boom enables us to consider separately the oscillations in the horizontal and vertical planes so that two separate models can be constructed for describing these phenomena. The results of simulations based on booms like that proposed for NET in-vessel operations are presented. (orig.)

  5. Density limit in FTU tokamak during Ohmic operation

    International Nuclear Information System (INIS)

    Frigione, D.; Pieroni, L.

    1993-01-01

    The understanding of the physical mechanisms that regulate the density limit in a Tokamak is very important in view of a future fusion reactor. On one hand density enters as a factor in the figure of merit needed to achieve a burning plasma, and on the other hand a high edge density is a prerequisite for avoiding excessive erosion of the first walls and to limit the impurity influx into the hot plasma core. Furthermore a reactor should work in a safe zone of the operation parameters in order to avoid disruptive instabilities. The density limit problem has been tackled since the 70's, but so far a unique physics picture has not still emerged. In the last few years, due to the availability of better diagnostics, especially for the plasma edge, the use of pellet injectors to fuel the plasma and the experience gained on many different Tokamak, a consensus has been reached on the edge density as the real parameter responsible for the density limit. There are still two main mechanisms invoked to explain this limit: one refers to the power balance between the heat conducted and/or convected across the plasma radius and the power lost by impurity line radiation at the edge. When the latter overcomes the former, shrinking of the current channel occurs, which leads to instabilities due to tearing modes (usually the m/n=2/1) and then to disruption. The other explanation, for now valid for divertor machines, is based on the particle and energy balance in the scrape off layer (SOL). The limit in the edge density is then associated with the thermal collapse of the divertor plasma. In this work we describe the experiments on the density limit in FTU with Ohmic heating, the reason why we also believe that the limit is on the edge density, and discuss its relation to a simple model based on the SOL power balance valid for a limiter Tokamak. (author) 7 refs., 4 figs

  6. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    Nam, Y. U.; Chung, J.

    2010-01-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  7. Operation of an ITER relevant inspection robot on Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Hatchressian, Jean-Claude; Hernandez, Caroline; Houry, Michael [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Keller, Delphine [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Martins, Jean-Pierre [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Measson, Yvan; Perrot, Yann [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Samaille, Frank [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2009-06-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R and D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements. The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel. Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration. In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10{sup -6} Pa and 120 deg. C) after a conditioning phase at 200 deg. C to avoid outgassing pollution of the chamber. This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.

  8. Tokamak startup: problems and scenarios related to the transient phases of ignited tokamak operations

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    During recent years improvements have been made to tokamak startup procedures, which are important to the optimization of ignited tokamaks. The use of rf-assisted startup and noninductive current drive has led to substantial reduction and even complete elimination of the volt-seconds used during startup, relaxing constraints on poloidal coil, vacuum vessel, and structure design. This paper reviews these and other improvements and discusses the various bulk heating techniques that may be used to ignite a D-T plasma

  9. Mechanical properties of JT-60 tokamak machine in power tests

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Ohkubo, Minoru; Yamamoto, Masahiro; Ohta, Mitsuru

    1986-01-01

    JT-60 power tests were carried out from Dec. 10, 1984 to Feb. 20, 1985 to demonstrate, in advance of actual plasma operation, satisfactory performance of tokamak machine, power suppliers and control system in combination. The tests began with low power test of individual coil systems and progressed to full power tests. The coil current was raised step by step, monitoring the mechanical, thermal, electrical and vacuum data. Power tests were concluded with successful results. All of the coil systems were raised up to full power operation in combination and system performance was verified including the structural integrity of tokamak machine. Measured strain and deflection showed good agreements with those predicted in the design, which was an evidence that electromagnetic forces were supported as expected in the design. A few limitations to machine operation was made clear quantitatively. And it was found that existing detectors were insufficient to monitor machine integrity and two kinds of detector were proposed to be installed. (author)

  10. Edge localized mode physics and operational aspects in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, M [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Huysmans, G [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Sarazin, Y [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Rimini, F [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Joffrin, E [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Litaudon, X [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Monier-Garbet, P [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Ane, J-M [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Thomas, P [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Grosman, A [Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance (France); Parail, V [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Wilson, H [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Lomas, P [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Vries, P de[Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Zastrow, K-D [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Matthews, G F [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Lonnroth, J [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom); Gerasimov, S [Euratom/UKAEA Association, Fusion Culham Science Centre, Abingdon, OX14 3EA (United Kingdom)] [and others

    2003-12-01

    Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios. Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs. High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high beta{sub p} are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and beta{sub p}. The compatibility of the alternative internal transport barrier (ITB) scenario with edge pedestal formation and ELMs is also addressed. Edge physics issues related to the possible combination of small benign ELMs (Type III, Type II ELMs, quiescent double barrier) and high performance ITBs are discussed for present-day experiments (JET, JT-60U

  11. Edge localized mode physics and operational aspects in tokamaks

    International Nuclear Information System (INIS)

    Becoulet, M; Huysmans, G; Sarazin, Y; Garbet, X; Ghendrih, Ph; Rimini, F; Joffrin, E; Litaudon, X; Monier-Garbet, P; Ane, J-M; Thomas, P; Grosman, A; Parail, V; Wilson, H; Lomas, P; Vries, P de; Zastrow, K-D; Matthews, G F; Lonnroth, J; Gerasimov, S; Sharapov, S; Gryaznevich, M; Counsell, G; Kirk, A; Valovic, M; Buttery, R; Loarte, A; Saibene, G; Sartori, R; Leonard, A; Snyder, P; Lao, L L; Gohil, P; Evans, T E; Moyer, R A; Kamada, Y; Chankin, A; Oyama, N; Hatae, T; Asakura, N; Tudisco, O; Giovannozzi, E; Crisanti, F; Perez, C P; Koslowski, H R; Eich, T; Sips, A; Horton, L; Hermann, A; Lang, P; Stober, J; Suttrop, W; Beyer, P; Saarelma, S

    2003-01-01

    Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios. Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs. High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high beta p are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and beta p . The compatibility of the alternative internal transport barrier (ITB) scenario with edge pedestal formation and ELMs is also addressed. Edge physics issues related to the possible combination of small benign ELMs (Type III, Type II ELMs, quiescent double barrier) and high performance ITBs are discussed for present-day experiments (JET, JT-60U, DIII-D) in

  12. Stable tokamak access to, and operation in, the second stability region

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.; Chance, M.; Manickam, J.; Pomphrey, N.

    1987-01-01

    Tokamak operation in the second region of stability to ballooning modes holds promise for economic fusion reactor operation. A second region of stability is confirmed to exist in circular tokamaks with a nearby conducting shell for εβθ>1. In addition to ballooning instabilities with high toroidal mode number n, the presence of low n internal pressure driven modes in low shear regions can pose serious problems for access to the second region. These modes can be present even when ballooning modes with infinite n are stable. Stable access to the second region for all ideal modes is demonstrated with current profile programming that raises the safety factor on axis above unity. Present calculations for stable access using this technique indicate that a conducting wall must be located close to the plasma edge (∼ 0.1 plasma minor radius) to stabilize external modes. Pressure and shear profile optimization could be used to increase this value. As εβθ is raised above unity, the stabilizing wall can be moved to progressively larger major radii. This behaviour is attributed to restabilization of the pressure driven component in low n kink modes. Finally, it is shown that poloidally discontinuous conducting structures are effective in stabilizing low n external kink modes. (author)

  13. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  14. Conceptual design of PF coil system and operation scenario on inductively-operated day-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Wang, J.F.; Yamamoto, T.; Ogawa, Y.

    1994-01-01

    It is said that disadvantages of pulsed operation in tokamak fusion reactor are fatigue problem of structural materials and an introduction of energy storage System to compensate the power during the dwell time. To overcome theses disadvantages the authors have designed an inductively-operated ultralong pulsed tokamak called (IDLT) reactor where plasma with a major radius of 10 m are employed so as to provide a magnetic flux necessary to sustain a plasma current inductively during 10 hours or more. This makes it possible to reduce the total cycle number to be around 10 4 during the life of the fusion plant. In pulsed operation reactors the shorter dwell time with a quick start-up and shut down of plasma is very convenient to realize a high availability of the power plant, but it will induce more severe conditions for the hardware design. The authors assumed the dwell time of 5∼10 minutes and analyzed the feasibility of plasma operation scenario for IDLT reactor, especially paying much attention to PF coil system. The stored energy of PF coil system becomes ∼100 GJ, which is comparable with that of toroidal field coil system. When the plasma current of 14 MA is ramped up with a time of 100 seconds, it is found that the maximum capacity of 1 GW is necessary for PF coil power supply. Engineering issues related with AC/hysterisis loss should be carefully examined

  15. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  16. DIII-D research operations. Annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D. [ed.

    1993-05-01

    This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R&D; and collaborative efforts.

  17. Small angle slot divertor concept for long pulse advanced tokamaks

    Science.gov (United States)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  18. Simulation of enhanced tokamak performance on DIII-D using fast wave current drive

    International Nuclear Information System (INIS)

    Grassie, J.S. de; Lin-Liu, Y.R.; Petty, C.C.; Pinsker, R.I.; Chan, V.S.; Prater, R.; John, H. St.; Baity, F.W.; Goulding, R.H.; Hoffman, D.H.

    1993-01-01

    The fast magnetosonic wave is now recognized to be a leading candidate for noninductive current drive for the tokamak reactor due to the ability of the wave to penetrate to the hot dense core region. Fast wave current drive (FWCD) experiments on DIII-D have realized up to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively. The success of these experiments at 60 MHz with a 2 MW transmitter source capability has led to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 MHz, with a 2 MW source capability each, will be added together with two new four-strap antennas in early 1994. Another major thrust of the DIII-D program is to develop advanced tokamak modes of operation, simultaneously demonstrating improvements in confinement and stability in quasi-steady-state operation. In some of the initial advanced tokamak experiments on DIII-D with neutral beam heated (NBI) discharges it has been demonstrated that energy confinement time can be improved by rapidly elongating the plasma to force the current density profile to be more centrally peaked. However, this high-l i phase of the discharge with the commensurate improvement in confinement is transient as the current density profile relaxes. By applying FWCD to the core of such a κ-ramped discharge it may be possible to sustain the high internal inductance and elevated confinement. Using computational tools validated on the initial DIII-D FWCD experiments we find that such a high-l i advanced tokamak discharge should be capable of sustainment at the 1 MA level with the upgraded capability of the FWCD system. (author) 16 refs., 3 figs., 1 tab

  19. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  20. Tokamak Physics Experiment (TPX) power supply design and development

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes

  1. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  2. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  3. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  4. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  5. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  6. Technical development and operation of TV thomson scattering system on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Shiina, Tomio; Yamauchi, Toshihiko; Ishige, Yoichi

    1998-10-01

    Six years have passed since the TV Thomson scattering system (TVTS) was completed and the operation was started on the JFT-2M tokamak. TVTS was developed in collaboration with Princeton Plasma Physics Laboratory. Many troubles on the hardware are and the software are were encountered. Improvements of the system were needed in each occasion. Phenomena of troubles were carefully analyzed and they have been solved in operating the system. This paper presents thus obtained know-how necessary for the operation of TVTS as well as methods of operation. (author)

  7. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  8. Advances in comprehensive gyrokinetic simulations of transport in tokamaks

    International Nuclear Information System (INIS)

    Waltz, R.E.; Candy, J.; Hinton, F.L.; Estrada-Mila, C.; Kinsey, J.E.

    2005-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)

  9. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, R. E; CANDY, J; HINTON, F. L; ESTRADA-MILA, C; KINSEY, J.E

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated

  10. Transients and burn dynamics in advanced tokamak fusion reactors

    International Nuclear Information System (INIS)

    Mantsinen, M.J.; Salomaa, R.R.E.

    1994-01-01

    Transient behavior of D 3 He-tokamak reactors is investigated numerically using a zero-dimensional code with prescribed profiles. Pure D 3 He start-up is compared to DT-assisted and DT-ignited start-ups. We have considered two categories of transients which could extinguish steady fusion burn: fuelling interruptions and sudden confinement changes similar to the L → H transients occurring in present-day tokamaks. Shutdown with various current and density ramp-down scenarios are studied, too. (author)

  11. Computational studies of tokamak plasmas

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji

    1981-02-01

    Computational studies of tokamak plasmas are extensively advanced. Many computational codes have been developed by using several kinds of models, i.e., the finite element formulation of MHD equations, the time dependent multidimensional fluid model, and the particle model with the Monte-Carlo method. These codes are applied to the analyses of the equilibrium of an axisymmetric toroidal plasma (SELENE), the time evolution of the high-beta tokamak plasma (APOLLO), the low-n MHD stability (ERATO-J) and high-n ballooning mode stability (BOREAS) in the INTOR tokamak, the nonlinear MHD stability, such as the positional instability (AEOLUS-P), resistive internal mode (AEOLUS-I) etc., and the divertor functions. (author)

  12. Evidence for Anomalous Effects on the Current Evolution in Tokamak Operating Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Casper, T; Jayakumar, R; Allen, S; Holcomb, C; Makowski, M; Pearlstein, L; Berk, H; Greenfield, C; Luce, T; Petty, C; Politzer, P; Wade, M; Murakami, M; Kessel, C

    2006-10-03

    Alternatives to the usual picture of advanced tokamak (AT) discharges are those that form when anomalous effects alter the plasma current and pressure profiles and those that achieve stationary characteristics through mechanisms so that a measure of desired AT features is maintained without external current-profile control. Regimes exhibiting these characteristics are those where the safety factor (q) evolves to a stationary profile with the on-axis and minimum q {approx} 1 and those with a deeply hollow current channel and high values of q. Operating scenarios with high fusion performance at low current and where the inductively driven current density achieves a stationary configuration with either small or non-existing sawteeth may enhance the neutron fluence per pulse on ITER and future burning plasmas. Hollow current profile discharges exhibit high confinement and a strong ''box-like'' internal transport barrier (ITB). We present results providing evidence for current profile formation and evolution exhibiting features consistent with anomalous effects or with self-organizing mechanisms. Determination of the underlying physical processes leading to these anomalous effects is important for scaling of current experiments for application in future burning plasmas.

  13. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    International Nuclear Information System (INIS)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape control due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described

  14. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  15. High beta tokamak operation in DIII-D limited at low density/collisionality by resistive tearing modes

    International Nuclear Information System (INIS)

    La Haye, R.J.; Lao, L.L.; Strait, E.J.; Taylor, T.S.

    1997-01-01

    The maximum operational high beta in single-null divertor (SND) long pulse tokamak discharges in the DIII-D tokamak with a cross-sectional shape similar to the proposed International Thermonuclear Experimental Reactor (ITER) device is found to be limited by the onset of resistive instabilities that have the characteristics of neoclassically destabilized tearing modes. There is a soft limit due to the onset of an m/n=3/2 rotating tearing mode that saturates at low amplitude and a hard limit at slightly higher beta due to the onset of an m/n=2/1 rotating tearing mode that grows, slows down and locks. By operating at higher density and thus collisionality, the practical beta limit due to resistive tearing modes approaches the ideal magnetohydrodynamic (MHD) limit. (author). 15 refs, 4 figs

  16. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-01-01

    The analysis begins by identifying a hypothetical model of tokamak confinement that is designed to take into account the conflict between Tsub(e)(r)-profile shapes arising from microscopic transport and J(r)-profile shapes required for gross stability. On the basis of this model, a number of hypothetical lines of advance are developed. Some TFTR experiments that may point the way to a particularly attractive type of tokamak reactor regime are discussed. (author)

  17. Perturbative transport experiments in JET Advanced Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, P.; Gorini, G.; Sozzi, C. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Imbeaux, F.; Sarazin, Y.; Garbet, X. [Association Euratom-CEA, St. Paul-lez-Durance Cedex (France); Kinsey, J. [Lehigh Univ., Bethlehem, Pennsylvania (United States); Budny, R. [Princeton Plasma Physics Lab, New Jersey (United States); Coffey, I.; Parail, V.; Walden, A. [Euratom/UKAEA Fusion Association, Abingdon, Oxon (United Kingdom); Dux, R. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garzotti, L. [Istituto Gas Ionizzati, Padova (Italy); Ingesson, C. [FOM-Instituut voor Plasmafysica, Nieuwegein (Netherlands); Kissick, M. [University of California, Los Angeles (United States)

    2003-07-01

    Perturbative transport experiments have been performed in JET Advanced Tokamak plasmas either in conditions of fully developed Internal Transport Barrier (ITB) or during a phase where an ITB was not observed. Transient peripheral cooling was induced by either Laser Ablation or Shallow Pellet Injection and the ensuing travelling cold pulse was used to probe the plasma transport in the electron and, for the first time, also in the ion channel. Cold pulses travelling through ITBs are observed to erode the ITB outer part, but, if the inner ITB portion survives, it strongly damps the propagating wave. The result is discussed in the context of proposed possible pictures for ITB formation. In the absence of an ITB, the cold pulse shows a fast propagation in the outer plasma half, which is consistent with a region of stiff transport, while in the inner half it slows down but shows the peculiar feature of amplitude growing while propagating. The data are powerful tests for the validation of theoretical transport models. (author)

  18. Investigation of component failure rates for pulsed versus steady state tokamak operation

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments

  19. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  20. KDAS: General-Purpose Data Acquisition System Developed for KAIST-Tokamak

    International Nuclear Information System (INIS)

    Seo, Seong-Heon; Choe, Wonho; Chang, Hong-Young; Jeong, Seung-Ho

    2000-01-01

    The Korea Advanced Institute of Science and Technology (KAIST)-Tokamak Data Acquisition System (KDAS) was originally developed for KAIST-Tokamak (R/a = 0.53 m/0.14 m). It operates on a distributed system based on personal computers and has a driver-based hierarchical structure. Since KDAS can be dynamically composed of any number of available computers, and the hardware-dependent codes can be thoroughly separated into external drivers, it exhibits excellent system performance flexibility and extensibility and can optimize various user needs. It collectively controls the VXI, CAMAC, GPIB, and RS232 instrument hybrids. With these useful and convenient features, it can be applied to any computerized experiment, especially to fusion-related research. The system design and features are discussed in detail

  1. Study of intelligent system for control of the tokamak-ETE plasma positioning

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe de Faria Pereira Wiltgen

    2003-01-01

    The development of an intelligent neural control system of the neural type, capable to perform real time control of the plasma displacement in the experiment tokamak spheric - ETE (spherical tokamak experiment ) is presented. The ETE machine is in operation since Nov 2000, in the LAP - Plasma Associated Laboratory of the Brazilian Institute on Spatial Research (INPE) in Sao Jose dos Campos, S P, Brazil. The experiment is dedicated to study the magnetic confinement of a fusion plasma in a configuration favorable for the construction of future reactors. Nuclear fusion constitutes a renewable energy source with low environmental impact, which uses atomic energy in pacific applications for the sustainable development of humanity. One of the important questions for the attainment of fusion relates to the stability of the plasma and control of its position during the reactor operation. Therefore, the development of systems to control the plasma in tokamaks constitutes a necessary technological advance for the feasibility of nuclear fusion. In particular, the research carried out in this thesis concerns the proposal of a system to control the vertical displacement of the plasma in the ETE tokamak, aiming to obtain steady pulses in this machine. A Magnetic Levitation system (Mag Lev) was developed as part of this work, allowing to study the nonlinear behavior of a device that, from the aspect of position control, is similar (analogous) to the plasma in the ETE tokamak, This magnetic levitation system was designed, mathematically modeled and built in order to test both classical and intelligent type controllers. The results of this comparison are very promising for the use of intelligent controllers in the ETE tokamak as well as other control applications. (author)

  2. Feedback-assisted extension of the tokamak operating space to low safety factor

    International Nuclear Information System (INIS)

    Hanson, J. M.; Bialek, J. M.; Navratil, G. A.; Olofsson, K. E. J.; Shiraki, D.; Turco, F.; Baruzzo, M.; Bolzonella, T.; Marrelli, L.; Martin, P.; Piovesan, P.; Piron, C.; Piron, L.; Terranova, D.; Zanca, P.; Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.

    2014-01-01

    Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q 95  = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q 95 values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q 95 values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback

  3. The study of heat flux for disruption on experimental advanced superconducting tokamak

    Science.gov (United States)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  4. Saturated ideal modes in advanced tokamak regimes in MAST

    International Nuclear Information System (INIS)

    Chapman, I.T.; Hua, M.-D.; Pinches, S.D.; Akers, R.J.; Field, A.R.; Hastie, R.J.; Michael, C.A.; Graves, J.P.

    2010-01-01

    MAST plasmas with a safety factor above unity and a profile with either weakly reversed shear or broad low-shear regions, regularly exhibit long-lived saturated ideal magnetohydrodynamic (MHD) instabilities. The toroidal rotation is flattened in the presence of such perturbations and the fast ion losses are enhanced. These ideal modes, distinguished as such by the notable lack of islands or signs of reconnection, are driven unstable as the safety factor approaches unity. This could be of significance for advanced scenarios, or hybrid scenarios which aim to keep the safety factor just above rational surfaces associated with deleterious resistive MHD instabilities, especially in spherical tokamaks which are more susceptible to such ideal internal modes. The role of rotation, fast ions and ion diamagnetic effects in determining the marginal mode stability is discussed, as well as the role of instabilities with higher toroidal mode numbers as the safety factor evolves to lower values.

  5. DIII-D tokamak control and neutral beam computer system upgrades

    International Nuclear Information System (INIS)

    Penaflor, B.G.; McHarg, B.B.; Piglowski, D.A.; Pham, D.; Phillips, J.C.

    2004-01-01

    This paper covers recent computer system upgrades made to the DIII-D tokamak control and neutral beam computer systems. The systems responsible for monitoring and controlling the DIII-D tokamak and injecting neutral beam power have recently come online with new computing hardware and software. The new hardware and software have provided a number of significant improvements over the previous Modcomp AEG VME and accessware based systems. These improvements include the incorporation of faster, less expensive, and more readily available computing hardware which have provided performance increases of up to a factor 20 over the prior systems. A more modern graphical user interface with advanced plotting capabilities has improved feedback to users on the operating status of the tokamak and neutral beam systems. The elimination of aging and non supportable hardware and software has increased overall maintainability. The distinguishing characteristics of the new system include: (1) a PC based computer platform running the Redhat version of the Linux operating system; (2) a custom PCI CAMAC software driver developed by general atomics for the kinetic systems 2115 serial highway card; and (3) a custom developed supervisory control and data acquisition (SCADA) software package based on Kylix, an inexpensive interactive development environment (IDE) tool from borland corporation. This paper provides specific details of the upgraded computer systems

  6. CORBA-based solution for remote participation in SST-1 tokamak control and operation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Kirti [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)]. E-mail: kirti@ipr.res.in; Ravikiran, M. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Gulati, Hitesh [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Dave, H.J. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kumar, Neeraj [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Patel, Kirit [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kumar, Aveg [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Raju, D. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Bhandarkar, M. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Chudasama, H. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Kulkarni, S.V. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Saxena, Y.C. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)

    2006-07-15

    The steady state superconducting tokamak (SST-1) central control system is a distributed heterogeneous process communication system built on socket programming. It consists of machine, experiment and discharge control plus timing and a database. The software controls and monitors SST-1 subsystems: water-cooling, power supplies, cryogenics and vacuum over a local area network (LAN). The SST-1 control room is the place where all the activities like session announcement, machine control, experiment control, discharge control and monitoring are performed. We have realized that, instead of having a single monitoring place, we should have multiple monitoring points and it should be made possible to control the experiment from any PC over the LAN. In order to meet such requirements for remote participation in tokamak operation, we are upgrading the existing software. The upgraded software is based on Common Object Request Broker Architecture (CORBA) technology. The software is utilizing CORBA-services such as event service, naming services, interface repository and security services. The inherent features of CORBA make the software, platform and language independent. The software supports a variety of communication paradigms including publish-subscribe, peer-to-peer, and request-reply. Based on this software, one can participate in SST-1 tokamak operation from the LAN, or a wide area network (WAN) connection anywhere on the Internet. Each user can customize plasma parameters and diagnostics data that he wants to monitor, at any time without any change in the software and a copy of these parameters will be available to him. This paper focuses on the publish-subscribe communication paradigm and its application for a machine monitoring system.

  7. CORBA-based solution for remote participation in SST-1 tokamak control and operation

    International Nuclear Information System (INIS)

    Mahajan, Kirti; Ravikiran, M.; Gulati, Hitesh; Dave, H.J.; Kumar, Neeraj; Patel, Kirit; Kumar, Aveg; Raju, D.; Bhandarkar, M.; Chudasama, H.; Kulkarni, S.V.; Saxena, Y.C.

    2006-01-01

    The steady state superconducting tokamak (SST-1) central control system is a distributed heterogeneous process communication system built on socket programming. It consists of machine, experiment and discharge control plus timing and a database. The software controls and monitors SST-1 subsystems: water-cooling, power supplies, cryogenics and vacuum over a local area network (LAN). The SST-1 control room is the place where all the activities like session announcement, machine control, experiment control, discharge control and monitoring are performed. We have realized that, instead of having a single monitoring place, we should have multiple monitoring points and it should be made possible to control the experiment from any PC over the LAN. In order to meet such requirements for remote participation in tokamak operation, we are upgrading the existing software. The upgraded software is based on Common Object Request Broker Architecture (CORBA) technology. The software is utilizing CORBA-services such as event service, naming services, interface repository and security services. The inherent features of CORBA make the software, platform and language independent. The software supports a variety of communication paradigms including publish-subscribe, peer-to-peer, and request-reply. Based on this software, one can participate in SST-1 tokamak operation from the LAN, or a wide area network (WAN) connection anywhere on the Internet. Each user can customize plasma parameters and diagnostics data that he wants to monitor, at any time without any change in the software and a copy of these parameters will be available to him. This paper focuses on the publish-subscribe communication paradigm and its application for a machine monitoring system

  8. Ultra-long pulse operation using lower hybrid waves on the superconducting high field tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Moriyama, S.; Nakamura, Y.; Nagao, A.; Jotaki, E.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    Ultra-long pulse operation (>3 min) was achieved on the superconducting high field tokamak TRIAM-1M. In this operation, the plasma current was maintained with a relatively peaked current distribution by the 2.45 GHz radiofrequency power (P RF ≤ 35 kW) alone. A stationary plasma with a driven current of up to 35 kA and a line averaged electron density of up to 3x10 12 cm -3 was produced by precise plasma position and gas feed control. The extremely long discharge showed the interesting characteristics that the high temperatures of about 1 keV for the electrons and about 0.5 keV for the ions were kept almost constant during steady state current drive and that there was no impurity accumulation which could have a fatally adverse effect on steady state tokamak operation. (author). 16 refs, 17 figs

  9. Continuous tokamak operation with an internal transformer

    International Nuclear Information System (INIS)

    Singer, C.E.; Mikkelsen, D.R.

    1982-10-01

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors

  10. An advanced conceptual Tokamak fusion power reactor utilizing closed cycle helium gas turbines

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    UWMAK-III is a conceptual Tokamak reactor designed to study the potential and the problems associated with an advanced version of Tokamaks as power reactors. Design choices have been made which represent reasonable extrapolations of present technology. The major features are the noncircular plasma cross section, the use of TZM, a molybdenum based alloy, as the primary structural material, and the incorporation of a closed-cycle helium gas turbine power conversion system. A conceptual design of the turbomachinery is given together with a preliminary heat exchanger analysis that results in relatively compact designs for the generator, precooler, and intercooler. This paper contains a general description of the UWMAK-III system and a discussion of those aspects of the reactor, such as the burn cycle, the blanket design and the heat transfer analysis, which are required to form the basis for discussing the power conversion system. The authors concentrate on the power conversion system and include a parametric performance analysis, an interface and trade-off study and a description of the reference conceptual design of the closed-cycle helium gas turbine power conversion system. (Auth.)

  11. START: the creation of a spherical tokamak

    International Nuclear Information System (INIS)

    Sykes, Alan

    1992-01-01

    The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)

  12. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-12-15

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  13. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    International Nuclear Information System (INIS)

    Wang, Hesheng; Lai, Yinping; Chen, Weidong

    2016-01-01

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  14. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  15. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, RE; CANDY, J; HINTON, FL; ESTRADA-MILA, C; KINSEY, JE.

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed

  16. Automated Fault Detection for DIII-D Tokamak Experiments

    International Nuclear Information System (INIS)

    Walker, M.L.; Scoville, J.T.; Johnson, R.D.; Hyatt, A.W.; Lee, J.

    1999-01-01

    An automated fault detection software system has been developed and was used during 1999 DIII-D plasma operations. The Fault Identification and Communication System (FICS) executes automatically after every plasma discharge to check dozens of subsystems for proper operation and communicates the test results to the tokamak operator. This system is now used routinely during DIII-D operations and has led to an increase in tokamak productivity

  17. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  18. Improved density measurement by FIR laser interferometer on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jie, E-mail: shenjie1988@ipp.ac.cn; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-11-15

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported.

  19. Improved density measurement by FIR laser interferometer on EAST tokamak

    International Nuclear Information System (INIS)

    Shen, Jie; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-01-01

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported

  20. Feedback-assisted extension of the tokamak operating space to low safety factor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. M., E-mail: jmh2130@columbia.edu; Bialek, J. M.; Navratil, G. A.; Olofsson, K. E. J.; Shiraki, D.; Turco, F. [Department of Applied Mathematics and Applied Physics, Columbia University, New York, New York 10027-6900 (United States); Baruzzo, M.; Bolzonella, T.; Marrelli, L.; Martin, P.; Piovesan, P.; Piron, C.; Piron, L.; Terranova, D.; Zanca, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); and others

    2014-07-15

    Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q{sub 95} = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q{sub 95} values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q{sub 95} values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.

  1. RF-driven tokamak reactor with sub-ignited, thermally stable operation

    International Nuclear Information System (INIS)

    Harten, L.P.; Bers, A.; Fuchs, V.; Shoucri, M.M.

    1981-02-01

    A Radio-Frequency Driven Tokamak Reactor (RFDTR) can use RF-power, programmed by a delayed temperature measurement, to thermally stabilize a power equilibrium below ignition, and to drive a steady state current. We propose the parameters for such a device generating approx. = 1600 MW thermal power and operating with Q approx. = 40 (= power out/power in). A one temperature zero-dimensional model allows simple analytical formulation of the problem. The relevance of injected impurities for locating the equilibrium is discussed. We present the results of a one-dimensional (radial) code which includes the deposition of the supplementary power, and compare with our zero-dimensional model

  2. High density operation on the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Xiang Gao

    2000-01-01

    The structure of the operation region has been studied in the HT-7 superconducting tokamak, and progress on the extension of the HT-7 ohmic discharge operation region is reported. A density corresponding to 1.2 times the Greenwald limit was achieved by RF boronization. The density limit appears to be connected to the impurity content and the edge parameters, so the best results are obtained with very clean plasmas and peaked electron density profiles. The peaking factors of electron density profiles for different current and line averaged densities were observed. The density behaviour and the fuelling efficiency for gas puffing (20-30%), pellet injection (70-80%) and molecular beam injection (40-50%) were studied. The core crash sawteeth and MHD behaviour, which were induced by an injected pellet, were observed and the events correlated with the change of current profile and reversed magnetic shear. The MARFE phenomena on HT-7 are summarized. The best correlation has been found between the total input ohmic power and the product of the edge line averaged density and Z eff . HT-7 could be easily operated in the high density region MARFE-free using RF boronization. (author)

  3. The study of heat flux for disruption on experimental advanced superconducting tokamak

    International Nuclear Information System (INIS)

    Yang, Zhendong; Fang, Jianan; Luo, Jiarong; Cui, Zhixue; Gong, Xianzu; Gan, Kaifu; Zhao, Hailin; Zhang, Bin; Chen, Meiwen

    2016-01-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR_s_e_p = −2 cm, while it changes to upper single null (dR_s_e_p = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m"2.

  4. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  5. New DIII-D tokamak plasma control system

    International Nuclear Information System (INIS)

    Campbell, G.L.; Ferron, J.R.; McKee, E.; Nerem, A.; Smith, T.; Greenfield, C.M.; Pinsker, R.I.; Lazarus, E.A.

    1992-09-01

    A state-of-the-art plasma control system has been constructed for use on the DIII-D tokamak to provide high speed real time data acquisition and feedback control of DIII-D plasma parameters. This new system has increased the precision to which discharge shape and position parameters can be maintained and has provided the means to rapidly change from one plasma configuration to another. The capability to control the plasma total energy and the ICRF antenna loading resistance has been demonstrated. The speed and accuracy of this digital system will allow control of the current drive and heating systems in order to regulate the current and pressure profiles and diverter power deposition in the DIII-D machine. Use of this system will allow the machine and power supplies to be better protected from undesirable operating regimes. The advanced control system is also suitable for control algorithm development for future machines in these areas and others such as disruption avoidance. The DIII-D tokamak facility is operated for the US Department of Energy by General Atomics Company (GA) in San Diego, California. The DIII-D experimental program will increase emphasis on rf heating and current drive in the near future and is installing a cryopumped divertor ring during the fall of 1992. To improve the flexibility of this machine for these experiments, the new shape control system was implemented. The new advanced plasma control system has enhanced the capabilities of the DIII-D machine and provides a data acquisition and control platform that promises to be useful far beyond its original charter

  6. Advances in the operation of the DIII-D neutral beam computer systems

    International Nuclear Information System (INIS)

    Phillips, J.C.; Busath, J.L.; Penaflor, B.G.; Piglowski, D.; Kellman, D.H.; Chiu, H.K.; Hong, R.M.

    1998-02-01

    The DIII-D neutral beam system routinely provides up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak, and is a critical part of the DIII-D physics experimental program. The four computer systems previously used to control neutral beam operation and data acquisition were designed and implemented in the late 1970's and used on DIII and DIII-D from 1981--1996. By comparison to modern standards, they had become expensive to maintain, slow and cumbersome, making it difficult to implement improvements. Most critical of all, they were not networked computers. During the 1997 experimental campaign, these systems were replaced with new Unix compliant hardware and, for the most part, commercially available software. This paper describes operational experience with the new neutral beam computer systems, and new advances made possible by using features not previously available. These include retention and access to historical data, an asynchronously fired ''rules'' base, and a relatively straightforward programming interface. Methods and principles for extending the availability of data beyond the scope of the operator consoles will be discussed

  7. Characterization of the Tokamak Novillo in cleaning regime

    International Nuclear Information System (INIS)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E.

    1992-02-01

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip t like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I (p) t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  8. The ARIES-I high-field-tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Miller, R.L.

    1989-01-01

    The multi-institutional ARIES study has examined the physics, technology, safety, and economic issues associated with the conceptual design of a tokamak magnetic-fusion reactor. The ARIES-I variant envisions a DT-fueled device based on advanced superconducting coil, blanket, and power-conversion technologies and a modest extrapolation of existing tokamak physics. A comprehensive systems and trade study has been conducted as an integral and ongoing part of the reactor assessment in order to identify an acceptable design point to be subjected to detailed analysis and integration as well as to characterize the ARIES-I operating space. Results of parametric studies leading to the identification of such a design point are presented. 15 refs., 6 figs., 2 tabs

  9. The design of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.; Kim, J.; Hwang, S.M.

    1999-01-01

    The Korea superconducting tokamak advanced research (KSTAR) project is the major effort of the Korean national fusion program (KNFP) to develop a steady-state-capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. Major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 Tesla, and plasma current 2 MA with a strongly shaped plasma cross-section and double-null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beam, ion cyclotron waves, lower hybrid waves, and electron-cyclotron waves for flexible profile control. A comprehensive set of diagnostics is planned for plasma control and performance evaluation and physics understanding. The project has completed its conceptual design phase and moved to the engineering design phase. The target date of the first plasma is set for year 2002. (orig.)

  10. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  11. DIII-D research operations. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    La Haye, R.J. [ed.

    1994-05-01

    The DIII-D tokamak research program is carried out by General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. In doing so, the DIII-D program provides physics and technology R&D outputs to aid the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY93 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics. The major goals of the Divertor and Boundary Physics studies are the control of impurities, efficient heat removal and understanding the strong role that the edge plasma plays in the global energy confinement of the plasma. The advanced tokamak studies initiated the investigation into new techniques for improving energy confinement, controlling particle fueling and increasing plasma beta. The major goal of the Tokamak Physics Studies is the understanding of energy and particle transport in a reactor relevant plasma.

  12. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  13. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  14. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  15. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  16. Feedback-Assisted Extension of the Tokamak Operating Space to Low Safety Factor

    Science.gov (United States)

    Hanson, J. M.

    2013-10-01

    Recent DIII-D experiments have demonstrated stable operation at very low edge safety factor, q95 instability. The performance of tokamak fusion devices may benefit from increased plasma current, and thus, decreased q. However, disruptive stability limits are commonly encountered in experiments at qedge ~ 2 (limited plasmas) and q95 ~ 2 (diverted plasmas), limiting exploration of low q regimes. In the recent DIII-D experiments, the impact and control of key disruptive instabilities was studied. Locked n = 1 modes with exponential growth times on the order of the wall eddy current decay timescale τw preceded disruptions at q95 = 2 . The instabilities have a poloidal structure that is consistent with VALEN simulations of the RWM mode structure at q95 = 2 . Applying proportional gain magnetic feedback control of the n = 1 mode resulted in stabilized operation with q95 reaching 1.9, and an extension of the discharge lifetime for > 100τw . Loss of feedback control was accompanied by power supply saturation, followed by a rapidly growing n = 1 mode and disruption. Comparisons of the feedback dynamics with VALEN simulations will be presented. The DIII-D results complement and will be discussed alongside recent RFX-MOD demonstrations of RWM control using magnetic feedback in limited tokamak discharges with qedge economical fusion power production. Supported by the US Department of Energy under DE-FG02-04ER54761 and DE-FC02-04ER54698.

  17. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  18. Real-time horizontal position control for Aditya-upgrade tokamak

    International Nuclear Information System (INIS)

    Kumar, Rohit; Ghosh, Joydeep; Tanna, Rakesh L.

    2015-01-01

    Position of plasma column is required to be controlled in real time for improved operation of any tokamak. A PID based system for real-time horizontal plasma position control has been designed for Aditya Upgrade tokamak. Modelling of transfer functions of actuators, plasma and diagnostic system are carried out for ADITYA-U tokamak. The PID controller is optimized using MATLAB-SIMULINK for horizontal position control. Further feed-forward loop is implemented where disturbance due to density variation is suppressed, which results in improved performance as compared to conventional PID operation. In this paper the detailed design of the whole system for real time control of plasma horizontal position in Aditya Upgrade tokamak is presented. (author)

  19. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  20. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  1. The basics of spherical tokamaks and progress in European research

    International Nuclear Information System (INIS)

    Gusev, V K; Alladio, F; Morris, A W

    2003-01-01

    When the aspect ratio of a tokamak (A = R/a) decreases significantly, there is a transformation of the well studied tokamak toroidal magnetic configuration into the spherical tokamak (ST) configuration. This configuration has high natural plasma elongation and triangularity and other unique equilibrium and stability properties of ST configuration, which are discussed in this paper. European research into ST physics is well advanced in spite of the young age of this branch of fusion science. An overview of selected experimental and theoretical results obtained at Ioffe, Culham and Frascati is given with the emphasis on their complementarity and links to the main stream of tokamak research, such as ITER. An outline of the basic ST advantages and the potential of ST research for new insights into magnetic confinement is also given. More detailed descriptions of recent advances in ST theory and experiment may be found in the invited papers by Akers and Ono in the proceedings of this conference

  2. MAST: a Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.

    1995-01-01

    The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)

  3. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  4. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  5. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  6. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  7. Three novel tokamak plasma regimes in TFTR

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-10-01

    Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region

  8. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-01-01

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport

  9. Neutronic analysis of fusion tokamak devices by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  10. Economic analyses of alpha channeling in tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1998-01-01

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T i somewhat larger than the electron temperature T e , which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small

  11. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    Science.gov (United States)

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  12. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  13. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  14. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  15. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  16. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  17. A flexible software architecture for tokamak discharge control systems

    International Nuclear Information System (INIS)

    Ferron, J.R.; Penaflor, B.; Walker, M.L.; Moller, J.; Butner, D.

    1995-01-01

    The software structure of the plasma control system in use on the DIII-D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII-D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based tokamak simulators

  18. Present status of operation of the ETE spherical tokamak

    International Nuclear Information System (INIS)

    Bosco, E. del; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Ludwig, G.O.; Shibata, C.S.

    2005-01-01

    The ETE is a spherical tokamak with aspect ratio A = 1.5 (major radius of 0.3m and minor radius of 0.2m) under development at LAP/INPE. The ETE incorporates some innovative features that resulted in a compact and light weighted device with good plasma accessibility. Since the first plasma obtained at the very end of 2000 (Ip = 12kA, duration of 2ms, B o = 0.1T), the machine is operational and improvements are being done in order to achieve the planned final parameter values for the first phase of operation (Ip = 220kA, duration 15ms, B o = 0.4T), which are limited by the available capacitors. The efforts are being focused on incrementing the energy of the capacitor banks, lessening the stray magnetic fields in the plasma region, conditioning the vacuum vessel wall, implementing diagnostics and optimizing the discharge parameters. Presently, plasma currents in the range of 40-60kA (duration of 6-12 ms) are routinely obtained. Electron temperatures up to 160eV and plasma densities up to 3.0x10 19 m -3 are being reached. (author)

  19. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  20. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    Stangeby, P.C.

    1989-06-01

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  1. Development of a tokamak plasma optimized for stability and confinement

    International Nuclear Information System (INIS)

    Politzer, P.A.

    1995-02-01

    Design of an economically attractive tokamak fusion reactor depends on producing steady-state plasma operation with simultaneous high energy density (β) and high energy confinement (τ E ); either of these, by itself, is insufficient. In operation of the DIII-D tokamak, both high confinement enhancement (H≡ τ E /τ ITER-89P = 4) and high normalized β (β N ≡ β/(I/aB) = 6%-m-T/MA) have been obtained. For the present, these conditions have been produced separately and in transient discharges. The DIII-D advanced tokamak development program is directed toward developing an understanding of the characteristics which lead to high stability and confinement, and to use that understanding to demonstrate stationary, high performance operation through active control of the plasma shape and profiles. The authors have identified some of the features of the operating modes in DIII-D that contribute to better performance. These are control of the plasma shape, control of both bulk plasma rotation and shear in the rotation and Er profiles, and particularly control of the toroidal current profiles. In order to guide their future experiments, they are developing optimized scenarios based on their anticipated plasma control capabilities, particularly using fast wave current drive (on-axis) and electron cyclotron current drive (off-axis). The most highly developed model is the second-stable core VH-mode, which has a reversed magnetic shear safety factor profile [q(O) = 3.9, q min = 2.6, and q 95 = 6]. This model plasma uses profiles which the authors expect to be realizable. At β N ≥ 6, it is stable to n=l kink modes and ideal ballooning modes, and is expected to reach H ≥ 3 with VH-mode-like confinement

  2. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  3. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  4. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  5. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  6. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  7. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1998-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  8. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  9. Tokamak power systems studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-01-01

    A number of advances in plasma physics and engineering promise to greatly improve the reactor prospects of tokamaks. The following features, in particular, are examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 7 T; (c) low toroidal current (I ≅ 5MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields produced in the plasma. In addition to matching desirable high-beta equilibria, this method is capable of producing a large variety of new equilibria, many of which look attractive. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  10. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  11. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  12. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  13. DIII-D research operations. Annual report to the Department of Energy, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    Baker, D.

    1993-05-01

    The DIII-D tokamak research program is carried out by, General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data needed by International Thermonuclear Experimental Reactor (ITER) and to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The DIII-D long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY92 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics

  14. DIII-D research operations. Annual report to the Department of Energy, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D. [ed.

    1993-05-01

    The DIII-D tokamak research program is carried out by, General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data needed by International Thermonuclear Experimental Reactor (ITER) and to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The DIII-D long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY92 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics.

  15. Mechanical and thermal characteristics of JT-60 tokamak machine demonstrated in its power tests

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Ohkubo, Minoru

    1985-09-01

    JT-60 power tests were carried out from Dec. 10, 1984 to Feb. 20, 1985 to demonstrate, in advance of actual plasma operation, satisfactory performance of tokamak machine, power suppliers and control system in combination. The tests began with low power test of individual coil systems and progressed to full power tests. Power tests were successfully concluded with the following conclusions. (1) All of the coil systems were raised up to full power operation in combination and system performance was verified including thermal and structural integrity of tokamak machine. (2) Measured strain and deflection showed good agreements with those predicted in the design, which was an evidence that electromagnetic loads were supported adequately as expected in the design. (3) Vibration of lateral port was found to be large up to 50 m/s 2 and caused excessive vibration of gate-valves. (4) A few limitations to machine operation were made clear quantatively. (5) It was found that the existing detectors were insufficient to monitor the machine integrity and a few kinds of detectors were necessary to be installed. (author)

  16. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  17. Analysis of toroidal rotation data for the DIII-D tokamak

    International Nuclear Information System (INIS)

    John, H.St.; Burrell, K.H.; Groebner, R.; DeBoo, J.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner et al. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Similar studies have been previously reported for Doublet III, ASDEX, TFTR, JET and other tokamaks. (author) 13 refs., 4 figs

  18. DIII-D Advanced Tokamak Research Overview

    International Nuclear Information System (INIS)

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-01-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously β N H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues

  19. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  20. Advances in Integrated Plasma Control on DIII-D

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Humphreys, D.A.

    2006-01-01

    The DIII-D experimental program in advanced tokamak (AT) physics requires extremely high performance from the DIII-D plasma control system (PCS) [B.G.Penaflor, et al., 4 th IAEA Tech. Mtg on Control and Data Acq., San Diego, CA (2003)], including simultaneous and highly accurate regulation of plasma shape, stored energy, density, and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of several new model-based plasma controllers on DIII-D. We discuss experimental use of advanced shape control algorithms containing nonlinear techniques for improving control of steady state plasmas, model-based controllers for optimal rejection of edge localized mode disturbances during resistive wall mode stabilization, model-based controllers for neoclassical tearing mode stabilization, including methods for maximizing stabilization effectiveness with substantial constraints on available power, model-based integrated control of plasma rotation and beta, and initial experience in development of model-based controllers for advanced tokamak current profile modification. The experience gained from DIII-D has been applied to the development of control systems for the EAST and KSTAR tokamaks. We describe the development of the control software, hardware, and model-based control algorithms for these superconducting tokamaks, with emphasis on relevance of

  1. DIII-D research operations. Annual report to the Department of Energy, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baker, D.

    1993-01-01

    The DIII-D tokamak research program is carried out by General Atomics for the U.S. Department of Energy. The DIII-D is the most flexible and best diagnosed tokamak in the world and the second largest tokamak in the U.S. The primary goal of the DIII-D tokamak research program is to provide data needed by ITER and to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The DIII-D long-range plan is organized into two major thrusts; the development of advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY92 the DIII-D research program concentrated in three major areas: Tokamak Physics, Divertor and Boundary Physics, and Advanced Tokamak Studies

  2. Plasma profile and shape optimization for the advanced tokamak power plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2006-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal MHD stability, bootstrap current analysis, vertical stability and control, and poloidal field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current drive profiles from ray tracing calculations in combination with optimized pressure profiles, β N values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower β N of 6.0. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field from those found in a previous study [S.C. Jardin, C.E. Kessel, C.G. Bathke, D.A. Ehst, T.K. Mau, F. Najmabadi, T.W. Petrie, the ARIES Team, Physics basis for a reversed shear tokamak power plant, Fusion Eng. Design 38 (1997) 27

  3. Overview of the Tokamak de Varennes program

    International Nuclear Information System (INIS)

    Pacher, H.D.

    1986-01-01

    The Tokamak de Varennes will be the major Canadian experiment in the magnetic fusion domain. It has a toroidal field of 1.5 tesla, major radius of 0.85 m, a minor radius of 0.25 m, and will study long pulses, up to 30 seconds duration. Initially, a series of successive plasma pulses, each of the order of seconds, will yield a duty factor of over 50 percent. During this phase, the major emphasis will be on the study of impurity generation, transport, and control, plasma-wall interactions and material properties. The program will include studies of fast current rampdown and the resultant current profile modifications. The development of advanced diagnostics will also be undertaken. To attain a higher duty factor with continuous plasma operation, noninductive current drive by radio=frequency will be added as an early upgrade. This will introduce current drive investigations such as transformer recharge and profile relaxation, and enhance the wall and materials study program. In this context, the Tokamak de Varennes will concentrate on the study of impurity exhaust and retention as well as net erosion of the limiter and neutralization plate materials

  4. Dynamic stabilization of D—T burn in Tokamak reactors

    Institute of Scientific and Technical Information of China (English)

    ShiBing-Ren; LongYong-Xing

    1997-01-01

    A simple,engineeringly feasible dynamic method is supposed to control the deuterium-tritium burn process in Tokamak reactors operated in an advanced scenario.The thermal transport of the D-T plasma is described by an anomalous thermal conduction which is a radially increasing function and the central conduction value is proportional to the central temperature of the plasma.The dynamic external heating power is selected to be inversely proportional to certain power function of this temperature,As a result,the D-T burn can undergo in controllable way in different temperature regimes with different power output.Anomalous alpha particle transport effect is taken into account.It can affect the resultant plasma equilibrium ,the reactor efficency,the operation mode and so on.

  5. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  6. The stability margin on EAST tokamak

    International Nuclear Information System (INIS)

    Jin-Ping, Qian; Bao-Nian, Wan; Biao, Shen; Bing-Jia, Xiao; Walker, M.L.; Humphreys, D.A.

    2009-01-01

    The experimental advanced superconducting tokamak (EAST) is the first full superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. Its poloidal coils are relatively far from the plasma due to the necessary thermal isolation from the superconducting magnets, which leads to relatively weaker coupling between plasma and poloidal field. This may cause more difficulties in controlling the vertical instability by using the poloidal coils. The measured growth rates of vertical stability are compared with theoretical calculations, based on a rigid plasma model. Poloidal beta and internal inductance are varied to investigate their effects on the stability margin by changing the values of parameters α n and γ n (Howl et al 1992 Phys. Fluids B 4 1724), with plasma shape fixed to be a configuration with k = 1.9 and δ = 0.5. A number of ways of studying the stability margin are investigated. Among them, changing the values of parameters κ and l i is shown to be the most effective way to increase the stability margin. Finally, a guideline of stability margin M s (κ, l i , A) to a new discharge scenario showing whether plasmas can be stabilized is also presented in this paper

  7. Experiment and operation of a LHCD-35 kV/2.8 MW/1000 s high-voltage power supply on HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang Yiyun

    2002-01-01

    A-35 kV/2.8 MW/1000s high-voltage power supply (HVPS) for HT-7 superconducting tokamak has been built successfully. The HVPS is scheduled to run on a 2.45 GHz/1 MW lower hybrid current drive (LHCD) system of HT-7 superconducting tokamak before the set-up of HT-7 superconducting tokamak in 2003. The HVPS has a series of advantages such as good steady and dynamic response, logical computer program controlling the HVPS without any fault, operational panel and experimental board for data acquisition, which both are grounded distinctively in a normative way to protect the main body of HVPS along with its attached equipment from dangers. Electric power cables and other control cables are disposed reasonably, to prevent signals from magnetic interference and ensure the precision of signal transfer. The author introduced the experiment and operation of a 35 kV/2.8 MW/1000 s HVPS for 2.45 GHz/1 MW LHCD system. The reliability and feasibility of the HVPS has been demonstrated in comparison with experimental results of original design and simulation data

  8. Stability at high performance in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Buttery, R.J.; Akers, R.; Arends, E. =

    2003-01-01

    The development of reliable H-modes on MAST, together with advances in heating power and a range of powerful diagnostics, has provided a platform to enable MAST to address some of he most important issues of tokamak stability. In particular the high β potential of the ST is highlighted with stable operation at β N ∼5-6 , β T ∼ 16% and β p as high as 1.9, confirmed by a range of profile diagnostics. Calculations indicate that β N levels are in the vicinity of no-wall stability limits. Studies have provided the first identification of the Neoclassical Tearing Mode (NTM) in the ST, using its behaviour to quantitatively validate predictions of NTM theory, previously only applied to conventional tokamaks. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs - by avoiding large sawteeth much higher β N can, and has, been reached. Further studies have confirmed the NTM's significance, with large islands observed using the 300 point Thomson diagnostic, and locking of large n=1 modes frequently leading to disruptions. H-mode plasmas are also limited by ELMs, with confinement degraded as ELM frequency rises. However, unlike the conventional tokamak, the ELMs in high performing regimes on MAST (H IPB98Y2 ∼1) appear to be type III in nature. Modelling identifies instability to peeling modes, consistent with a type III interpretation, and shows considerable scope to raise pressure gradients (despite n=∞ ballooning theory predictions of instability) before ballooning type modes (perhaps associated with type I ELMs) occur. Finally sawteeth are shown not to remove the q=1 surface in the ST - other promising models are being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels, and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER. (author)

  9. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  10. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  11. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  12. Real-Time Plasma Control Tools for Advanced Tokamak Operation

    International Nuclear Information System (INIS)

    Varandas, C. A. F.; Sousa, J.; Rodrigues, A. P.; Carvalho, B. B.; Fernandes, H.; Batista, A. J.; Cruz, N.; Combo, A.; Pereira, R. C.

    2006-01-01

    Real-time control will play an important role in the operation and scientific exploitation of the new generation fusion devices. This paper summarizes the real-time systems and diagnostics developed by the Portuguese Fusion Euratom Association based on digital signal processors and field programmable gate arrays

  13. Tokamak research in the Soviet Union

    International Nuclear Information System (INIS)

    Strelkov, V.S.

    1981-01-01

    Important milestones on the way to the tokamak fusion reactor are recapitulated. Soviet tokamak research concentrated at the I.V. Kurchatov Institute in Moscow, the A.F. Ioffe Institute in Leningrad and the Physical-Technical Institute in Sukhumi successfully provides necessary scientific and technological data for reactor design. Achievments include, the successful operation of the first tokamak with superconducting windings (T-7) and the gyrotron set for microwave plasma heating in the T-10 tokamak. The following problems have intensively been studied: Various methods of additional plasma heating, heat and particle transport, and impurity control. The efficiency of electron-cyclotron resonance heating was demonstrated. In the Joule heating regime, both the heat conduction and diffusion rates are anomalously high, but the electron heat conduction rate decreases with increasing plasma density. Progress in impurity control makes it possible to obtain a plasma with effective charge approaching unity. (J.U.)

  14. An overview on plasma disruption mitigation and avoidance in tokamak

    International Nuclear Information System (INIS)

    He Kaihui; Pan Chuanhong; Feng Kaiming

    2002-01-01

    Plasma disruption, which seems to be unavoidable in Tokamak operation, occurs very fast and uncontrolled. In order to keep Tokamak plasma from disruption and mitigate the disruption frequency, the research on Tokamak plasma major disruption constitutes one of the main topics in plasma physics. The phenomena and processes of the precursor, thermal quench, current quench, VDE, halo current and runaway electrons generation during plasma disruption are analyzed in detail and systematically based on the data obtained from current Tokamaks such as TFTR, JET, JT-60U and ASDEX-U, etc. The methods to mitigate and avoid disruption in Tokamak are also highlighted schematically. Therefore, it is helpful and instructive for plasma disruption research in next generation large Tokamak such as ITER-FEAT

  15. Tokamak power plant burn cycle options

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1994-06-01

    Experiments show that tokamaks can operate in various fashions. Economic analyses show that steady state is most attractive provided the physics and technology of current drive (CD) can be modestly improved. Even with very conservative CD assumptions a hybrid operating mode seems superior to conventional, simple inductive operation

  16. Virtual reality applications in remote handling development for tokamaks in India

    International Nuclear Information System (INIS)

    Dutta, Pramit; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-01-01

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  17. Virtual reality applications in remote handling development for tokamaks in India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Pramit, E-mail: pramitd@ipr.res.in; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-05-15

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  18. Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Christopher [Univ. of California, San Diego, CA (United States); Orlov, Dmitri [Univ. of California, San Diego, CA (United States); Izzo, Valerie [Univ. of California, San Diego, CA (United States)

    2018-02-05

    This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.

  19. Development and integration of a 50 Hz pellet injection system for the Experimental Advanced Superconducting Tokamak (EAST)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230029 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Jiansheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Vinyar, Igor; Lukin, Alexander [PELIN, Saint-Petersburg (Russian Federation); Yuan, Xiaoling; Li, Changzheng; Liu, Haiqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • The design of the pumping system fits the operation requirement well not only theoretically but also experimentally. • The data showed that the averaged pellet injection velocity and propellant gas pressure had a relationship submitting to the power function. • The reliability of the injected pellet was mostly around 90% which is higher than the PI-20 system thanks to the improved pumping system and the new pellet fabrication and acceleration system. - Abstract: A 50 Hz pellet injection system, which is designed for edge-localized mode (ELM) control, has been successfully developed and integrated for the Experimental Advanced Superconducting Tokamak (EAST). Pellet injection is achieved by two separated injection system modules that can be operated independently from 1 to 25 Hz. The nominal injection velocity is 250 m/s with a scatter of ±50 m/s at a repetition rate of 50 Hz. A buffer tank and a two-stage differential pumping system of the pellet injection system was designed to increase hydrogen/deuterium ice quality and eliminate the influence of propellant gas on plasma operation, respectively. The pressure of the buffer tank could be pumped to 1 × 10{sup 2} Pa, and the pressure in the second differential chamber could reach 1 × 10{sup −4} Pa during the experiment. Engineering experiments, which consisted of 50 Hz pellet injection and guiding tube mock-up experiments, were also systematically carried out in a laboratory environment and demonstrated that the pellet injection system can reliably inject pellets at a repetitive frequency of 50 Hz.

  20. Control of the Resistive Wall Mode in Advanced Tokamak Plasmas on DIII-D

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Strait, E.J.; Bialek, J.; Frederickson, E.; Gryaznevich, M.; Jensen, T.H.; Johnson, L.C.; La Haye, R.J.; Navratil, G.A.; Lazarus, E.A.; Luce, T.C.; Makowski, M.; Okabayashi, M.; Rice, B.W.; Scoville, J.T.; Turnbull, A.D.; Walker, M.L.

    1999-01-01

    Resistive wall mode (RWM) instabilities are found to be a limiting factor in advanced tokamak (AT) regimes with low internal inductance. Even small amplitude modes can affect the rotation profile and the performance of these ELMing H-mode discharges. Although complete stabilization of the RWM by plasma rotation has not yet been observed, several discharges with increased beam momentum and power injection sustained good steady-state performance for record time extents. The first investigation of active feedback control of the RWM has shown promising results: the leakage of the radial magnetic flux through the resistive wall can be successfully controlled, and the duration of the high beta phase can be prolonged. The results provide a comparative test of several approaches to active feedback control, and are being used to benchmark the analysis and computational models of active control

  1. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics

    International Nuclear Information System (INIS)

    Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.

    2013-01-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST

  2. MHD stability limits to the operation parameters of the FT tokamak

    International Nuclear Information System (INIS)

    Alladio, F.; Bardotti, G.; Bartiromo, R.

    1986-01-01

    A systematic study of the macroscopic instabilities limiting the accessible operation parameters has been performed on the Ohmic discharges of the FT tokamak at Bsub(T)=40 and 60 kG. The MHD fluctuation behaviour and the modifications of the profiles associated with the precursor of the disruption are discussed in detail for the cases of breaking through qsub(L)=3, low-qsub(L) operation, disruptions at the high-density limit and disruptions following the disappearance of the sawtooth activity. In all these cases the power balance terms that appear associated with the development of the MHD instabilities are dominant either in the centre or at the edge of the discharge and so transport in the intermediate confinement zone does not seem to be affected during the precursor of the disruption. The loop voltage negative spike of the disruption itself is found to be associated with the appearance of a burst of m=3, n=2 modes in the presence of m=2, n=1 precursor activity. (author)

  3. Data acquisition and control system for the ECE imaging diagnostic on the EAST tokamak

    Science.gov (United States)

    Luo, C.; Lan, T.; Zhu, Y.; Xie, J.; Gao, B.; Liu, W.; Yu, C.; Milne, P. G.; Domier, C. W.; Luhmann, N. C.

    2017-06-01

    A 384-channel electron cyclotron emission imaging (ECEI) system is installed on the experimental advanced superconducting tokamak (EAST) and 7-gigabyte data is produced for each regular discharge of a 10-second pulse. The data acquisition and control (DAC) system for the EAST ECEI diagnostics covers the large data production and embeds the ability to report the data quality instantly after the discharge. The symmetric routing design of the timing signal distributions among the 384 channels provides a low-cost solution to the synchronization of a large number of channels. The application of the load-balance bond service largely reduces the configuration difficulty and the cost in the high-speed data transferring tasks. Benefiting from the various kinds of hardware units with dedicated functionalities, an automated and user interactive DAC work flow is achieved, including the pre-selections of the automation scheme and the observation region, 384-channel data acquisition and local caching, post-discharge imaging data quality evaluation, remote system status monitoring, and inter-discharge imaging system event handling. The system configuration in a specific physics experiment is further optimized through the associated operating software which is enhanced by the input of the tokamak operation status and the region of interest (ROI) from other diagnostics. The DAC system is based on a modularized design and scalable to the long-pulse discharges in the EAST tokamak.

  4. Data acquisition and control system for the ECE imaging diagnostic on the EAST tokamak

    International Nuclear Information System (INIS)

    Luo, C.; Lan, T.; Xie, J.; Gao, B.; Liu, W.; Yu, C.; Zhu, Y.; Domier, C.W.; Luhmann, N.C.; Milne, P.G.

    2017-01-01

    A 384-channel electron cyclotron emission imaging (ECEI) system is installed on the experimental advanced superconducting tokamak (EAST) and 7-gigabyte data is produced for each regular discharge of a 10-second pulse. The data acquisition and control (DAC) system for the EAST ECEI diagnostics covers the large data production and embeds the ability to report the data quality instantly after the discharge. The symmetric routing design of the timing signal distributions among the 384 channels provides a low-cost solution to the synchronization of a large number of channels. The application of the load-balance bond service largely reduces the configuration difficulty and the cost in the high-speed data transferring tasks. Benefiting from the various kinds of hardware units with dedicated functionalities, an automated and user interactive DAC work flow is achieved, including the pre-selections of the automation scheme and the observation region, 384-channel data acquisition and local caching, post-discharge imaging data quality evaluation, remote system status monitoring, and inter-discharge imaging system event handling. The system configuration in a specific physics experiment is further optimized through the associated operating software which is enhanced by the input of the tokamak operation status and the region of interest (ROI) from other diagnostics. The DAC system is based on a modularized design and scalable to the long-pulse discharges in the EAST tokamak.

  5. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)

  6. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)

  7. The engineering design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1994-01-01

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design. If adequately funded the construction project should be completed in the year 2000

  8. Pneumatic hydrogen pellet injection system for the ISX tokamak

    International Nuclear Information System (INIS)

    Milora, S.L.; Foster, C.A.

    1979-01-01

    We describe the design and operation of the solid hydrogen pellet injection system used in plasma refueling experiments on the ISX tokamak. The gun-type injector operates on the principle of gas dynamic acceleration of cold pellets confined laterally in a tube. The device is cooled by flowing liquid helium refrigerant, and pellets are formed in situ. Room temperature helium gas at moderate pressure is used as the propellant. The prototype device injected single hydrogen pellets into the tokamak discharge at a nominal 330 m/s. The tokamak plasma fuel content was observed to increase by (0.5--1.2) x 10 19 particles subsequent to pellet injection. A simple modification to the existing design has extended the performance to 1000 m/s. At higher propellant operating pressures (28 bars), the muzzle velocity is 20% less than predicted by an idealized constant area expansion process

  9. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  10. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  11. Review of ICRF antenna development and heating experiments up to advanced experiment I, 1989 on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki

    1992-03-01

    Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)

  12. Decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives

  13. Real-time software for the COMPASS tokamak plasma control

    International Nuclear Information System (INIS)

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, F.; Cahyna, P.; Hron, M.; Panek, R.

    2010-01-01

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 μs. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  14. Real-time software for the COMPASS tokamak plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Valcarcel, D.F., E-mail: danielv@ipfn.ist.utl.p [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2010-07-15

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 {mu}s. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  15. Digital control of plasma position in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Emami, M.; Babazadeh, A.R.; Roshan, M.V.; Memarzadeh, M.; Habibi, H. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center. Plasma Physics Lab.

    2002-03-01

    Plasma position control is one of the important issues in the design and operation of tokamak fusion research device. Since a tokamak is basically an electrical system consisting of power supplies, coils, plasma and eddy currents, a model in which these components are treated as an electrical circuits is used in designing Damavand plasma position control system. This model is used for the simulation of the digital control system and its parameters have been verified experimentally. In this paper, the performance of a high-speed digital controller as well as a simulation study and its application to the Damavand tokamak is discussed. (author)

  16. Requirements for tokamak remote operation: Application to JT-60SA

    International Nuclear Information System (INIS)

    Innocente, Paolo; Barbato, Paolo; Farthing, Jonathan; Giruzzi, Gerardo; Ide, Shunsuke; Imbeaux, Frédéric; Joffrin, Emmanuel; Kamada, Yutaka; Kühner, Georg; Naito, Osamu; Urano, Hajime; Yoshida, Maiko

    2015-01-01

    Highlights: • We analyzed the data management system (DMS) appropriate for international collaboration. • We define the principal requirements for all components of the DMS. • We evaluated application of DMS requirements to the JT-60SA experiment. • We evaluated the role network bandwidth and time delay between EU and Japan. - Abstract: Remote operation and data analysis are becoming key requirements of any fusion devices. In this framework a well-conceived data management system integrated with a suite of analysis and support tools are essential components for an efficient remote exploitation of any fusion device. The following components must be considered: data archiving data model architecture; remote data and computers access; pulse schedule, data analysis software and support tools; remote control room specifications and security issues. The definition of a device-generic data model plays also important role in improving the ability to share solution and reducing learning time. As for the remote control room, the implementation of an Operation Request Gateway has been identified as an answer to security issues meanwhile remotely proving all the required features to effectively operate a device. Previous requirements have been analyzed for the new JT-60SA tokamak device. Remote exploitation is paramount in the JT-60SA case which is expected to be jointly operated between Japan and Europe. Due to the geographical distance of the two parties an optimal remote operation and remote data-analysis is considered as a key requirement in the development of JT-60SA. It this case the effects of network speed and delay have been also evaluated and tests have confirmed that the performance can vary significantly depending on the technology used.

  17. Requirements for tokamak remote operation: Application to JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Innocente, Paolo, E-mail: paolo.innocente@igi.cnr.it [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Barbato, Paolo [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Farthing, Jonathan [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Giruzzi, Gerardo [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Ide, Shunsuke [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Imbeaux, Frédéric; Joffrin, Emmanuel [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Kamada, Yutaka [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Kühner, Georg [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Naito, Osamu; Urano, Hajime; Yoshida, Maiko [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan)

    2015-10-15

    Highlights: • We analyzed the data management system (DMS) appropriate for international collaboration. • We define the principal requirements for all components of the DMS. • We evaluated application of DMS requirements to the JT-60SA experiment. • We evaluated the role network bandwidth and time delay between EU and Japan. - Abstract: Remote operation and data analysis are becoming key requirements of any fusion devices. In this framework a well-conceived data management system integrated with a suite of analysis and support tools are essential components for an efficient remote exploitation of any fusion device. The following components must be considered: data archiving data model architecture; remote data and computers access; pulse schedule, data analysis software and support tools; remote control room specifications and security issues. The definition of a device-generic data model plays also important role in improving the ability to share solution and reducing learning time. As for the remote control room, the implementation of an Operation Request Gateway has been identified as an answer to security issues meanwhile remotely proving all the required features to effectively operate a device. Previous requirements have been analyzed for the new JT-60SA tokamak device. Remote exploitation is paramount in the JT-60SA case which is expected to be jointly operated between Japan and Europe. Due to the geographical distance of the two parties an optimal remote operation and remote data-analysis is considered as a key requirement in the development of JT-60SA. It this case the effects of network speed and delay have been also evaluated and tests have confirmed that the performance can vary significantly depending on the technology used.

  18. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  19. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  20. Physics design and experimental study of tokamak divertor

    International Nuclear Information System (INIS)

    Yan Jiancheng; Gao Qingdi; Yan Longwen; Wang Mingxu; Deng Baiquan; Zhang Fu; Zhang Nianman; Ran Hong; Cheng Fayin; Tang Yiwu; Chen Xiaoping

    2007-06-01

    The divertor configuration of HL-2A tokamak is optimized, and the plasma performance in divertor is simulated with B2-code. The effects of collisionality on plasma-wall transition in the scrape-off layer of divertor are investigated, high performances of the divertor plasma in HL-2A are simulated, and a quasi- stationary RS operation mode is established with the plasma controlled by LHCD and NBI. HL-2A tokamak has been successfully operated in divertor configuration. The major parameters: plasma current I p =320 kA, toroidal field B t =2.2 T, plasma discharger duration T d =1580 ms ware achieved at the end of 2004. The preliminary experimental researches of advanced diverter have been carried out. Design studies of divertor target plate for high power density fusion reactor have been carried out, especially, the physical processes on the surface of flowing liquid lithium target plate. The exploration research of improving divertor ash removal efficiency and reducing tritium inventory resulting from applying the RF ponderomotive force potential is studied. The optimization structure design studies of FEB-E reactor divertor are performed. High flux thermal shock experiments were carried on tungsten and carbon based materials. Hot Isostatic Press (HIP) method was employed to bond tungsten to copper alloys. Electron beam simulated thermal fatigue tests were also carried out to W/Cu bondings. Thermal desorption and surface modification of He + implanted into tungsten have been studied. (authors)

  1. Economic considerations of commercial tokamak options

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-05-01

    Systems studies have been performed to assess commercial tokamak options. Superconducting, as well as normal, magnet coils in either first or second stability regimes have been considered. A spherical torus (ST), as well as an elongated tokamak (ET), is included in the study. The cost of electricity (COE) is selected as the figure of merit, and beta and first-wall neutron wall loads are selected to represent the physics and technology characteristics of various options. The results indicate that an economical optimum for tokamaks is predicted to require a beta of around 10%, as predicted to be achieved in the second stability regime, and a wall load of about 5 MW/m 2 , which is assumed to be optimum technologically. This tokamak is expected to be competitive with fission plants if efficient, noninductive current drive is developed. However, if this regime cannot be attained, all other tokamaks operating in the first stability regime, including spherical torus and elongated tokamak and assuming a limiting wall load of 5 MW/m 2 , will compete with one another with a COE of about 50 mill/kWh. This 40% higher than the COE for the optimum reactor in the second stability regime with fast-wave current drive. The above conclusions pertain to a 1200-MW(e) net electric power plant. A comparison was also made between ST, ET, and superconducting magnets in the second stability regime with fast-wave current drive at 600 MW(e)

  2. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  3. Overview of steady-state tokamak operation and current drive experiments in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Nakamura, K.; Hanada, K.

    2005-01-01

    Experiments aiming at 'day long operation at high performance' have been carried out. The record value of the discharge duration was updated to 5 h and 16 min. Steady-state tokamak operation (SSTO) is studied under the localized PWI conditions. The distributions of the heat load, the particle recycling flux and impurity source are investigated to understand the co-deposition and wall pumping. Formation and sustainment of an internal transport barrier ITB in enhanced current drive mode (ECD) has been investigated by controlling the lower hybrid driven current profile by changing the phase spectrum. An ITER relevant remote steering antenna for electron cyclotron wave ECW injection was installed and a relativistic Doppler resonance of the oblique propagating extraordinary wave with energetic electrons driven by lower hybrid waves was studied. (author)

  4. Study on assembly techniques and procedures for ITER tokamak device

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Shibanuma, Kiyoshi; Sago, Hiromi; Ue, Koichi; Shimizu, Katsusuke; Onozuka, Masanori

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) tokamak is mainly composed of a doughnut-shaped vacuum vessel (VV), four types of superconducting coils such as toroidal field coils (TF coils) arranged around the VV, and in-vessel components, such as blanket and divertor. The dimensions and weight of the respective components are around a few ten-meters and several hundred-tons. In addition, the whole tokamak assembly, which are composed of these components, are roughly estimated, 26 m in diameter, 18 m in height and over 16,500 tons in total weight. On the other hand, as for positioning and assembly tolerances of the VV and the TF coil are required to be a high accuracy of ±3 mm in spite of large size and heavy weight. The assembly procedures and techniques of the ITER tokamak are therefore studied, taking account of the tolerance requirements as well as the configuration of the tokamak with large size and heavy weight. Based on the above backgrounds, the assembly procedures and techniques, which are able to assemble the tokamak with high accuracy, are described in the present report. The tokamak assembly operations are categorized into six work break down structures (WBS), i.e., (1) preparation for assembly operations, (2) sub-assembly of the 40deg sector composed of 40deg VV sector, two TF coils and thermal shield between VV and TF coil at the assembly hall, (3) completion of the doughnut-shaped tokamak assembly composed of nine 40deg sectors in the cryostat at the tokamak pit, (4) measurement of positioning and accuracy after the completion of the tokamak assembly, (5) installation of the ex-vessel components, and (6) installation of in-vessel components. In the present report, two assembly operations of (2) and (3) in the above six WBS, which are the most critical in the tokamak assembly, are mainly described. The report describes the following newly developed tokamak assembly procedures and techniques, jigs and tools for assembly and metrology

  5. Design and operation of Alvand II C tokamak

    International Nuclear Information System (INIS)

    Avakian, M.; Azodi, H.; Naraghi, M.; Tabatabaie, H.; Rezvani, B.; Shahnazi, Sh.; Behrozinia, J.; Solaimani, M.

    1984-01-01

    ALVAND IIC is a research tokamak having a circular cross section with major radius of 45.5 cm and minor radius of 12.6 cm, which has been designed and constructed in the plasma physics division of NRC of AEOI. It is used for developing various diagnostics for low beta plasmas and study of the physical characteristics of these plasmas. This paper discusses the design of ALVAND IIC. (Author)

  6. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  7. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    International Nuclear Information System (INIS)

    LIN-LUI, Y.R; CHAN, V.S; PRATER, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  8. CAT-D-T tokamaks

    International Nuclear Information System (INIS)

    Greenspan, E.; Blue, T.; Miley, G.H.

    1981-01-01

    The domains of plasma fuel cycles bounded by the D-T and Cat-D, and by the D-T and SCD modes of operation are examined. These domains, referred to as, respectively, the Cat-D-T and SCD-T modes of operation, are characterized by the number (γ) of tritons per fusion neutron available from external (to the plasma) sources. Two external tritium sources are considered - the blankets of the Cat-D-T (SCD-T) reactors and fission reactors supported by the Cat-D-T (SCD-T) driven hybrid reactors. It is found that by using 6 Li for the active material of the control elements of the fission reactors, it is possible to achieve γ values close to unity. Cat-D-T tokamaks could be designed to have smaller size, higher power density, lower magnetic field and even lower plasma temperature than Cat-D tokamaks; the difference becomes significant for γ greater than or equal to .75. The SCD-T mode of operation appears to be even more attractive. Promising applications identified for these Cat-D-T and SCD-T modes of operation include hybrid reactors, fusion synfuel factories and fusion reactors which have difficulty in providing all their tritium needs

  9. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  10. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  11. Tokamak Engineering Technology Facility scoping study

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR

  12. Total magnetic reconnection during a tokamak major disruption

    International Nuclear Information System (INIS)

    Goetz, J.A.

    1990-09-01

    Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface

  13. Upgraded operator training by using advanced simulators

    International Nuclear Information System (INIS)

    Iwashita, Akira; Toeda, Susumu; Fujita, Eimitsu; Moriguchi, Iwao; Wada, Kouji

    1991-01-01

    BWR Operator Training Center Corporation (BTC) has been conducting the operator training for all BWR utilities in Japan using fullscope simulators. Corresponding to increasing quantitative demands and higher qualitative needs of operator training, BTC put advanced simulators in operation (BTC-2 simulator in 1983 and BTC-3 simulator in 1989). This paper describes the methods and the effects of upgraded training contents by using these advanced simulators. These training methods are applied to the 'Advanced Operator Training course,' the 'Operator Retraining Course' and also the 'Family (crew) Training Course.' (author)

  14. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  15. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  16. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-01-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T e ) gradient and low electron density (n e ). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10

  17. Operational Leadership and Advancing Technology

    Science.gov (United States)

    2009-05-04

    leadership , most agree that leadership , especially military leadership , is not synonymous with “ management .” 9 Managers often focus solely on...FINAL 3. DATES COVERED (From - To) 9 Feb – 4 May 2009 4. TITLE AND SUBTITLE Operational Leadership and Advancing Technology 5a...operational leader must use his authority and leadership skills to get by in from all concerned to maximize technological advances. 15. SUBJECT TERMS

  18. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  19. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-01-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks

  20. The collaborative tokamak control room

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2006-01-01

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. In the US, the National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than 1000 US fusion scientists in 40 institutions who perform magnetic fusion research. This paper reports on one aspect of the project which is the development of the collaborative tokamak control room to enhance both collocated and remote scientific participation in experimental operations. This work includes secured computational services that can be scheduled as required, the ability to rapidly compare experimental data with simulation results, a means to easily share individual results with the group by moving application windows to a shared display, and the ability for remote scientists to be fully engaged in experimental operations through shared audio, video, and applications. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  1. Technology and physics in the Tokamak Program: The need for an integrated, steady-state RandD tokamak experiment

    International Nuclear Information System (INIS)

    1988-05-01

    The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs

  2. Experiences on vacuum conditioning in the cryostat of KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke [National Fusion Research Institute, Daejeon (Korea, Republic of); Woo, I.S.; Chang, Y.B.; Kwag, S.W.; Song, N.H.; Bang, E.N.; Hong, J.S.; Chu, Y.; Park, K.R. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Highlights: ► The vacuum of the cryostat has been stably maintained during the KSTAR operation. ► The detected cold leak at the PF/CS coils and CS structure. ► The present helium leak makes no issue for the cryostat operation. -- Abstract: Korea Superconducting Tokamak Advanced Research (KSTAR) device has been successfully operated for the plasma experiment from KSTAR 1st campaign to 4th campaign. The main pumping system for the cryostat has to maintain the target pressure below 1.0 × 10{sup −4} mbar at room temperature and 1.0 × 10{sup −5} mbar at extremely low temperature for the plasma experiment against the air leak coming from ports of vessel and/or the helium leak from cooling loops in the cryostat. No leak has been detected at room temperature. Unexpectedly, the cold-leak appeared in the cryostat at temperature around 50 K during the cool-down in the KSTAR 2nd campaign. We carefully analyzed the characteristics of detected cold leak because it can cause the increase of the base pressure in the cryostat. After the cool-down, the leak detection was performed to locate the position and size of the leak by the pressurizing the loops. As a result, it is found that the cold leak was located at cooling loops for PF/CS coils and CS structure. Nevertheless, the vacuum inside the cryostat was well maintained below 6.0 × 10{sup −8} mbar during the entire operation period. The impact of the He-leak in present status on the plasma operation is negligible. However, we have found that the leak rate increases as a function of time. Therefore careful monitoring on cold-leak is an important technical issue for the operation of superconducting tokamak.

  3. Trajectory planning of tokamak flexible in-vessel inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Lai, Yinping; He, Tao [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China)

    2015-10-15

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  4. Trajectory planning of tokamak flexible in-vessel inspection robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Lai, Yinping; He, Tao

    2015-01-01

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  5. Advanced operation strategy for feed-and-bleed operation in an OPR1000

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Yoon, Ho Joon; Kim, Jaewhan; Kang, Hyun Gook

    2016-01-01

    Highlights: • Advanced operating strategy covers all necessary conditions for F&B operation. • Advanced operating strategy identifies the urgency of F&B operation. • An advanced operating strategy for F&B operation is developed using a decision tree. • Human error probability is re-estimated based on a thermohydraulic analysis and K-HRA method. • An advanced operation strategy provides indications under various plant situations. - Abstract: When the secondary side is unavailable in a pressurized water reactor (PWR), heat from the core will accumulate in the primary side causing core damage. In this situation a heat removal mechanism called feed-and-bleed operation (F&B operation) must be used, which is a process of directly cooling the primary reactor cooling system (RCS). However, conventional operation strategy in emergency operating procedures (EOPs) does not cover all possible conditions to initiate F&B operation. If the EOP informs on the urgency of F&B operation, operators will be able to more clearly make decisions regarding F&B operation initiation. In order to cover all possible scenarios for F&B operation and systematically inform its urgency, an advanced operating strategy using a decision tree is developed in this study. The plant condition can be classified according to failure of secondary side, RCS pressure condition, injectable inventory to RCS, and remaining core inventory. RCS pressure, core level, and RCS temperature are representative indicators which provide information regarding the initiation of F&B operation. Indicators can be selected based on their detectability and quantification, and a decision tree is developed according to combinations of indicators. To estimate the effects of the advanced operation strategy, human error probability (HEP) of F&B operation is re-estimated based on a thermohydraulic analysis. The available time for operators to initiate F&B operation is also re-estimated to obtain more realistic data. This

  6. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  7. Numerical Study of Equilibrium, Stability, and Advanced Resistive Wall Mode Feedback Algorithms on KSTAR

    Science.gov (United States)

    Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2007-11-01

    Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.

  8. A self-consistent model of an isothermal tokamak

    Science.gov (United States)

    McNamara, Steven; Lilley, Matthew

    2014-10-01

    Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.

  9. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  10. Advanced probes for edge plasma diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Adámek, Jiří; Balan, P.; Hronová-Bilyková, Olena; Brotánková, Jana; Dejarnac, Renaud; Devynck, P.; Ďuran, Ivan; Gunn, J. P.; Hron, Martin; Horáček, Jan; Ionita, C.; Kocan, M.; Martines, E.; Pánek, Radomír; Peleman, P.; Schrittwieser, R.; Van Oost, G.; Žáček, František

    2006-01-01

    Roč. 63, č. 0 (2006), 012001-012002 E-ISSN 1742-6596. [SECOND INTERNATIONAL WORKSHOP AND SUMMER SCHOOL ON PLASMA PHYSICS. Kiten, 03.07.2006-09.07.2006] R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma * tokamak * electric probes * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

    International Nuclear Information System (INIS)

    Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.

    1997-01-01

    Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry

  12. [Fusion research/tokamak]. Final report, 1 May 1988 - 30 April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves

  13. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  14. Design and realization of the J-TEXT tokamak central control system

    International Nuclear Information System (INIS)

    Yang Zhoujun; Zhuang Ge; Hu Xiwei; Zhang Ming; Qiu Shengshun; Wang Zhijiang; Ding Yonghua; Pan Yuan

    2009-01-01

    The Joint Texas Experimental Tokamak (J-TEXT), a medium-sized conventional tokamak, serves as a user experimental facility in the China-USA fusion research community. Development of a flexible and easy-to-use J-TEXT central control system (CCS) is of supreme importance for users to coordinate the experimental scenarios with full integration into the discharge operation. This paper describes in detail the structure and functions of the J-TEXT CCS system as well as the performance in practical implementation. Results obtained from both commissioning and routine operations show that the J-TEXT CCS system can offer a satisfactory and effective control that is reliable and stable. The J-TEXT tokamak achieved high-quality performance in its first-ever experimental campaign with this CCS system.

  15. The Advanced Technology Operations System: ATOS

    Science.gov (United States)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  16. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-01-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  17. Simulation of Heating with the Waves of Ion Cyclotron Range of Frequencies in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Yang Cheng; Zhu Sizheng; Zhang Xinjun

    2010-01-01

    Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high-field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3 He in D( 3 He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.

  18. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  19. Advances in integrated plasma control on DIII-D

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Hahn, S.H.; Humphreys, D.A.; In, Y.; Johnson, R.D.; Kim, J.S.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Welander, A.S.; Xiao, B.

    2007-01-01

    The DIII-D advanced tokamak physics program requires extremely high performance from the DIII-D plasma control system, including simultaneous accurate regulation of plasma shape, stored energy, density and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of new model-based plasma controllers on DIII-D. We also describe the development of the control software, hardware, and model-based control algorithms for the superconducting EAST and KSTAR tokamaks

  20. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  1. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  2. Development of a visualized software for tokamak experiment data processing

    International Nuclear Information System (INIS)

    Cao Jianyong; Ding Xuantong; Luo Cuiwen

    2004-01-01

    With the VBA programming in Microsoft Excel, the authors have developed a post-processing software of experimental data in tokamak. The standard formal data in the HL-1M and HL-2A tokamaks can be read, displayed in Excel, and transmitted directly into the MATLAB workspace, for displaying pictures in MATLAB with the software. The authors have also developed data post-processing software in MATLAB environment, which can read standard format data, display picture, supply visual graphical user interface and provide part of advanced signal processing ability

  3. Theory of incremental turbulent transport in tokamaks

    International Nuclear Information System (INIS)

    Similon, P.L.

    1991-01-01

    The goal of this research is to understand how the various aspect of turbulent transport operate in tokamaks, in the presence of low frequency fluctuations such as drift waves or trapped electron modes

  4. New results from the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Ananiev, A.S.; Amoskov, V.M.

    2003-01-01

    New results from the Globus-M spherical tokamak are presented. High plasma current of 0.36 MA, high toroidal magnetic field of 0.55 T and other important plasma characteristics were achieved. Described are the operational space and plasma stability limits in the OH regime. The factors limiting operational space (MHD instabilities, runaway electrons, etc.) are discussed. New experiments on plasma fuelling are described. First results of experiments with a coaxial plasma gun injector are presented. Initial results of a plasma - wall interaction study are outlined. First results obtained with new diagnostic tools installed on the tokamak are presented. An auxiliary heating system test was performed. Preliminary results of simulations and experiments are given. (author)

  5. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  6. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  7. Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Li, M. H.; Ding, B. J.; Zhang, J. Z.; Gan, K. F.; Wang, H. Q.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, Z. G.; Ma, W. D.; Jia, H.; Chen, M.; Yang, Y.; Feng, J. Q.; Wang, M.; Xu, H. D.; Shan, J. F.; Liu, F. K.; Peysson, Y.

    2014-01-01

    Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/n e-av (line-averaged density) above n e-av  = 2.2 × 10 19  m −3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST

  8. Remote operation of the GOLEM tokamak for Fusion Education

    Czech Academy of Sciences Publication Activity Database

    Grover, O.; Kocman, J.; Odstrčil, M.; Odstrčil, T.; Matušů, M.; Stöckel, Jan; Svoboda, V.; Vondrášek, G.; Žára, J.

    2016-01-01

    Roč. 112, November (2016), s. 1038-1044 ISSN 0920-3796. [Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research IAEA /10./. Ahmedabad, 20.04.2015-24.04.2015] Institutional support: RVO:61389021 Keywords : Tokamak technology * Remote participation * Education * Nuclear fusion Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616303441

  9. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  10. First Results from Tests of High Temperature Superconductor Magnets on Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gryaznevich, M.; Todd, T.T., E-mail: mikhail.gryaznevich@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Svoboda, V.; Markovic, T.; Ondrej, G. [Czech Technical University, Prague (Czech Republic); Stockel, J.; Duran, I.; Kovarik, K. [IPP Prague, Czech Technical University, Prague (Czech Republic); Sykes, A.; Kingham, D. [Tokamak Solutions, Culham Science Centre, Abingdon (United Kingdom); Melhem, Z.; Ball, S.; Chappell, S. [Oxford Instruments, Abingdon (United Kingdom); Lilley, M. K.; De Grouchy, P.; Kim, H. -T. [Imperial College, London (United Kingdom)

    2012-09-15

    Full text: It has long been known that high temperature superconductors (HTS) could have an important role to play in the future of tokamak fusion research. Here we report on first results of the use of HTS in a tokamak magnet and on the progress in design and construction of the first fully-HTS tokamak. In the experiment, the two copper vertical field coils of the small tokamak GOLEM were replaced by two coils each with 6 turns of HTS (Re)BCO tape. Liquid nitrogen was used to cool the coils to below the critical temperature at which HTS becomes superconducting. Little effect on the HTS critical current has been observed for perpendicular field up to 0.5 T and superconductivity has been achieved at {approx} 90.5K during bench tests. There had been concerns that the plasma pulses and pulsed magnetic fields might cause a 'quench' in the HTS, i.e., a sudden and potentially damaging transition from superconductor to normal conductor. However, many plasma pulses were fired without any quenches even when disruptions occurred with corresponding induced electrical fields. In addition, experiments without plasma have been performed to study properties of the HTS in a tokamak environment, i.e., critical current and its dependence on magnetic and electrical fields generated in a tokamak both in DC and pulsed operations, maximum current ramp-up speed, performance of the HTS tape after number of artificially induced quenches etc. No quench has been observed at DC currents up to 200 A (1.2 kA-turns through the coil). In short pulses, current up to 1 kA through the tape (6 kA-turns) has been achieved with no subsequent degradation of the HTS performance with a current ramp rate up to 0.6 MA/s. In future experiments, increases in both the plasma current and pulse duration are planned. Considerable experience has been gained during design and fabrication of the cryostat, coils, isolation and insulation, feeds and cryosystems, and GOLEM is now routinely operated with HTS coils. The

  11. 20 years of research on the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.

    2014-01-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  12. Tokamak plasma power balance calculation code (TPC code) outline and operation manual

    International Nuclear Information System (INIS)

    Fujieda, Hirobumi; Murakami, Yoshiki; Sugihara, Masayoshi.

    1992-11-01

    This report is a detailed description on the TPC code, that calculates the power balance of a tokamak plasma according to the ITER guidelines. The TPC code works on a personal computer (Macintosh or J-3100/ IBM-PC). Using input data such as the plasma shape, toroidal magnetic field, plasma current, electron temperature, electron density, impurities and heating power, TPC code can determine the operation point of the fusion reactor (Ion temperature is assumed to be equal to the electron temperature). Supplied flux (Volt · sec) and burn time are also estimated by coil design parameters. Calculated energy confinement time is compared with various L-mode scaling laws and the confinement enhancement factor (H-factor) is evaluated. Divertor heat load is predicted by using simple scaling models (constant-χ, Bohm-type-χ and JT-60U empirical scaling models). Frequently used data can be stored in a 'device file' and used as the default values. TPC code can generate 2-D mesh data and the POPCON plot is drawn by a contour line plotting program (CONPLT). The operation manual about CONPLT code is also described. (author)

  13. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters

  14. Maintenance concept development for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs

  15. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    Science.gov (United States)

    Windsor, C. G.; Pautasso, G.; Tichmann, C.; Buttery, R. J.; Hender, T. C.; EFDA Contributors, JET; ASDEX Upgrade Team

    2005-05-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.

  16. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    International Nuclear Information System (INIS)

    Windsor, C.G.; Buttery, R.J.; Hender, T.C.; Pautasso, G.; Tichmann, C.

    2005-01-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems

  17. Improvement of the tokamak concept

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L

    1994-12-31

    Improvement of the tokamak concept is highly desirable to reduce the size and capital cost of a device able to ignite to increase the plasma pressure, i.e. the power density to reduce the cost of electricity, and to increase the fraction of bootstrap current to render the tokamak compatible with continuous operation. The most important results obtained in this field are summarized, and the options are shown which are still open and explored by the various experiments. Various effects of the plasma shaping are discussed, plasma configurations with both high {beta}{sub N} and H{sub G} are explored, and the issues of stable steady state and of the plasma edge are briefly discussed. (R.P.). 65 refs., 2 tabs.

  18. A modularized operator interface framework for Tokamak based on MVC design pattern

    International Nuclear Information System (INIS)

    Yin, Xuan; Zheng, Wei; Zhang, Ming; Zhang, Jing; Zhuang, G.; Ding, T.

    2014-01-01

    Highlights: • Our framework is based on MVC design pattern. • XML is used to cope with minor difference between different applications. • Functions dealing with EPICS and MDSplus have been modularized into reusable modules. • The modularized framework will shorten J-TEXT's software development cycle. - Abstract: Facing various and continually changing experimental needs, the J-TEXT Tokamak experiment requires home-made software applications developed for different sub-systems. Though dealing with different specific problems, these software applications usually share a lot of functionalities in common. With the goal of improving the productivity of research groups, J-TEXT has designed a C# desktop application framework which is mainly focused on operator interface development. Following the Model–View–Controller (MVC) design pattern, the main functionality dealing with Experimental Physics and Industrial Control System (EPICS) or MDSplus has been modularized into reusable modules. Minor difference among applications can be coped with XML configuration files. In this case, developers are able to implement various kinds of operator interface without knowing the implementation details of the bottom functions in Models, mainly focusing on Views and Controllers. This paper presents J-TEXT C# desktop application framework, introducing the technology of fast development of the modularized operator interface. Some experimental applications designed in this framework have been already deployed in J-TEXT, and will be introduced in this paper

  19. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  20. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    International Nuclear Information System (INIS)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model's on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy's theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support

  1. Analysis of toroidal rotation data for the DIII-D tokamak

    International Nuclear Information System (INIS)

    St John, H.; Stroth, U.; Burrell, K.H.; Groebner, R.J.; DeBoo, J.C.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Our results are based on numerical inversions using the transport code ONETWO, modified to account for the radial diffusion of toroidal angular momentum. 13 refs., 4 figs

  2. Twenty Years of Research on the Alcator C-Mod Tokamak

    Science.gov (United States)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  3. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    Energy Technology Data Exchange (ETDEWEB)

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  4. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  5. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  6. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Kommoshvili, K; Cuperman, S; Bruma, C

    2003-01-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects

  7. Comparison between voltage by turn measured on different tokamaks operating in hybrid wave current drive regime

    International Nuclear Information System (INIS)

    Briffod, G.; Hoang, G.T.

    1987-06-01

    On a tokamak in a current drive operation with a hybrid wave, the R.F. current is estimated from the voltage drop by plasma turn generated by R.F. power application. This estimated current is not proportional to the injected power. There still exists in the plasma an electric field corresponding to the current part produced by induction. The role evaluation of this parameter on the current drive efficiency is important. In this report the relation voltage-R.F. current is studied on Petula and results on the voltage evolution by turn on different machines are compared [fr

  8. Parametric study of ohmic discharges in the TCA tokamak

    International Nuclear Information System (INIS)

    De Chambrier, A.; Collins, G.A.; Heym, A.; Hofmann, F.; Hollenstein, Ch.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Moret, J.-M.; Nowak, S.; O'Rourke, J.; Pochelon, A.; Simm, W.

    1983-01-01

    The study of the energy confinement in a tokamak is an important aspect in the characterisation of its performance. The TCA tokamak has been in operation now for more than two years and the state of the machine and of its diagnostics have permitted such work to be performed. The authors describe the proper method for this type of approach and then present the results concerning the energy confinement of the electrons and ions. (Auth./G.T.H.)

  9. First experiments with SST-1 tokamak

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2005-01-01

    SST-1, a steady state superconducting tokamak, is undergoing commissioning tests at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in a tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. The auxiliary current drive is based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. Detailed commissioning tests on the cryogenic system and experiments on the hydraulic characters and cool down features of single TF coils have been completed prior to the cool down of the entire superconducting system. Results of the single TF magnet cool down, and testing of the magnet system are presented. First experiments related to the breakdown and the current ramp up will subsequently be carried out. (author)

  10. Definition of total bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Ross, D.W.

    1995-01-01

    Alternative definitions of the total bootstrap current are compared. An analogous comparison is given for the ohmic and auxiliary currents. It is argued that different definitions than those usually employed lead to simpler analyses of tokamak operating scenarios

  11. Parametric requirements for noncircular tokamak commercial fusion plants

    International Nuclear Information System (INIS)

    Bourque, R.F.

    1978-05-01

    Systems analyses have been performed in order to determine the parameter ranges for economical operation of equilibrium commercial fusion power plants using noncircular tokamak reactors. The fully-integrated systems code SCOPE was employed in which costs of electricity were used as the critical dependent variable by which the effects of changes in system parameters were observed. The results of these studies show that many of the operating parameters required for economical operation can be considerably relaxed from what has been thought necessary. For example: (1) Neutron wall loadings over about 2 megawatts per square meter are unnecessary for economical tokamak operation; (2) electrical power levels beyond 1000 MW(e) are not required. In fact, power levels as low as 100 MW(e) may be acceptable; (3) total beta values of 10 to 12 percent are adequate for economic operation; (4) duty cycles as low as 50 percent have only a small effect on plant economics; (5) an acceptable first wall lifetime is 15 MW-yr per square meter

  12. Numerical study for determining PF coil system parameters in MHD equilibrium of KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Ryu, J.; Hong, S.H.; Lee, K.W.; Hong, B.G.; In, S.R.; Kim, S.K.

    1995-01-01

    The KT-2 is a large-aspect-ratio medium-sized divertor tokamak in the conceptual design phase and planned to be operational in 1998 at the Korea Atomic Energy Research Institute (KAERI). Plasma equilibrium in tokamak can be acquired by controlling the current of poloidal field (PF) coils in appropriate geometries and positions. In this study, the authors have performed numerical calculations to achieve the various equilibrium conditions fitting given plasma shapes and satisfying PF current limitations. Usually an ideal magnetohydrodynamic (MHD) equation is used to obtain the equilibrium solution of tokamak plasma, and it is practical to take advantage of a numerical method in solving the MHD equation because it has nonlinear source terms. Two equilibrium codes have been applied to find a double-null configuration of free-boundary tokamak plasma in KT-2: one is of the authors' own developing and the other is a free-boundary tokamak equilibrium code (FBT) that has been used mainly for the verification of developed code's results. PF coil system parameters including their positions and currents are determined for the optimization of input power required when the specifications of KT-2 tokamak are met. Then, several sets of equilibrium conditions during the tokamak operation are found to observe the changes of poloidal field currents with the passing of operation time step, and the basic stability problems related with the magnetic field structure is also considered

  13. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  14. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  15. DIII-D tokamak long range plan. Revision 3

    International Nuclear Information System (INIS)

    1992-08-01

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998

  16. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  17. A comparison of tokamak operation with metallic getters (Ti, Cr, Be) and boronization

    International Nuclear Information System (INIS)

    Winter, J.

    1990-07-01

    In addition to discharge cleaning techniques, gettering of tokamaks has been used since 1975 as a powerful tool for controlling the impurity influx into fusion plasmas. High-Z metals like Ti and Cr, evaporated onto the walls of the fusion devices, have first been used. After the introduction of carbon as low Z plasma facing material for the large tokamaks new scenarios were developed, optimizing the low-Z aspect of wall materials. These are the boronization technique and the evaporation of Be in conjunction with the use of Be limiters. A review of the different getter techniques and of the observed results will be given, focussing on the comparison of the tokamak performance achieved with boronization and the use of beryllium. It is shown that in all cases of gettering the most important mechanism for the improved machine performance is the control of the oxygen impurity influx. Very similar results are found for the impurity control potential. The added benefit of boronization and Be gettering arises from the low Z of the materials. Both scenarios essentially lead to the same machine performance. Both render themselves as an option for future devices. (orig.)

  18. The magnet system of the Tokamak T-15 upgrade

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Azizov, E.A.; Alfimov, D.E.; Belyakov, V.A.; Bondarchuk, E.N.; Chudnovsky, A.N.; Dokuka, V.N.; Kavin, A.A.; Khayrutdinov, R.R.; Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N.; Lukash, V.E.; Mineev, A.B.; Muratov, V.P.

    2015-01-01

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  19. The magnet system of the Tokamak T-15 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P., E-mail: ppkhvost@rambler.ru [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Azizov, E.A.; Alfimov, D.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Belyakov, V.A.; Bondarchuk, E.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Chudnovsky, A.N.; Dokuka, V.N. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Kavin, A.A. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Khayrutdinov, R.R. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Lukash, V.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Mineev, A.B.; Muratov, V.P. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); and others

    2015-10-15

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  20. The spheric tokamak programme at Culham

    International Nuclear Information System (INIS)

    Sykes, A.

    1999-01-01

    The Spherical Tokamak (ST) is the low aspect ratio limit of the conventional tokamak, and appears to offer attractive physics properties in a simpler device. The START (Small Tight Aspect Ratio Tokamak) experiment provided the world's first demonstration of the properties of hot plasmas in an ST configuration, and was operational at Culham from January 1991 to March 1998, obtaining plasma current of up to 300 kA and pulse durations of ∼ 50 ms. Its successor, MAST is scheduled to obtain first plasma in Autumn 1998 and is a purpose built, high vacuum machine designed to have a tenfold increase in plasma volume with plasma currents up to 2 MA. Current drive and heating will be by a combination of induction-compression as on START, a high-performance central solenoid, 1.5 MW ECRH and 5 MW of Neutral Beam Injection. The promising results from START are reviewed, and the many challenges posed for the next generation of purpose-built STs (such as MAST) are described. (author)

  1. Dust limit management strategy in tokamaks

    Science.gov (United States)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S. H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-06-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R&D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  2. Dust limit management strategy in tokamaks

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S.H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-01-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R and D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  3. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  4. Design and construction of Alborz tokamak vacuum vessel system

    International Nuclear Information System (INIS)

    Mardani, M.; Amrollahi, R.; Koohestani, S.

    2012-01-01

    Highlights: ► The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. ► As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. ► A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. ► Structural analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. - Abstract: The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. At the heart of the tokamak is the vacuum vessel and limiter which collectively are referred to as the vacuum vessel system. As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. The VV systems need upper and lower vertical ports, horizontal ports and oblique ports for diagnostics, vacuum pumping, gas puffing, and maintenance accesses. A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. Basic structure analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. Stresses at general part of the VV body are lower than the structure material allowable stress (117 MPa) and this analysis show that the maximum stresses occur near the gravity support, and is about 98 MPa.

  5. The ARIES-III D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1992-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-III design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. In this paper, results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-I is included

  6. A systems analysis of the ARIES tokamak reactors

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1992-01-01

    The multi-institutional ARIES study has completed a series of cost-of-electricity optimized conceptual designs of commercial tokamak fusion reactors that vary the assumed advances in technology and physics. A comparison of these designs indicates the cost benefit of various design options. A parametric systems analysis suggests a possible means to obtain a marginally competitive fusion reactor

  7. ELM induced tungsten melting and its impact on tokamak operation

    Czech Academy of Sciences Publication Activity Database

    Coenen, J.W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Jachmich, S.; Balboa, I.; Clever, M.; Dejarnac, Renaud; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horáček, Jan; Knaup, M.; Komm, Michael; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R.A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.

    2015-01-01

    Roč. 463, August (2015), s. 78-84 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : plasma * tokamak Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514005960#

  8. Characterisation, modelling and control of advanced scenarios in the european tokamak jet

    International Nuclear Information System (INIS)

    Tresset, G.

    2002-01-01

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  9. Impact of maximum TF magnetic field on performance and cost of an advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.

    1983-01-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of variation in the maximum value of the field at the toroidal field (TF) coils on the performance and cost of a low q/sub psi/, quasi-steady-state tokamak. Marginal ignition, inductive current startup plus 100 s of inductive burn, and a constant value of epsilon (inverse aspect ratio) times beta poloidal were global conditions imposed on this study. A maximum TF field of approximately 10 T was found to be appropriate for this device

  10. Advanced limiter test (ALT-I) in the TEXTOR tokamak - concept and experimental design

    International Nuclear Information System (INIS)

    Conn, R.W.; Grotz, S.P.; Prinja, A.K.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm 2 . The head is made of TiC-coated graphite containing a variable aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 2x10 4 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer. (author)

  11. Advanced tokamak research with integrated modeling in JT-60 Upgrade

    International Nuclear Information System (INIS)

    Hayashi, N.

    2010-01-01

    Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanisms of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.

  12. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    Science.gov (United States)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  13. A continuous winding scheme for superconducting tokamak coils with cable-in-conduit conductor

    International Nuclear Information System (INIS)

    Kim, Sang-ho; Chung, Kie-hyung; Lee, Deok Kyo

    2001-01-01

    Superconducting magnet coils are essential for steady-state or long-pulse operation of tokamaks. In an advanced tokamak, the central solenoid (CS) coils are usually divided into several pairs of modules to provide for an extra plasma shaping capability in addition to those available from the shaping (poloidal field) coils. In the conventional pancake winding scheme of superconducting coils, each coil consists of separate superconducting 'double-pancake' coils connected together in series; however, such joints are not superconducting, which is one of the major disadvantages, especially in pulsed operations. A new type of winding was adopted for the ITER CS coil, which consists of cylindrical shell 'layers' joined in series. A disadvantage of this layer winding is its inability to yield modular coils that can provide certain degree of plasma shaping. Joints can be removed in a coil winding pack with the conventional pancake winding scheme, if the conductor is sufficiently long and the winding machine is properly equipped. The compactness, however, cannot be preserved with this scheme. The winding compactness is important since the radial build of the CS coils is one of the major parameters that determine the machine size. In this paper, we present a continuous winding scheme that requires no joints, allows coil fabrication at minimum dimension, and meets the flux swing requirement and other practical aspects

  14. Multichannel bolometer for radiation measurements on the TCA tokamak

    International Nuclear Information System (INIS)

    Joye, B.; Marmillod, P.; Nowak, S.

    1986-01-01

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  15. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N. [College of Science, Donghua University, Shanghai 201620 (China); Xu, G. S., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  16. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  17. Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2001-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field

  18. Experimental study of external kink instabilities in the Columbia High Beta Tokamak

    International Nuclear Information System (INIS)

    Ivers, T.H.

    1991-01-01

    The generation of power through controlled thermonuclear fusion reactions in a magnetically confined plasma holds promise as a means of supplying mankind's future energy needs. The device most technologically advanced in pursuit of this goal is the tokamak, a machine in which a current-carrying toroidal plasma is thermally isolated from its surroundings by a strong magnetic field. To be viable, the tokamak reactor must produce a sufficiently large amount of power relative to that needed to sustain the fusion reactions. Plasma instabilities may severely limit this possibility. In this work, I describe experimental measurements of the magnetic structure of large-scale, rapidly-growing instabilities that occur in a tokamak when the current or pressure of the plasma exceeds a critical value relative to the magnetic field, and I compare these measurements with theoretical predictions

  19. Preliminary results of MHD stability in HL-1 tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang

    1987-01-01

    In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given

  20. Immersive virtual walk-through development for tokamak using active head mounted display

    International Nuclear Information System (INIS)

    Dutta, Pramit

    2015-01-01

    A fully immersive virtual walk-through of the SST-1 tokamak has been developed. The virtual walkthrough renders the virtual model of SST-1 tokamak through a active stereoscopic head mounted display to visualize the virtual environment. All locations inside and outside of the reactor can be accessed and reviewed. Such a virtual walkthrough provides a 1:1 scale visualization of all components of the tokamak. To achieve such a virtual model, the graphical details of the tokamak CAD model are enhanced. Such enhancements are provided to improve lighting conditions at various locations, texturing of components to have a realistic visual effect and 360° rendering for ease of access. The graphical enhancements also include the redefinition of the facets to optimize the surface triangles to remove lags in display during visual rendering. Two separate algorithms are developed to interact with the virtual model. A fly-by algorithm, developed using C#, uses inputs from a commercial joystick to navigate within the virtual environment. The second algorithm uses the IR and gyroscopic tracking system of the head mounted display to render view as per the current pose of the user within the virtual environment and the direction of view. Such a virtual walk-thorough can be used extensively for design review and integration, review of new components, operator training for remote handling, operations, upgrades of tokamak, etc. (author)

  1. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Science.gov (United States)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  2. Internal transport barrier physics for steady state operation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wakatani, Masahiro [Kyoto Univ., Graduate School of Engineering, Uji, Kyoto (Japan); Fukuda, Takeshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Connor, Jack W. [Culham Science Centre, EURATOM/UKAEA Association (United Kingdom); Garbet, Xavier [Culham Science Centre, EFDA-JET CSU (United Kingdom); Gormezano, Claude [Associazone EURATOM-ENEA sulla Fusione C.R. Frascati (Italy); Mukhovatov, Vladimir [ITER Naka Joint Work Site, ITER Physics Unit, Naka, Ibaraki (Japan)

    2003-07-01

    Experimental results for the ITB (Internal Transport Barrier) formation and sustainment are compiled in a unified manner to find common features of ITBs in tokamaks. Global scaling laws for threshold power to obtain the ITBs are discussed. Theoretical models for plasmas with ITBs are summarized from stability and transport point of view. Finally possibility to obtain steady-state ITBs will be discussed in addition to extrapolation to ITER. (author)

  3. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    Houser, M.M.

    1993-01-01

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  4. Digital controlled pulsed electric system of the ETE tokamak. First report

    International Nuclear Information System (INIS)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-01-01

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author)

  5. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  6. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  7. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  8. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    Science.gov (United States)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  9. A novel approach to linearization of the electromagnetic parameters of tokamaks with an iron core

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P. E-mail: fupeng@mail.ipp.ac.cn; Liu, Z.Z.; Zou, J.H

    2002-05-01

    The equivalent model of an iron core tokamak is developed, in which the electromagnetic parameters of several pairs of coils in opposite series (PCOS) are not dependent on the saturation of the iron core during tokamak operation. With this the electromagnetic parameters of all the coils in an iron core tokamak can be linearized, As an example, the electromagnetic parameters of Hefei Super-conductive Tokamak with iron core (HT-7) are linearized, and it is in good agreement with the experimental results. The linearization approach can be applied in real time plasma control and electromagnetic analysis.

  10. Development of lab scale fast gas injection system for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Pathan, F.S.; Banaudha, Moni; Khristi, Yohan; Khan, M.S.; Khan, Ziauddin; Raval, D.C.; Khirwadkar, Samir

    2017-01-01

    The plasma density control plays an important role in Tokamak operation. The factors that influence plasma density in a Tokamak device are working gas injection, pumping, ionization rate and the recycle coefficient representing the wall conditions. Among these factors, gas injection is relatively convenient to be controlled. Hence, the most frequently adopted method to control the plasma density is to control the fast gas injection. This paper describes the design and experimental work carried out towards the development of Fast Gas Injection System for SST-1 Tokamak. Laboratory based test setup was successfully established for Fast Gas Injection System that can feed predefined quantity of gas in a controlled manner into vacuum chamber. Further, this FGIS system will be implemented in SST-1 Tokamak environment with online density feedback signal

  11. L to H mode transitions and associated phenomena in divertor tokamaks

    International Nuclear Information System (INIS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled ''L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks.'' The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model

  12. A Midsize Tokamak As Fast Track To Burning Plasmas

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2010-01-01

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain ((ge) 10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  13. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Design of inductively driven long pulse tokamak reactors: IDLT

    International Nuclear Information System (INIS)

    Ogawa, Yuichi

    1998-01-01

    Based on scientific data based adopted for designing ITER plasmas and on the advancement of fusion nuclear technology from the recent R and D program, the scientific feasibility of inductively-driven tokamak fusion reactors is studied. A low wall-loading DEMO fusion reactor is designed, which utilizes an austenitic stainless steel in conjunction with significant data bases and operating experiences, since we have given high priority to the early and reliable realization of a tokamak fusion plasma over the cost performance. Since the DEMO reactor with the relatively large volume (i.e., major radius of 10 m) is employed, plasma ignition is achievable with a low fusion power of 0.8 GW, and an operation period of 4 - 5 hours is available only with inductive current drive. Disadvantages of pulsed operation in commercial fusion reactors include fatigue in structural materials and the necessity of an energy storage system to compensate the electric power during the dwell time. To overcome these disadvantages, a pulse length is prolonged up to about 10 hours, resulting in the remarkable reduction of the total cycle number to 10 4 during the life of the fusion plant. (author)

  14. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  15. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  16. Collection and Characterization of Particulate from the Tore Supra Tokamak (Dec. 1999 Vent)

    International Nuclear Information System (INIS)

    Sharpe, John Phillip

    2002-01-01

    Particulate generated during the operation of a fusion device contributes to the radiological source term associated with accident scenarios in the device. Understanding the mechanisms generating the particulate and correctly describing its physical and chemical behavior is essential for safety analyses of future fusion devices. Knowledge of these mechanisms is gained by collecting and characterizing particulate matter from operating fusion facilities. Tokamak dust, the particulate matter generated during the operation of a tokamak fusion device, was collected from Tore Supra in December 1999, during the initial phase of the scheduled shutdown for installation of advanced plasma facing components. Tore Supra, located at CEA Cadarache, France, is presently the third largest operating tokamak with the capability of long-pulse operation. Eighteen super-conducting coils produce the 4.5 T magnetic field inside a vessel 2.4 m in major radius and 1.2 m in minor radius. Limiter and divertor regimes of operation are possible. In the divertor regime, the circular magnetic configuration is ergodized by six outboard resonant divertor modules that are covered with 12 m2 of carbon fiber composite (CFC) tiles. In addition, some field lines are diverted to actively cooled neutralizing plates made of CuCrZr bars covered with B4C. In the limiter regime, the plasma leans on the actively cooled inboard first wall or on a set of inertially cooled pumped limiters. The first wall area of 12 m2 is covered with both polycrystalline graphite tiles (83%) and CFC tiles (17%). The single outboard limiter is constructed of pyrolitic graphite, and the four toroidally symmetric bottom limiters are constructed of CFC. Figure 1.1 displays the relative location of plasma facing components within the plasma chamber of Tore Supra. In this report, we present in Section 2 the methods used to collect and analyze this dust and describe the selection of sampling locations. Section 3 includes a discussion

  17. A discussion on practicable scheme for machine control system of HL-2A tokamak

    International Nuclear Information System (INIS)

    Li Qiang; Song Xianming; Jiang Chao

    2001-01-01

    This is the modified version of The Preliminary Design on the Hardware and Nets of HL-2A Tokamak. In this version, centralized control as well as the field bus communication on HL-2A Tokamak is used. The hardware components and the operational theory are introduced. The questions of practice program, extensibility, centralized control, cooperation with other subsystems and the continuous adaptation of present device are all discussed. The budget of the system is detailed. To keep the step with the overall engineering constructions of HL-2A, suggestions of the time program are presented for the system design, instrument purchases, installation, construction, user program development and the final operation processes for the machine control system of HL-2A Tokamak

  18. Computational images of internal-transport-barrier oscillations in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, J.P S. [Inst Super Tecn, Ctr Fusao Nucl, EURATOM Assoc, P-1049001 Lisbon (Portugal); Litaudon, X.L. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance (France); Tala, T.J.J. [Assoc Euratom Tekes, FIN-02044 Espoo (Finland); JET EFDA Contributors [Culham Sci Ctr, Abingdon OX14 3DB, Oxon (United Kingdom)

    2008-07-01

    A well-known benchmarked code, where a Bohm-gyro-Bohm transport model is complemented with an empirical scaling for the dynamics of internal transport barriers (ITBs), is used to model the ITB oscillations that are often seen in advanced tokamak scenarios with a dominant fraction of bootstrap current. (authors)

  19. Role Allocations and Communications of Operators during Emergency Operation in Advanced Main Control Rooms

    International Nuclear Information System (INIS)

    Lee, June Seung

    2009-01-01

    The advanced main control room (MCR) in GEN III + nuclear power plants has been designed by adapting modern digital I and C techniques and an advanced man machine interface system (MMIS). Large Display Panels (LDPs) and computer based workstations are installed in the MCR. A Computerized Procedure System (CPS) and Computerized Operation Support System (COSS) with high degrees of automation are supplied to operators. Therefore, it is necessary to set up new operation concepts in advanced MCRs that are different from those applied in conventional MCRs regarding role allocations and communications of operators. The following presents a discussion of the main differences between advanced MCRs and conventional MCRs from the viewpoint of role allocations and communications. Efficient models are then proposed on the basis of a task analysis on a series of emergency operation steps

  20. Alfven wave heating in a tokamak reactor

    International Nuclear Information System (INIS)

    Borg, G.G.; Appert, K.; Knight, A.J.; Lister, J.B.; Vaclavik, J.

    1990-01-01

    A number of features of Alfven wave heating make it potentially attractive for use in large tokamak reactors. Among them are the availability and relativity low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. The physics of Alfven wave heating in a large tokamak is assessed. Present theoretical understanding of mode coupling and antenna loading is extrapolated to a large machine. The problem of a recessed antenna is analysed. Calculations of loading and discussion of various heating scenarios for the particular case of NET are also presented. (author). 23 refs, 18 figs, 4 tabs

  1. A review of lifetime analyses for tokamaks

    International Nuclear Information System (INIS)

    Harkness, S.D.; Cramer, B.

    1979-01-01

    System studies have shown that economic fusion power can best be achieved from the use of long lived components. The stresses generated in a first wall module are a complex function of its geometry, the chosen structural material and the tokamak burn cycle characteristics. A means of applying ASME Code Case 1592 to preliminary design has been established. Methods of incorporating some of the material property changes expected from irradiation are discussed. Cyclic stresses imposed by tokamak operation are expected to cause fatigue related properties to govern the life of the structure. Stress assisted bubble growth is also discussed. This may be the critical mechanism in establishing the creep rupture life of a fusion first wall component. (orig.)

  2. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    Energy Technology Data Exchange (ETDEWEB)

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  3. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Mau, T.K.; Miller, R.L.; Najmabadi, F.; Chan, V.S.; Chu, M.S.; LaHaye, R.; Lao, L.L.; Petrie, T.W.; Politzer, P.; John, St. H.E.; Snyder, P.; Staebler, G.M.; Turnbull, A.D.; West, W.P.

    2003-01-01

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented

  4. Comments on thermal runaway experiments in sub-ignition tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.

    1982-09-01

    Justification of deuterium-tritium operations is discussed from the physics viewpoint and optimal thermal runaway experiments in high-field, high-density compact tokamaks are suggested within the minimization of the induced radioactivation. (author)

  5. The use of scaling laws for the design of high beta tokamaks

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1987-01-01

    Several different empirical scaling laws for the tokamak energy confinement time are used to estimate the auxiliary heating power required for a laboratory experiment capable of testing tokamak confinement at high beta and techniques to access the second stability regime. Since operating experience in the second stability regime does not yet exist, these laws predict a wide range of possible power requirements, especially at large aspect ratios. However, by examining a model DT fusion power reactor with reasonable restrictions on the fusion island weight, neutron loading, and maximum magnetic field of the external coils, only a limited range of operating conditions are found for both first and second regime tokamaks, and only a subset of the scaling laws predict ignition. These particular scaling laws are then used to set confinement goals which if demonstrated by the laboratory experiment would indicate favourable scaling to a reactor. (author)

  6. Control-oriented Automatic System for Transport Analysis (ASTRA)-Matlab integration for Tokamaks

    International Nuclear Information System (INIS)

    Sevillano, M.G.; Garrido, I.; Garrido, A.J.

    2011-01-01

    The exponential growth in energy consumption has led to a renewed interest in the development of alternatives to fossil fuels. Between the unconventional resources that may help to meet this energy demand, nuclear fusion has arisen as a promising source, which has given way to an unprecedented interest in solving the different control problems existing in nuclear fusion reactors such as Tokamaks. The aim of this manuscript is to show how one of the most popular codes used to simulate the performance of Tokamaks, the Automatic System For Transport Analysis (ASTRA) code, can be integrated into the Matlab-Simulink tool in order to make easier and more comfortable the development of suitable controllers for Tokamaks. As a demonstrative case study to show the feasibility and the goodness of the proposed ASTRA-Matlab integration, a modified anti-windup Proportional Integral Derivative (PID)-based controller for the loop voltage of a Tokamak has been implemented. The integration achieved represents an original and innovative work in the Tokamak control area and it provides new possibilities for the development and application of advanced control schemes to the standardized and widely extended ASTRA transport code for Tokamaks. -- Highlights: → The paper presents a useful tool for rapid prototyping of different solutions to deal with the control problems arising in Tokamaks. → The proposed tool embeds the standardized Automatic System For Transport Analysis (ASTRA) code for Tokamaks within the well-known Matlab-Simulink software. → This allows testing and combining diverse control schemes in a unified way considering the ASTRA as the plant of the system. → A demonstrative Proportional Integral Derivative (PID)-based case study is provided to show the feasibility and capabilities of the proposed integration.

  7. Advanced smartgrids for distribution system operators

    CERN Document Server

    Boillot, Marc

    2014-01-01

    The dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the secu

  8. Preliminary measurements on Tokamak KT-5

    International Nuclear Information System (INIS)

    Wen Yizhi; Wan Shude; Rong Furui; Haan Shengshen; Liu Wandong; Liu Lei

    1987-01-01

    A small tokamak, KT-5, has been put in to operation since 1984. The major and minor radius of the plasma are 30 and 4.5 cm, respectively. The parameters obtained in the first phase of KT-5 experiments are as follows B t = 0.45 T, I p ≥ 5 kA, q(α) σ = 50 eV

  9. Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

    International Nuclear Information System (INIS)

    Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Jun-ichi; Ishige, Youichi; Suzuki, Hiroaki; Komuro, Kenichi; Sakasai, Akira; Ikeda, Yoshitaka

    2014-03-01

    The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the welded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device. (author)

  10. Conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR), September 1978

    International Nuclear Information System (INIS)

    Kelley, J.L.

    1978-12-01

    The flexibility of the fusion hybrid reactor to function as a fuel production facility, power plant, waste disposal burner or combinations of all of these, as well as the reactor's ability to use proliferation resistant fuel cycles, has provided the incentive to assess the feasibility of a near-term demonstration plant. The goals for a Demonstration Tokamak Hybrid Reactor (DTHR) were established and an initial conceptual design was selected. Reactor performance and economics were evaluated and key developmental issues were assessed. The study has shown that a DTHR is feasible in the late 1980's, a significant quantity of fissile fuel could be produced from fertile thorium using present day fission reactor blanket technology, and a large number of commercially prototypical components and systems could be developed and operationally verified. The DTHR concept would not only serve as proof-of-principle for hybrid technology, but could be operated in the ignited mode and provide major advancements for pure fusion technology

  11. Microinstability theory in tokamaks: a review

    International Nuclear Information System (INIS)

    Tang, W.M.

    1977-06-01

    Significant investigations in the area of tokamak microinstability theory are reviewed. Emphasis is given to the work covering the period from 1970 through 1976. Special attention is focused on low-frequency electrostatic drift-type modes, which are generally believed to be the dominant tokamak microinstabilities under normal operating conditions. The basic linear formalism including electromagnetic (finite beta) modifications is presented along with a general survey of the numerous papers investigating specific linear and nonlinear effects on these modes. Estimates of the associated anomalous transport and confinement times are discussed, and a summary of relevant experimental results is given. Studies of the nonelectrostatic and high-frequency instabilities associated with the presence of high energy ions from neutral beam injection (or with the presence of alpha particles from fusion reactions) are also surveyed

  12. Microinstability theory in tokamaks: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M.

    1977-06-01

    Significant investigations in the area of tokamak microinstability theory are reviewed. Emphasis is given to the work covering the period from 1970 through 1976. Special attention is focused on low-frequency electrostatic drift-type modes, which are generally believed to be the dominant tokamak microinstabilities under normal operating conditions. The basic linear formalism including electromagnetic (finite beta) modifications is presented along with a general survey of the numerous papers investigating specific linear and nonlinear effects on these modes. Estimates of the associated anomalous transport and confinement times are discussed, and a summary of relevant experimental results is given. Studies of the nonelectrostatic and high-frequency instabilities associated with the presence of high energy ions from neutral beam injection (or with the presence of alpha particles from fusion reactions) are also surveyed.

  13. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  14. Optimization of OH coil recharging scenario of quasi-steady operation in tokamak fusion reactor by lower hybrid wave current drive

    International Nuclear Information System (INIS)

    Sugihara, M.; Fujisawa, N.; Nishio, S.; Iida, H.

    1984-01-01

    Using simple physical model equations optimum plasma and rf parameters for an OH coil recharging scenario of quasi-steady operation in tokamak fusion reactors by lower hybrid wave current drive are studied. In this operation scenario, the minimization of the recharge time of OH coils or stored energy for it will be essential and can be realized by driving sufficient current without increasing the plasma temperature too much. Low density and broad spectrum are shown to be favorable for the minimization. In the case of FER (Fusion Experimental Reactor under design study in JAERI) baseline parameters, the minimum recharge time is 3-5 s/V s. (orig.)

  15. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    International Nuclear Information System (INIS)

    Weiland, Jan

    2014-01-01

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α d diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode

  16. Long pulse high performance discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Politzer, P.A.

    2001-01-01

    Significant progress in obtaining high performance discharges lasting many energy confinement times in the DIII-D tokamak has been realized in recent experimental campaigns. Normalized performance ∼10 has been sustained for more than 5τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 , indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H mode discharges have an ELMing edge and β min >1. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility. Measurement of the current density and loop voltage profiles indicate that ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half-radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H mode discharges with β N H 89 ∼ 7 for up to 6.3 s or ∼34τ E . These discharges appear to have stationary current profiles with q min ∼1.05, in agreement with the current profile relaxation time ∼1.8 s. (author)

  17. DIII-D research operations annual report to the U.S. Department of Energy, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    1997-07-01

    The mission of the DIII-D research program is to advance fusion energy science understanding and predictive capability and to improve and optimize the tokamak concept. A long term goal remains to integrate these products into a demonstration of high confinement, high plasma pressure (plasma β), sustained long pulse operation with fusion power plant relevant heat and particle handling capability. The DIII-D program is a world recognized leader in tokamak concept improvement and a major contributor to the physics R and D needs of the International Thermonuclear Experimental Reactor (ITER). The scientific objectives of the DIII-D program are given in Table 1-2. The FY96 DIII-D research program was highly successful, as described in this report. A moderate sized tokamak, DIII-D is a world leader in tokamak innovation with exceptional performance, measured in normalized parameters

  18. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  19. Advanced divertor experiments on DIII-D

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Mahdavi, M.A.; Osborne, T.; Petrie, T.W.; Stambaugh, R.D.; Buchenauer, D.; Hill, D.N.; Klepper, C.C.

    1991-01-01

    The poloidal divertor is presently favored for next-step, high-power tokamaks. The DIII-D Advanced Divertor Program (ADP) aims to gain increased control over the divertor plasma and tokamak boundary conditions. This paper reports experiments done in the first phase of the ADP. The DIII-D lower divertor was modified by the addition of a toroidally symmetric, graphite-armoured, water-cooled divertor-biasing ring electrode at the entrance to a gas plenum. (In the past DIII-D operated with an open divertor.) The plenum will eventually contain a He cryogenic loop for active divertor pumping. The separatrix 'strike' position is controlled by the lower poloidal field shaping coils and can be varied smoothly from the ring electrode upper surface to the divertor floor far from the entrance aperture. External power, at up to 550 V and 8 kA separately, has been applied to the electrode to date. (author) 5 refs., 5 figs

  20. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  1. Control of plasma position in the CASTOR tokamak

    International Nuclear Information System (INIS)

    Valovic, M.

    1988-11-01

    A simple servo-system designed for plasma position control in the CASTOR tokamak is described. Both radial and vertical plasma displacements were minimized using two servo-loops consisting of detection coils, a conventional electric controller and an amplifier operated as an unipolar voltage-controlled current source. To ensure the optimum conditions in the start-up phase of the discharge, currents in the servo-systems were externally preprogrammed. The prescribed plasma position was maintained with the accuracy of 3 mm. The feedback control improves plasma parameters, e.g. it removes the positional disruption at the end of the tokamak discharge. (J.U.). 4 figs., 3 refs

  2. Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Wurden, G.A.

    1997-01-01

    The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 microH saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency

  3. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  4. First physics results from the MAST Mega-Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Sykes, A.; Ahn, J.-W.; Akers, R.; Arends, E.; Carolan, P.G.; Counsell, G.F.; Fielding, S. J.; Gryaznevich, M.; Martin, R.; Price, M.; Roach, C.; Shevchenko, V.; Tournianski, M.; Valovic, M.; Walsh, M.J.; Wilson, H.R.

    2001-01-01

    First physics results are presented from MAST (Mega-Amp Spherical Tokamak), one of the new generation of purpose built spherical tokamaks (STs) now commencing operation. Some of these results demonstrate, for the first time, the novel effects of low aspect ratio, for example, the enhancement of resistivity due to neo-classical effects. H-mode is achieved and the transition to H-mode is accompanied by a tenfold steepening of the edge density gradient which may enable the successful application of electron Bernstein wave heating in STs. Studies of halo currents show that these less than expected from conventional tokamak results, and measurements of divertor power loading confirm that most of the power flows to the outer strike points, easing the power handling on the inner points (a critical issue for STs)

  5. Deposit of thin films for Tokamaks conditioning; Deposito de peliculas delgadas para acondicionar Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Valencia A, R

    2006-07-01

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature (<10 eV), both in noble and reactive gases, as well as the conditioning by thin film deposits of hydrogen rich amorphous carbon (carbonization) leading to a reduction in the plasma resistivity from 8.99 x 10{sup -6} to 4.5 x 10{sup -6} {omega}-m, thus taking the Z{sub ef} value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission

  6. Microwave measurements of the time evolution of electron density in the T-11M tokamak

    International Nuclear Information System (INIS)

    Petrov, V.G.; Petrov, A.A.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.

    2004-01-01

    Unambiguous diagnostics intended for measuring the time behavior of the electron density and monitoring the line-averaged plasma density in the T-11M tokamak are described. The time behavior of the plasma density in the T-11M tokamak is measured by a multichannel phase-jump-free microwave polarization interferometer based on the Cotton-Mouton effect. After increasing the number of simultaneously operating interferometer channels and enhancing the sensitivity of measurements, it became possible to measure the time evolution of the plasma density profile in the T-11M tokamak. The first results from such measurements in various operating regimes of the T-11M tokamak are presented. The measurement and data processing techniques are described, the measurement errors are analyzed, and the results obtained are discussed. We propose using a pulsed time-of-flight refractometer to monitor the average plasma density in the T-11M tokamak. The refractometer emits nanosecond microwave probing pulses with a carrier frequency that is higher than the plasma frequency and, thus, operates in the transmission mode. A version of the instrument has been developed with a carrier frequency of 140 GHz, which allows one to measure the average density in regimes with a nominal T-11M plasma density of (3-5) x 10 13 cm -3 . Results are presented from the first measurements of the average density in the T-11M tokamak with the help of a pulsed time-of-flight refractometer by probing the plasma in the equatorial plane in a regime with the reflection of the probing radiation from the inner wall of the vacuum chamber

  7. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  8. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  9. The critical temperature gradient model of plasma transport: applications to Jet and future tokamaks

    International Nuclear Information System (INIS)

    Rebut, P.H.; Lallia, P.P.; Watkins, M.L.

    1989-01-01

    The diversity and complexity of behaviour in tokamak plasmas place strong constraints on any model attempting a description in terms of a single underlying phenomenon. Assuming that turbulence in the magnetic topology is the underlying phenomenon, specific expressions for electron and ion heat flux are derived from heuristic and dimensional arguments. When used in plasma transport codes, rather satisfactory simulations of experimental results are achieved in different sized tokamaks in various regimes of operation. Predictions are given for the expected performance of JET at full planned power and implications for next step tokamaks are indicated

  10. Real-time control of Tokamak plasmas: from control of physics to physics-based control

    International Nuclear Information System (INIS)

    Felici, F. A. A.

    2011-11-01

    Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in controller design. In this thesis, the two subjects have been merged, using control solutions as experimental tool for physics studies, and using physics knowledge for developing new advanced control solutions. The TCV tokamak at CRPP-EPFL is ideally placed to explore issues at the interface between plasma physics and plasma control, by combining a digital realtime control system with a flexible and powerful set of actuators, in particular the electron cyclotron heating and current drive system (ECRH/ECCD). This experimental platform has been used to develop and test new control strategies for three plasma physics instabilities: sawtooth, edge localized mode (ELM) and neoclassical tearing mode (NTM). The period of the sawtooth crash, a periodic MHD instability in the core of a tokamak plasma, can be varied by localized deposition of ECRH/ECCD near the q = 1 surface (q: safety factor). A sawtooth pacing controller was developed which is able to control the time of appearance of the next sawtooth crash. Each individual sawtooth period can be controlled in real-time. A similar scheme is applied to H-mode plasmas with type-I ELMs, where it is shown that pacing regularizes the ELM period. The regular, reproducible and therefore predictable sawtooth crashes have been used to study the relationship between sawteeth and NTMs. Postcrash MHD activity can provide the ‘seed’ island for an NTM, which then grows under its neoclassical bootstrap drive. The seeding of 3/2 NTMs by long sawtooth crashes can be avoided by preemptive, crash-synchronized EC power injection pulses at the q = 3/2 rational surface location. NTM stabilization experiments in which the ECRH deposition location is moved in real-time with steerable mirrors have

  11. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu

    2011-01-01

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  12. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  13. Extension of operational limits on EAST

    International Nuclear Information System (INIS)

    Gao Xiang; Li Jiangang; Wan Baonian; Zhao Junyu; Hu Liqun; Liu Haiqing; Jie Yinxian; Xu Qiang; Wu Zhenwei; Yang Yu; Gong Xianzu; Shen Biao; Hu Jiansheng; Shi Yuejiang; Ling Bili; Wang Jun; Sajjad, S.; Zang Qing; Gao Wei; Zhang Tao; Yu Yaowei; Yang Yao; Han Xiaofeng; Shi Nan; Ming Tingfeng; Ti Ang; Zhang Wenyang; Xu Guosheng; Chen Junling; Luo Guangnan; Zhang Xiaodong; Mao Jianshan; Wan Yuanxi

    2007-01-01

    The first plasma has been achieved successfully in the Experimental Advanced Superconducting Tokamak (EAST). Boronization by the glow discharge (GDC) method was studied in experiments. The plasma performance was obviously improved by GDC boronization. Extension of the operational region and improvement in the plasma performance were obtained. Sawtooth discharges were observed by means of soft x-ray signals, electron cyclotron emission signals and line averaged electron density after boronization. Lower q a and more stable operation were also achieved following GDC boronization. The plasma current ramp-up rate was also improved as a result of decreased impurity content and low averaged loop voltage due to boronization

  14. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.

    2011-01-01

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  15. Development path of low aspect ratio tokamak power plants

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Chan, V.S.; Miller, R.L.

    1997-03-01

    Recent advances in tokamak physics indicate the spherical tokamak may offer a magnetic fusion development path that can be started with a small size pilot plant and progress smoothly to larger power plants. Full calculations of stability to kink and ballooning modes show the possibility of greater than 50% beta toroidal with the normalized beta as high as 10 and fully aligned 100% bootstrap current. Such beta values coupled with 2--3 T toroidal fields imply a pilot plant about the size of the present DIII-D tokamak could produce ∼ 800 MW thermal, 160 MW net electric, and would have a ratio of gross electric power over recirculating power (Q PLANT ) of 1.9. The high beta values in the ST mean that E x B shear stabilization of turbulence should be 10 times more effective in the ST than in present tokamaks, implying that the required high quality of confinement needed to support such high beta values will be obtained. The anticipated beta values are so high that the allowable neutron flux at the blanket sets the device size, not the physics constraints. The ST has a favorable size scaling so that at 2--3 times the pilot plant size the Q PLANT rises to 4--5, an economic range and 4 GW thermal power plants result. Current drive power requirements for 10% of the plasma current are consistent with the plant efficiencies quoted. The unshielded copper centerpost should have an adequate lifetime against nuclear transmutation induced resistance change and the low voltage, high current power supplies needed for the 12 turn TF coil appear reasonable. The favorable size scaling of the ST and the high beta mean that in large sizes, if the copper TF coil is replaced with a superconducting TF coil and a shield, the advanced fuel D-He 3 could be burned in a device with Q PLANT ∼ 4

  16. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, K. H.; Woo, H. K.; Im, K. H.; Cho, S. Y.; Kim, J. B.

    2000-01-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10 -6 ∼10 -7 Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses

  17. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  18. Quasilinear kinetic modeling of RMP penetration into a tokamak plasma

    International Nuclear Information System (INIS)

    Heyn, M.F.; Kernbichler, W.; Leitner, P.; Ivanov, I.B.; Kasilov, S.V.

    2013-01-01

    The linear as well as the quasilinear problem of RMP penetration in tokamaks is solved consistently with a particle and energy conserving collision operator. The new collision operator ensures the Onsager symmetry of the quasilinear transport coefficient matrix and avoids artifacts such as fake heat convection connected with simplified collision models.

  19. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Science.gov (United States)

    Vdovin, V.

    2014-02-01

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20-40) IC frequency harmonics) at frequencies of 500-1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure βN > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D - Kurchatov Institute experiment on helicons CD [1].

  20. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V. [NRC Kurchatov Institute Tokamak Physics Institute, Moscow (Russian Federation)

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  1. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  2. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb 3 Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered

  3. Microwave Tokamak Experiment: An overview of the construction and checkout phase

    International Nuclear Information System (INIS)

    Lang, L.L.; Bell, H.H.

    1989-01-01

    At Lawrence Livermore National Laboratory (LLNL) we constructed and presently operate the Microwave Tokamak Experiment (MTX) to demonstrate the feasibility of using microwave pulses produced from a free electron laser (FEL) to provide electron cyclotron heating (ECH) for use in tokamaks, particularly high-field machines. The MTX consists primarily of the ALCATOR C tokamak and power supplies that were documented and disassembled at the Massachusetts Institute of Technology (MIT) and shipped to LLNL in April 1987. We made many additions, including a new primary power system from the magnetic Fusion Test Facility (MFTF) substation, a new commutation system, substantially upgraded seismic support system for earthquake loading, a fast controls system for use with the FEL, a new data-acquisition system, and a new vault facility. We checked out these systems and put them into operation in October 1988; we achieved the first plasma in November 1988. We have also constructed and installed the microwave transmission system and the local microwave system to be used with the FEL. These systems transmit the microwaves to MTX quasi-optically through an evacuated tube. The ongoing plasma operations, both with and without FEL heating, are described in a companion paper. 12 refs., 2 figs., 2 tabs

  4. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron

  5. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    International Nuclear Information System (INIS)

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 an appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs

  6. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  7. Real-time control of current and pressure profiles in tokamak plasmas

    International Nuclear Information System (INIS)

    Laborde, L.

    2005-12-01

    Recent progress in the field of 'advanced tokamak scenarios' prefigure the operation regime of a future thermonuclear fusion power plant. Compared to the reference regime, these scenarios offer a longer plasma confinement time thanks to increased magnetohydrodynamic stability and to a better particle and energy confinement through a reduction of plasma turbulence. This should give access to comparable fusion performances at reduced plasma current and could lead to a steady state fusion reactor since the plasma current could be entirely generated non-inductively. Access to this kind of regime is provided by the existence of an internal transport barrier, linked to the current profile evolution in the plasma, which leads to steep temperature and pressure profiles. The comparison between heat transport simulations and experiments allowed the nature of the barriers to be better understood as a region of strongly reduced turbulence. Thus, the control of this barrier in a stationary manner would be a remarkable progress, in particular in view of the experimental reactor ITER. The Tore Supra and JET tokamaks, based in France and in the United Kingdom, constitute ideal instruments for such experiments: the first one allows stationary plasmas to be maintained during several minutes whereas the second one provides unique fusion performances. In Tore Supra, real-time control experiments have been accomplished where the current profile width and the pressure profile gradient were controlled in a stationary manner using heating and current drive systems as actuators. In the JET tokamak, the determination of an empirical static model of the plasma allowed the current and pressure profiles to be simultaneously controlled and so an internal transport barrier to be sustained. Finally, the identification of a dynamic model of the plasma led to the definition of a new controller capable, in principle, of a more efficient control. (author)

  8. The DIII-D Tokamak trouble report database

    International Nuclear Information System (INIS)

    Petersen, P.I.; Miller, S.M.

    1992-01-01

    Operation of the DIII-D tokamak at General Atomics involves many groups which work on the various subsystems. To overview and speed the solution to trouble or problem areas that limit machine availability, a common trouble report system was established. The TROUBLE database automates the recording of trouble reports and eases analysis of problem areas. It contains information on equipment affected, description of problem, cause of problem, solution to problem, and machine downtime (if any). It was created using S1032 from Compuserve Data Technologies and runs on a VAX 8650. The data is used to find the major problem areas so they can be solved and improve the tokamak availabilty. The data is available to Idaho National Engineering Laboratory (INEL). They are using the data with data from other tokamaks to develop a Fusion Failure Experience Data Collection. The authors' experience is that a few failures are often the cause of a major part of the downtime. In this paper, the authors will discuss these failures and the actions taken to correct them. The data base also will be used to determine the preventive maintenance schedule for different components

  9. Dynamic simulations of the cryogenic system of a tokamak

    International Nuclear Information System (INIS)

    Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.

    2015-01-01

    In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation

  10. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  11. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-01-01

    The dynamic control of the plasma position within the torus of a Tokamak fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. The model considers eddy currents in the conducting shell surrounding the torus and the classical Shafranov equilibrium equation. The equations necessary to characterize the operating conditions of a TOKAMAK are cast in state variable form. Two control variables are selected, the vertical field current and the plasma temperature. The figure of merit chosen minimizes the shift of the plasma within the torus and considers position perturbations necessary to maintain the dense and hotter portions of the plasma profile in the center of the torus, i.e., overcome uneven poloidal fields due to the toroidal geometry. The model uses a Kalman filter to estimate unmeasured state variables, and uses the second variation of the calculus of variations to maintain an optimal control path. (Diss. Abstr. Int., B)

  12. DIII-D research operations. Annual report to the US Department of Energy, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    1996-09-01

    The DIII-D research program funded by the U.S. Department of Energy (DOE) is aimed at developing the knowledge base for an economically and environmentally attractive energy source for the nation and the world. The DIII-D program mission is to advance fusion energy science understanding and predictive capability and improve the tokamak concept. The DIII-D scientific objectives are: (1) Advance understanding of fusion plasma physics and contribute to the physics base of ITER through extensive experiment and theory iteration in the following areas of fusion science - Magnetohydrodynamic (MHD) stability - Plasma turbulence and transport - Wave-particle interactions - Boundary physics plasma neutral interaction (2) Utilize scientific understanding in an integrated manner to show the tokamak potential to be - More compact by increasing plasma stability and confinement to increase the fusion power density (Βτ) - Steady-state through disruption control, handling of divertor heat and particle loads and current drive (3) Acquire understanding and experience with environmentally attractive low activation material in an operating tokamak. This report contains the research conducted over the past year in search of these scientific objectives

  13. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  14. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  15. Control of plasma poloidal shape and position in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walker, M.L.; Humphreys, D.A.; Ferron, J.R.

    1997-11-01

    Historically, tokamak control design has been a combination of theory driving an initial control design and empirical tuning of controllers to achieve satisfactory performance. This approach was in line with the focus of past experiments on simply obtaining sufficient control to study many of the basic physics issues of plasma behavior. However, in recent years existing experimental devices have required increasingly accurate control. New tokamaks such as ITER or the eventual fusion power plant must achieve and confine burning fusion plasmas, placing unprecedented demands on regulation of plasma shape and position, heat flux, and burn characteristics. Control designs for such tokamaks must also function well during initial device operation with minimal empirical optimization required. All of these design requirements imply a heavy reliance on plasma modeling and simulation. Thus, plasma control design has begun to use increasingly modern and sophisticated control design methods. This paper describes some of the history of plasma control for the DIII-D tokamak as well as the recent effort to implement modern controllers. This effort improves the control so that one may obtain better physics experiments and simultaneously develop the technology for designing controllers for next-generation tokamaks

  16. Neutral beam injector performance on the PLT and PDX tokamaks

    International Nuclear Information System (INIS)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures

  17. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    International Nuclear Information System (INIS)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P

    2004-01-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z eff . Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values

  18. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2004-09-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z{sub eff}. Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values.

  19. On the distribution of metals deposited onto the limiter and the liner of tokamaks after long-term operation

    International Nuclear Information System (INIS)

    Wolff, H.; Grote, H.; Herrmann, A.; Hildebrandt, D.; Laux, M.; Pech, P.; Reiner, H.D.; Ziegenhagen, G.; Chicherov, V.M.; Grashin, S.A.; Kopecky, V.; Jakubka, K.

    1987-01-01

    Three inspections of the inner parts of the discharge vessels of T-10 and TM1-MH after long-term operation revealed that metals originating from the various construction materials are distributed inhomogeneously over the first wall of these tokamaks. This partially allows one to identify local metal sources and to indicate anisotropies of the transport. Different materials from inner structures, even if they were only used in earlier experiments, are observed at all limiter surfaces and as components of the debris consisting of macroparticles of different size, shape and elemental composition. There are metallic deposits of the form of structured films or of solidified droplets. (orig.)

  20. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law