Sample records for advanced thin ionization

  1. Ionization Modeling Astrophysical Gaseous Structures. I. The Optically Thin Regime

    CERN Document Server

    Churchill, Christopher W; Medina, Amber; Vliet, Jacob R Vander


    We present a code for modelling the ionization conditions of optically thin astrophysical gas structures. Given the gas hydrogen density, equilibrium temperature, elemental abundances, and the ionizing spectrum, the code solves the equilibrium ionization fractions and number densities for all ions from hydrogen to zinc. The included processes are photoionization, Auger ionization, direct collisional ionization, excitation auto-ionization, charge exchange ionization, two-body radiative recombination, dielectronic recombination, and charge exchange recombination. The ionizing spectrum can be generalized to include the ultraviolet background (UVB) and/or Starburst99 stellar populations of various masses, ages, metallicities, and distances. The ultimate goal with the code is to provide fast computation of the ionization conditions of gas in N-body + hydrodynamics cosmological simulations, in particular adaptive mesh refinement codes, in order to facilitate absorption line analysis of the simulated gas for compari...

  2. External ionization mechanisms for advanced thermionic converters (United States)

    Hatziprokopiou, M. E.

    Ion generation and recombination mechanisms in the cesium plasma were investigated as they pertain to the advanced mode thermionic energy converters. The changes in plasma density and temperature within the converter were studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation were investigated in some detail, namely vibrationally excited N2 as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N2-Cs mixture. The experimental data obtained and discussed in this work show that all three techniques--i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power--have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  3. Surface Structure of Thin Films of Multifunctional Ionizable Copolymers (United States)

    Wickramasinghe, Anuradhi; Perahia, Dvora

    Phase segregation results in a rich variety of structures in co-polymers where interfacial forces often dominate the structure of thin films. Introduction of ionizable segments often drives the formation of compounded structures with multiple blocks residing at the interfaces. Here we probe thin films, 40-50nm, of an A-B-C-B-A co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions of 0, 26 and 52 mole %, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene) as the sulfonation level and temperature are varied using Neutron Reflectivity AFM, and surface tension measurements. As cast films form layers with both hydrophobic blocks dominating the solid and air interfaces and the ionizable block segregating to the center. Following annealing at 1700C, above Tg of styrene sulfonate, the films coarsen, with surface aggregation dominating the structure, though interfacial regions remain dominated by the hydrophobic segments. We show that in contrast to non-ionic co-polymers, formation of micelles dominated the structure of these ionic structured films. Supported in part by DOE Grant No. DE-SC007908.

  4. Effect of ionizing radiation on advanced life support medications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.


    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs.

  5. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L


    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  6. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson


    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  7. Advanced thin dicing blade for sapphire substrate

    Directory of Open Access Journals (Sweden)

    Koji Matsumaru, Atsushi Takata and Kozo Ishizaki


    Full Text Available Advanced thin dicing blades for cutting sapphire were fabricated and evaluated for cutting performance with respect to dicing blade wear and meandering of cutting lines. Three kinds of different commercial blades were used to compare the cutting performance. These blades had the same thickness and the same diamond grain size. The matrix material of one dicing blade was nickel–phosphorus alloy and two other were a vitric material. Newly developed dicing blades consisted of a vitric material with pore. A dicing machine was used for cutting sapphire. Turning velocity, cutting depth and feeding rate were 20,000 min−1, 200 μm and 1 mm s−1, respectivity. Cutting directions were 110 and 010. All blades could cut 1000 mm and more in the 110 direction. On the other hand, commercial dicing blades generated meandering lines and were broken only by 50 mm of cutting length in 010 direction. Fabricated blade can cut 1000 mm and more in 010 direction. The wear of fabricated dicing blade was the largest in the dicing blades. Although cutting performance of commercial dicing blades depended on the sapphire orientation, that of fabricated blade was independent of the sapphire orientation. It has been confirmed that the fabricated dicing blade was kept a cutting ability by flash diamonds on the dicing blade surface, which were created by wear of blade during cutting sapphire. Low cutting ability of commercial blades increased cutting force between with increase of cutting length. The increased cutting force produced to bend a blade and cutting lines, and finally a fracture of blade.

  8. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M


    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  9. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation; Peliculas delgadas depositadas por ablacion laser para la medicion de radiacion ionizante y no ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a {sup 60} Co source, beta radiation of a {sup 90} Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  10. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin


    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  11. Formation of β-FeSi 2 thin films by partially ionized vapor deposition (United States)

    Harada, Noriyuki; Takai, Hiroshi


    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  12. Advanced Quantification of Plutonium Ionization Potential to Support Nuclear Forensic Evaluations by Resonance Ionization Mass Spectrometry (United States)


    decay and induced emission and absorption are almost identical. Their probability distributions are closely related. The electromagnetic radiation ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ADVANCED ...ONLY (Leave blank) 2. REPORT DATE June 2015 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE ADVANCED QUANTIFICATION OF

  13. Investigation of thin ZnO layers in view of laser desorption-ionization

    Energy Technology Data Exchange (ETDEWEB)

    Grechnikov, A A; Borodkov, A S [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., 119991 Moscow (Russian Federation); Georgieva, V B [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Alimpiev, S S; Nikiforov, S M; Simanovsky, Ya O [General Physics Institute, Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow (Russian Federation); Dimova-Malinovska, D; Angelov, O I, E-mail: lazarova@issp.bas.b [Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)


    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  14. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates (United States)

    Rogers, Kevin; Milnes, John; Gormally, John


    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  15. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges

    Directory of Open Access Journals (Sweden)

    Xingmao Ma


    Full Text Available The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  16. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization. (United States)

    Ovchinnikova, Olga S; Van Berkel, Gary J


    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  17. NATO Advanced Research Workshop on Ionization of Solids by Heavy Particles

    CERN Document Server


    This book collects the papers presented at the NATO Advanced Research Workshop on "Ionization of Solids by Heavy Particles", held in Giardini-Naxos (Taormina), Italy, on June 1 -5, 1992. The meeting was the first to gather scientists to discuss the physics of electron emission and other ionization effects occurring during the interaction of heavy particles with condensed matter. The central problem in the field is how to use observations of electron emission and final radiation damage to understand what happens inside the solid, like excitation mechanisms, the propagation of the electronic excitation along different pathways, and surface effects. The ARW began with a brief survey of the field, stressing the unknowns. It was pointed out that ionization theories can only address the very particular case of weak perturbations. For this problem, this meant high speed, low-charged projectiles (a perturbation treatment of interactions with slow, highly charged ions was later presented). Only semi-empirical ...

  18. Thin-Layer Chromatography/Desorption Electrospray Ionization Mass Spectrometry: Investigation of Goldenseal Alkaloids

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, Gary J [ORNL; Tomkins, Bruce A [ORNL; Kertesz, Vilmos [ORNL


    Desorption electrospray ionization mass spectrometry was investigated as a means to qualitatively identify and to quantify analytes directly from developed normal-phase thin layer chromatography plates. The atmospheric sampling capillary of a commercial ion trap mass spectrometer was extended to permit sampling and ionization of analytes in bands separated on intact TLC plates (up to 10 cm x 10 cm). A surface positioning software package and the appropriate hardware enabled computer-controlled surface scanning along the length of development lanes or at fixed RF value across the plates versus the stationary desorption electrospray emitter. Goldenseal (Hydrastis canadensis) and related alkaloids and commercial dietary supplements were used as standards and samples. Alkaloid standards and samples were spotted and separated on aluminum- or glass-backed plates using established literature methods. The mass spectral signal levels as a function of desorption spray solvent were investigated with acetonitrile proving superior to methanol. The detection levels (ca. 5 ng each or 14 -28 pmol) in mass spectral full scan mode were determined statistically from the calibration curves (2.5 - 100 pmol) for the standards berberine, palmatine and hydrastinine spotted as a mixture and separated on the plates. Qualitative screening of the major alkaloids present in six different over-the-counter "goldenseal" dietary supplements was accomplished by obtaining full scan mass spectra during surface scans along the development lane in the direction of increasing RF value. In one sample, alkaloids were detected that strongly suggested the presence of at least one additional herb undeclared on the product label. These same data indicated the misidentification of one of the alkaloids in the TLC literature. Quantities of the alkaloids present in two of the samples determined using the mass spectral data were in reasonable agreement with the label values indicating the quantitative ability of

  19. Advances Toward Inner-Shell Photo-Ionization X-Ray Lasing at 45 (Angstrom)

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S J; Weber, F A; Celliers, P M; Eder, D C


    The inner-shell photo-ionization (ISPI) scheme requires photon energies at least high enough to photo-ionize the K-shell. {approx}286 eV, in the case of carbon. As a consequence of the higher cross-section, the inner-shell are selectively knocked out, leaving a hole state 1s2s{sup 2}2p{sup 2} in the singly charged carbon ion. This generates a population inversion to the radiatively connected state 1s{sup 2}2s{sup 2}2p in C+, leading to gain on the 1s-2p transition at 45 {angstrom}. The resonant character of the lasing transition in the single ionization state intrinsically allows much higher quantum efficiency compared to other schemes. Competing processes that deplete the population inversion include auto-ionization, Auger decay, and in particular collisional ionization of the outer-shell electrons by electrons generated during photo-ionization. These competing processes rapidly quench the gain. Consequently, the pump method must be capable of populating the inversion at a rate faster than the competing processes. This can be achieved by an ultra-fast, high intensity laser that is able to generate an ultra-fast, bright x-ray source. With current advances in the development of high-power, ultra-short pulse lasers it is possible to realize fast x-ray sources based that can deliver powerful pulses of light in the multiple hundred terawatt regime and beyond. They will discuss in greater detail concept, target design and a series of x-ray spectroscopy investigations they have conducted in order to optimize the absorber/x-ray converter--filter package.

  20. Thin layer chromatography coupled to paper spray ionization mass spectrometry for cocaine and its adulterants analysis. (United States)

    De Carvalho, Thays C; Tosato, Flavia; Souza, Lindamara M; Santos, Heloa; Merlo, Bianca B; Ortiz, Rafael S; Rodrigues, Rayza R T; Filgueiras, Paulo R; França, Hildegardo S; Augusti, Rodinei; Romão, Wanderson; Vaz, Boniek G


    Thin layer chromatography (TLC) is a simple and inexpensive type of chromatography that is extensively used in forensic laboratories for drugs of abuse analysis. In this work, TLC is optimized to analyze cocaine and its adulterants (caffeine, benzocaine, lidocaine and phenacetin) in which the sensitivity (visual determination of LOD from 0.5 to 14mgmL(-1)) and the selectivity (from the study of three different eluents: CHCl3:CH3OH:HCOOHglacial (75:20:5v%), (C2H5)2O:CHCl3 (50:50v%) and CH3OH:NH4OH (100:1.5v%)) were evaluated. Aiming to improve these figures of merit, the TLC spots were identified and quantified (linearity with R(2)>0.98) by the paper spray ionization mass spectrometry (PS-MS), reaching now lower LOD values (>1.0μgmL(-1)). The method developed in this work open up perspective of enhancing the reliability of traditional and routine TLC analysis employed in the criminal expertise units. Higher sensitivity, selectivity and rapidity can be provided in forensic reports, besides the possibility of quantitative analysis. Due to the great simplicity, the PS(+)-MS technique can also be coupled directly to other separation techniques such as the paper chromatography and can still be used in analyses of LSD blotter, documents and synthetic drugs.

  1. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices (United States)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang


    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  2. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga


    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  3. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T


    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  4. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K


    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  5. [Determination of the four generic fractions of aged bitumen by thin-layer chromatography with flame ionization detection]. (United States)

    Feng, Zhengang; Zhang, Jianbin; Li, Xinjun; Yu, Jianying


    The aging process of bitumen has been paid more and more attention by the researchers. The four generic fractions (saturates, aromatics, resins and asphaltenes) of bitumen change significantly during the aging process. The analysis of the changes of the four generic fractions of bitumen is very helpful to reveal the bitumen aging mechanisms and guide its engineering applications. In this study, the bitumen was aged by thin film oven test (TFOT) , pressurized aging vessel (PAV) test and ultraviolet (UV) aging test, respectively. Then the four generic fractions of bitumen before and after aging were analyzed by thin-layer chromatography with flame ionization detection (TLC-FID) , which was further compared with the solubility procedures and chromatographic technique ( named as Corbett method). The compositions of the expanded solvents were also investigated. Finally, the correlation between the TLC-FID and Corbett method was further studied, which revealed a proper TLC-FID meth- od for detection of aged bitumen. The bitumen solution dissolved by dichloromethane was successively expanded by n-heptane, toluene/n-heptane (80 :20, v/v) and toluene/ethanol (55: 45, v/v) , followed by TLC-FID. This method is of great significance for the analysis of the four generic fractions of bitumen and for the exploration of bitumen aging mechanisms.

  6. Introduction to Advanced X-ray Diffraction Techniques for Polymeric Thin Films

    Directory of Open Access Journals (Sweden)

    Nicodemus Edwin Widjonarko


    Full Text Available X-ray diffraction has been a standard technique for investigating structural properties of materials. However, most common applications in the organic materials community have been restricted to either chemical identification or qualitative strain analysis. Moreover, its use for polymeric thin films has been challenging because of the low structure factor of carbon and the thin film nature of the sample. Here, we provide a short review of advanced X-ray diffraction (XRD techniques suitable for polymeric thin films, including the type of analysis that can be done and measurement geometries that would compensate low signals due to low carbon structure factor and the thin film nature of the sample. We will also briefly cover the χ -pole figure for texture analysis of ultra-thin film that has recently become commonly used. A brief review of XRD theory is also presented.

  7. Physics of thin films advances in research and development, v.6

    CERN Document Server

    Francombe, Maurice H


    Physics of Thin Films: Advances in Research and Development, Volume 6 reviews the rapid progress that has been made in research and development concerning the physics of thin films, with emphasis on metallic films. Topics covered include anodic oxide films, thin metal films and wires, and multilayer magnetic films. This volume is comprised of five chapters and begins with a discussion on the dielectric properties and the technique of plasma anodization which are relevant to the applications of anodic oxide films in electronic devices. Conduction, polarization, and dielectric breakdown effects

  8. Advanced morphological analysis of patterns of thin anodic porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, C. [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy); Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Stępniowski, W.J. [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Leoncini, M. [Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Salerno, M., E-mail: [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy)


    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  9. Advanced characterization techniques for thin film solar cells

    CERN Document Server

    Rau, Uwe; Kirchartz, Thomas


    Written by scientists from leading institutes in Germany, USA and Spain who use these techniques as the core of their scientific work and who have a precise idea of what is relevant for photovoltaic devices, this text contains concise and comprehensive lecture-like chapters on specific research methods.They focus on emerging, specialized techniques that are new to the field of photovoltaics yet have a proven relevance. However, since new methods need to be judged according to their implications for photovoltaic devices, a clear introductory chapter describes the basic physics of thin-film

  10. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique


    Alina Maria Holban; Valentina Grumezescu; Alexandru Mihai Grumezescu; Bogdan Ştefan Vasile; Roxana Truşcă; Rodica Cristescu; Gabriel Socol; Florin Iordache


    We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive ...

  11. Recent advances in thin film CdTe solar cells (United States)

    Ferekides, Chris S.; Ceekala, Vijaya; Dugan, Kathleen; Killian, Lawrence; Oman, Daniel; Swaminathan, Rajesh; Morel, Don


    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500-2000 Å by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450-625 °C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model.

  12. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. (United States)

    Holban, Alina Maria; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin


    We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.

  13. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    Directory of Open Access Journals (Sweden)

    Alina Maria Holban


    Full Text Available We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG nanospheres by matrix assisted pulsed laser evaporation (MAPLE. Transmission electron microscopy (TEM and scanning electron microscopy (SEM investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus and Pseudomonas aeruginosa (P. aeruginosa bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.

  14. Thin film design for advanced thermochromic smart radiator devices

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Dong; Wang Zhi-Min; Ma Ya-Li; Zhang Fu-Jia


    This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of 3RD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.

  15. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing


    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...

  16. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A


    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  17. Influence of soil pH on the sorption of ionizable chemicals: modeling advances. (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan


    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  18. High-throughput analysis of drugs in biological fluids by desorption electrospray ionization mass spectrometry coupled with thin liquid membrane extraction

    DEFF Research Database (Denmark)

    Rosting, Cecilie; Pedersen-Bjergaard, Stig; Hansen, Steen Honore'


    -30%. A reliability test was performed on 20 samples with methadone, amitriptyline, nortriptyline and pethidine in urine, showing that none of the samples having concentrations above the LOD were missed and no false positives were found. Diphenhydramine and one of its metabolites were detected in authentic samples...... of urine and saliva, and methadone was detected from a whole-blood sample spiked to a concentration of 100 ng mL(-1). The method has several advantages, such as extremely low price in consumables, the possibility of fast analysis of very crude biofluids such as whole blood and the potential for a very high......Biological fluids such as urine, saliva and whole blood were analyzed for contents of drugs by a new combination of desorption electrospray ionization mass spectrometry (DESI-MS) and thin liquid membrane extraction (TLME). Analytes from the sample were extracted into a thin liquid membrane...

  19. Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection. (United States)

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek


    Monolithic 50 μm thin poly(4-methylstyrene-co-chloromethylstyrene-co-divinylbenzene) layers attached to 6.0 cm × 3.3 cm glass plates have been prepared, using a thermally initiated polymerization process. These layers had a well-defined porous structure with a globular morphology demonstrated with SEM images and exhibited superhydrophobic properties characterized with a water contact angle of 157°. They were then used for thin-layer chromatography of peptides and proteins fluorescently labeled with fluorescamine. The spots of individual separated compounds were visualized using UV light, and their identities were confirmed with a matrix-assisted laser desorption/ionization time of flight mass spectrometry. The presence of chloromethylstyrene units in the polymer enabled hypercrosslinking via a Friedel-Crafts alkylation reaction, and led to monoliths with much larger surface areas, which were suitable for separations of small dye molecules.

  20. Spray-on Thin Film PV Solar Cells: Advances, Potentials and Challenges

    Directory of Open Access Journals (Sweden)

    Morteza Eslamian


    Full Text Available The capability to fabricate photovoltaic (PV solar cells on a large scale and at a competitive price is a milestone waiting to be achieved. Currently, such a fabrication method is lacking because the effective methods are either difficult to scale up or expensive due to the necessity for fabrication in a vacuum environment. Nevertheless, for a class of thin film solar cells, in which the solar cell materials can be processed in a solution, up scalable and vacuum-free fabrication techniques can be envisioned. In this context, all or some layers of polymer, dye-sensitized, quantum dot, and copper indium gallium selenide thin film solar cells illustrate some examples that may be processed in solution. The solution-processed materials may be transferred to the substrate by atomizing the solution and carrying the spray droplets to the substrate, a process that will form a thin film after evaporation of the solvent. Spray coating is performed at atmospheric pressure using low cost equipment with a roll-to-roll process capability, making it an attractive fabrication technique, provided that fairly uniform layers with high charge carrier separation and transport capability can be made. In this paper, the feasibility, the recent advances and challenges of fabricating spray-on thin film solar cells, the dynamics of spray and droplet impaction on the substrate, the photo-induced electron transfer in spray-on solar cells, the challenges on characterization and simulation, and the commercialization status of spray-on solar cells are discussed.

  1. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay


    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  2. Effect of total ionizing dose radiation on the 0.25μm RF PDSOI nMOSFETs with thin gate oxide

    Institute of Scientific and Technical Information of China (English)

    Liu Mengxin; Han Zhengsheng; Bi Jinshun; Fan Xuemei; Liu Gang; Du Huan


    Thin gate oxide radio frequency (RF) PDSOI nMOSFETs that are suitable for integration with 0.1 μm SO1 CMOS technology are fabricated, and the total ionizing dose radiation responses of the nMOSFETs having four different device structures are characterized and compared for an equivalent gamma dose up to 1 Mrad (Si), using the front and back gate threshold voltages, off-state leakage, transconductance and output characteristics to assess direct current (DC) performance. Moreover, the frequency response of these devices under total ionizing dose radiation is presented, such as small-signal current gain and maximum available/stable gain. The results indicate that all the RF PDSOI nMOSFETs show significant degradation in both DC and RF characteristics after radiation, in particular to the float body nMOS. By comparison with the gate backside body contact (GBBC) structure and the body tied to source (BTS) contact structure, the low barrier body contact (LBBC) structure is more effective and excellent in the hardness of total ionizing dose radiation although there are some sacrifices in drive current, switching speed and high frequency response.

  3. Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies (United States)

    Lee, Tien-Hsi

    Wafer bonding is an attractive technology for modern semiconductor and microelectronic industry due to its variability in allowing combination of materials. Initially, the bonding of wafers of the same material, such as silicon-silicon wafer bonding has been major interest. In the meantime, research interest has shifted to the bonding of dissimilar materials such as silicon to quartz or to sapphire. Thermal stress coming from the different expansion coefficients usually is a barrier to the success of dissimilar material bonding. Thermal stress may cause debonding, sliding, cracking, thermal misfit dislocations, or film wrinkle to impair the quality of the transferred layer. This dissertation presents several effective approaches to solve the thermal stress problem. These approaches concern bonding processes (low vacuum bonding and storage), thinning (advanced ion implantation layer splitting), and annealing processes (accumulative effect of blister generation) and are combined to design the best heat-treatment cycle. For this propose the concept of hot bonding is used in order to effectively minimize the thermal mismatch of dissimilar material bonding during the bonding and thinning procedures. During the initial bonding and bond strengthening phase, the difference in the temperature between bonding and annealing processes should be decreased as much as possible to avoid excessive thermal stresses. This concept can be realized either by increasing the bonding temperature or by decreasing the annealing temperature. A thinning technique has to employed that can thin the device wafer before debonding occurs due to the thermal stress generated either from the cooling-down process in the first case or by the annealing process itself in the late case. The ion implantation layer splitting method, also known as the Smart-cutsp°ler process, developed by Bruel at LEIT in France is a practical thinning technique which satisfies the above requirement. In the study, an

  4. Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare though Sodium-like Ions

    CERN Document Server

    Bryans, P; Gorczyca, T W; Laming, J M; Mitthumsiri, W; Savin, D W


    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. This translates directly into the reliability of the collisional ionization equilibrium (CIE) calculations. We make use of state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He up to and including Zn. We also make use of state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H through to Zn. Here we present improved CIE calculations for temperatures from $10^4$ to $10^9$ K using our data and the recommended electron impact ionization data of \\citet{Mazz98a} for elements up to and including Ni and Mazzotta (private communication) for Cu and Zn. DR and RR ...

  5. Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells (United States)

    Lu, Ming; Xu, Jing; Huang, Jian-Wei


    The lowest energies which make Cu, In, Ga, and Se atoms composing Cu(In, Ga)Se2 (CIGS) material displaced from their lattice sites are evaluated, respectively. The non-ionizing energy loss (NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section. The relation of the introduction rate (k) of the recombination centers to NIEL is modified, then the values of k at different electron energies are calculated. Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers. The validity of the modeling approach is verified by comparison with the experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 11547151).

  6. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL


    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  7. Properties of ZnO thin films grown at room temperature by using ionized cluster beam deposition

    CERN Document Server

    Whangbo, S W; Kim, S G; Cho, M H; Jeong, K H; Whang, C N


    ZnO films with a thickness of 120 nm were deposited on Si(100) at room temperature by using the reactive-ionized cluster beam deposition technique. The effects of the acceleration voltage (V sub a) on the properties, such as the crystallinity, the induced film strain, the surface roughness, and the electrical and the optical properties of the films, were investigated. The ZnO films had only a (002) crystalline orientation and uniformly composed through the whole thickness. As the V sub a increased, more strain was induced in the film, and the packing density caused by the structural imperfection was lowered. The films prepared under the optimum condition (V sub a = 3 kV) on a glass substrate showed good optical transmittance, and the band-gap of the film was evaluated to be 3.32 eV.

  8. Comparison of Drug Distribution Images from Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Whole-Body Autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL; Vavek, Marissa [Merck Research Laboratories; Koeplinger, Kenneth A. [Merck Research Laboratories; Schneider, Bradley B [MDS Sciex; Covey, Thomas R. [MDS Sciex


    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2 and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by HPLC with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  9. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. (United States)

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed


    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  10. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya


    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2•xH2O, Zn2(bdc)2•xH2O, HKUST-1 and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Thereby paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  11. Trapping of hydrogen in hafnium-based high kappa dielectric thin films for advanced CMOS applications (United States)

    Ukirde, Vaishali

    In recent years, advanced high kappa gate dielectrics are under serious consideration to replace SiO2 and SiON in semiconductor industry. Hafnium-based dielectrics such as hafnium oxides, oxynitrides and Hf-based silicates/nitrided silicates are emerging as some of the most promising alternatives to SiO2/SiON gate dielectrics in complementary metal oxide semiconductor (CMOS) devices. Extensive efforts have been taken to understand the effects of hydrogen impurities in semiconductors and its behavior such as incorporation, diffusion, trapping and release with the aim of controlling and using it to optimize the performance of electronic device structures. In this dissertation, a systematic study of hydrogen trapping and the role of carbon impurities in various alternate gate dielectric candidates, HfO2/Si, HfxSi1-xO2/Si, HfON/Si and HfON(C)/Si is presented. It has been shown that processing of high kappa dielectrics may lead to some crystallization issues. Rutherford backscattering spectroscopy (RBS) for measuring oxygen deficiencies, elastic recoil detection analysis (ERDA) for quantifying hydrogen and nuclear reaction analysis (NRA) for quantifying carbon, X-ray diffraction (XRD) for measuring degree of crystallinity and X-ray photoelectron spectroscopy (XPS) were used to characterize these thin dielectric materials. ERDA data are used to characterize the evolution of hydrogen during annealing in hydrogen ambient in combination with preprocessing in oxygen and nitrogen.

  12. Analysis of the thin layer of Galactic warm ionized gas in the range 20 < l < 30 deg, -1.5 < b < +1.5 deg

    CERN Document Server

    Paladini, R; Davies, R D; Giard, M


    We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ~ 10'. This is carried out using radio continuum data at 1.4 GHz, 2.7 GHz and 5 GHz in the coordinate region 20 < l < 30 deg, -1.5 < b < +1.5 deg. For this purpose, we evaluate the zero level of the 2.7 and 5 GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero level corrections are T_{zero}(2.7 GHz)=0.15 +/- 0.06 K and T_{zero}(5 GHz)=0.1 +/- 0.05 K. We separate the thermal (free-free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index -2.1 for the free-free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for |b| = 0 deg, the fraction of thermal emission reaches a maximum value of 82%, while at 1.4 GHz, the corresponding value is 68%. In addition, for the thermal emission, the analysis in...

  13. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates (United States)

    Fulton, Michael L.


    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  14. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Dorcioman, G.; Miroiu, F.M.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Gittard, S.D.; Miller, P.R.; Narayan, R.J. [Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599-7575 (United States); Enculescu, M. [National Institute for Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chrisey, D.B. [Tulane University, Department of Physics and Engineering Physics, New Orleans, LA (United States)


    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  15. Determination of Pu-238 Abundance in a Plutonium Standard by an Advanced Thermal Ionization Mass Spectrometric Technique (United States)

    Mason, P.; Thomas, R.


    New developments in thermal ionization mass spectrometers allow for the determination of very small minor isotope ratios. The new hardware and software capabilities require attention to detail and accounting for additional sources of measurement uncertainty. The Pu-238 isotopic composition in New Brunswick Laboratory plutonium metal standard CRM 126-A was determined by thermal ionization mass spectrometry using combined Faraday cup and ion counting detection. A dynamic acquisition scheme was employed which provided for near real-time mass fractionation correction and ion counter/Faraday detector inter-calibration. Steps taken to minimize or eliminate isobaric U-238 interferences will be described, and an evaluation detailing contributions to the uncertainty, including SEM non-linearity, will be presented.

  16. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry. (United States)

    Kuo, Tsung-Rong; Wang, Di-Yan; Chiu, Yu-Chen; Yeh, Yun-Chieh; Chen, Wei-Ting; Chen, Ching-Hui; Chen, Chun-Wei; Chang, Huan-Cheng; Hu, Cho-Chun; Chen, Chia-Chun


    This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.

  17. Direct analysis of Salvia divinorum leaves for salvinorin A by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. (United States)

    Kennedy, Joseph H; Wiseman, Justin M


    Salvia divinorum is widely cultivated in the US, Mexico, Central and South America and Europe and is consumed for its ability to produce hallucinogenic effects similar to those of other scheduled hallucinogenic drugs, such as LSD. Salvinorin A (SA), a kappa opiod receptor agonist and psychoactive constituent, is found primarily in the leaves and to a lesser extent in the stems of the plant. Herein, the analysis of intact S. divinorum leaves for SA and of acetone extracts separated using thin layer chromatography (TLC) is demonstrated using desorption electrospray ionization (DESI) mass spectrometry. The detection of SA using DESI in the positive ion mode is characterized by several ions associated with the compound - [M+H](+), [M+NH(4)](+), [M+Na](+), [2M+NH(4)](+), and [2M+Na](+). Confirmation of the identity of these ions is provided through exact mass measurements using a time-of-flight (ToF) mass spectrometer. The presence of SA in the leaves was confirmed by multi-stage tandem mass spectrometry (MS(n)) of the [M+H](+) ion using a linear ion trap mass spectrometer. Direct analysis of the leaves revealed several species of salvinorin in addition to SA as confirmed by MS(n), including salvinorin B, C, D/E, and divinatorin B. Further, the results from DESI imaging of a TLC separation of a commercial leaf extract and an acetone extract of S. divinorum leaves were in concordance with the TLC/DESI-MS results of an authentic salvinorin A standard. The present study provides an example of both the direct analysis of intact plant materials for screening illicit substances and the coupling of TLC and DESI-MS as a simple method for the examination of natural products.

  18. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu


    Full Text Available Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  19. Advances in thin-film solar cells for lightweight space photovoltaic power (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.


    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  20. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes (United States)

    Jiang, Shangfeng; Yi, Baolian; Cao, Longsheng; Song, Wei; Zhao, Qing; Yu, Hongmei; Shao, Zhigang


    The degradation of carbon supports significantly influences the performance of proton exchange membrane fuel cells (PEMFCs), particularly in the cathode, which must be overcome for the wide application of fuel cells. In this study, advanced catalytic layer with electronic conductive polymer-polypyrrole (PPy) nanowire as ordered catalyst supports for PEMFCs is prepared. A platinum-palladium (PtPd) catalyst thin layer with whiskerette shapes forms along the long axis of the PPy nanowires. The resulting arrays are hot-pressed on both sides of a Nafion® membrane to construct a membrane electrode assembly (without additional ionomer). The ordered thin catalyst layer (approximately 1.1 μm) is applied in a single cell as the anode and the cathode without additional Nafion® ionomer. The single cell yields a maximum performance of 762.1 mW cm-2 with a low Pt loading (0.241 mg Pt cm-2, anode + cathode). The advanced catalyst layer indicates better mass transfer in high current density than that of commercial Pt/C-based electrode. The mass activity is 1.08-fold greater than that of DOE 2017 target. Thus, the as-prepared electrodes have the potential for application in fuel cells.

  1. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Stranak, V., E-mail: [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Wulff, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Zietz, C. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Arndt, K. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Bogdanowicz, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Bader, R. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Podbielski, A. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Hubicka, Z. [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 180 00 Prague (Czech Republic); Hippler, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)


    The antibacterial effect of thin titanium-copper (Ti-Cu) films combined with sufficient growth of human osteoblastic cells is reported in the paper. Thin Ti-Cu films were prepared by three different plasma-assisted magnetron sputtering methods: direct current magnetron sputtering (dc-MS), dual magnetron sputtering (dual-MS) as well as dual high power impulse magnetron sputtering (dual-HiPIMS). The antimicrobial effect is caused by copper released from the metallic Ti-Cu films, which was measured by atomic absorption spectroscopy (AAS). The copper release is influenced by the chemical and physical properties of the deposited films and was investigated by X-ray diffractometry and X-ray reflectometry (GIXD and XR) techniques. It was found that, within the first 24 h the amount of Cu released from dual-HiPIMS films (about 250 {mu}g) was much higher than from dc-MS and dual-MS films. In vitro planktonic growth tests on Ti-Cu surfaces for Staphylococcus epidermidis and S. aureus demonstrated the killing of both bacteria using the Ti-Cu films prepared using the dual-HiPIMS technique. The killing effects on biofilm bacteria were less obvious. After the total release of copper from the Ti-Cu film the vitality of exposed human osteoblast MG-63 cells increased significantly. An initial cytotoxic effect followed by the growth of osteoblastic cells was demonstrated. The cytotoxic effect combined with growth of osteoblastic cells could be used in joint replacement surgery to reduce the possibility of infection and to increase adoption of the implants. Highlights: {yields} Ti-Cu films with significant cytotoxic effect were prepared by dual-HiPIMS technique. {yields} The cytotoxic effect is caused by total release of copper species from thin films. {yields} The copper release is influenced by crystallography and chemical properties of thin films. {yields} Sufficient growth of osteoblastic cells follows after copper release.

  2. Thermal domain stability of advanced digital recording (ADR) thin film heads (United States)

    Bijker, M. D.; Draaisma, E. A.; Eisenberg, M.; Toonen, L.


    In this paper the thermal domain stability of electroplated Nickel-Iron flux guides is studied. During the thin film deposition process of ADR magnetic heads these magnetic structures are heated up to about 300°C on a few occasions and it is shown that this has a pronounced effect on the stress state of the deposited flux-guide layers. Domain observations are carried out on both NiFe strips of varying widths as well as on as-deposited test structures and annealed NiFe on product level of a data head.

  3. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    Directory of Open Access Journals (Sweden)

    Lucia V. Mercaldo


    Full Text Available The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied within thin-film Si solar cells for these purposes. Intrinsic a-SiOx:H films have been fabricated and characterized as a promising wide gap absorber for application in triple-junction solar cells. Single-junction test devices with open circuit voltage up to 950 mV and ~1 V have been demonstrated, in case of rough and flat front electrodes, respectively. Doped silicon oxide alloys with mixed-phase structure have been developed, characterized by considerably lower absorption and refractive index with respect to standard Si-based films, accompanied by electrical conductivity above 10−5 S/cm. These layers have been successfully applied both into single-junction and micromorph tandem solar cells as superior doped layers with additional functionalities.

  4. Thin film silicon solar cells: advanced processing and characterization - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, Ch.


    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out at the photovoltaics laboratory at the University of Neuchatel in Switzerland. The project aimed to demonstrate the production of high-efficiency thin-film silicon devices on flexible substrates using low cost processes. New ways of improving processing and characterisation are examined. The process and manufacturing know-how necessary to provide support for industrial partners within the framework of further projects is discussed. The authors state that the efficiency of most devices was significantly improved, both on glass substrates and on flexible plastic foils. The process reproducibility was also improved and the interactions between the different layers in the device are now said to be better understood. The report presents the results obtained and discusses substrate materials, transparent conductors, defect analyses and new characterisation tools. Finally, the laboratory infrastructure is described.

  5. Thermochromic vanadium-dioxide-based thin films and nanoparticles: Survey of some buildings-related advances (United States)

    Granqvist, Claes G.; Ji, Yu-Xia; Montero, José; Niklasson, Gunnar A.


    Today's architecture uses large glazings (windows and glass facades) to obtain good indoors-outdoors contact and day-lighting. However glazings offer challenges and often lead to excessive solar energy inflow and thereby a need for energy-demanding space cooling. This paper summarizes recent work on thermochromic (TC) materials intended for energy-efficient buildings and outlines how vanadium-dioxide-based thin films and nanoparticle composites can be used in TC glazings which admit more solar energy below a comfort temperature than above this temperature, so that the cooling need is diminished, while the transmittance of visible light remains high. We also report on some very recent work on TC light scattering.

  6. Advances in thin film diffraction instrumentation by X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A. [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)


    The structural characterisation of thin films requires a parallel X-ray beam of high intensity. Parallel beam geometry is commonly used in high resolution and single crystal experiments, but also in the field of X-ray diffraction for polycrystalline material (e.g. in phase, texture and stress analysis). For grazing incidence diffraction (GID), the use of small slits on the primary side and of long soller slits with a flat monochromator on the secondary side is standard. New optical elements have been introduced with polychromatic or monochromatic radiation. By means of different applications the results are compared with those of classical beam optics. X-ray fiber optics utilize total external reflection of X-rays on smooth surfaces. Effects of monochromatization are presented. In many fields of application, fiber optics may replace conventional collimators. The use of primary and secondary channel cut crystals can also produce a high parallel monochromatic X-ray beam. A parabolically bent graded multilayer produces a monochromatic parallel beam of high intensity. Compared with classical Bragg-Brentano (focussing) geometry, excellent results have been obtained, especially for samples with an irregular shape. In combination with a channel cut monochromator there is a substantial gain in intensity leading to an increase of the dynamic intensity range of rocking curves.

  7. Recent technical advances in thin-film CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Omura, K.; Hanahusa, A.; Arita, T.; Higuchi, H.; Aramoto, T.; Nishio, T.; Sibutani, S.; Kumazawa, S.; Murozono, M. [Matsushita Battery Industrial Co., Ltd., Osaka (Japan). PV Research and Development Center; Yabuuchi, Y. [Matsushita Technoresearch Inc., Osaka (Japan); Takakura, H. [Toyama Prefectural University, Toyama (Japan)


    CeS/CdTe solar cells have attracted attention recently for their potential as low-cost, high-efficiency solar cells of the future. It is because the CdTe layer (used for photoelectric conversion) has a bandgap energy of 1.51 eV, which corresponds well to sunlight spectra, and the direct transition type energy band structure enables formation of thinner films. We have already industrialized CdS/CdTe solar cells in mass production stage using a printing-sintering process, as large-area modules for electric power generation (Higuchi et al., 1993, Omura et al., 1991), and as cells for indoor applications (primarily in calculators, Suyama et al., 1986). However, this solar cell has a conversion efficiency of approximately 6%. Recently, there has been considerable research into thin-film CdS/CdTe solar cells which have a thinner CdS film formed by CVD or CBD (Britt et al., 1993) process, and thus are photosensitive to light with wavelengths of 500 nm or less. At present stage of our art, in solar cells formed by the CSS with a CdTe film on CVD CdS, a conversion efficiency of 15.05% has been obtained in cells with an area of 1 cm{sup 2}(verified at JQA). (author)

  8. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm (United States)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  9. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin


    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  10. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties. (United States)

    Zaitsev, Sergei Yu; Solovyeva, Daria O; Nabiev, Igor


    The development and study of nano-bio hybrid materials engineered from membrane proteins (the key functional elements of various biomembranes) and nanoheterostructures (inorganic colloidal nanoparticles, transparent electrodes, and films) is a rapidly growing field at the interface of materials and life sciences. The mainspring of the development of bioinspired materials and devices is the fact that biological evolution has solved many problems similar to those that humans are attempting to solve in the field of light-harvesting and energy-transferring inorganic compounds. Along this way, bioelectronics and biophotonics have shown considerable promise. A number of proteins have been explored in terms of bioelectronic device applications, but bacteriorhodopsin (bR, a photosensitive membrane protein from purple membranes of the bacterium Halobacterium salinarum) and bacterial photosynthetic reaction centres have received the most attention. The energy harvesting in plants has a maximum efficiency of 5%, whereas bR, in the absence of a specific light-harvesting system, allows bacteria to utilize only 0.1-0.5% of the solar light. Recent nano-bioengineering approaches employing colloidal semiconductor and metal nanoparticles conjugated with biosystems permit the enhancement of the light-harvesting capacity of photosensitive proteins, thus providing a strong impetus to protein-based device optimisation. Fabrication of ultrathin and highly oriented films from biological membranes and photosensitive proteins is the key task for prospective bioelectronic and biophotonic applications. In this review, the main advances in techniques of preparation of such films are analyzed. Comparison of the techniques for obtaining thin films leads to the conclusion that the homogeneity and orientation of biomembrane fragments or proteins in these films depend on the method of their fabrication and increase in the following order: electrophoretic sedimentation assembly and layer

  11. Biomaterials Out of Thin Air: in Situ, On-Demand Printing of Advanced Biocomposites (United States)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley


    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available

  12. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)


    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  13. Thin coatings for heavy industry: Advanced coatings for pipes and valves (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  14. Digital-mode organic vapor-jet printing (D-OVJP): advanced jet-on-demand control of organic thin-film deposition. (United States)

    Yun, Changhun; Choi, Jungmin; Kang, Hyun Wook; Kim, Mincheol; Moon, Hanul; Sung, Hyung Jin; Yoo, Seunghyup


    Digital-mode organic vapor-jet printing (D-OVJP) is demonstrated by producing a series of organic vapor jets. D-OVJP not only inherits all the benefits of a conventional OVJP but also provides an advanced, straightforward control over organic deposition with a pixel-to-pixel precision. Digitally-controlled film thickness and high-performance thin-film transistors are demonstrated with D-OVJP, proving its potential applicability to organic electronics and related areas.

  15. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors. (United States)

    Mroczek, Tomasz


    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices.

  16. Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL


    In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent.

  17. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. II. Calibration methods concerning quantitative hydrocarbon-group type analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Membrado, L.; Cebolla, V.L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos


    Time-consuming external standard-based calibration methods are usually performed for hydrocarbon group type analysis (HGTA) of fossil fuels, regardless of the instrumental chromatographic technique. HGTA of a broad variety of coal and petroleum products was performed using a modern thin-layer chromatography-flame ionization detection (TLC-FID) system and a rapid method based on internal normalization. Repeatability, linear intervals, and sample load ranges for quantitative application of this method are given, namely a heavy oil and its derived hydrocracked products, raw and chemically-modified petroleum asphaltenes, a coal-tar pitch, several coal extracts, and coal hydroliquefaction products. Results from external standard calibration and a normalization method (both obtained by TLC-FID) are in agreement, and they are validated using TLC-ultraviolet scanning. The use of the latter demonstrates that TLC-FID can also be applied to products such as coal extracts and hydroliquefaction products, despite these products being more volatile than petroleum asphaltenes or heavy oils. 14 refs., 3 figs., 5 tabs.

  18. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings (United States)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco


    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  19. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer. (United States)

    Doroshenko, V M; Cotter, R J


    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  20. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost (United States)

    Eldada, Louay


    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  1. Mercury cadmium telluride (HgCdTe) passivation by advanced thin conformal Al2O3 films (United States)

    Fu, Richard; Pattison, James; Chen, Andrew; Nayfeh, Osama


    HgCdTe passivation process must be performed at low temperature in order to reduce Hg depletion. Low temperature plasma enhanced atomic layer deposition (PE-ALD) is an emerging deposition technology for thin highly conformal films to meet the demand. Room temperature PE-ALD Al2O3 film's passivation on HgCdTe has been studied. Conformal film was investigated through SEM images of the Al2O3 film deposited onto high aspect ratio features dry etched into HgCdTe. Minority carrier lifetime was measured and compared by photoconductive decay transients of HgCdTe before and after deposition. Room temperature ALD Al2O3 film increased the minority carrier lifetime of HgCdTe.

  2. Ionization Energies of Lanthanides (United States)

    Lang, Peter F.; Smith, Barry C.


    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  3. Distinct serumal proteomic patterns between ascending and descending types of loco-regionally advanced nasopharyngeal carcinoma assessed by surface enhanced laser desorption ionization and artificial neural network analyses

    Institute of Scientific and Technical Information of China (English)

    GUO Xiang; MIN Hua-qing; ZENG Yi-xin; CAO Su-mei; YU Jie-kai; HONG Ming-huang; ZHANG Chang-qing; LI Ning-wei; XIANG Yan-qun; QIAN Chao-nan; HU Xun


    @@ Nasopharyngeal carcinoma (NPC) is rare in most countries,especially in Europe and North America (incidence rate below 1/100 000 people per year). However, it has a high incidence in several southern areas in China, especially in the Cantonese region, including Guangzhou city, where the incidence rate is approximately 30-80/100 000 people per year.1 In the high incidence areas, more than 95% NPCs are poorly differentiated (WHO types 2 and 3), which are sensitive to radiotherapy and chemotherapy. Besides its special epidemiological and pathological characteristics, NPC differs from other head and neck cancers in terms of its unique clinical development features. The advanced NPCs can be divided into three clinical types:2 (a) cranial type (A or ascending type) is characterized by direct extension of the tumor toward the base of skull with involvement of the cranial nerves Ⅰ, Ⅲ, Ⅳ, Ⅴ1 and Ⅵ and/or destruction of the bone, but without cervical lymphadenopathy. About 12.4% patients belonged to this type; (b) generalized cervical lymphadenopathy type (D or descending type) has the special feature of extensive metastasis in the cervical lymph nodes on one or both sides with a large mass of 8 cm×8 cm, yet without affecting the cranial nerves (42.2%); (c) mixed type (AD or ascending-descending type) shows the features of both the above 2 types, but cervical lymphadenopathy usually remains localized for a long time and the size of the mass rarely reaches 8 cm×8 cm (30.0%). A representative example of type A and type D patients is shown in Fig. 1. Different clinical subsets have different biological behaviors, different treatment outcomes, and deserve different therapeutic plans. Therefore, defining NPC clinical types is useful for the individualized therapeutic planning.

  4. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications (United States)

    Jasuja, Kabeer


    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  5. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, Jordan; Oey, M. S. [Department of Astronomy, University of Michigan, 500 Church Street, 830 Dennison, Ann Arbor, MI 48109-1042 (United States); Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McDonald, Michael, E-mail: [Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139 (United States)


    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  6. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material (United States)

    Jaramillo, R.; Sher, Meng-Ju; Ofori-Okai, Benjamin K.; Steinmann, V.; Yang, Chuanxi; Hartman, Katy; Nelson, Keith A.; Lindenberg, Aaron M.; Gordon, Roy G.; Buonassisi, T.


    Materials research with a focus on enhancing the minority-carrier lifetime of the light-absorbing semiconductor is key to advancing solar energy technology for both early stage and mature material platforms alike. Tin sulfide (SnS) is an absorber material with several clear advantages for manufacturing and deployment, but the record power conversion efficiency remains below 5%. We report measurements of bulk and interface minority-carrier recombination rates in SnS thin films using optical-pump, terahertz-probe transient photoconductivity (TPC) measurements. Post-growth thermal annealing in H2S gas increases the minority-carrier lifetime, and oxidation of the surface reduces the surface recombination velocity. However, the minority-carrier lifetime remains below 100 ps for all tested combinations of growth technique and post-growth processing. Significant improvement in SnS solar cell performance will hinge on finding and mitigating as-yet-unknown recombination-active defects. We describe in detail our methodology for TPC experiments, and we share our data analysis routines in the form freely available software.

  7. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation (United States)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.


    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  8. New Constraints on the Escape of Ionizing Photons From Starburst Galaxies Using Ionization-Parameter Mapping

    CERN Document Server

    Zastrow, Jordan; Veilleux, Sylvain; McDonald, Michael


    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [SIII]/[SII] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrow-band images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40+/-5 degrees (0.4 ster), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble act...

  9. Abnormal ionization in sonoluminescence (United States)

    Zhang, Wen-Juan; An, Yu


    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).


    Energy Technology Data Exchange (ETDEWEB)

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; Pontieu, B. De, E-mail: [Institute of Theoretical Astrophysics, University of Oslo, P. O. Box 1029 Blindern, NO-0315 Oslo (Norway)


    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2–3) × 10{sup 5} K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii{sub 19.5} line reported by Doschek et al. are reproduced.

  11. Electron ionization of acetylene. (United States)

    King, Simon J; Price, Stephen D


    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  12. "Magic" Ionization Mass Spectrometry (United States)

    Trimpin, Sarah


    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. The GODDESS ionization chamber: developing robust windows (United States)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration


    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  14. Improved mesostructure by incorporating surfactant on thin film to develop an advanced optical fiber pH sensor with a temperature cross sensitivity feature (United States)

    Dhara, Papiya; Singh, Vinod Kumar


    A new optical fiber pH sensor based on bromothymol blue (BTB) thin film with temperature cross-sensitivity has been proposed in this paper. The BTB thin film was prepared by depositing a thin layer of a solution containing tetraethyl orthosilicate (TEOS) and a BTB pH indicator in the presence of surfactants, namely cetyltrimethyl ammonium bromide (C19H42BrN, CTAB), by sol–gel technology on an unclad multimode fiber (MMF) surface. The number of layers and the deposition length of the thin film were varied, and the power transmission versus pH variation was studied. The concentration of the surfactant was increased to understand the effect of increasing porosity in the sol–gel matrix to achieve improved pH sensitivity. A straightforward way to utilize the temperature cross-sensitivity feature of the optical fiber pH-sensitive device has been introduced to develop a high sensitivity temperature sensor. A sensitivity of 79.96 nW pH‑1 was obtained by a 20-layer thin-film coated sensor in the pH range of 3–12.

  15. Advanced Photoemission Spectroscopy Investigations Correlated with DFT Calculations on the Self-Assembly of 2D Metal Organic Frameworks Nano Thin Films. (United States)

    Elzein, Radwan; Chang, Chun-Min; Ponomareva, Inna; Gao, Wen-Yang; Ma, Shengqian; Schlaf, Rudy


    Metal-organic frameworks (MOFs) deposited from solution have the potential to form 2-dimensional supramolecular thin films suitable for molecular electronic applications. However, the main challenges lie in achieving selective attachment to the substrate surface, and the integration of organic conductive ligands into the MOF structure to achieve conductivity. The presented results demonstrate that photoemission spectroscopy combined with preparation in a system-attached glovebox can be used to characterize the electronic structure of such systems. The presented results demonstrate that porphyrin-based 2D MOF structures can be produced and that they exhibit similar electronic structure to that of corresponding conventional porphyrin thin films. Porphyrin MOF multilayer thin films were grown on Au substrates prefunctionalized with 4-mercaptopyridine (MP) via incubation in a glovebox, which was connected to an ultrahigh vacuum system outfitted with photoelectron spectroscopy. The thin film growth process was carried out in several sequential steps. In between individual steps the surface was characterized by photoemission spectroscopy to determine the valence bands and evaluate the growth mode of the film. A comprehensive evaluation of X-ray photoemission spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES) data was performed and correlated with density functional theory (DFT) calculations of the density of states (DOS) of the films involved to yield the molecular-level insights into the growth and the electronic properties of MOF-based 2D thin films.

  16. Ionization Front Instabilities in Primordial H II Regions

    CERN Document Server

    Whalen, Daniel


    Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H2 formation capable of inciting violent thin- shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high post- front gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydroge...

  17. Recent advances of diode-pumped thin disk laser%半导体泵浦盘片激光器的技术发展

    Institute of Scientific and Technical Information of China (English)

    崔文达; 韩凯; 王红岩; 华卫红; 许晓军


    概述了盘片激光器的技术发展现状,评述了盘片激光器泵浦结构、增益介质的发展过程,并且分析了连续和脉冲盘片激光器的功率定标放大特点,指出了盘片激光器现存的技术瓶颈,展望了下一步的发展方向。%The recent development of thin disk laser was summarized,and its pump structure and gain medium were commented,meanwhile the power-scalable characteristics of continuous and pulse thin disk lasers were also analyzed. Finally,the technology restrictions were pointed out and the development trends of thin disk lasers were presented.

  18. Modeling and Optimization of Advanced Single- and Multijunction Solar Cells Based on Thin-Film a-Si:H/SiGe Heterostructure


    Peyman Jelodarian; Abdolnabi Kosarian


    In amorphous thin-film p-i-n solar cell, a thick absorber layer can absorb more light to generate carriers. On the other hand, a thin i-layer cannot absorb enough light. Thickness of the i-layer is a key parameter that can limit the performance of solar cell. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. Especially, current density of the cell can be enhanced without deteriorating its open circuit voltage, due to th...

  19. Chemical synthesis of α-La{sub 2}S{sub 3} thin film as an advanced electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.J.; Kumbhar, V.S.; Patil, B.H.; Bulakhe, R.N.; Lokhande, C.D., E-mail:


    Highlights: • The simple, chemical method used for synthesis of lanthanum sulphide thin films. • The lanthanum sulphide thin film surface exhibited porous microstructure. • The lanthanum sulphide thin film electrode is used for supercapacitor application. - Abstract: α-La{sub 2}S{sub 3} thin films have been synthesized for the first time by successive ionic layer adsorption and reaction (SILAR) method and used for supercapacitor application. These films are characterized for crystal structure, surface morphology and wettability studies using X-ray diffraction (XRD), Fourier Transform-Raman (FT-Raman) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The electrochemical supercapacitive performance of α-La{sub 2}S{sub 3} electrode is evaluated by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. From the electrochemical study, it is seen that α-La{sub 2}S{sub 3} electrode delivers high specific capacitance of 256 F g{sup −1} at scan rate of 5 mV s{sup −1} with cycling stability of 85% over 1000 cycles. Such La{sub 2}S{sub 3} electrode has great application in supercapacitor device for energy storage.

  20. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab


    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  1. Research Advances in Chemical Thinning of Flowers and Fruits in Fruit Tree%果树化学疏花疏果研究进展

    Institute of Scientific and Technical Information of China (English)

    薛晓敏; 路超; 聂佩显; 王翠玲; 王金政


    首先综述了世界各国常用的化学疏花疏果剂,如西维因、石硫合剂、萘乙酸等,归纳总结了各自的研究进展、作用机理、使用方法和优缺点等;进而探讨了新型疏花疏果剂的种类和应用情况;最后讨论了化学疏花疏果剂今后的发展趋势.%This paper firstly summarized the widely used flower and fruit thinning chemicals for fruit tree in the world, such as sevin, lime sulfur, NAA and so on, concluded the research progress, mechanism of action, method of application, advantages and disadvantages of each chemical, then discussed the type and application status of new flower and fruit thinning chemicals, and finally pointed out the developmental trend of flower and fruit thinning chemicals in the future.

  2. L-Shell Ionization Study of Tungsten by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    彭秀峰; 何福庆; 龙先灌; 安竹; 罗正明


    L-shell partial production cross sections of Lα-, Lβ- , Lγ- rays by electron impact were measured by observing the counts of x-rays from an impacted thin tungsten target. The total production cross sections and mean ionization cross sections were deduced from the measured results. The electron beam energy range was found to be 11-36 keV. The influence of electrons reflected by the backing on ionization cross sections has been corrected. The experimental results agree well with the theoretical predictions.

  3. Tunnel ionization, population trapping, filamentation and applications (United States)

    Leang Chin, See; Xu, Huailiang


    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  4. Fundamental Materials Research and Advanced Process Development for Thin-Film CIS-Based Photovoltaics: Final Technical Report, 2 October 2001 - 30 September 2005

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. J.; Li, S. S.; Crisalle, O. D.; Craciun, V.


    The objectives for this thin-film copper-indium-diselenide (CIS) solar cell project cover the following areas: Develop and characterize buffer layers for CIS-based solar cell; grow and characterize chemical-bath deposition of Znx Cd1-xS buffer layers grown on CIGS absorbers; study effects of buffer-layer processing on CIGS thin films characterized by the dual-beam optical modulation technique; grow epitaxial CuInSe2 at high temperature; study the defect structure of CGS by photoluminescence spectroscopy; investigate deep-level defects in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy; conduct thermodynamic modeling of the isothermal 500 C section of the Cu-In-Se system using a defect model; form alpha-CuInSe2 by rapid thermal processing of a stacked binary compound bilayer; investigate pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells; and conduct device modeling and simulation of CIGS solar cells.

  5. Kesterite thin-film solar cells: advances in materials modelling of Cu{sub 2}ZnSnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Aron [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath (United Kingdom); Chen, Shiyou [Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai (China); Surface Physics Laboratory, Fudan University, Shanghai (China); Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai (China); Wei, Su-Huai [National Renewable Energy Laboratory, Golden, Colorado (United States); Gong, Xin-Gao [Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai (China); Surface Physics Laboratory, Fudan University, Shanghai (China)


    Quaternary semiconducting materials based on the kesterite (A{sub 2}BCX{sub 4}) mineral structure are the most promising candidates to overtake the current generation of light-absorbing materials for thin-film solar cells. Cu{sub 2}ZnSnS{sub 4} (CZTS), Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and their alloy Cu{sub 2}ZnSn(Se,S){sub 4} consist of abundant, low-cost and non-toxic elements, unlike current CdTe and Cu(In,Ga)Se{sub 2} based technologies. Zinc-blende related structures are formed by quaternary compounds, but the complexity associated with the multi-component system introduces difficulties in material growth, characterization, and application. First-principles electronic structure simulations, performed over the past five years, that address the structural, electronic, and defect properties of this family of compounds are reviewed. Initial predictions of the bandgaps and crystal structures have recently been verified experimentally. The calculations highlight the role of atomic disorder on the cation sub-lattice, as well as phase separation of Cu{sub 2}ZnSnS{sub 4} into ZnS and CuSnS{sub 3}, on the material performance for light-to-electricity conversion in photovoltaic devices. Finally, the current grand challenges for materials modeling of thin-film solar cells are highlighted. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)


    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  7. Thin film processes

    CERN Document Server

    Vossen, John L


    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  8. Ionization cross section of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, al - Farabi Kazakh National University, Almaty (Kazakhstan)], E-mail:, E-mail:


    In present work the electron impact ionization cross section is considered. The electron impact ionization cross section is calculated, based on pseudopotential model of interaction between plasma particles which accounts correlation effects. It is calculated with help of two methods: classical and quantum - mechanical (Born approximation). The ionization cross section is compared with corresponding results of other authors and experimental data. It has been shown that it is very important to take into account an influence of the surrounding during consideration of ionization processes.

  9. Multiple ionization in strong fields


    Rudenko, A; Moshammer, R; Schröter, C; Zrost, K.; Feuerstein, B.; de Jesus, V.; Ullrich, J.


    Single and multiple ionization of rare gas atoms by 25 and 7 fs intense laser pulses has been studied using a "Reaction Microscope”. For single ionization of He, Ne and Ar in the tunnelling regime, surprising and distinct patterns have been observed in high-resolution low-energy electron spectra. Mechanisms of double and multiple ionization were elucidated and partly identified via recoil-ion momentum distributions and correlated electron spectra. For Ne the highly correlated “instantaneous” ...

  10. Physics of Ionized Gases (United States)

    Reiss, Howard R.; Smirnov, Boris M.


    A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.

  11. Resonant Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Soler, R; Goossens, M


    Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...

  12. Thin plastic radiochromic dye films as ionizing radiation dosimeters (United States)

    Buenfil-Burgos, A. E.; Uribe, R. M.; de la Piedad, A.; McLaughlin, W. L.; Miller, A.

    Radiochromic dye films were fabricated by casting polyvinyl butyral (PVB) in weakly acidic solution with the leucocyanide of pararosaniline. Calibrated films of 10-25 μm thickness were useful over a response range of about 10 3-10 5 Gy, by applying spectrophotometric analysis at the wavelength of the maximum of the radiation-induced absorption band (550 nm). The effects of temperature, pressure, and humidity during curing of the films pointed to the need for carefully controlling these parameters. For casting films at the high altitude of Mexico City (≈ 2500 meters), the optimum conditions are 45-75% r.h. and 20-25° C for a drying period of 72 to 92 hours, when the solvent is a mixture of ethanol and 2-methoxyethanol. The response of films fabricated in this way were compared with those of commercially available PVB and Nylon films. The effects of temperature, humidity, and period of storage on the response of these films were studied in the range from -5 to 60° C and from 11.8 to 96.6% r.h. for up to four months between irradiation and spectral analysis, and within nominal experimental uncertainty (≈ 10%), we found that all the radiochromic films studied can be stored for extended periods under steady-state conditions in the temperature range from -5 to 30° C and from 11.8-75.6% r.h. without correction factors for instability, but under extreme conditions of moisture at elevated temperatures the radiochromic image showed a fading effect on storage.

  13. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)



    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  14. Multiphoton ionization of Uracil (United States)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen


    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  15. Simulation of various ionization effects in overdense plasmas irradiated by a subpicosecond pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.; Sasaki, Akira; Tajima, Toshiki [Advanced Photon Research Center, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan)


    The effects of the elastic collisions and ionization under non-LET on the absorption efficiency, heat transfer, and particle acceleration in short pulse laser irradiated overdense plasmas are studied. We present a newly developed hybrid electromagnetic particle-in-cell method (in 1D) employing the nonlinear Langevin equation to account for Coulomb collisions and the average ion model to calculate the plasma transient ionization. The collisional and field ionization are included. Interaction between solid targets and thin foils with an arbitrary polarized, intense (I=10{sup 16}-10{sup 20} W/cm{sup 2}) laser pulse are investigated. (author)

  16. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride (United States)


    performance of electronic devices and systems that must operate in a radiation harsh environment. Graphene is an emerging two dimensional (2D) material for... graphene -based electronic systems because it has the same lattice structure as graphene , is an insulator, and is known to form on graphene surfaces. h...BN also has superior material and electrical properties as compared to insulators such as SiO2 or Al2O3. Understanding the effects of radiation on h

  17. Advances on the Brazilian toroidal grating monochromator (TGM) beamline

    Energy Technology Data Exchange (ETDEWEB)

    Cavasso Filho, R.L. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Landers, R. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Box 6165, Campinas, SP 13083-970 (Brazil); Naves de Brito, A. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil)]. E-mail:


    We report on an important advance for the vacuum ultraviolet and soft X-ray TGM beamline at Laboratorio Nacional de Luz Sincrotron (LNLS). This beamline provides photons in the energy range 12-330 eV using three gratings. It is well known that TGMs deliver relatively high flux at these energies but harmonic contamination can be a serious problem. Of special interest for the users is the range between 12 and 21 eV covered by one of the gratings for studies of outer and inner valence ionization processes in gases as well as solids. Here, we report a solution to the harmonic contamination problems based on a noble gas phase filter combined with thin metal foil barriers.

  18. Ionization Chamber Measures Extreme Ultraviolet (United States)

    Carlson, Robert W.


    Ionization chamber operates in nearly total photon absorption as stable, self-calibrating detector of ionizing extreme ultraviolet radiation. Working gas of instrument is neon; photoionization properties well known and readily applicable to absolute measurements. Designed for measurements of solar ultraviolet flux aboard sounding rocket, instrument used on Earth to measure ultraviolet radiation in vacuum systems. Ionization chamber collects positive neon ions and electrons produced by irradiation of neon gas by ultraviolet photons. Approximately one ion produced by each photon; consequently, photoionization current nearly proportional to photon flux.

  19. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)


    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  20. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B


    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  1. Strong Ionization in carbon Nanowires

    CERN Document Server

    Kaymak, Vural; Shlyaptsev, Vyacheslav N; Rocca, Jorge J


    Surfaces covered with nanostructures, such as nanowire arrays, have shown to facilitate a significantly higher absorption of laser energy as compared to flat surfaces. Due to the efficient coupling of the laser energy, highly energetic electrons are produced, which in turn can emit intense ultrafast X-ray pulses. In the present work we use full three dimensional PIC simulations to analyze the behavior of arrays of carbon nanowires $400 nm$ in diameter, irradiated by a $\\lambda_0 = 400 nm$ laser pulse of $60 fs$ duration at FWHM and a vector potential of $a_0 = 18$. We analyze the ionization dynamics of the nanowires. We investigate the difference of the ionization strength and structure between linearly and circularly polarized laser beam. The nanowires are found to be fully ionized after about 30 laser cycles. Circularly polarized light reveals a slightly stronger ionization effect.

  2. Ionization of impurities in silicon (United States)

    Kuźmicz, Wiesław


    A model for calculation of the percentage of ionized dopant atoms as a function of the doping concentration and temperature is proposed. The results are compared with experiment. Analytical approximations that facilitate practical applications of the model are given.

  3. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  4. Thin EFG octagons (United States)

    Kalejs, J. P.


    This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  5. Synergistic effect of ozonation and ionizing radiation for PVA decomposition. (United States)

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong


    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  6. Resonance ionization scheme development for europium

    CERN Document Server

    Chrysalidis, K; Fedosseev, V N; Marsh, B A; Naubereit, P; Rothe, S; Seiffert, C; Kron, T; Wendt, K


    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  7. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)


    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  8. Responsive copolymer films obtained by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G.; Bucio, E. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Mexico 04510, D. F. (Mexico)], e-mail:


    The graft copolymerization of ph and/or thermo sensitive monomers onto polymeric films can be achieved by different radiation methods which have great advantages compared to conventional methods. Their ph and thermal sensitivity properties, as well as LCST and critical ph point, have been studied by DSC, UV, FTIR, water contact angle and swelling. Graft copolymerization can be carried out by pre-irradiation oxidative and direct methods, using {sup 6}0Co gamma radiation or a Van de Graaff electron beam accelerator. The influence of synthesis conditions, such as pre-irradiation or radiation doses, dose rate, reaction time, monomer concentration, and reaction temperature are being studied. Advances in the field of responsive polymeric systems synthesized by ionizing radiation, their applications and promising future research on radiation graft polymerization and crosslinking will be discussed. (Author)

  9. Consultative committee on ionizing radiation: Impact on radionuclide metrology. (United States)

    Karam, L R; Ratel, G


    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence.

  10. Controlled-resonant surface tapping-mode scanning probe electrospray ionization mass spectrometry imaging. (United States)

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J


    This paper reports on the advancement of a controlled-resonant surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to spot sample, lane scan, and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types, including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 μm based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  11. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    of small molecule and polymer layers is indicated by Flory- Huggins theory for the triisopropylsilylethynl pentacene (TIPS-PEN) and polystyrene blend films. In order to investigate the phase separated layers in the ink-jet printed films, we propose a method to measure diraction Bragg peaks by X......-ray standing waves. A preliminary experiment has been shown and the results imply a three-layer TIPS-PEN/PS/TIPS-PEN segregated film. In the last part of the thesis, the time-resolved X-ray diffraction is applied to the study ferroelectric capacitors of copolymer(vinylidene fluoride-trifluoroethylene) (P...

  12. Atomic Ionization by Electron Impact

    Institute of Scientific and Technical Information of China (English)


    The field of atomic ionization by electron impact is several decades old. In that period of time, significant progress has been made in several aspects of the problem and we have learned a lot about ionizing collisions as a result of this work. Over the years, both the experiments and theories have improved dramatically. Experiments are now able to measure absolute triple differential cross sections for both in-plane or out-of-plane geometries. Theories have been getting better and better at including all the 3-body interactions in the wavefunction for the system. However, during the history of the field, experiment has been ahead of theory and it is just very recently that theory has started to catch up. In this paper, we will show that theory is now able to accurately predict the results of electron impact ionization of hydrogen for intermediate and higher energies.

  13. Theory of dissociative tunneling ionization

    CERN Document Server

    Svensmark, Jens; Madsen, Lars Bojer


    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees freedom. In the regime where the BO approximation is applicable imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fiel...

  14. Low-level measurements of Ra-226/Rn-222 by pulse ionization chambers (United States)

    El-Daoushy, Fand; Garcia-Tenorio, Rafael


    Characteristics of two ionization chambers have been studied and the chambers utilized for 226Ra/ 222Rn measurements for more than ten years. The results obtained show that coating of internal surfaces with a pure and thin Ag-layer enhances the background of ionization chambers in spite of some improvements at the early stages of operation. In addition to previously known parameters influencing the accuracy in routine measurements, new correction factors are suggested. 226Ra impurities in the body of ionization chambers are found to act not only as a permanent, but also as a temperature-dependent source of background. Earlier accuracies of 226Ra/ 222Rn measurements have been considerably improved by assuring long-term mechanical and thermal stability of the ionization chambers.


    Institute of Scientific and Technical Information of China (English)



    L-shell partial production cross sections of Lα- , Lβ-, Lγ- rays by electron impact were measured by observing the counts of X-ray from impacted thin tungsten target. Total production cross sections and mean ionization cross sections were deduced from these measured results. The electron beam energy range was from 11 to 36 keV. Tungsten was sputtered onto a carbon backing to reduce bremsstrahlung of the backing. The effect of electrons reflected by the backing has been corrected. Comparison with two theoretical calculations has performed. The experimental results agree rather well with the theoretical predications.

  16. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki


    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  17. Radiative feedback from ionized gas

    CERN Document Server

    Glover, S C O


    H2 formation in metal-free gas occurs via the intermediate H- or H2+ ions. Destruction of these ions by photodissociation therefore serves to suppress H2 formation. In this paper, I highlight the fact that several processes that occur in ionized primordial gas produce photons energetic enough to photodissociate H- or H2+ and outline how to compute the photodissociation rates produced by a particular distribution of ionized gas. I also show that there are circumstances of interest, such as during the growth of HII regions around the first stars, in which this previously overlooked form of radiative feedback is of considerable importance.

  18. Electronic measurements of ionization currents

    Energy Technology Data Exchange (ETDEWEB)

    Hutyra, F.; Knapp, K.; Gregor, J. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)


    Measurements are discussed of very low currents from ionization chambers. The currents range between 10/sup -15/ and 10/sup -9/ A. Two methods are discussed. A description is given of a dynamic and a semiconductor electrometers. Both meters are parts of dosimetric instruments for monitoring the dose rate (NB 9201) and the neutron-gamma mixed radiation dose rate (NDK 601).

  19. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.


    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  20. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.


    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  1. Comments on Ionization Cooling Channel Characteristics


    Neuffer, David


    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  2. 29 CFR 1926.53 - Ionizing radiation. (United States)


    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  3. Electron-Impact Ionization and Dissociative Ionization of Biomolecules (United States)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.


    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  4. Parametric-resonance Ionization Cooling of Muon Beams

    CERN Document Server

    Derbenev, Ya S; Afanasev, A; Beard, K B; Johnson, R; Erdelyi, B; Maloney, J A


    Cooling of muon beams for the next-generation lepton collider is necessary to achieve its higher luminosity with fewer muons. In this paper we present an idea to combine ionization cooling with parametric resonances that is expected to lead to muon beams with much smaller transverse sizes. We describe a linear magnetic transport channel where a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' at the channel focal points. Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism where each absorber is followed by RF cavities. We present a theory of Parametric-resonance Ionization Cooling (PIC), starting with the basic principles in the context of a simple quadrupole-focused beam line. Then we discuss detuning caused by chromatic, spherical, and non-linear field aberrations and the techniques needed to ...


    Institute of Scientific and Technical Information of China (English)

    杨国山; 薛永库; 等


    A large volume spherical ionization chamber of 195mm diameter and 0.36mg/cm2 wall thickness made from conducting carbon-fibre epoxy composite material has been developed.The mechanical intensity of the chamber is satisfactory for a good longterm volume stability.Owing to its large volume and thin wall,the chamber is sensitive to low energy photon beams and has excellent energy-response characteristics.This ionization chamber is suitable not only for a laboratory reference but also for measurement of low energy photon beam exposure rates at protection-level.

  6. Ionization in collisions between metastable hydrogen atoms (United States)

    Bohr, Alex; Blickle, Andrew; Paolini, Stephen; Ohlinger, Luke; Forrey, Robert


    Associative and Penning ionization cross sections are calculated for collisions between metastable hydrogen 2s atoms at thermal energies. Cross sections for deuterium 2s collisions are also reported. The associative ionization cross sections behave as E-1 for collision energy E, in agreement with an existing experiment. The Penning ionization cross sections dominate for all energies and are found to follow the E-2/3 behavior that was predicted in previous work for the total ionization cross section. The magnitudes of our theoretical associative ionization cross sections for H(2s)+H(2s) collisions are between two and four times larger than the experimental data.

  7. Ionization potentials some variations, implications and applications

    CERN Document Server

    Ahrens, L H


    Ionization Potentials: Some Variations, Implications and Applications covers several aspects of ionization potential that is a highly significant parameter in controlling the properties of electric discharge. Comprised of 17 chapters, the book covers topic relevant to ionization potentials, such as properties, concepts, and applications, in order to understand and fully comprehend all aspects of ionization potential. The opening chapter is a review of ionization potentials and a discussion of trends and features. The succeeding chapters then tackle complex topics such as the s and p electrons;

  8. The dosimetry of ionizing radiation

    CERN Document Server


    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  9. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division


    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  10. Loss of ions in cavity ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Takata, N. [Ionizing Radiation Section, NMIJ/AIST, Tsukuba 305-8568 (Japan)]. E-mail:; Tran, N.T. [Institute for Nuclear Science and Technique, VAEC, Hanoi (Viet Nam); Kim, E. [Radiation Safety Section, NIRS, Inageku, Chiba-city 263-8555 (Japan); Marsoem, P. [P3KRBiN-BATAN, JL Cinere-Pasar Jum' at, Jakarta 12070 (Indonesia); Kurosawa, T. [Ionizing Radiation Section, NMIJ/AIST, Tsukuba 305-8568 (Japan); Koyama, Y. [Ionizing Radiation Section, NMIJ/AIST, Tsukuba 305-8568 (Japan)


    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with {sup 60}Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers.

  11. Advance in alloy thin-film pressure sensor for high-temperature environment%合金薄膜高温压力传感器研究进展

    Institute of Scientific and Technical Information of China (English)

    李伟; 陈怀礼


    The alloy thin-film pressure sensor has overcome the shortcomings of stickup pressure sensor,has more excellent performances and is suitble for harsh environments.The working principle of the alloy thin-film pressure senso is introduced in this paper.The advantages and disadvantages of several pressure sensors are compared.Taking the sensor's working temperature as an assessment index,the characteristics and development status of nickel-chromium(NiCr),platinum-tungsten (PtW) and palladium-chromium(PdCr) thin-film pressure sensors are elaborated.The conclusions are: NiCr thin-film pressure sensor is suitable for pressure measurement in the range of-269℃~ +350℃;PtW and PdCr thin-film pressure sensors are applied to pressure measurement at high temperature.The key technology and the application of alloy thin-film pressure sensor are reviewed.%合金薄膜压力传感器克服了粘贴式应变压力传感器的缺点,性能更优良,适应恶劣环境压力测量要求。对合金薄膜压力传感器的工作原理进行了介绍,比较了几种压力传感器的优缺点,并以应用温度范围这一指标为中心论述了镍铬、铂钨及钯铬薄膜压力传感器的性能特点及研究现状。镍铬薄膜传感器适用于中、低温介质压力测量,而铂钨、钯铬薄膜传感器适用于更高温度环境下的压力测量。

  12. Sharp-switching band-modulation back-gated devices in advanced FDSOI technology (United States)

    El Dirani, Hassan; Fonteneau, Pascal; Solaro, Yohann; Legrand, Charles-Alex; Marin-Cudraz, David; Ferrari, Philippe; Cristoloveanu, Sorin


    A band-modulation device with a free top surface, named Z3-FET (Zero front-gate, Zero swing slope and Zero impact ionization) and fabricated in the most advanced Fully Depleted Silicon-On-Insulator technology, is demonstrated experimentally. Since the device has no front gate, the operation mechanism is controlled by two adjacent heavily doped buried ground planes acting as back-gates. Characteristics such as sharp quasi-vertical switching, low leakage, and tunable trigger voltage are measured and discussed. We explore several variants (thin and thick silicon or SiGe body) and show promising results in terms of high current, switching performance and ESD capability with relatively low back-gate and drain bias operation.

  13. Avalanche speed in thin avalanche photodiodes (United States)

    Ong, D. S.; Rees, G. J.; David, J. P. R.


    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  14. Thermoluminescence of thin films deposited by laser ablation; Termoluminiscencia de peliculas delgadas depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Escobar A, L.; Camps, E.; Arrieta, A.; Romero, S.; Gonzalez, P.R.; Olea M, O.; Diaz E, R. [Depto. de Fisica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    Materials in thin film form have received great attention in the last few years mainly because of their singular properties, which may differ significantly from their bulk attributes making them attractive for a wide variety of applications. In particular, thermoluminescence (Tl) properties of thin films have been studied recently owing to their potential applications in detection for both ionizing and non ionizing radiation. The aim of the present work is to report the synthesis and characterization of C Nx, aluminum oxide and titanium oxide thin films. Thermoluminescence response of the obtained thin films was studied after subject thin films to UV radiation (254 nm) as well as to gamma radiation (Co-60). Thermoluminescence glow curves exhibited a peak centered at 150 C for CN{sub x} whereas for titanium oxide the glow curve shows a maximum peaking at 171 C. Characterization of the physical properties of the deposited materials is presented. (Author)

  15. Fiber optic ionizing radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J.J. (Johns Hopkins Univ., Applied Physics Lab., Laurel, MD (United States)); Poret, J.C.; Rosen, M. (Johns Hopkins Univ., Dept. of Materials Science and Engineering, Baltimore, MD (United States))


    Radiation detection can be done by various types of devices, such as Geiger counters, thermoluminescent detectors, and electric field sensors. This paper reports on a noel design for an ionizing radiation sensor using coiled optical fibers, which can be placed within or near a radioactive source. This design has several features that make it different from sensors proposed in the past. In order to evaluate this sensor, coiled fiber samples were placed inside metallic and metal-matrix composite cylinders to evaluate the sensitivity of the detector as well as the shielding effectiveness of the materials.

  16. XUV ionization of aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kelkensberg, F.; Siu, W.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Lucchini, M. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Lucchese, R. R. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)


    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  17. Rip-Stop Reinforced Thin Film Sun Shield Structure Project (United States)

    National Aeronautics and Space Administration — During a proposed Phase I and Phase II program, PSI will advance the TRL from 3 to 6 for the ripstop reinforcement of thin film membranes used for large deployable...

  18. The Time Response of Glass Resistive Plate Chambers to Heavily Ionizing Particles

    CERN Document Server

    Artamonov, A; Bogomilov, M; Booth, C; Borghi, S; Catanesi, M G; Chimenti, P; Gastaldi, Ugo; Giani, S; Graulich, J S; Grégoire, G; Grossheim, A; Guglielmi, A; Ivantchenko, V; Kolev, D; Meurer, C; Mezzetto, M; Panman, J; Popov, B; Radicioni, E; Schroeter, R; Temnikov, P; Chernyaev, E; Tsenov, R; Tsukerman, I; Wiebusch, C


    The HARP system of resistive plate chambers (RPCs) was designed to perform particle identification by the measurement of the difference in the time-of-flight of different particles. In previous papers an apparent discrepancy was shown between the response of the RPCs to minimum ionizing pions and heavily ionizing protons. Using the kinematics of elastic scattering off a hydrogen target a controlled beam of low momentum recoil protons was directed onto the chambers. With this method the trajectory and momentum, and hence the time-of-flight of the protons can be precisely predicted without need for a measurement of momentum of the protons. It is demonstrated that the measurement of the time-of-arrival of particles by the thin gas-gap glass RPC system of the HARP experiment depends on the primary ionization deposited by the particle in the detector.

  19. Development of an Ionization Chamber for the SPIDER Fission Fragment Detector (United States)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.


    The ionization chamber component of the SPIDER detector has been designed to measure energy loss and kinetic energy of fragments produced through neutron-induced fission with energy resolutions of <1% and a time-dependent signal collection. Important design elements implemented are an axial configuration of the electrodes for improved energy loss and measurement and a thin silicon nitride entrance window to minimize both energy loss and energy straggling of the incoming fragments. High energy resolution and improved charge resolution from the ionization chamber are combined with the high precision of the upstream time-of-flight component of SPIDER to achieve resolutions in mass and nuclear charge of 1 AMU and Z=1. A discussion of the present resolution capabilities of the ionization chamber will be presented.

  20. Spatially discontinuous ionization phenomenon in inhomogeneous soil

    Institute of Scientific and Technical Information of China (English)


    By using X-ray film imaging technology,a phenomenon of discontinuous ionization was observed in the inhomogeneous soil around the grounding electrode on which a surge voltage was applied.A simplified two-phase solid-gas model was built to study the electric field distribution in the soil to explain the discontinuous ionization phenomenon.Analysis showed the differences of the dielectric properties,the shapes and sizes of soil particles can cause discontinuous ionization in the soil.

  1. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim


    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  2. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)


    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  3. K-shell ionization by antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.


    We present calculations for the impact-parameter dependence of K-shell ionization rates in p-bar-Cu and in p-bar-Ag collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the antibinding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross sections for protons.

  4. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Young; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-Dong, Gunsan-City, Jeollabuk-Do 573-540 (Korea, Republic of); Jung, Young-Dae, E-mail: [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)


    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  5. Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation (United States)

    Clifford, D. M.; Castano, C. E.; Rojas, J. V.


    Nanostructures decorated with transition metal nanoparticles using ionizing radiation as a synthesis method in aqueous solutions represents a clean alternative to existing physical, chemical and physicochemical methods. Gamma irradiation of aqueous solutions generates free radicals, both oxidizing and reducing species, all distributed homogeneously. The presence of oxidant scavengers in situ during irradiation generates a highly reductive environment favoring the reduction of the metal precursors promoting seed formation and nanoparticle growth. Particle growth is controlled by addition of surfactants, polymers or various substrates, otherwise referred to as supports, which enhance the formation of well dispersed nanoparticles. Furthermore, the combination of nanoparticles with supports can offer desirable synergisms not solely presented by the substrate or nanoparticles. Thus, supported nanoparticles offer a huge diversity of applications. Among the ionizing radiation methods to synthesize nanomaterials and modify their characteristics, gamma irradiation is of growing interest and it has shown tremendous potential in morphological control and distribution of particle size by judiciously varying parameters including absorbed dose, dose rate, concentration of metal precursor, and stabilizing agents. In this work, major advances on the synthesis of supported nanoparticles through gamma irradiation are reviewed as well as the opportunities to develop and exploit new composites using gamma-rays and other accessible ionizing radiation sources such as X-rays.

  6. Ionization cross section for a strongly coupled partially ionized hydrogen plasma: variable phase approach

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, Al-Farabi Kazakh National University, 050012 Almaty (Kazakhstan)], E-mail:, E-mail:


    In the present work an electron impact ionization cross section is considered. The electron impact ionization cross section is calculated with the help of a variable phase approach to potential scattering. The Calogero equation is numerically solved, based on a pseudopotential model of interaction between partially ionized plasma particles, which accounts for correlation effects. As a result, scattering phase shifts are obtained. On the basis of the scattering phase shifts, the ionization cross section is calculated.

  7. Inorganic and Organic Solution-Processed Thin Film Devices

    Institute of Scientific and Technical Information of China (English)

    Morteza Eslamian


    Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging tech-nologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique prop-erties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

  8. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo


    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  9. Ultra-thin plasma radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Peter S.


    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  10. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G


    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is got.

  11. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)


    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.


    Energy Technology Data Exchange (ETDEWEB)

    Decarli, R.; Walter, F. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Neri, R.; Cox, P. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Heres (France); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, C. [NRAO, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Kneib, J. P. [Laboratoire d' Astrophysique de Marseille, Observatoire d' Astronomie Marseille-Provence, BP 8, F-13376 Marseille (France); Lestrade, J. F. [Observatoire de Paris, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Maiolino, R. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Omont, A. [Institut d' Astrophysique de Paris, UPMC and CNRS, 98bis Bld. Arago, F-75014 Paris (France); Richard, J. [CRAL, Observatoire de Lyon, Universite Lyon 1, 9 Avenue Ch. Andre, F-69561 Saint Genis Laval Cedex (France); Riechers, D. [Astronomy Department, Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Thanjavur, K. [Canada-France-Hawaii Telescope Corporation, HI 96743 (United States); Weiss, A., E-mail: [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)


    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  13. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Piskur, J.; Borg, L. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Stupnik, A.; Leisch, M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Ernst, W.E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Holst, B. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)], E-mail:


    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  14. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization (United States)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.


    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  15. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David


    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  16. Ionized carbon in side-illuminated molecular clouds (United States)

    Boreiko, R. T.; Betz, A. L.; Zmuidzinas, J.


    The C II fine-structure line has been observed in five sources for which the ionization front/molecular cloud interface is viewed approximately edge-on. The LSR velocity of the C II emission is generally in good agreement with that observed for molecular species such as CO. However, the observed linewidths of 3-14 km/s are typically wider than those of molecular lines and often show rapid spatial variations in the observed regions. The C II brightness temperature are typically equal to or slightly higher than the dust temperature at all locations observed. In the optically thin approximation, C II excitation temperatures are 100 K or more and column densities are 10 to the 18th/sq cm for all sources except M17, which has a more intense and complicated line profile with a larger spatial extent than any other source observed.

  17. Ionization in nearby interstellar gas (United States)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.


    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  18. Ionization in nearby interstellar gas

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, P.C.; Welty, D.E.; York, D.G.; Fowler, J.R. (Chicago Univ., IL (USA) New Mexico State Univ., Las Cruces (USA))


    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II. 85 refs.

  19. A New Fabrication Process for Thin-Film Multijunction Thermal Converters

    Energy Technology Data Exchange (ETDEWEB)



    Advanced thin film processing and packaging technologies are employed in the fabrication of new planar thin-film multifunction thermal converters. The processing, packaging, and design features build on experience gained from prior NIST demonstrations of thin-film converters and are optimized for improved sensitivity, bandwidth, manufacturability, and reliability.

  20. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases


    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of a apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  1. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T


    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  2. Ionization penalty in nonlinear Raman neuroimaging. (United States)

    Voronin, Aleksandr A; Fedotov, Ilya V; Doronina-Amitonova, Lyubov V; Ivashkina, Olga I; Zots, Marina A; Fedotov, Andrei B; Anokhin, Konstantin V; Zheltikov, Aleksei M


    Light-assisted ionization accompanying coherent anti-Stokes Raman scattering (CARS) of ultrashort laser pulses in brain tissue is shown to manifest itself in a detectable blueshift of the anti-Stokes signal. This blueshift can serve as an indicator of ionization processes in CARS-based neuroimaging.

  3. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H


    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  4. MHD power generation with fully ionized seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, H.; Shioda, S.


    Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.

  5. Multiorbital tunneling ionization of the CO molecule

    CERN Document Server

    Wu, J; Kunitski, M; Meckel, M; Voss, S; Sann, H; Kim, H; Jahnke, T; Czasch, A; Dörner, R


    We coincidently measure the molecular frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.

  6. A search for ionized jets towards massive young stellar objects

    CERN Document Server

    Purser, S J D; Hoare, M G; Urquhart, J S; Cunningham, N; Purcell, C R; Brooks, K J; Garay, G; Gúzman, A E; Voronkov, M A


    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of -0.55 consistent with Fermi a...

  7. Chiral atomically thin films (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong


    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  8. Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n'93mNb Reaction

    Directory of Open Access Journals (Sweden)

    Tomita Hideki


    Full Text Available We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrow-band and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate.

  9. Thin film processes II

    CERN Document Server

    Kern, Werner


    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  10. Pyrolyzed thin film carbon (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)


    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  11. Medical applications of ionizing radiation; Aplicaciones medicas de las radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Espana, M. L.; Prieto, C.; Garcia, P.; Bejar, M. J.


    Ionizing radiation is nowadays widely used for both diagnosis and therapy mainly in nuclear medicine, diagnostic radiology and radiation oncology specialities. Benchmark techniques and advanced equipment like multislice CT in diagnostic radiology, PET-CT in nuclear medicine or IMRT or IGRT in radiotherapy are currently becoming regular in daily practice at hospitals. Medical exposures are by far the largest artificial source of public exposure to ionizing radiation. although concentrated in a relatively small percentage of the worlds population, these medical exposures continue to grow in a significant way, especially in developed countries. This fact makes it necessary to keep on working in radiological protection and safety at medical facilities. (Author) 11 refs.

  12. Experimental comparison of models for ultrafast impact ionization is silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd


    We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses.......We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses....

  13. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.


    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  14. nvestigation on influencing factors in determination of hydrocarbons in heavy oils by thin-layer chromatography flame/ionization detector.%棒状薄层色谱/氢火焰离子化检测器法测定重油烃族组成影响因素的探讨

    Institute of Scientific and Technical Information of China (English)

    杨海鹰; 顾洁; 蔺玉贵


    The influencing factors in the determination of hydrocarbons (saturates, aromatics, resins) in heavy oils by thin layer chromatography/flame ionization detection (TLC/FID) were investigated. It has been found that the solvent co -volatization may cause sample loss during the spotting and developing process, and that the quantitative calibration factors can not be used universally. Because the flame temperature of TLC/FLD is much lower than that of GC/FID, the transformation of different compounds in the flame of FID is varied.%对应用棒状薄层色谱/氢火焰离子化检测器(TLC/FID)测定重油烃族组成(饱和烃、芳烃、胶质)时的影响因素作了探讨。研究发现,在点样及展开过程中,溶剂共挥发可引起样品损失;而且,由于TLC/FID的火焰温度远低于一般GC条件下FID的火焰温度,使不同化合物在FID上的燃烧转化情况有差异,因而其定量校正因子不具有通用性。

  15. Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect

    Directory of Open Access Journals (Sweden)

    Peyman Jelodarian


    Full Text Available The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2 and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.

  16. Thin wall ductile and austempered iron castings


    E. Fraś; M. Górny


    It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns). Thin wall ductile iron castings can be lighter (380 g) than their substitutes made of aluminium alloys (580g). The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dil...

  17. Evolution of damage fraction due to dense ionizing irradiation on TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avesh [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mohanty, T., E-mail: [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)


    The evolution of damage fraction during dense ionizing irradiation at various fluences using 100 MeV Ag ion is studied. Irradiation induced modification of surface roughness and surface potential of titanium dioxide nanocrystalline thin films are estimated. TiO{sub 2} thin films deposited on Si (1 0 0) substrate were irradiated by 100 MeV Ag ion beam with varying fluences. Ion bombardment generates point and extended defects in TiO{sub 2} thin films due to dense electronic excitation. The surface morphology and surface roughness of irradiated and pristine thin films were measured using atomic force microscopy. The changes in surface potential of pristine as well as Ag ion beam irradiated thin films were measured from contact potential difference between TiO{sub 2} thin film (one electrode) of unknown work function and Au (reference electrode) of known work function using scanning Kelvin probe microscopy. The defect size and damage fraction are calculated from exponential fitting of variation of both contact surface potential difference and roughness exponent with fluence.

  18. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P


    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...

  19. Leukemia and ionizing radiation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cuttler, J.M. [Cuttler & Associates Inc., Vaughan, Ontario (Canada); Welsh, J.S. [Loyola University-Chicago, Dept. or Radiation Oncology, Stritch School of Medicine, Maywood, Illinois (United States)


    A world-wide radiation health scare was created in the late 19508 to stop the testing of atomic bombs and block the development of nuclear energy. In spite of the large amount of evidence that contradicts the cancer predictions, this fear continues. It impairs the use of low radiation doses in medical diagnostic imaging and radiation therapy. This brief article revisits the second of two key studies, which revolutionized radiation protection, and identifies a serious error that was missed. This error in analyzing the leukemia incidence among the 195,000 survivors, in the combined exposed populations of Hiroshima and Nagasaki, invalidates use of the LNT model for assessing the risk of cancer from ionizing radiation. The threshold acute dose for radiation-induced leukemia, based on about 96,800 humans, is identified to be about 50 rem, or 0.5 Sv. It is reasonable to expect that the thresholds for other cancer types are higher than this level. No predictions or hints of excess cancer risk (or any other health risk) should be made for an acute exposure below this value until there is scientific evidence to support the LNT hypothesis. (author)

  20. New thin materials for electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzberg, Adam


    The work described in this report is from an Early Career LDRD to develop and investigate novel thin film organic conductors with drastically improved electronic properties over the current state of the art. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory a Langmuir-Blodgett trough (LB) was built from scavenged parts and added to a scanning Raman microscope at LBNL. First order thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have helped position Sandia for advances in this area of MOF film creation. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory, a Langmuir-Blodgett trough (LB) was built and added to a scanning Raman microscope at LBNL. Thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy, and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have positioned Sandia for advance in this area of MOF film creation. The interactions with LBNL also led to award of two user projects at the Molecular Foundry at LBNL led by current Sandia staff and the appointment of a current Sandia staff to the Molecular Foundry User Executive Committee.

  1. Electron impact single ionization of copper

    Indian Academy of Sciences (India)

    L K Jha; O P Roy; B N Roy


    Electron impact single ionization cross sections of copper have been calculated in the binary encounter approximation using accurate expression for as given by Vriens and Hartree–Fock momentum distribution for the target electron. The BEA calculation based on the usual procedure does not show satisfactory agreement with experiment in this case but a striking modification is found to be successful in explaining the experimental observations. The discrepancy is linked with the ionization of the 310 electrons and probably effective single ionization does not take place from 3 shell of copper leading to smaller values of experimental cross sections.

  2. Radiation sensitivity of graphene field effect transistors and other thin film architectures (United States)

    Cazalas, Edward

    An important contemporary motivation for advancing radiation detection science and technology is the need for interdiction of nuclear and radiological materials, which may be used to fabricate weapons of mass destruction. The detection of such materials by nuclear techniques relies on achieving high sensitivity and selectivity to X-rays, gamma-rays, and neutrons. To be attractive in field deployable instruments, it is desirable for detectors to be lightweight, inexpensive, operate at low voltage, and consume low power. To address the relatively low particle flux in most passive measurements for nuclear security applications, detectors scalable to large areas that can meet the high absolute detection efficiency requirements are needed. Graphene-based and thin-film-based radiation detectors represent attractive technologies that could meet the need for inexpensive, low-power, size-scalable detection architectures, which are sensitive to X-rays, gamma-rays, and neutrons. The utilization of graphene to detect ionizing radiation relies on the modulation of graphene charge carrier density by changes in local electric field, i.e. the field effect in graphene. Built on the principle of a conventional field effect transistor, the graphene-based field effect transistor (GFET) utilizes graphene as a channel and a semiconducting substrate as an absorber medium with which the ionizing radiation interacts. A radiation interaction event that deposits energy within the substrate creates electron-hole pairs, which modify the electric field and modulate graphene charge carrier density. A detection event in a GFET is therefore measured as a change in graphene resistance or current. Thin (micron-scale) films can also be utilized for radiation detection of thermal neutrons provided nuclides with high neutron absorption cross section are present with appreciable density. Detection in thin-film detectors could be realized through the collection of charge carriers generated within the

  3. Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime* (United States)

    Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.


    Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  4. High-Temperature Ionization in Protoplanetary Disks

    CERN Document Server

    Desch, Steven J


    We calculate the abundances of electrons and ions in the hot (> 500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains' work functions. The charged species' abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks' dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge locat...

  5. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  6. Classification of the LHC BLM Ionization Chamber

    CERN Document Server

    Stockner, M; Fabjan, Christian Wolfgang; Holzer, E B; Kramer, Daniel


    The LHC beam loss monitoring (BLM) system must prevent the super conducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets and other machine components. These shower particles are measured by the monitors installed on the outside of the accelerator equipment. For the calibration of the BLM system the signal response of the ionization chamber is simulated in GEANT4 for all relevant particle types and energies (keV to TeV range). For validation, the simulations are compared to measurements using protons, neutrons, photons and mixed radiation fields at various energies and intensities. This paper will focus on the signal response of the ionization chamber to various particle types and energies including space charge effects at high ionization densities.

  7. Electron impact ionization of large krypton clusters

    Institute of Scientific and Technical Information of China (English)

    Li Shao-Hui; Li Ru-Xin; Ni Guo-Quan; Xu Zhi-Zhan


    We show that the detection of ionization of very large van der Waals clusters in a pulsed jet or a beam can be realized by using a fast ion gauge. Rapid positive feedback electron impact ionization and fragmentation processes,which are initially ignited by electron impact ionization of the krypton clusters with the electron current of the ion gauge, result in the appearance of a progressional oscillation-like ion spectrum, or just of a single fast event under critical conditions. Each line in the spectrum represents a correlated explosion or avalanche ionization of the clusters.The phenomena have been analysed qualitatively along with a Rayleigh scattering experiment of the corresponding cluster jet.

  8. Infrared laser desorption/ionization on silicon. (United States)

    Bhattacharya, Sucharita H; Raiford, Timothy J; Murray, Kermit K


    Laser desorption/ionization from a single-crystal silicon surface was performed using a laser operating in the 3-microm region of the mid-infrared. Analyte molecules up to 6 kDa were ionized with no added matrix. As with ultraviolet desorption/ionization from porous silicon (DIOS), IR laser desorption from silicon does not produce matrix ions that can interfere with analysis of low-mass analytes. However, in contrast to UV DIOS, silicon porosity or roughness is not required for ionization using an IR laser. Mass spectra were obtained in the wavelength range between 2.8 and 3.5 microm, which is consistent with energy absorption by a hydrogen-bonded OH group. A mechanism based on desorption of adsorbed solvent molecules is postulated.

  9. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.


    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  10. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.


    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  11. The warm ionized medium in spiral galaxies

    CERN Document Server

    Haffner, L M; Beckman, J E; Wood, K; Slavin, J D; Giammanco, C; Madsen, G J; Zurita, A; Reynolds, R J


    This article reviews observations and models of the diffuse ionized gas that permeates the disk and halo of our Galaxy and others. It was inspired by a series of invited talks presented during an afternoon scientific session of the 65th birthday celebration for Professor Carl Heiles held at Arecibo Observatory in August 2004. This review is in recognition of Carl's long standing interest in and advocacy for studies of the ionized as well as the neutral components of the interstellar medium.

  12. Positron-impact ionization of Na

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.K. (Jawahar Navodaya Vidyalaya, Ramchandraghat, West Tripura 799207, Tripura (India)); Singh, N.R. (Thambal Marik College, Oinam, Bishanpur, Manipur (India)); Choudhury, K.B. (Department of Physics, Jadavpur University, Calcutta 700032, West Bengal (India)); Mazumdar, P.S. (Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India))


    In this paper we present the total cross sections for the positron-impact ionization of Na in the range 8--30 eV of the energy of the incident positron. Calculations are done by using a distorted-wave approximation incorporating the effects of screening and distortion. The present results are compared with the experimental results for the electron-impact ionization of Na.

  13. Tunneling ionization of vibrationally excited nitrogen molecules (United States)

    Kornev, Aleksei S.; Zon, Boris A.


    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  14. Multiple ionization of argon by helium ions (United States)

    Montanari, C. C.; Miraglia, J. E.


    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1-10 Mev amu-1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu-1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  15. Commercial applications of food ionization in France

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Pierre-Louis [Ionisos S.A. (France)


    Due to the long history of nuclear energy in France, French public is not frightened by nuclear applications in its everyday life. The first industrial initiative on food ionization dates back to 1956. In 1980, the Joint Expert Committee on Food Ionization concluded that food ionization up to a certain maximum dose presented neither toxicological nor nutritional hazard. This opened the new era for the industrial development. But in 1988, a draft directive to harmonize national legislations was issued by the Commission of European Communities. This stopped many industrial initiatives due to uncertainty. It is estimated that nearly 14,000 tons of various food items have been ionized in France in 1991. About 40% are spices, followed by dry fruit, vegetables, and deboned poultry meat. Most of the present applications are intended to eliminate microorganisms. In 1992, 8 industrial facilities were in operation, mostly using gamma sources. Local research associations were founded to promote food ionization. Food ionization development in the past 30 years has been rapid and important, but the future of this process depends on the European harmonization of legislations. (K.I.).

  16. Materials for advanced packaging

    CERN Document Server

    Wong, CP


    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  17. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś


    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  18. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov


    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  19. DC field response of one-dimensional flames using an ionized layer model

    KAUST Repository

    Xiong, Yuan


    We develop a simplified model to better explain electric current response when direct current (DC) is applied to a flame. In particular, different current responses have been observed by changing the polarity of the DC in a sub-saturated current regime that results from the presence of ions and electrons in the flame zone. A flame zone was modeled as a thin, ionized layer located in one-dimensional DC electric fields. We derived simplified model-governing equations from species equations by implementing mobility differences dependent on the type of charged particle, particularly between ions and electrons; we performed experiments to substantiate the model. Results showed that the sub-saturated current and local field intensity were significantly influenced by the polarity of the DC because of the combined effect of unequal mobility of charged particles and the position of the ionized layer in the gap relative to two electrodes. When an energized electrode is close to the ionized layer, applying a negative DC causes a more rapid increase in current than by applying a positive DC to the same electrode. Results from our experimental measurement of current using counterflow diffusion flames agreed qualitatively well with the model predictions. A sensitivity analysis using dimensional and non-dimensional parameters also supported the importance of the mobility difference and the relative location of the ionized layer on the electric current response.

  20. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions (United States)

    Anish Roshi, D.; Churchwell, E.; Anderson, L. D.


    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  1. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul


    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  2. Ametryne degradation by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Debora Cristina de; Mori, Manoel Nunes; Duarte, Celina Lopes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails:;;; Melo, Rita Paiva [Technological and Nuclear Institute (ITN), Sacavem (Portugal)]. E-mail:


    Ametryne may be released to the environment during its manufacture, transport, storage, formulation and use as selective herbicide for the control of annual broadleaf and grass weeds. It is applied as an aqueous suspension for preemergence or post-directed applications on crops. Depending on the pesticide formulation and type of application, ametryne residues may be detectable in water, soil and on the surfaces for months or years. The herbicide used to this study was Ametryne (commercial name, Gesapax 500), commonly used on field crops and on corn and commercialized since 1975. Ametryne was analyzed by gas chromatography (GC Shimadzu 17A), after extraction with hexane/dichloromethane (1:1 v/v) solution. The calibration curve was obtained with a regression coefficient of 0.9871. In addition, the relative standard deviation was lower than 10%. The radiation-processing yield was evaluated by the destruction G-value (Gd) (Eq. 1), that is defined by the number of destroyed molecules by absorption of 100 eV of energy from ionizing radiation. Different concentrations of the herbicide (11.4 mol L{sup -1}; 22.7 mol L{sup -1}; 34.1 mol L{sup -1} and 45.5 mol L{sup -1}) were irradiated at the AECL 'Gammacell 220' {sup 60}Co source, with 1 kGy, 3 kGy, 6 kGy, 9 kGy, 12 kGy, 15 kGy and 30 kGy absorbed doses. After irradiation processing, the ametryne highest reduction rate occurs at low doses of radiation: at 6 kGy more than 85-90% of all ametryne compounds were removed. Two products of incomplete degradation of ametryne were identified as s-triazyne isomers. However, further work is needed in order to fully understand the ametryne degradation mechanisms the degradation yield of ametryne depends on its initial concentration and the process seems to be more efficient at higher concentrations. (author)

  3. Monte Carlo investigation of avalanche multiplication process in thin InP avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; MA YuXiang


    An ensemble Monte Carlo simulation is presented to investigate the avalanche multiplication process in thin InP avalanche photodiodes (APDs). Analytical band structures are applied to the description of the conduction and valence band, and impact ionization is treated as an additional scattering mecha-nism with the Keldysh formula. Multiplication gain and excess noise factor of InP p~+-i-n~+ APDs aresimulated and obvious excess noise reduction is found in the thinner devices. The effect of dead space on excess noise in thin APD structures is investigated by the distribution of impact ionization events within the multiplication region. It is found that the dead space can suppress the feedback ionization events resulting in a more deterministic avalanche multiplication process and reduce the excess noise in thinner APDs.

  4. Formation region effects in transition radiation, bremsstrahlung, and ionization loss of ultrarelativistic electrons (United States)

    Trofymenko, S. V.; Shul'ga, N. F.


    The processes of transition radiation and bremsstrahlung by an ultrarelativistic electron as well as the effect of transition radiation influence upon the electron ionization loss in thin layer of substance are theoretically investigated in the case when radiation formation region has macroscopically large size. Special attention is drawn to transition radiation (TR) generated during the traversal of thin metallic plate by the electron previously deflected from its initial direction of motion. In this case TR characteristics are calculated for realistic (circular) shape of the electron deflection trajectory. The difference of such characteristics under certain conditions from the ones obtained previously with the use of approximation of anglelike shape of the electron trajectory (instant deflection) is shown. The problem of measurement of bremsstrahlung characteristics in the prewave zone is investigated. The expressions defining the measured radiation distribution for arbitrary values of the size and the position of the detector used for radiation registration are derived. The problem of TR influence upon the electron ionization loss in thin plate and in a system of two plates is discussed. The proposal for experimental investigation of such effect is formulated.

  5. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L., E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L{sup -1} to 139 mg.L{sup -1} were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  6. Observations of Absorption Lines from Highly Ionized Atoms (United States)

    Jenkins, E. B.


    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  7. 'Active' Thin Sections

    NARCIS (Netherlands)

    De Rooij, M.R.; Bijen, J.M.J.M.


    Optical microscopy using thin sections has become more and more important over the last decade to study concrete. Unfortunately, this technique is not capable of studying actually hydrating cement paste. At Delft University of Technology a new technique has been developed using 'active' thin section

  8. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi


    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  9. Optical nonlinearity in Ar and N$_2$ near the ionization threshold

    CERN Document Server

    Wahlstrand, J K; Milchberg, H M


    We directly measure the nonlinear refractive index in argon and nitrogen in a thin gas target at laser intensities near the ionization threshold. No instantaneous negative nonlinear refractive index is observed, nor is saturation, in contrast with a previous measurement [Loriot et al., Opt. Express v. 17, 13429 (2009)] and calculations [Br\\'ee et al., Phys. Rev. Lett. v. 106, 183902 (2011)]. In addition, we are able to cleanly separate the electronic and rotational components of the nonlinear response in nitrogen. In both Ar and N$_2$, we observe the peak instantaneous index response scale linearly with the laser intensity until the point of ionization, whereupon it turns abruptly negative and ~constant, consistent with plasma generation.

  10. Evidence for DCO+ as a probe of ionization in the warm disk surface

    CERN Document Server

    Favre, Cécile; Cleeves, L Ilsedore; Hersant, Franck; Qi, Chunhua; Aikawa, Yuri


    In this Letter we model the chemistry of DCO$^{+}$ in protoplanetary disks. We find that the overall distribution of the DCO$^{+}$ abundance is qualitatively similar to that of CO but is dominated by thin layer located at the inner disk surface. To understand its distribution, we investigate the different key gas-phase deuteration pathways that can lead to the formation of DCO$^{+}$. Our analysis shows that the recent update in the exothermicity of the reaction involving CH$_2$D$^{+}$ as a parent molecule of DCO$^{+}$ favors deuterium fractionation in warmer conditions. As a result the formation of DCO$^{+}$ is enhanced in the inner warm surface layers of the disk where X-ray ionization occurs. Our analysis points out that DCO$^{+}$ is not a reliable tracer of the CO snow line as previously suggested. We thus predict that DCO$^{+}$ is a tracer of active deuterium and in particular X-ray ionization of the inner disk.

  11. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets V: Alfv\\'{e}n Ionization

    CERN Document Server

    Stark, Craig R; Diver, Declan A; Rimmer, Paul B


    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbour localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv\\'{e}n ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ($\\geq10^{-7}$) that they constitute plasmas. We outline the criteria required for Alfv\\'{e}n ionization and demonstrate it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfv\\'{e}n ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neut...

  12. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization (United States)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.


    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  13. Detailed Investigations of Interactions between Ionizing Radiation and Neutral Gases

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen L


    We are investigating phenomena that stem from the many body dynamics associated with ionization of an atom or molecule by photon or charged particle. Our program is funded through the Department of Energy EPSCoR Laboratory Partnership Award in collaboration with Lawrence Berkeley National Laboratory. We are using variations on the well established COLTRIMS technique to measure ions and electrons ejected during these interactions. Photoionization measurements take place at the Advanced Light Source at LBNL as part of the ALS-COLTRIMS collaboration with the groups of Reinhard Dörner at Frankfurt and Ali Belkacem at LBNL. Additional experiments on charged particle impact are conducted locally at Auburn University where we are studying the dissociative molecular dynamics following interactions with either ions or electrons over a velocity range of 1 to 12 atomic units.

  14. LET measurements with a liquid ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Tegami, Sara


    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. The density of such ionization events is described in terms of Linear Energy Transfer (LET), an important physical quantity, but difficult to be measured directly. The aim of this work is to determine LET of hadrontherapy beams by using Liquid Ionization Chambers (LIC). The ionization signal in LICs is affected by recombination effects that depend on the LET of the incident radiation. Differences in recombination effects in LICs and air-filled ionization chambers can be exploited to obtain the recombination index, which can be related to the LET, calculated by Monte Carlo methods. We thus developed a method to construct a calibration curve, which relates the recombination index with the LET at each depth in water. The result of this work can be used for online monitoring of the ion beam quality.

  15. Laboratory simulation of cometary neutral gas ionization (United States)

    Chang, Tsuey-Fen; Rahman, H. U.; White, R. S.


    The laboratory simulation of the interaction of the solar wind with a comet is used to study the cometary neural gas ionization. The experiment is carried out in the UCR T-1 facility with an ice ball as the comet model. Photographs and data are taken with a variety of values of the solar wind velocity, interplanetary magnetic field (IMF), and comet configurations. The results show that the cometary neutral gas ionization depends on both the velocity of the solar wind and the interplanetary magnetic field. The plasma cloud surrounding the comet is visible only when the solar wind velocity and IMF are both above certain minimum values. This velocity dependent phenomena is explained by Alfven's critical ionization velocity effect. The critical magnetic field may be explained by assuming two stream lower hybrid instability as a triggering mechanism for the ionization of the neutral gas by plasma flow. Critical upper and lower limits for the magnetic field, required by anomalous ionization, are also derived that satisfy the experimental observations.

  16. Multiphoton ionization of large water clusters. (United States)

    Apicella, B; Li, X; Passaro, M; Spinelli, N; Wang, X


    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  17. Ionizing radiation and genetic risks

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. [Department of Toxicogenetics, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden (Netherlands)]. E-mail:; Wassom, J.S. [YAHSGS, LLC, Richland, WA 99352 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)


    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G{sub 2} phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G{sub 1}. In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other

  18. Vibrational Distribution of Hydrogen Molecular Ions in High-Energy Ionization Processes

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hao; HE Chun-Long; CHEN Chao; LI Jia-Ming


    @@ A theoretical time-dependent wave-packet dynamics method is applied to calculate the distribution of vibrational states of hydrogen molecular ions produced in high-energy ionization processes of hydrogen molecules. The isotope effect is elucidated in agreement with the available experimental measurements. Our proposed method should be readily applied in other atomic and molecular processes considering great advances in electronic computation science and technology.

  19. Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation


    Charest, Gabriel; Paquette, Benoit; Fortin, David; Mathieu, David; Sanche, Léon


    Despite significant advances, the radiotherapy and chemotherapy protocols marginally improve the overall survival of patients with glioblastoma. Lipoplatin™, and Lipoxal™, the liposomal formulations of cisplatin and oxaliplatin respectively, were tested on the F98 glioma cells for their ability to improve the cell uptake and increase the synergic effect when combined with ionizing radiation. The cytotoxicity and synergic effect of platinum compounds were assessed by colony formation assay, wh...

  20. Advance care directives (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  1. Thin Film & Deposition Systems (Windows) (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  2. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion


    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  3. Ionization of atoms by chirped attosecond pulses

    Institute of Scientific and Technical Information of China (English)

    Tan Fang; Peng Liang-You; Gong Qi-Huang


    We investigate the ionization dynamics of atoms by chirped attosecond pulses using the strong field approximation method. The pulse parameters are carefully chosen in the regime where the strong field approximation method is valid. We analyse the effects of the chirp of attosecond pulses on the energy distributions and the corresponding left-right asymmetry of the ionized electrons. For a single chirped attosecond pulse, the ionized electrons can be redistributed and the left-right asymmetry shows oscillations because of the introduction of the chirp. For time-delayed double attosecond pulses at different intensities with the weaker one chirped, exchanging the order of the two pulses shows a relative shift of the energy spectra, which can be explained by the different effective time delays of different frequency components because of the chirp.

  4. Nuclear Fission Investigation with Twin Ionization Chamber (United States)

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.


    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  5. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI


    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.

  6. Development of Thin Film Ceramic Thermocouples for High Temperature Environments (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.


    The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.

  7. Electrospray ionization of volatiles in breath (United States)

    Martínez-Lozano, P.; de La Mora, J. Fernández


    Recent work by Zenobi and colleagues [H. Chen, A. Wortmann, W. Zhang, R. Zenobi, Angew. Chem. Int. Ed. 46 (2007) 580] reports that human breath charged by contact with an electrospray (ES) cloud yields many mass peaks of species such as urea, glucose, and other ions, some with molecular weights above 1000 Da. All these species are presumed to be involatile, and to originate from breath aerosols by so-called extractive electrospray ionization EESI [H. Chen, A. Venter, R.G. Cooks, Chem. Commun. (2006) 2042]. However, prior work by Fenn and colleagues [C.M. Whitehouse, F. Levin, C.K. Meng, J.B. Fenn, Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, 1986 p. 507; S. Fuerstenau, P. Kiselev, J.B. Fenn, Proceedings of the 47th ASMS Conference on Mass Spectrometry, 1999, Dallas, TX, 1999] and by Hill and colleagues [C. Wu, W.F. Siems, H.H. Hill Jr., Anal. Chem. 72 (2000) 396] have reported the ability of electrospray drops to ionize a variety of low vapor pressure substances directly from the gas phase, without an apparent need for the vapor to be brought into the charging ES in aerosol form. The Ph.D. Thesis of Martínez-Lozano [P. Martínez-Lozano Sinués, Ph.D. Thesis, Department of Thermal and Fluid Engineering, University Carlos III of Madrid; April 5, 2006 (in Spanish);] had also previously argued that the numerous human breath species observed via a similar ES ionization approach were in fact ionized directly from the vapor. Here, we observe that passage of the breath stream through a submicron filter does not eliminate the majority of the breath vapors seen in the absence of the filter. We conclude that direct vapor charging is the leading mechanism in breath ionization by electrospray drops, though aerosol ionization may also play a role.

  8. The L-shell ionization of Ho and Os induced by electron impact

    Institute of Scientific and Technical Information of China (English)

    WU Zhangwen; GOU Chengjun; YANG Dailun; PENG Xiufeng; HE Fuqing; LUO Zhengming


    The electron-induced L-shell X-ray partial production cross sections, total production cross sections and mean ionization cross sections for Ho and Os have been measured as functions of electron energies from near threshold up to 36 keV by using a thin target with thick substrate technique. The influence of the electrons reflected from the substrate was corrected by using the electron transport bipartition model. Also, the corrected measured results were compared with theoretical predictions proposed by Gryzinski and McGuire.

  9. Advanced Optical Metrology for XRAY Replication Mandrels and Mirrors Project (United States)

    National Aeronautics and Space Administration — Advanced x-ray observatories such as IXO and GenX will require thousands of thin shell mirror segments produced by replication using convex mandrels. Quality and...

  10. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others


    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  11. Radiation Generated by Charge Migration Following Ionization

    CERN Document Server

    Kuleff, Alexander I


    Electronic many-body effects alone can be the driving force for an ultrafast migration of a positive charge created upon ionization of molecular systems. Here we show that this purely electronic phenomenon generates a characteristic IR radiation. The situation when the initial ionic wave packet is produced by a sudden removal of an electron is also studied. It is shown that in this case a much stronger UV emission is generated. This emission appears as an ultrafast response of the remaining electrons to the perturbation caused by the sudden ionization and as such is a universal phenomenon to be expected in every multielectron system.

  12. Ionization of Atoms by Intense Laser Pulses

    CERN Document Server

    Froehlich, Juerg; Schlein, Benjamin


    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let $A$ denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where $|A| \\to \\infty$, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of $-A$ and of arbitrarily small opening angle. Asymptotics of various physical quantities in $|A|^{-1}$ is studied carefully. Our results are in qualitative agreement with experimental data reported in \\cite{1,2}.

  13. Ionization energies along beryllium isoelectronic sequence

    CERN Document Server

    Malyshev, A V; Glazov, D A; Tupitsyn, I I; Shabaev, V M; Plunien, G


    Ionization energies for the ground state of berylliumlike ions with nuclear charge numbers in the range Z=16-96 are rigorously evaluated. The calculations merge the ab initio QED treatment in the first and second orders of the perturbation theory in the fine-structure constant $\\alpha$ with the third- and higher-order electron-correlation contributions evaluated within the Breit approximation. The nuclear recoil and nuclear polarization effects are taken into account. The accuracy of the ionization energies obtained has been significantly improved in comparison with previous calculations.

  14. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.


    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  15. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. (United States)

    Trimpin, Sarah; Inutan, Ellen D


    An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.

  16. Epidermal electronics with advanced capabilities in near-field communication. (United States)

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A


    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.

  17. Experimental and theoretical triple-differential cross sections for tetrahydrofuran ionized by low-energy 26-eV-electron impact (United States)

    Ali, Esam; Ren, XueGuang; Dorn, Alexander; Ning, Chuangang; Colgan, James; Madison, Don


    We report an experimental and theoretical study of low-energy electron-impact ionization of tetrahydrofuran, which is a molecule of biological interest. The experiments were performed using an advanced reaction microscope specially built for electron-impact ionization studies. The theoretical calculations were performed within the molecular three-body distorted-wave model. Reasonably good agreement is found between experiment and theory.

  18. Resonance ionization laser ion sources for on-line isotope separators (invited). (United States)

    Marsh, B A


    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  19. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)


    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  20. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet


    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  1. Ceramic Composite Thin Films (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)


    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  2. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.


    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. Positronium impact ionization of Alkali atoms

    CERN Document Server

    Ghosh, D


    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  4. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London


    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  5. IKAR, a ionization chamber for WA9

    CERN Document Server


    This ionization chamber arrived at CERN from Leningrad for a high precision study of hadron elastic scattering by a CERN-Clermont-Ferrand-Leningrad-Lyon-Uppsala Collaboration in the H3 beam (WA9). G.A. Korolev (third from right) looks at the drawings.

  6. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)


    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  7. The Primordial Abundance of Deuterium: Ionization correction

    CERN Document Server

    Cooke, Ryan


    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman-alpha (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau (2012) background radiation of galaxies and quasars at redshift z~3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II) / N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2...

  8. Route to direct multiphoton multiple ionization

    NARCIS (Netherlands)

    Lambropoulos, P.; Nikolopoulos, G. M.; Papamihail, K. G.


    We address the concept of direct multiphoton multiple ionization in atoms exposed to intense, short-wavelength radiation and explore the conditions under which such processes dominate over the sequential. Their contribution is shown to be quite robust, even under intensity fluctuations and interacti

  9. Composite scintillators for detection of ionizing radiation (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN


    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  10. Precision electronics for ionization chamber measurements

    Energy Technology Data Exchange (ETDEWEB)

    Santry, D.C.; Bowes, G.C.; Munzenmayer, K.


    By using commercially available units, an electrometer and an IBM personal computer, it was relatively inexpensive and simple to assemble a system which permits ..gamma..-ray-emitting radionuclide activities to be measured in an ionization chamber with an uncertainty of + - 0.5% and a reproducibility of + - 0.05%.

  11. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.


    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  12. Properties of Excitons Bound to Ionized Donors

    DEFF Research Database (Denmark)

    Skettrup, Torben; Suffczynski, M.; Gorzkowski, W.


    Binding energies, interparticle distances, oscillator strengths, and exchange corrections are calculated for the three-particle complex corresponding to an exciton bound to an ionized donor. The results are given as functions of the mass ratio of the electron and hole. Binding of the complex is o...

  13. Vacancy rearrangement processes in multiply ionized atoms

    Energy Technology Data Exchange (ETDEWEB)

    Czarnota, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Pajek, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Banas, D [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Dousse, J-Cl [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Maillard, Y-P [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Mauron, O [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Raboud, P A [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Berset, M [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hoszowska, J [European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Slabkowska, K [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Polasik, M [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Chmielewska, D [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Rzadkiewicz, J [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Sujkowski, Z [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)


    We demonstrate that in order to interpret the x-ray satellite structure of Pd L{alpha}{sub 1,2}(L{sub 3}M{sub 4,5}) transitions excited by fast O ions, which was measured using a high-resolution von Hamos crystal spectrometer, the vacancy rearrangement processes, taking place prior to the x-ray emission, have to be taken into account. The measured spectra were compared with the predictions of the multi-con.guration Dirac-Fock (MCDF) calculations using the fluorescence and Coster-Kronig yields which were modiffed due to a reduced number of electrons available for relaxation processes and the effect of closing the Coster-Kronig transitions. We demonstrate that the vacancy rearrangement processes can be described in terms of the rearrangement factor, which can be calculated by solving the system of rate equations modelling the flow of vacancies in the multiply ionized atom. By using this factor, the ionization probability at the moment of collision can be extracted from the measured intensity distribution of x-ray satellites. The present results support the independent electron picture of multiple ionization and indicate the importance of use of Dirac-Hartree-Fock wave functions to calculate the ionization probabilities.

  14. Historical survey of resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.S.


    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures.

  15. Roles of ionizing radiation in cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Albright, N.W.; Yang, T.C.


    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures.

  16. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL


    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  17. Advance payments

    CERN Multimedia

    Human Resources Division


    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962


    CERN Multimedia

    Human Resources Division


    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  19. The MICE Demonstration of Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.


    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  20. Nucleation in an Ultra Low Ionization Environment (United States)

    Pedersen, J. O.; Enghoff, M. B.; Paling, S.; Svensmark, H.


    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapor, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulfuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing radiation we then gauge the relative importance of ion

  1. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    CERN Document Server

    Rothe, S; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yu; Köster, U; Lane, J; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt K D A


    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of smallest quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.317510(8) eV. New ab initio calculations were performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of super-heavy element 117, the heaviest homologue of astatine.

  2. Amplitude distribution of ionization jerks in ionization-chamber ASK-1 according long-term measurements (United States)

    Timofeev, Vladislav


    As part of the Yakut complex systems by measuring the intensity of cosmic rays has a unique device spherical - ionization chamber ASK-1 with a lead screen thickness of 12 cm. The camera allows you to explore the physical characteristics of the so-called "ionization jerks " - sharp increases ionization current caused by the passage through the device much ionizing particles of cosmic origin. Due to a large increase in current nuclear cascade "showers", formed mainly by particles of cosmic rays in the camera screen. Over the entire period of observation (50 years old) camera ASK-1 was registered 59125 aftershocks. Their nature and properties still does not sufficiently studied, especially in medium and large amplitudes.

  3. Ground Levels and Ionization Energies for the Neutral Atoms (United States)

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  4. Fully differential cross sections for heavy particle impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)


    We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.

  5. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali


    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  6. Mutational signatures of ionizing radiation in second malignancies


    Behjati, Sam; Gundem, Gunes; Wedge, David C.; Roberts, Nicola D.; Tarpey, Patrick S.; Cooke, Susanna L; Van Loo, Peter; Alexandrov, Ludmil B; Ramakrishna, Manasa; Davies, Helen; Nik-Zainal, Serena; Hardy, Claire; Latimer, Calli; Raine, Keiran M.; Stebbings, Lucy


    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-ass...

  7. High-Order Harmonic Generation in the Ionization Process

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; CHEN Shi-Gang; LIU Jie


    Based on the nonperturbative quantum electrodynamics scattering theory for multiphoton ionization developed recently, high-order harmonic generated in the ionization process is discussed. The influence of the Coulomb potential is treated as a perturbation in the expansion of the transition matrix. It is deduced that the harmonic photons are emitted in the resonant process during ionization and the width of the harmonic peaks is just the ionization rate of the atom.

  8. Smart ionization chamber for gamma-ray monitoring


    Drndarević Vujo R.; Jevtić Nenad J.; Rajović Vladimir M.; Stanković Srboljub J.


    A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to...

  9. Single and double ionization of gallium by electron impact

    Indian Academy of Sciences (India)

    L K Jha


    Electron impact single and double ionization cross sections of gallium have been calculated in the binary encounter approximation using accurate expression for including exchange and interference as given by Vriens and Hartree–Fock velocity distributions for the target electrons throughout the calculations. It is concluded that the ionization of 3d shell contributes partly to single ionization and partly to double ionization. The results so obtained show reasonably good agreement with the experimental data.

  10. Ionization of food products. Ionisation des produits alimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, J.P.


    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments.

  11. Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization (United States)

    Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip


    A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.

  12. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. (United States)

    Trimpin, Sarah; Wang, Beixi; Inutan, Ellen D; Li, Jing; Lietz, Christopher B; Harron, Andrew; Pagnotti, Vincent S; Sardelis, Diana; McEwen, Charles N


    Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.

  13. A nanoscale soft-ionization membrane: A novel ionizer for ion mobility spectrometers for space applications (United States)

    Hartley, Frank T.; Kanik, Isik


    The Jet Propulsion Laboratory (JPL) has developed a novel nanometer-thick "Soft Ionization Membrane" (SIM) which is capable of ionizing nearly 100% of the gases that pass through it. Both sides of the membrane are coated with a metallic conducting film. A modest potential of less than 10 Volts across the membrane produces an electric field in excess of 107 V/cm over a region that is smaller than the mean free path of gas molecules which ionizes the neutral molecules that passing through. Because the region of high electric field is smaller than the mean free path of gas molecules, there are virtually no high energy collisions and the system does not suffer from the fatal problem of avalanche breakdown. The soft ionization mechanism does not fracture the medium or cause any secondary ionization. Thus, a truly new ionization technique is enabled by a simple nanoscale micromachined device. The SIM is tiny, rugged and well suited for a wide variety of applications ranging from space micropropulsion systems to miniature analytical separation devices. In this paper we focus our attention on ion mobility spectrometers (IMSs) as a potential candidate to be incorporated with SIM.

  14. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie


    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  15. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification


    Rackel Reis; Dumée, Ludovic F.; Tardy, Blaise L.; Raymond Dagastine; John D. Orbell; Jürg A. Schutz; Duke, Mikel C.


    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membra...

  16. Excitation and ionization of hydrogen Rydberg states in a plasma. (United States)

    Glab, W; Nayfeh, M H


    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic ionization, which is due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  17. High order fluid model for ionization fronts in streamer discharges

    NARCIS (Netherlands)

    Markosyan, A.; Dujko, S.; Hundsdorfer, W.; Ebert, U.


    When non-ionized or lowly ionized matter is exposed to high electric fields, non-equilibrium ionization processes, streamer discharges, can develop. Streamers occur in nature and as well in many industrial applications such as the treatment of exhaust gasses, polluted water or biogas. A third order

  18. Advanced Magnetoimpedance Sensors

    KAUST Repository

    Li, Bodong


    This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three

  19. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup. (United States)

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad


    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  20. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL


    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  1. Instrumentation for characterizing materials and composed semiconductors for ionizing radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Paschoal, Arquimedes J.A.; Leite, Adolfo M.B.; Nazzre, Fabio V.B.; Santos, Luiz A.P. [Centro Regional de Ciencias Nucleares (CRCN/CNEN-PE), Recife, PE (Brazil). Lab. de Instrumentacao Nuclear]. E-mail:


    The purpose of this work is the development of instrumentation for characterizing some type of ionizing radiation detectors. Those detectors are being manufactured by the Nuclear Instrumentation Laboratory at CRCN/Recife and can be used both on photon beam and with particles. Such detectors consist of semiconductor material in the form of films generated by oxide growing or by means of semiconductor material deposition in a substrate. Those materials can be made of metals, semi-metals, composites or semiconductor polymers. Prior to expose those detectors to ionizing radiation, it must be physically and electrically characterized. In this intention it was developed an electromechanical system. An electrical circuit was built to measure the signal from the detector and another circuit to control the movement of four probes (4-points technique) by using a stepper motor and the micro stepping technique avoiding damage to the detector. This system can be of interest to researchers that work with a sort of semiconductor materials in the form of thin film and in nanotechnological processes aiming the design of radiation ionizing detectors. (author)

  2. Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). (United States)

    Looi, Wen Donq; Brown, Blake; Chamand, Laura; Brajter-Toth, Anna


    A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100%. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI.

  3. Ionization-injected electron acceleration with sub-terawatt laser pulses (United States)

    Feder, Linus; Goers, Andy; Hine, George; Miao, Bo; Salehi, Fatholah; Woodbury, Daniel; Milchberg, Howard


    The vast majority of laser wakefield acceleration (LWFA) experiments use drive lasers with peak powers >10 TW and repetition rates from 10 Hz to less than once an hour. However, it was recently demonstrated that by using a thin, high density gas target, LWFA can be driven by laser pulses well below a TW and with high repetition rates. We present experiments and particle-in-cell (PIC) simulations of the effect of doping the high density gas jet with higher Z molecules (here nitrogen). Our earlier experiments with low-Z gas relied on self-injection of electrons into the accelerating wake through wave-breaking. In ionization injection, the relativistically self-focused laser pulse ionizes the inner shell of the dopant inside the plasma wake. High energy electrons are then trapped by the wakefield in the earliest potential buckets, which overlap with the laser pulse. PIC simulations show acceleration of these electrons by LWFA and directly by the laser pulse, with the direct contribution significantly increasing the electron energy beyond the LWFA contribution alone. Additionally, ionization injection can be controlled to prevent dephasing of the electron beam, resulting in a narrower energy spectrum and lower spatial divergence. This research is supported by the Department of Energy and the National Science Foundation.

  4. The Cryogenic Dark Matter Search low ionization-threshold experiment

    Energy Technology Data Exchange (ETDEWEB)

    Basu Thakur, Ritoban [Univ. of Illinois, Urbana-Champaign, IL (United States)


    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in

  5. Electrical characterization of advanced gate dielectrics

    NARCIS (Netherlands)

    Degraeve, R.; Schmitz, J.; Pantisano, L.; Simoen, E.; Houssa, M.; Kaczer, B.; Groeseneken, G.; Baklanov, M.; Green, M.; Maex, K.


    The topic of thin films is an area of increasing importance in materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-defin

  6. Fabrication of MEMS Resonators in Thin SOI

    CERN Document Server

    Grogg, D; Ionescu, Adrian Mihai


    A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator substrates for future co-integration with CMOS circuitry on a single chip. As the transduction capacitance scales with the resonator thickness, it is important to fabricate deep sub-micron trenches in order to achieve a good capacitive coupling. Through the combination of conventional UV-lithography and focused ion beam (FIB) milling the process needs only two lithography steps, enabling therefore a way for fast prototyping of MEM-resonators. Different FIB parameters and etching parameters are compared in this paper and their effect on the process are reported.

  7. Electrospray Ionization Mass Spectra of Dipeptide Derivatives

    Institute of Scientific and Technical Information of China (English)

    LUO, Zaigang; ZENG, Chengchu; YANG, Daoshan; HUANG, Yali; WANG, Fang; DU, Hongguang; HU, Liming


    Based on the structure of the HIV integrase core domain, dipeptide derivatives, as a type of HIV integrase in- hibitor, were synthesized, and their fragmentation pathways were investigated by electrospray ionization mass spec- trometry (ESI-MSN) in conjunction with tandem mass spectrometry (MS/MS). In order to better understand the fragmentation pathways, the MS2 and MS3 spectra of the title compound were obtained. The main fragmentation pathways occur by the cleavage of the C-CO bonds between N-(benzothiazol-2-yl)aminocarbonyl and methylene, NH-CO bonds between the NH groups and carbonyl groups. Electrospray ionization was proven to be a good method for the structural characterization and identification of this kind of compound.

  8. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P


    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  9. Kolmogorov Dissipation scales in Weakly Ionized Plasmas

    CERN Document Server

    Krishan, V


    In a weakly ionized plasma, the evolution of the magnetic field is described by a "generalized Ohm's law" that includes the Hall effect and the ambipolar diffusion terms. These terms introduce additional spatial and time scales which play a decisive role in the cascading and the dissipation mechanisms in magnetohydrodynamic turbulence. We determine the Kolmogorov dissipation scales for the viscous, the resistive and the ambipolar dissipation mechanisms. The plasma, depending on its properties and the energy injection rate, may preferentially select one of the these dissipation scales. thus determining the shortest spatial scale of the supposedly self-similar spectral distribution of the magnetic field. The results are illustrated taking the partially ionized part of the solar atmosphere as an example. Thus the shortest spatial scale of the supposedly self-similar spectral distribution of the solar magnetic field is determined by any of the four dissipation scales given by the viscosity, the Spizer resistivity...

  10. Secondary ionization and heating by fast electrons

    CERN Document Server

    Furlanetto, Steven


    We examine the fate of fast electrons (with energies E>10 eV) in a thermal gas of primordial composition. To follow their interactions with the background gas, we construct a Monte Carlo model that includes: (1) electron-electron scattering (which transforms the electron kinetic energy into heat), (2) collisional ionization of hydrogen and helium (which produces secondary electrons that themselves scatter through the medium), and (3) collisional excitation (which produces secondary photons, whose fates we also follow approximately). For the last process, we explicitly include all transitions to upper levels n<=4, together with a well-motivated extrapolation to higher levels. In all cases, we use recent calculated cross-sections at E<1 keV and the Bethe approximation to extrapolate to higher energies. We compute the fractions of energy deposited as heat, ionization (tracking HI and the helium species separately), and excitation (tracking HI Lyman-alpha separately) under a broad range of conditions approp...

  11. Shock Wave Dynamics in Weakly Ionized Plasmas (United States)

    Johnson, Joseph A., III


    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  12. Communication: Electron ionization of DNA bases (United States)

    Rahman, M. A.; Krishnakumar, E.


    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  13. Secondary ionization in a flat universe (United States)

    Atrio-Barandela, F.; Doroshkevich, A. G.


    We analyze the effect of a secondary ionization on the evolution of temperature fluctuations in cosmic background radiation. The main results presented in this paper are appropriate analytic expressions of the transfer function relating temperature fluctuations to matter density perturbations at recombination for all possible recombination histories. Furthermore, we particularize our calculation to the standard cold dark matter model, where we study the erasure of primordial temperature fluctuations and calculate the magnitude and angular scale of the damping induced by a late recombination.

  14. Transport properties of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K Zh [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)


    We have considered partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18}-10{sup 22}) cm{sup -3}. Charged particles in the system (electrons, protons) interact via an effective potential taking into account three-particle correlations. We use the Buckingham polarization potential to describe electron-atom and proton-atom interactions. The electrical and thermal conductivity is determined using the Chapman-Enskog method. We compare the obtained results with other available data.

  15. Improvement of a New Gas Ionization Chamber

    Institute of Scientific and Technical Information of China (English)


    In order to identify heavier elements, we have developed a new longitudinal field gas ionization chamber (IC)with an angle of 30° of plate (as shown in Fig.1). The IC is operated in flowing iso-butane gas at a pressure of 10kPa. After testing by using a 3- component α particle source and comparing with the old longitudinal field

  16. LET measurements with a Liquid Ionization Chamber


    Tegami, S.


    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. T...

  17. Ionizing laser propagation and spectral phase determination (United States)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.


    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  18. Alloy nanoparticle synthesis using ionizing radiation (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan


    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  19. Ionization photophysics and spectroscopy of cyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192, Gif-sur-Yvette Cedex (France); Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin [LISA UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France)


    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  20. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail:; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)


    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  1. Biomimetic thin film deposition (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.


    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  2. Thin film ceramic thermocouples (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)


    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  3. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE


    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  4. Diffuse ionizing radiation within HH jets

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, A.; Raga, A. C., E-mail:, E-mail: [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico)


    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  5. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  6. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  7. Ionization States of galaxies: Evolution, SFR-M_star-Z Dependence, and Ionizing Photon Escape

    CERN Document Server

    Nakajima, Kimihiko


    We present a systematic study for ionization states of galaxies at z=0-3 with ~140,000 SDSS galaxies and 108 intermediate to high redshift galaxies from the literature, using an ionization-parameter sensitive line ratio of [OIII]5007/[OII]3727 and photoionization models. We confirm that z=2-3 galaxies show an [OIII]/[OII] ratio significantly higher than typical local galaxies by a factor of >~10, and the photoionization models reveal that these high-z galaxies have an ionization parameter of log(qion/cm s^{-1})~7.6-9.0, a factor of ~4-10 higher than local galaxies. For galaxies at any redshifts, we identify a correlation between the [OIII]/[OII] ratio and galaxy global properties of star-formation rate (SFR), stellar mass (M_star), and metallicity (Z). We extend the fundamental metallicity relation (FMR; Mannucci et al. 2010; Lara-lopez et al. 2010), and develop the fundamental ionization relation (FIR), a four-dimensional relation of ionization parameter, SFR, M_star, and Z. The intermediate and high-z galax...

  8. Plasma polymerised thin films for flexible electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Mohan V., E-mail: [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Shanks, Robert A. [Applied Sciences, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia)


    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer.

  9. Advanced ferroelectricity

    CERN Document Server

    Blinc, R


    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  10. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka


    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  11. Thin Lens Ray Tracing. (United States)

    Gatland, Ian R.


    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  12. Thin supported silica membranes

    NARCIS (Netherlands)

    Zivkovic, Tijana


    This thesis discusses several transport-related aspects relevant for the application of thin supported silica membranes for gas separation and nanofiltration. The influence of support geometry on overall membrane performance is investigated. Planar (i.e., flat plate), tubular, and multichannel suppo

  13. The ultraviolet and blue luminescence properties of ZnO:Zn thin film

    Institute of Scientific and Technical Information of China (English)


    The ultraviolet (UV) and blue luminescence of Zn-rich zinc oxide thin film deposited by electron-beam evaporation have been investigated at room temperature (RT). We observed that the UV and blue electroluminescence (EL) emission band centered around 480 nm which is blue shifted in comparison with that of the ZnO thin film prepared by low pressure metal organic chemical vapor deposition (LP MOCVD). The UV emission is much stronger than blue emission in the photoluminescence (PL) spectra. The field-induced ionization of excited luminescent centers of ZnO:Zn thin film at high electric field and the difference between PL and EL are discussed. The experiments show that the ZnO:Zn thin film provides a hopeful new mechanism to obtain UV and blue emission.

  14. Thin films for material engineering (United States)

    Wasa, Kiyotaka


    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  15. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram


    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  16. Modern Thin-Layer Chromatography. (United States)

    Poole, Colin F.; Poole, Salwa K.


    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  17. Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    CERN Document Server

    Hansen, Jonas L; Nielsen, Jens H; Stapelfeldt, Henrik; Dimitrovski, Darko; Madsen, Lars Bojer


    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the intern...

  18. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, S. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Albus, F. [Institu fuer Physik, Universitaet Mainz, Mainz (Germany); Dibenberger, R.; Erdmann, N.; Funk, H. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Hasse, H. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Herrmann, G. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Rao, P.M. [Bhabha Atomic Research Centre Bombay (India); Riegel, J.; Trautmann, N. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Urban, F. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany)


    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP{sub {ital Am}}=5.9738(2) and IP{sub {ital Cm}}=5.9913(8) eV, respectively, using only 10{sup 12} atoms of {sup 243}Am and {sup 248}Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP{sub T{sub H}}=6.3067(2), IP{sub N{sub P}}=6.2655(2), and IP{sub {ital Pu}}=6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. {copyright}American Institute of Physics 1995

  19. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco


    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  20. NMR characterization of thin films (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela


    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange (United States)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.


    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  2. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere (United States)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.


    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  3. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.


    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  4. Combining Laser Ablation/Liquid Phase Collection Surface Sampling and High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL


    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of this coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.

  5. Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects (United States)

    Eminente, S.; Cristoloveanu, S.; Clerc, R.; Ohata, A.; Ghibaudo, G.


    A standard characterization method in fully depleted SOI devices consists in biasing the back interface in the accumulation regime, and measuring the front-channel properties. In ultra thin body device however, it is sometimes no longer possible to achieve such an accumulation regime at the back interface. This unusual effect is investigated by detailed simulations and analytical modelling of the potential and electron/hole concentrations. The enhancement of the interface coupling effect in ultra thin body devices, called super-coupling, can explain previously published experimental data [Pretet J, Ohata A, Dieudonne F, Allibert F, Bresson N, Matsumoto T, et al. Scaling issues for advanced SOI devices: gate oxide tunneling, thin buried oxide, and ultra-thin films. In: 7th International symposium silicon nitride and silicon dioxide thin insulating films, Paris, France, 2003. Electrochemical Society Proceedings, vol. 2003-02, Pennington (USA); 2003. p. 476-87], and reveals new challenges in the characterization of advanced SOI devices.

  6. Environmental assessment of advanced thin film manufacturing process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, D.W.; Mopas, E.; Skinner, D. [BP Solar, Inc., Fairfield, CA (United States); McGuire, L.; Strehlow, M. [Radian International, Walnut Creek, CA (United States)


    This report describes work performed by BP Solar, Inc., to provide an extensive preproduction analysis of waste-stream abatement at its plant in Fairfield, California. During the study, numerous technologies were thoroughly evaluated, which allowed BP Solar to select systems that outperformed the stringent federal and state regulations. The main issues were originally perceived to be controlling cadmium compound releases to both air and wastewater to acceptable levels and adopting technologies for air and water waste streams in an efficient, cost-effective manner. BP Solar proposed high-efficiency, reliable control equipment that would reduce air-contaminant emission levels below levels of concern. Cadmium telluride dust is successfully controlled with high-efficiency (>99.9%) bag-in/bag-out filters. For air abatement, carbon canisters provide efficient VOC reduction, and wastewater pretreatment is required per federal pretreatment standards. BP Solar installed a cadmium-scavenging ion exchange system and electrowinning system capable of removing cadmium to <10 ppb (local publicly-owned-treatment-works limits for cadmium is 30 ppb). BP Solar plans to maximize potential reuse of rinse waters by phasing in additional wastewater treatment technologies. Finally, the work to date has identified the areas that need to be revisited as production scales up to ensure that all health, safety, and environmental goals are met.

  7. Anticorrosion Nanocrystalline Beta Zeolite Thin Film for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Maha Saud M. Al-subaie


    Full Text Available Steel alloys corrosion is ubiquitous and is conventionally protected by anticorrosion chromate coatings. However, the process suffers from the release of carcinogenic hexavalent chromium ions that needs to be replaced by an ecofriendly alternative. In this context, the need for the development of satisfactory ecofriendly chromium-free coating with superior corrosion performance is highly desirable. In the present study, we synthesized fully dispersible nanocrystalline Beta zeolite seeds and coated on steel alloys followed by steaming. The samples were characterized by XRD, FE-SEM, and DLS analyses. The anticorrosion behavior of the synthesized nanoparticle coatings on steel alloys was investigated by electrochemical measurements (DC polarization and electrochemical impedance spectroscopy (EIS in NaCl and acid and alkaline media under identical experimental conditions. The present study demonstrated that the nanozeolite coating can be a potential alternative for toxic and carcinogenic chromate coating.

  8. Bioactive glass thin films synthesized by advanced pulsed laser techniques (United States)

    Mihailescu, N.; Stan, George E.; Ristoscu, C.; Sopronyi, M.; Mihailescu, Ion N.


    Bioactive materials play an increasingly important role in the biomaterials industry, and are extensively used in a range of applications, including biodegradable metallic implants. We report on Bioactive Glasses (BG) films deposition by pulsed laser techniques onto biodegradable substrates. The BG coatings were obtained using a KrF* excimer laser source (λ= 248 nm, τFWHM ≤ 25 ns).Their thickness has been determined by Profilometry measurements, whilst their morphology has been analysed by Scanning Electron Microscopy (SEM). The obtained coatings fairly preserved the targets composition and structure, as revealed by Energy Dispersive X-Ray Spectroscopy, Grazing Incidence X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy analyses.

  9. Thin film characterisation by advanced X-ray diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cappuccio, G.; Terranova, M.L. [eds.] [INFN, Laboratori Nazionali di Frascati, Rome (Italy)


    This report described the papers presented at the 5. School on X-ray diffraction from polycrystalline materials held at Frascati (Rome) in 2-5 October 1996. A separate abstract was prepared for each of the papers.

  10. Advancing Leadership

    Directory of Open Access Journals (Sweden)

    Penny L. Tenuto


    Full Text Available Preparing students to become active citizens and contributors to a democratic society is premised on teaching democratic principles and modeling standards of democratic practice at all levels of education. The purpose of this integrative literature review is to establish a conceptual framework grounded in literature and a model for cultivating democratic professional practice in education (DPPE to advance leadership for school improvement. This work is presented in three parts: (a a review of historical references, reports, and legislation that culminated in increased accountability and standards in P-12 public education; (b a discussion of social patterns in education generally associated with bureaucracy versus democracy; and (c a new contribution to the literature, a model for cultivating DPPE is conceptualized to encourage leading and teaching professionals to reflect on beliefs and evaluate practices in advancing leadership for school improvement. Recommendations are included for further research.

  11. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  12. Advanced LIGO


    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.


    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  13. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL


    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  14. Ionization photophysics and spectroscopy of dicyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney, E-mail:, E-mail:; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Schwell, Martin, E-mail:, E-mail:; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire [LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Garcia, Gustavo A.; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France)


    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A{sup 2}Π{sub g}, B{sup 2}Σ{sub g}{sup +} states as well as the C{sup 2}Σ{sub u}{sup +} and D{sup 2}Π{sub u} states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D{sup 2}Π{sub u} state of C{sub 4}N{sub 2}{sup +}. The appearance energies of the fragment ions C{sub 4}N{sup +}, C{sub 3}N{sup +}, C{sub 4}{sup +}, C{sub 2}N{sup +}, and C{sub 2}{sup +} were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

  15. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania (United States)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona


    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  16. Three dimensional Monte Carlo simulations of ionized nebulae (United States)

    Ercolano, Barbara


    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitrary geometries and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of treating one or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations. This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this thesis. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot, 1986; Ferland et al., 1995; Pequignot et al., 2001). The results obtained for the benchmark cases are satisfactory and are presented in this work. A performance analysis has also been carried out and is discussed here. The code has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried, the first being the biconical density distribution already used by Clegg et al. (1987). In this model the nebula is approximated

  17. A website dedicated to ionizing radiation metrology. (United States)

    Dulieu, Christophe; Chisté, Vanessa; Bé, Marie-Martine


    In order to disseminate information about decay data and their evaluation, as well as other topics in the field of ionizing radiation, the Bureau National de Métrologie-Laboratoire National Henri Becquerel (BNM-LNHB) has published a website. Most of the web pages are concerned with the international working groups in which the BNM-LNHB takes part. In particular, a library of uranium and plutonium spectra is now available, as well as the results of evaluation of decay data of nuclides of special interest.

  18. Monitoring occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.B.C. [Radiation Safety Consultancy, Engadine, NSW (Australia)


    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives. 8 refs., 9 tabs.

  19. Microtron for Smog Particles Photo Ionization

    CERN Document Server

    Dolya, S N


    The article discusses a possibility of removing smog particles from a boiler smoke. To do this, the boiler smoke is passed through a flow of gamma radiation, formed by interaction of the microtron beam with a heavy target. The energy of the microtron electrons twenty five megaelectronvolts, the beam current one hundred microamperes. Smog particles are ionized with gamma radiation and then sat down on the plates of the electrostatic filter. The height of the filter plates is one m, the electric field between the plates one kilovolt per centimeter. The smog particles on the plates should be removed regularly to a specialized dust collector.

  20. Ionization Chamber for Prompt Fission Neutron Investigations


    ZEYNALOV Sh.; ZEYNALOVA O. V.; Hambsch, Franz-Josef; Sedyshev, P.; SHVETSOV V.


    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electro...

  1. Multiphoton dissociation and ionization of nickelocene (United States)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua


    In this paper we report the results of an experimental study of collision-free molecular multiphoton dissociation (MPD) and molecular multiphoton ionization (MPI) of nickelocene (NiC 10H 10), induced by the light of a tunable dye laser in the wavelength region 3750-5200 A. The spectral dependence of the ion signal reveals a multitude of narrow (fwhm from <0.5 cm -1 to 1.5 cm -1) intense peaks superimposed on a very weak background (relative amplitude ratio for peaks/background ≈ 10 3). The sharp resonances in the ion signal are attributed, on the basis of spectroscopic analysis, to two-photon resonant three-photon ionization of Ni(I) and to one-photon resonant three-photon ionization of Ni(I), the Ni(I) being produced by MPD of nickelocene. The ion signal in the spectral range 3750-3950 A reveals enhanced continuous background due to MPI of nickelocene. This ion signal spectra, together with studies of the intensity dependence of the overall (nickelocene MPD) - (Ni(I) MPI) processes, as well as the (nickelocene molecular MPI) reaction, reveal four reactive processes. (a) Two-photon molecular MPI for hω ⩾ 3.10 eV photons. (b) Three-photon molecular MPI for hω = 3.10-2.10 eV. (c) Two-photon MPD at hω ⩾ 2.86 eV. (d) Three-photon MPD for hω = 2.8-1.9 eV. The overall dissociation energy of nickelocene (Nicp 2) to give Ni + 2cp was determined to be 5.76 ± 0.60 eV and the two-photon ionization potential of this molecule is 6.29 ± 0.015 eV. Our results provide dynamic evidence concerning a simultaneous "explosive" photodissociation mechanism of Nicp 2 by process (c) and for the dominating role of the dissociative channel, characterized by a branching ratio of ⩾50 in favor of predissociation over autoionization, for process (c) at 6.3-6.6 eV. The MPD processes (c) and (d) are expected to exhibit intramolecular erosion of phase coherence effects. Processes (c) and (d) are of high efficiency ≈0.01 ions/molecule at saturation exhibited at laser power of ≈ 10

  2. LET measurements with a Liquid Ionization Chamber


    Tegami, S.


    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. The density of such...

  3. Double ionization of two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Ancarani, L U; Cappello, C Dal [Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine - Metz, 57078 Metz (France); Gasaneo, G, E-mail: ancarani@univ-metz.f [Departamento de Fisica, Universidad Nacional del Sur and Consejo Nacional de Investigaciones CientIficas y Tecnicas, 8000 BahIa Blanca, Buenos Aires (Argentina)


    We address various issues related to the double ionization by electron impact of two-electron systems. The emphasis will be put on the theoretical description of high incident energy (e,3e) processes, for which the first Born approximation should be suitable. In the case of helium, absolute experimental data for fivefold differential cross sections are available in coplanar geometry. We will review and discuss the divergencies existing between the results obtained with different theoretical models, and those appearing when compared to the experiments in particular with respect to the absolute scale. We will then discuss some results obtained in a recently proposed out of plane geometry.

  4. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)


    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  5. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean

    filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor...... at near atmospheric conditions. The chamber contains clean air with the addition of water vapour, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulphuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front...

  6. [Spectral emissivity of thin films]. (United States)

    Zhong, D


    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  7. Ag K-shell ionization by electron impact: New cross-section measurements between 50 and 100 keV and review of previous experimental data (United States)

    Vanin, V. R.; Manso Guevara, M. V.; Maidana, N. L.; Martins, M. N.; Fernández-Varea, J. M.


    We report the measurement of Ag K-shell ionization cross-section by electron impact in the range 50-100 keV and review the experimental data found in the literature. The sample consisted in a thin film of Ag evaporated on a thin C backing. The x-ray spectra generated by electron bombardment in the São Paulo Microtron were observed with a planar HPGe detector. The ratios between characteristic and bremsstrahlung x-ray yields were transformed to ionization cross sections with the help of theoretical atomic-field bremsstrahlung cross sections. The measured cross sections are compared with existing experimental values and calculations based on the semi-relativistic distorted-wave Born approximation. According to our experiment, the ratio of Ag Kβ to Kα x-ray intensities is 0.2018(24).

  8. Formation of Ionization-Cone Structures in Active Galactic Nuclei: I. Stationary Model and Linear Stability Analysis

    CERN Document Server

    Afanasiev, V L; Khrapov, S S; Moiseev, A V; Mustsevoy, V V


    We discuss causes of the formation of the observed kinematics and morphology of cones of ionized matter in the neighborhood of the nuclei of Seyfert galaxies. The results of linear stability analysis of an optically thin conic jet where radiation cooling and gravity play an important part are reported. The allowance for radiation cooling is shown to result in strong damping of all acoustic modes and to have insignificant effect on unstable surface Kelvin--Helmholtz modes. In the case of waveguide--resonance internal gravity modes radiative cooling suppresses completely the instability of waves propagating away from the ejection source and, vice versa, reduces substantially the growth time scale of unstable sourceward propagating modes. The results obtained can be used to study ionization cones in Seyfert galaxies with radio jets. In particular, our analysis shows that surface Kelvin--Helmholtz modes and volume harmonics are capable of producing regular features observed in optical emission-line images of such...

  9. Persistent photoconductivity in Hf-In-Zn-O thin film transistors (United States)

    Ghaffarzadeh, Khashayar; Nathan, Arokia; Robertson, John; Kim, Sangwook; Jeon, Sanghun; Kim, Changjung; Chung, U.-In; Lee, Je-Hun


    Passivated Hf-In-Zn-O (HIZO) thin film transistors suffer from a negative threshold voltage shift under visible light stress due to persistent photoconductivity (PPC). Ionization of oxygen vacancy sites is identified as the origin of the PPC following observations of its temperature- and wavelength-dependence. This is further corroborated by the photoluminescence spectrum of the HIZO. We also show that the gate voltage can control the decay of PPC in the dark, giving rise to a memory action.

  10. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization. (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten


    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  11. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.


    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  12. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P


    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  13. Smart ionization chamber for gamma-ray monitoring

    Directory of Open Access Journals (Sweden)

    Drndarević Vujo R.


    Full Text Available A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to the chamber. A microcontroller-based data acquisition system with a mixed-mode interface has been implemented for the purpose of reading electronic data specifications from the memory chip, and for configuration and interfacing of the ionization chamber to the monitoring network using plug-and-play concept. The details of smart ionization chamber implementation and test results are included in the paper. [Projekat Ministarstva nauke Republike Srbije, br. TR36047 i br. TR32043

  14. Ionization of Interstellar Hydrogen Beyond the Termination Shock (United States)

    Gruntman, Mike


    Models of solar wind interaction with the surrounding interstellar medium usually disregard ionization of interstellar hydrogen atoms beyond the solar wind termination shock. If and when included, the effects of ionization in the heliospheric interface region are often obscured by complexities of the interaction. This work assesses the importance of interstellar hydrogen ionization in the heliosheath. Photoionization could be accounted for in a straightforward way. In contrast, electron impact ionization is largely unknown because of poorly understood energy transfer to electrons at the termination shock and beyond. We first estimate the effect of photoionization and then use it as a yardstick to assess the role of electron impact ionization. The physical estimates show that ionization of interstellar hydrogen may lead to significant mass loading in the inner heliosheath which would slow down plasma flowing toward the heliotail and deplete populations of nonthermal protons, with the corresponding effect on heliospheric fluxes of energetic neutral atoms.

  15. Thin film superconductor magnetic bearings (United States)

    Weinberger, Bernard R.


    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  16. Thin, Lightweight Solar Cell (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving


    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  17. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail:


    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.


    NARCIS (Netherlands)



    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. Such low-pressure ion sources can make use of a range of different ionization methods and are in routine use in analytical mass spectrometers. An ion source operating at atmospheric pressure is better suited, and may b

  19. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang


    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  20. Exploration of the Dissociative Recombination following DNA ionization to DNA+ due to ionizing radiation (United States)

    Strom, Richard A.; Zimmerly, Andrew T.; Andrianarijaona, Vola M.


    It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (Radiat. Res. 157, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA+. More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA+ with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  1. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. (United States)

    Venter, Andre; Sojka, Paul E; Cooks, R Graham


    A droplet pickup and other mechanisms have been suggested for the ionization of biomolecules like peptides and proteins by desorption electrospray ionization. To verify this hypothesis phase Doppler particle analysis was used to study the sizes and velocities of droplets involved in DESI. It was found that impacting droplets typically have velocities of 120 m/s and average diameters of 2-4 microm. Small differences in sprayer construction influence the operating conditions at which droplets of these dimensions are produced. Under these conditions, the kinetic energy per impacting water molecule is less than 0.6 meV and sputtering through momentum transfer during collisions or ionization by other electronic processes is unlikely. Droplets arrive at the surface with velocities well below the speed of sound in common materials, thereby excluding the possibility of ionization by shockwave formation. Some droplets appear to roll along the surface, increasing contact time and presumably the amount of material that is taken up into droplets during conditions typical of the DESI experiment.

  2. Analysis of chirality by femtosecond laser ionization mass spectrometry. (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael


    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  3. Calibration of a pencil ionization chamber with and without preamplifier


    Maia, Ana Figueiredo


    The pencil ionization chamber is a cylindrical dosimeter developed for computed tomography beams. Many kinds of ionization chambers have a preamplifier connected to the chamber to make it electrically more stable, specially for field instruments. In this study, the performance of a Victoreen pencil ionization chamber with the original preamplifier and after its removal was compared. The objective of the preamplifier removal was to enable connecting the chamber to other kinds of electromete...

  4. Modeling the early ionization of dielectrics by ultrashort laser pulses


    Bourgeade, Antoine; Mézel, Candice; Saut, Olivier


    International audience; In this paper, we present a model for propagation of intense and ultrashort laser pulses ionizing dielectrics. We consider early ion- ization so that this process is sufficiently weak to avoid requiring a complete description of the ionization process (e.g. the use of ki- netic equations which are very expensive from a computational point of view). As the intensity of the field is small, one photon ioniza- tion is neglected. Ionization may only occur through multi-phot...

  5. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer;


    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy......-principles material parameters, an analysis of several important TMDs reveals WSe2 and MoSe2 to be superior for applications relying on ionization of direct and indirect excitons, respectively....

  6. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization; Analyse chimique de surfaces par spectrometrie d`ionisation resonante associee a la pulverisation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P.


    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it`s also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs.

  7. Highly Ionized Envelopes of High Velocity Clouds

    CERN Document Server

    Zekis, Erin E


    We present recent results on highly ionized gas in Galactic High-Velocity Clouds (HVCs), originally surveyed in OVI (Sembach et al. 2003). In a new FUSE/HST survey of SiII/III/IV (Shull et al. 2009) toward 37 AGN, we detected SiIII (lambda 1206.500 A) absorption with a sky coverage fraction 81 +/- 5% (61 HVCs along 30 of 37 high-latitude sight lines). The SiIII (lambda 1206.500 A) line is typically 4-5 times stronger than OVI (lambda 1031.926 A). The mean HVC column density of perhaps 10^19 cm^-2 of low-metallicity (0.1 - 0.2 Z_sun) ionized gas in the low halo. Recent determinations of HVC distances allow us to estimate a total reservoir of ~10^8 M_sun. Estimates of infall velocities indicate an infall rate of around 1 M_sun yr^-1, comparable to the replenishment rate for star formation in the disk. HVCs appear to be sheathed by intermediate-temperature gas (10^4.0 - 10^4.5 K) detectable in SiIII and SiIV, as well as hotter gas seen in OVI and other high ions. To prepare for HST observations of 10 HVC-selecte...

  8. Ionizing radiation detector using multimode optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J.J. (Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.); Poret, J.C.; Rosen, M. (Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering); Rifkind, J.M. (National Inst. of Health, Baltimore, MD (United States). Lab. of Cellular and Molecular Biology)


    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-[mu]m multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-[mu]m fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation.

  9. The ionization fraction in dense clouds

    CERN Document Server

    De Boisanger, C B; Van Dishoeck, E F


    We present submillimeter observations of various molecular ions toward two dense clouds, NGC 2264 IRS1 and W 3 IRS5, in order to investigate their ionization fraction. Analysis of the line intensity ratios by the way of statistical equilibrium calculations allows determination of the physical parameters: n(H2)~(1-2)e6 cm-3 and T(kin)~50-100 K. Column densities and abundances are also derived. Together, the abundances of the observed ions provide a lower limit to the ionization fraction, which is (2-3)e-9 in both clouds. In order to better constrain the electron abundance, a simple chemical model is built which calculates the steady state abundances of the major positive ions, using the observed abundances wherever available. With reasonable assumptions, good agreement within a factor of two with the observations can be achieved. The calculated electron fraction is x(e)= (1.0-3.3)e-8 in the case of NGC 2264 and x(e)=(0.5-1.1)e-8 for W 3 IRS5. In the first case, the high abundance of N2H+ requires a rather high...

  10. Measuring ionizing radiation with a mobile device (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando


    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  11. The Ionization of Nearby Interstellar Gas

    CERN Document Server

    Slavin, J D; Slavin, Jonathan D.; Frisch, Priscilla C.


    We present new calculations of the photoionization of interstellar matter within ~5 pc of the Sun (which we refer to as the Local Cloud Complex or LCC) by directly observed radiation sources including nearby hot stars and the diffuse emission of the Soft X-ray Background (SXRB). In addition, we model the important, unobserved EUV emission both from the hot gas responsible for the SXRB and from a possible evaporative boundary between the LCC and the hot gas. We carry out radiative transfer calculations and show that these radiation sources can provide the ionization and heating of the cloud required to match a variety of observations. The ionization predicted in our models shows good agreement with pickup ion results, interstellar absorption line data towards epsilon CMa, and EUV opacity measurements of nearby white dwarf stars. Including the radiation from the conductive boundary improves agreement with data on the temperature and electron density in the cloud. The presence of dust in the cloud, or at least d...

  12. Ionization photophysics and Rydberg spectroscopy of diacetylene

    KAUST Repository

    Schwell, Martin


    Photoionization of diacetylene was studied using synchrotron radiation over the range 8-24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IE ad=(10.17±0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE=(16.15±0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions C+ 4, C3H+, C+3 and C 4H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene in the 11-13 eV region were assigned to vibrational components of three new Rydberg series, R1(nsσg, n=4-11), R2(ndσg, n=4-7) and R3(ndδg, n=4-6) converging to the A2Πu state of the cation, and to a new series R01(nsσg, n=3) converging to the B\\' 2Σ+u state of the cation. The autoionization mechanisms and their consistence with specific selection rules are discussed. © 2012 Taylor and Francis.

  13. Substrate-Enhanced Micro Laser Desorption Ionization Mass Spectrometry Project (United States)

    National Aeronautics and Space Administration — Aerodyne Research, Inc. and the University of Massachusetts at Amherst will collaborate to develop laser desorption ionization (LDI) mass spectrometric analysis of...

  14. Electron impact ionization of the gas-phase sorbitol (United States)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto


    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  15. Development of capacity for measuring ionizing radiation in aircraft crew; Desenvolvimento da capacitacao para efetuar medicoes de radiacao ionizante em tripulacoes de aeronaves

    Energy Technology Data Exchange (ETDEWEB)

    Federico, C.A.; Goncalez, O.L., E-mail: claudiofederico@ieav.cta.b, E-mail: odairl@ieav.cta.b [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica; Caldas, L.V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    This paper describes the activities performed in a research program of the Institute of Advanced Studies, Brazil, belonging to the Brazilian Air Force, joining to researches from Brazilian Nuclear Energy Commission, in order to bring to Brazil the capacity and acknowledge necessary to the evaluation of dose from ionizing radiation originated in the cosmic radiation and its by products which fall on aircraft crews

  16. Advanced trigonometry

    CERN Document Server

    Durell, C V


    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  17. Flotation advances

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, D.


    This paper describes recent advances in flotation cell and mechanism design. OutoKumpu have designed larger cells, suitable for the flotation of smaller particles, with differing mechanisms for particles of different types. Froth handling is also closely controlled. Flotation cells from BQR are also described. Flotation columns are also increasingly being adopted, complementing the use of conventional flotation cells. Designs by Wemco, Multotec, VERTI-MIX, Jameson, Suedala, Quinn and Cytec are detailed, giving improvements in fine coal separation coarse particle separation, and other innovations. 8 figs., 2 tabs.

  18. Advanced calculus

    CERN Document Server

    Friedman, Avner


    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  19. Advanced calculus

    CERN Document Server

    Widder, David V


    This classic text by a distinguished mathematician and former Professor of Mathematics at Harvard University, leads students familiar with elementary calculus into confronting and solving more theoretical problems of advanced calculus. In his preface to the first edition, Professor Widder also recommends various ways the book may be used as a text in both applied mathematics and engineering.Believing that clarity of exposition depends largely on precision of statement, the author has taken pains to state exactly what is to be proved in every case. Each section consists of definitions, theorem

  20. Effects of heat treatment process on thin film alloy resistance and its stability

    Institute of Scientific and Technical Information of China (English)

    周继承; 彭银桥


    Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.

  1. Ionization of Air in a Ranque-Hilsch Vortex Tube and the Method of Obtaining Uni- and Bipolar Ionization (United States)

    Lebedinskii, K. V.; Kurnosov, N. E.; Nikolotov, A. A.; Alekseev, D. P.


    Results of investigations on determining the principles of ionization in a Ranque-Hilsch vortex tube have been given. The existing principles of ionization and the possibilities for them to occur in a Ranque-Hilsch vortex tube have been considered. Conclusions based on an analysis of ionization methods have been drawn. With the aim of establishing processes occurring in the vortex tube, the authors have developed a procedure, have identified the goal and objectives of testing, have created a test bench, and have conducted experimental investigations on the physical prototype of a vortex tube. Testing results have been given in the form of plots. An analysis of the results has been made, and conclusions have been drawn. On the basis of the conducted investigations, the authors have proposed a novel method of ionization of air and control over the parameters of uni- and bipolar ionization. A diagram of the device developed for air ionization has been presented.

  2. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.


    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  3. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations (United States)

    Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.


    With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.

  4. Observation of terahertz-radiation-induced ionization in a single nano island (United States)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q.-Han; Kim, Chulki


    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  5. Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses (United States)

    Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu


    Recent advances in attosecond spectroscopy has enabled resolving electron-hole dynamics in real time. The correlated electron-hole dynamics and the resulted coherence are directly related to how fast the ionization is completed. How the laser-induced electron-hole coherence evolves and whether it can be utilized to probe the core dynamics are among the key questions in attosecond physics or even attosecond chemistry. In this work, we propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attosecond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.

  6. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector (United States)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team


    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  7. Foodstuffs treatment by ionization; Stato attuale del processo di ionizzazione delle sostanze alimentari

    Energy Technology Data Exchange (ETDEWEB)

    Tata, A.; Adamo, M. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione


    Foodstuffs treatment by ionization gives rise to chemical, physical and biological changes able to produce both a shelf-life extension and / or a foodborne diseases control through the pathogenic population reduction / elimination. The main process goal is therefore to ensure the hygienic quality and the wholesomeness of products to be marketed, in order to limitate foodborne diseases originated mainly through the `cross contamination` process. The microbiological recovery induced by ionization has spurred this new technology and its applications in foodstuffs treatment are more and more taking interest all over the world. At present, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs and in over 20 of them the process is already industrially utilized for spices, poultry, shrimps and vegetables. Industrial food ionization plants, utilizing EB-machines or radioisotopes, are at present about 50 world-wide, with a uniform distribution in advanced as well as developing countries. As it refers to process economic aspects, market researches have shown cost figures ranging from few tens to some hundreds Lit/kg, depending on the dose to products. These costs are competitive with alternative treatments, beyond the recovery of economic productivity reduction caused by foodborne diseases.

  8. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. (United States)

    Hsu, Cheng-Chih; Chou, Pi-Tai; Zare, Richard N


    Chemical maps of tissue samples provide important information on biological processes therein. Recently, advances in tissue imaging have been achieved using ambient ionization techniques, such as desorption electrospray ionization mass spectrometry (DESI-MS), but such techniques have been almost exclusively confined to the mapping of lipids and metabolites. We report here the use of nanospray desorption electrospray ionization (nanoDESI) that allows us to image proteins in tissue samples in a label-free manner at atmospheric pressure with only minimum sample preparation. Multiply charged proteins with masses up to 15 kDa were successfully detected by nanoDESI using an LTQ Orbitrap mass spectrometer. In an adult mice brain section, expression of proteins including ubiquitin, β-thymosin, myelin basic protein, and hemoglobin were spatially mapped and characterized. We also determined the location of methylation on myelin basic protein. This imaging modality was further implemented to MYC-induced lymphomas. We observed an array of truncated proteins in the region where normal thymus cells were infiltrated by tumor cells, in contrast to healthy tissue.

  9. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, Sergey [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Horbatsch, Marko [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Taylor, Wendy, E-mail: [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada)


    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  10. Advanced LIGO

    CERN Document Server



    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  11. Advanced LIGO (United States)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.


    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  12. The oncogenic action of ionizing radiation on rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.; Garte, S.J.


    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.

  13. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)


    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  14. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)


    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  15. Prosthetic advances. (United States)

    Harvey, Zach T; Potter, Benjamin K; Vandersea, James; Wolf, Erik


    Much of the current prosthetic technology is based on developments that have taken place during or directly following times of war. These developments have evolved and improved over the years, and now there are many more available options to provide a comfortable, cosmetic, and highly functional prosthesis. Even so, problems with fit and function persist. Recent developments have addressed some of the limitations faced by some military amputees. On-board microprocessor-controlled joints are making prosthetic arms and legs more responsive to environmental barriers and easier to control by the user. Advances in surgical techniques will allow more intuitive control and secure attachment to the prosthesis. As surgical techniques progress and permeate into standard practice, more sophisticated powered prosthetic devices will become commonplace, helping to restore neuromuscular loss of function. Prognoses following amputation will certainly rise, factoring into the surgeon's decision to attempt to save a limb versus perform an amputation.

  16. Thermal ionization of Cs Rydberg states (United States)

    Glukhov, I. L.; Ovsiannikov, V. D.


    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  17. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V


    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  18. Electron Capture in a Fully Ionized Plasma

    CERN Document Server

    Widom, A; Srivastava, Y N


    Properties of fully ionized water plasmas are discussed including plasma charge density oscillations and the screening of the Coulomb law especially in the dilute classical Debye regime. A kinetic model with two charged particle scattering events determines the transition rate per unit time for electron capture by a nucleus with the resulting nuclear transmutations. Two corrections to the recent Maiani et al. calculations are made: (i) The Debye screening length is only employed within its proper domain of validity. (ii) The WKB approximation employed by Maiani in the long De Broglie wave length limit is evidently invalid. We replace this incorrect approximation with mathematically rigorous Calogero inequalities in order to discuss the scattering wave functions. Having made these corrections, we find a verification for our previous results based on condensed matter electro-weak quantum field theory for nuclear transmutations in chemical batteries.

  19. Secondary Ionization Coefficient of Dielectric Electrode (United States)

    Kashiwagi, Yasuhide; Suzuki, Susumu; Itoh, Haruo

    Experiments for observations and stabilization of discharge paths in several electrode systems are carried out aiming at precise measurement of the secondary ionization coefficient γ of MgO film electrode. The discharge chamber is filled with Ar gas. The waveforms of the applied voltage between the electrodes and the discharge current are measured with visual observation of the discharge light. Two MgO coated electrodes are placed so that they are facing each other. For these MgO electrodes, the discharge paths take a detour, not the shortest distance. Smaller prebreakdown current pulses are observed before the breakdown. After breakdown, discontinuous discharge current is observed. Therefore, it is prepared a glass tube surrounding the discharge area. As the result, the discharge paths take a straight perpendicular for the electrode surface, and the discharge is stabilized.

  20. Direct Determination of the Ionization Energies of PtC, PtO, and PtO2 with VUVRadiation

    Energy Technology Data Exchange (ETDEWEB)

    Citir, Murat; Metz, Ricardo B.; Belau, Leonid; Ahmed, Musahid


    Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements providethe first directly measured ionization energy for PtC, IE(PtC) = 9.45 +- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +- 0.1 eV and IE(PtO2) = 11.35 +- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +- 0.07 eV, D0(Pt-O)= 4.30 +- 0.12 eV, and D0(OPt-O) = 4.41 +- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules Delta H0 f,0(PtC(g)) = 701 +- 7 kJ/mol, Delta H0f,0(PtO(g)) = 396 +- 12 kJ/mol, and Delta H0f,0(PtO2(g)) = 218 +- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.

  1. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)


    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  2. Bacterial and archaeal resistance to ionizing radiation (United States)

    Confalonieri, F.; Sommer, S.


    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  3. Excitation and ionization of hydrogen Rydberg states in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.


    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic, which are due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  4. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R


    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  5. Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yu-lai; WANG; Qiang; YANG; Lu


    The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with

  6. Characterization of a homemade ionization chamber for radiotherapy beams. (United States)

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E


    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams.

  7. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry (United States)

    Weinecke, Andrea; Ryzhov, Victor


    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  8. Enhanced Avalanche Ionization by RF Fields Creating an Ultracold Plasma (United States)

    Robinson, M. P.; Gallagher, T. F.; Laburthe Tolra, B.; Pillet, P.


    Ultracold plasmas have been shown to evolve from initially frozen Rydberg gases held in magneto-optical traps.(M.P. Robinson, B. Laburthe Tolra, Michael W. Noel, T.F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85), 4466 (2000) We report the enhancement of the avalanche ionization process by application of radiofrequency fields. An initial slow ionization rate is observed in the Rydberg sample due to black body ionization and ionizing collisions with hot Rydberg atoms. This produces an overall posititve space charge of cold ions as the hot electrons leave the sample. Once a threshold density of positive charges is built up, the hot electrons become trapped to the sample, leading to avalance ionization due to electron-Rydberg collisions. The mechanism of the ionization remains unclear. However, the application of radiofrequency fields, in the 1 V/cm, 100 MHz range, dramatically enhances the rate of avalanche ionization without changing the threshold density at which it occurs. Apparently, the limiting parameter is the rate of collisional ionization of Rydberg atoms by electrons.

  9. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti


    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  10. Single ionization and electron capture in He2++Na collisions

    NARCIS (Netherlands)

    Knoop, S; Olson, RE; Ott, H; Hasan, VG; Morgenstern, R; Hoekstra, R


    Single-electron capture and ionization in He2+ + Na collisions at energies around the matching velocity (2-13 keV amu(-1)) have been studied both experimentally and theoretically. State-selective cross section for capture into the n = 2, 3, 4 and n >= 5, and the ionization cross section as well as d

  11. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)


    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  12. Physics of a partially ionized gas relevant to galaxy formation simulations -- the ionization potential energy reservoir

    CERN Document Server

    Vandenbroucke, Bert; Schroyen, Joeri; Jachowicz, Natalie


    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a sub-grid fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the on-grid physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code Gadget2. As an example of the effects of these changes, we study the propagation of Sedov-...

  13. The contribution of the delayed ionization in strong-field nonsequential double ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yinbo; Zhou, Yueming, E-mail:; Li, Yang; Li, Min; Lan, Pengfei [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang, E-mail: [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205 (China)


    With the classical ensemble model, we have investigated the pulse-duration dependence of nonsequential double ionization (NSDI) over a wide range of laser intensity. The correlated electron momentum distributions are distinctly different for the few-cycle and multiple cycle pulses, which agree well with the previous experiments. Based on this agreement, we analyzed the underlying process for the pulse-duration dependence of the electron correlation by tracing the classical trajectories. Counterintuitively, our analysis shows that the recollision-induced excited states of NSDI could resist ionization in the strong laser field for a time much longer than one optical cycle even at very high intensities. For the multiple-cycle pulses, NSDI events with such a long time delay have significant contribution to the total NSDI yields, which is responsible for the pulse-duration dependence of the observed correlated patterns in the electron momentum distributions.

  14. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut


    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  15. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José


    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  16. Recent Developments in High-Temperature Shape Memory Thin Films (United States)

    Motemani, Y.; Buenconsejo, P. J. S.; Ludwig, A.


    High-temperature shape memory alloy (HTSMA) thin films are candidates for development of microactuators with operating temperatures exceeding 100 °C. This article reviews recent advances and developments in the field of HTSMA thin films during the past decade, with focus on the systems Ti-Ni-X (X = Hf, Zr, Pd, Pt and Au), Ti-Ta, and Au-Cu-Al. These actuator films offer a wide range of transformation temperatures, thermal hysteresis, and recoverable strains suitable for high-temperature applications. Promising alloy compositions in the systems Ti-Ni-Hf, Ti-Ni-Pd, Ti-Ni-Au, and Au-Cu-Al are highlighted for further upscaling and development. The remaining challenges as well as prospects for development of HTSMA thin films are also discussed.

  17. Characterization of photomultiplier tubes in a novel secondary ionization mode for Secondary Emission Ionization Calorimetry

    CERN Document Server

    Tiras, E; Ogul, H; Southwick, D; Bilki, B; Nachtman, J; Onel, Y


    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in Secondary Emission Ionization Calorimetry study, that is a novel techique to measure the electromagnetic shower particles in extreme radiation environment. There are different SE modes used in the tests, developed from conventional PMT mode. Here, the technical design of secondary emission modules and characterization measurements of both SE modes and the PMT mode are reported.

  18. Ionization and photofragmentation of Ru{sub 3}(CO){sub 12} and Os{sub 3}(CO){sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Schalk, Oliver, E-mail:, E-mail:; Josefsson, Ida; Odelius, Michael [Department of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, SE-106 91 Stockholm (Sweden); Richter, Robert; Prince, Kevin C. [Elettra-Sincrotrone Trieste, Area Science Park, I-34149 Basovizza, Trieste (Italy); Mucke, Melanie, E-mail:, E-mail: [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)


    In this paper, we use a combination of photoelectron spectroscopy, mass spectrometry, and density functional theory calculations to get a detailed understanding of valence single and double ionization and the subsequent dissociation processes. This is exemplified on benchmark systems, trimetallo-dodecacarbonyls M{sub 3}(CO){sub 12} with M = Ru, Os, where the energy remaining in the molecule after photoionization can be retrieved by measuring the degree of fragmentation of the molecular ion. The intensity of different mass peaks can thus be directly related to ionization cross sections obtained by photoelectron spectroscopy. We find that the M—CO dissociation energy rises as the number of CO ligands decreases due to dissociation. Moreover, ionization of the CO ligands has a higher cross section than that of the metal center for both single and double ionization. After advanced fragmentation, a CO bond can break and the carbon atom remains bonded to the metal core. In addition, we found that the valence ionization cross sections of M{sub 3}(CO){sub 12} are maximal at about 40 eV photon energy thus showing a more pronounced shape resonance than Ru and Os-complexes with a single metal atom center. Finally, an np → nd giant resonance absorption causes a significant increase of the ionization cross section above 50 eV for Ru{sub 3}(CO){sub 12}.

  19. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)


    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  20. Magnetoacoustic waves in a partially ionized two-fluid plasma

    CERN Document Server

    Soler, Roberto; Ballester, Jose Luis


    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...

  1. A corona discharge initiated electrochemical electrospray ionization technique. (United States)

    Lloyd, John R; Hess, Sonja


    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust, and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity, and selectivity of ESI experiments.

  2. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik


    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  3. Modified binary encounter Bethe model for electron-impact ionization

    CERN Document Server

    Guerra, M; Indelicato, P; Santos, J P


    Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

  4. Laboratory Photo-chemistry of PAHs: Ionization versus Fragmentation

    CERN Document Server

    Zhen, Junfeng; Paardekooper, Daniel M; Ligterink, Niels; Linnartz, Harold; NAhon, Laurent; Joblin, Christine; Tielens, Alexander G G M


    Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8--40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.


    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Bergin, Edwin A.; Cleeves, L. Ilsedore [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Hersant, Franck [Univ. Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aikawa, Yuri, E-mail: [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan)


    In this Letter, we model the chemistry of DCO{sup +} in protoplanetary disks. We find that the overall distribution of the DCO{sup +} abundance is qualitatively similar to that of CO but is dominated by a thin layer located at the inner disk surface. To understand its distribution, we investigate the different key gas-phase deuteration pathways that can lead to the formation of DCO{sup +}. Our analysis shows that the recent update in the exothermicity of the reaction involving CH{sub 2}D{sup +} as a parent molecule of DCO{sup +} favors deuterium fractionation in warmer conditions. As a result, the formation of DCO{sup +} is enhanced in the inner warm surface layers of the disk where X-ray ionization occurs. Our analysis points out that DCO{sup +} is not a reliable tracer of the CO snow line as previously suggested. We thus predict that DCO{sup +} is a tracer of active deuterium and, in particular, X-ray ionization of the inner disk.

  6. Particle production in reflection and transmission mode laser ablation: implications for laserspray ionization. (United States)

    Musapelo, Thabiso; Murray, Kermit K


    Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces. ᅟ

  7. Torsional Alfven waves in solar partially ionized plasma: effects of neutral helium and stratification

    CERN Document Server

    Zaqarashvili, T V; Soler, R


    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower pa...

  8. Reducing the Matrix Effect in Organic Cluster SIMS Using Dynamic Reactive Ionization (United States)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas


    Dynamic reactive ionization (DRI) utilizes a reactive molecule, HCl, which is doped into an Ar cluster projectile and activated to produce protons at the bombardment site on the cold sample surface with the presence of water. The methodology has been shown to enhance the ionization of protonated molecular ions and to reduce salt suppression in complex biomatrices. In this study, we further examine the possibility of obtaining improved quantitation with DRI during depth profiling of thin films. Using a trehalose film as a model system, we are able to define optimal DRI conditions for depth profiling. Next, the strategy is applied to a multilayer system consisting of the polymer antioxidants Irganox 1098 and 1010. These binary mixtures have demonstrated large matrix effects, making quantitative SIMS measurement not feasible. Systematic comparisons of depth profiling of this multilayer film between directly using GCIB, and under DRI conditions, show that the latter enhances protonated ions for both components by 4- to ~15-fold, resulting in uniform depth profiling in positive ion mode and almost no matrix effect in negative ion mode. The methodology offers a new strategy to tackle the matrix effect and should lead to improved quantitative measurement using SIMS.

  9. About AGN ionization echoes, thermal echoes, and ionization deficits in low redshift Lyman-alpha blobs

    CERN Document Server

    Schirmer, Mischa; Levenson, Nancy A; Fu, Hai; Davies, Rebecca L; Keel, William C; Torrey, Paul; Bennert, Vardha N; Pancoast, Anna; Turner, James E H


    We report the discovery of 14 Lyman-alpha blobs (LABs) at z~0.3, existing at least 4-7 billion years later in the Universe than all other LABs known. Their optical diameters are 20-70 kpc, and GALEX data imply Ly-alpha luminosities of (0.4-6.3)x10^43 erg/s. Contrary to high-z LABs, they live in low-density areas. They are ionized by AGN, suggesting that cold accretion streams as a power source must deplete between z=2 and z=0.3. We also show that transient AGN naturally explain the ionization deficits observed in many LABs: Their Ly-alpha and X-ray fluxes decorrelate below 10^6 years because of the delayed escape of resonantly scattering Ly-alpha photons. High Ly-alpha luminosities do not require currently powerful AGN, independent of obscuration. Chandra X-ray data reveal intrinsically weak AGN, confirming the luminous optical nebulae as impressive ionization echoes. For the first time, we also report mid-infrared thermal echoes from the dusty tori. We conclude that the AGN have faded by 3-4 orders of magnit...

  10. SERI photovoltaic advanced research and development project: FY 1984 accomplishments (United States)


    Photovoltaics research and development and a bibliography of technical publications are summarized and several management highlights are included. Single function thin films, high efficiency multijunction concepts, innovative concepts, silicon materials, flat plate collectors, and system experiments are reported. Subcontract program categories are amorphous thin films, high efficiency concepts, polycrystalline thin films, crystalline silicon, and innovative concepts subdivided into new ideas and photoelectrochemical cells. The PV devices and measurements, solid state research, insolution resource assessment, advanced PV systems research, and solar electric research activities are included. The bibliography is a compilation of the technical publications resulting from all SERI research during FY 1983 and FY 1984. The entries are presented alphabetically by author.

  11. Measuring the Sources of the Intergalactic Ionizing Flux (United States)

    Cowie, L. L.; Barger, A. J.; Trouille, L.


    We use a wide-field (0.9 deg2) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν(700 Å)/f ν(1500 Å) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ~ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4). Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Flash ionization signature in coherent cyclotron emission from brown dwarfs (United States)

    Vorgul, I.; Helling, Ch.


    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  13. Recent advances in vacuum sciences and applications (United States)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.


    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  14. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)


    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  15. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail:; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Vermeeren, L. [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)


    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  16. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G


    The elementary processes taking place in the formation of charged particles and their flow in the ionization chamber are considered. On the basic of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage.

  17. Advanced capacitors (United States)

    Ennis, J. B.; Buritz, R. S.


    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  18. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)



    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  19. Cardiac thin filament regulation and the Frank–Starling mechanism


    Kobirumaki-Shimozawa, Fuyu; Inoue, Takahiro; Shintani, Seine A.; Oyama, Kotaro; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin’ichi; Fukuda, Norio


    The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank–Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank–Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament “on–off” regulati...

  20. Thin Film Inorganic Electrochemical Systems. (United States)


    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  1. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris


    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  2. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others


    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  3. Thin film interconnect processes (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  4. Polyimide Aerogel Thin Films (United States)

    Meador, Mary Ann; Guo, Haiquan


    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  5. The religion of thinness

    Directory of Open Access Journals (Sweden)

    Michelle Lelwica


    Full Text Available This paper examines the almost religious-like devotion of especially women in pursuing the goal of a thinner body. The quest for a slender body is analysed as a ‘cultural religion’, which the author calls the ‘Religion of Thinness’. The analysis revolves around four observations. The first is that for many women in the US today, the quest for a slender body serves what has historically been a ‘religious’ function: providing a sense of purpose that orients and gives meaning to their lives, especially in times of suffering and uncertainty. Second, this quest has many features in common with traditional religions, including beliefs, myths, rituals, moral codes, and sacred images—all of which encourage women to find ‘salvation’ (i.e., happiness and well-being through the pursuit of a ‘better’ (i.e., thinner body.Third, this secular faith draws so many adherents in large part because it appeals to and addresses what might be referred to as spiritual needs—including the need for a sense of purpose, inspiration, security, virtue, love, and well-being—even though it shortchanges these needs, and, in the long run, fails to deliver the salvation it promises. Fourth, a number of traditional religious ideas, paradigms and motifs tacit­ly inform and support the Religion of Thinness. More specifically, its soteri­ology resurrects and recycles the misogynist, anti-body, other-worldly, and exclusivist aspects of patriarchal religion. Ultimately, the analysis is not only critical of the Religion of Thinness; it also raises suspicions about any clear-cut divisions between ‘religion’, ‘culture’, and ‘the body’. In fact, examining the functions, features, and ideologies embedded in this secular devotion gives us insight into the constitutive role of the body in the production and apprehension of religious and cultural meanings.

  6. Nonlinear optical thin films (United States)

    Leslie, Thomas M.


    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  7. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  8. Atmospheric pressure thermospray ionization using a heated microchip nebulizer. (United States)

    Keski-Rahkonen, Pekka; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Auriola, Seppo


    When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip-APTSI (microAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas-phase ionization. To evaluate the performance of the described microAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The microAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The microAPTSI produces ESI-like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in-source fragmentation was also observed. Unlike ESI, however, the microAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The microAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques.

  9. Analytical Properties of Solid-substrate Electrospray Ionization Mass Spectrometry (United States)

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping


    Conventional electrospray ionization mass spectrometry (ESI-MS) uses a capillary for sample loading and ionization. Along with the development of ambient ionization techniques, ESI-MS using noncapillary emitters has attracted more interest in recent years. Following our recent report on ESI-MS using wooden tips ( Anal. Chem. 83, 8201-8207 (2011)), the technique was further investigated and extended in this study. Our results revealed that the wooden tips could serve as a chromatographic column for separation of sample components. Sequential and exhaustive ionization was observed for proteins and salts on wooden tips with salts ionized sooner and proteins later. Nonconductive materials that contain microchannels/pores could be used as tips for ESI-MS analysis with sample solutions loaded to the sharp-ends only, since rapid diffusion of sample solutions by capillary action would enable the tips to become conductive. Tips of inert materials such as bamboo, fabrics, and sponge could be used for sample loading and ionization, while samples such as tissue, mushroom, and bone could form tips to induce ionization for direct analysis with application of a high voltage. [Figure not available: see fulltext.

  10. Satellite lines at the ionization threshold in charge transfer systems (United States)

    Wardermann, W.; von Niessen, W.


    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  11. Molecular Hydrogen in the Ionized Region of Planetary Nebulae

    CERN Document Server

    Aleman, I


    This paper presents an analysis of the concentration of the hydrogen molecule inside the ionized region of planetary nebulae. The equations corresponding to the ionization and chemical equilibria of H, H+, H-, H2, H2+, and H3+ are coupled with the equations of ionization and thermal balance for a photoionized atomic gas. Forty different reactions related to the formation or the destruction of these species are included. The presence of dust is taken into account, since grains act as catalysts for the production of H2, as well as shield the molecules against the stellar ionizing radiation. We analyze the effect of the stellar ionizing continuum, as well as of the gas and grain properties on the calculated H2 mass. It is shown that a significant concentration of H2 can survive inside the ionized region of planetary nebulae, mostly in the inner region of the recombination zone. The total H2 to total hydrogen mass ratio inside the ionized region increases with the central star temperature, and, depending on the P...

  12. Patterning Multicomponent Polymer Thin Films via Dynamic Thermal Processing (United States)

    Singh, Gurpreet

    Bottom-up patterning is gaining increased importance owing to the physical limitations and rising costs of top-down patterning. One example of bottom-up patterning is self-assembling polymer thin films. Although there are several pathways to facilitate polymer thin film self-assembly, this presentation will focus on dynamic thermal field based processes for patterning multicomponent polymer thin films. Dynamic thermal field processing is an attractive roll­to­roll (R2R) amenable directed self­assembly (DSA) method for molecular level organization of multicomponent polymer systems such as block copolymer thin films over large areas without requiring guiding templates. The talk will first outline how parameters such as magnitude of the temperature gradient, velocity of annealing, thermal expansion, and molecular weight of the polymer can be optimized to finely tune the morphology of the block copolymer thin films and also elucidate their associated physical mechanisms. The second part of the talk will outline application of dynamic thermal field processes for fabricating functional nanomaterials and discuss the recent advancements achieved using these processes.

  13. Stopping power and energy loss straggling of thin Formvar foil for 0.3-2.7 MeV protons and alpha particles (United States)

    Mammeri, S.; Ammi, H.; Dib, A.; Pineda-Vargas, C. A.; Ourabah, S.; Msimanga, M.; Chekirine, M.; Guesmia, A.


    Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ˜0.3 μm) have been measured in the energy range (0.3-2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe-Bloch theory to extract the target mean excitation and ionization potential . A resulting value of ≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe-Livingston's classical theories or by Yang's empirical formula. A deviation of ˜40%-80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.

  14. Ionizing particle detection based on phononic crystals (United States)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.


    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  15. Fungi and ionizing radiation from radionuclides. (United States)

    Dighton, John; Tugay, Tatyana; Zhdanova, Nelli


    Radionuclides in the environment are one of the major concerns to human health and ecotoxicology. The explosion at the Chernobyl nuclear power plant renewed interest in the role played by fungi in mediating radionuclide movement in ecosystems. As a result of these studies, our knowledge of the importance of fungi, especially in their mycorrhizal habit, in long-term accumulation of radionuclides, transfer up the food chain and regulation of accumulation by their host plants was increased. Micro-fungi have been found to be highly resilient to exposure to ionizing radiation, with fungi having been isolated from within and around the Chernobyl plant. Radioresistance of some fungal species has been linked to the presence of melanin, which has been shown to have emerging properties of acting as an energy transporter for metabolism and has been implicated in enhancing hyphal growth and directed growth of sensitized hyphae towards sources of radiation. Using this recently acquired knowledge, we may be in a better position to suggest the use of fungi in bioremediation of radioactively contaminated sites and cleanup of industrial effluent.

  16. An Ionization Profile Monitor for the Tevatron

    CERN Document Server

    Jansson, Andreas; Bowie, Kwame; Bross, Alan; Dysert, Robert; Fitzpatrick, Thomas; Kwarciany, Richard; Lundberg, Carl; Nguyen, Hogan; Rivetta, Claudio H; Slimmer, David; Valerio, Linda; Zagel, James


    Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be in...

  17. Ionization and Dust Charging in Protoplanetary Disks (United States)

    Ivlev, A. V.; Akimkin, V. V.; Caselli, P.


    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance of the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.

  18. Ionizing Radiation in Glioblastoma Initiating Cells

    Directory of Open Access Journals (Sweden)

    Maricruz eRivera


    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults with a median survival of 12-15 months with treatment consisting of surgical resection followed by ionizing radiation (IR and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem-cell like properties termed glioblastoma initiating cells (GICs. Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR to result in a faster rate of double-strand break (DSB repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of glioblastoma. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies.

  19. A Fast Ionization Chamber for GODDESS (United States)

    Lumb, R. T.; Lipman, A. S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.; Kozub, R. L.


    Transfer reactions are among the main methods used in nuclear physics to probe the structure of nuclei. Such information is needed to constrain nuclear models and to understand various nucleosynthesis processes. In many cases, the nuclear level densities are too high to be resolved in transfer reactions via charged particle detection alone. This problem and issues arising from contaminants in radioactive beams can be addressed by using particle- γ coincidence techniques along with heavy recoil identification in inverse kinematics. A device to accomplish these tasks is Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS), currently being commissioned for the ATLAS facility at ANL. We are currently building a compact, tilted grid ionization chamber for GODDESS to detect and identify beam-like recoils near zero degrees in the lab. The tilt (30 degrees off normal to the beam) helps the ion pairs to be detected quickly, after drifting only a short distance away from the beam axis. This reduces the response time, allowing counting rates of ~500,000/s. The design and current status of the project will be presented. Research supported by the U. S. DOE.

  20. Ionizing particle detection based on phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H., E-mail:, E-mail:; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)


    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  1. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.


    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  2. Electron ionization mass spectrum of tellurium hexafluoride. (United States)

    Clark, Richard A; McNamara, Bruce K; Barinaga, Charles J; Peterson, James M; Govind, Niranjan; Andersen, Amity; Abrecht, David G; Schwantes, Jon M; Ballou, Nathan E


    The electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported for the first time. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5(+), TeF4(+) TeF3(+), TeF2(+), TeF1(+), and Te(+), Te2(+). A trend in increasing abundance was observed for the odd fluoride bearing ions, TeF1(+) TeF2(+) > TeF4(+) > TeF6(+), with the molecular ion TeF6(+) not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species, and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6(+).

  3. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.


    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  4. Microwave Triggered Laser Ionization of Air (United States)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl


    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  5. Collinear resonance ionization spectroscopy of radium ions

    CERN Multimedia

    We propose to study the neutron-deficient radium isotopes with high-resolution collinear resonance ionization spectroscopy. Probing the hyperfine structure of the $7{s}\\,^2\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{1/2}$ and $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transitions in Ra II will provide atomic-structure measurements that have not been achieved for $^{{A}<208}$Ra. Measurement of the $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transition in $^{{A}<214}$Ra will allow the spectroscopic quadrupole moments to be directly measured for the first time. In addition, the technique will allow tentative spin assignments to be confirmed and the magnetic dipole moments measured for $^{\\textit{A}<208}$Ra. Measurement of the hyperfine structure (in particular the isotope shifts) of the neutron-deficient radium will provide information to further constrain the nuclear models away from the N=126 shell closure.

  6. Supersonic and subsonic measurements of mesospheric ionization. (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.


    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  7. Charge segregation in weakly ionized microgels (United States)

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; Do, Changwoo; Barker, Thomas H.; Fernández-Nieves, Alberto


    We investigate microgels synthesized from N -isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ˜0.2 , indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence of a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. We successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.

  8. Electron impact ionization of tungsten ions in a statistical model (United States)

    Demura, A. V.; Kadomtsev, M. B.; Lisitsa, V. S.; Shurygin, V. A.


    The statistical model for calculations of the electron impact ionization cross sections of multielectron ions is developed for the first time. The model is based on the idea of collective excitations of atomic electrons with the local plasma frequency, while the Thomas-Fermi model is used for atomic electrons density distribution. The electron impact ionization cross sections and related ionization rates of tungsten ions from W+ up to W63+ are calculated and then compared with the vast collection of modern experimental and modeling results. The reasonable correspondence between experimental and theoretical data demonstrates the universal nature of statistical approach to the description of atomic processes in multielectron systems.

  9. Magnetic field amplification by collisionless shocks in partially ionized plasmas

    CERN Document Server

    Ohira, Yutaka


    In this paper, we study shock structures of collisionless shocks in partially ionized plasmas by means of two-dimensional hybrid simulations, where the shock is a perpendicular shock with shock velocity Vsh ~ 40 Va ~ 1333 km/s and the upstream ionization fraction is 0.5. We find that large density fluctuations and large magnetic fields fluctuations are generated both in the upstream and downstream regions. In addition, we find that the velocity distribution of downstream hydrogen atoms has three components. Observed shock structures suggest that diffusive shock acceleration can operate at perpendicular shocks propagating into partially ionized plasmas in real three-dimensional systems.

  10. Lightning electromagnetic field generated by grounding electrode considering soil ionization

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; HE Jinliang; ZHANG Bo; GAO Yanqing


    A circuit model with lumped time-variable parameter is proposed to calculate the transient characteristic of grounding electrode under lightning current, which takes into consideration the dynamic and nonlinear effect of soil ionization around the grounding electrode. The ionization phenomena in the soil are simulated by means of time-variable parameters under appropriate conditions. The generated electromagnetic field in the air is analyzed by using electrical dipole theory and image theory when the lightning current flows into the grounding electrode. The influence of soil ionization on the electromagnetic field is investigated.

  11. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others


    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.


    Institute of Scientific and Technical Information of China (English)

    Yu Yanning; Wan Chongyi


    A novel pre-ionization scheme of helical transverse-pulsed pre-ionization in a longitudinal discharge CO2 laser is presented. The laser tube is made of glass with inner diameter of 7.5mm and discharge length of 50cm. The laser performance characteristics as functions of parameters, such as pressure, charging capacitance and applied voltage, are investigated. Compared with the same laser structure without pre-ionization, the maximum pulse energy improves by 23%, the optimum electro-optical efficiency increases by 31%, and the specific output energy reaches 26 J/(L·atm).

  13. The ionization equilibrium of iron in H II regions

    CERN Document Server

    Rodríguez, M


    We study the ionization equilibrium of Fe using photoionization models that incorporate improved values for the ionization and recombination cross-sections and the charge-exchange rates for the Fe ions. The previously available photoionization models predict concentrations of Fe3+ which are a factor of 3-8 higher than the values inferred from emission lines of [Fe III] and [Fe IV]. Our new models reduce these discrepancies to factors of 2-5. We discuss the possible reasons behind the remaining discrepancies and present an updated ionization correction factor for obtaining the Fe abundance from the Fe++ abundance.

  14. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N


    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  15. Noise analysis of ionization kinetics in a protein ion channel (United States)

    Bezrukov, Sergey M.; Kasianowicz, John J.


    We observed excess current noise generated by the reversible ionization of sites in a transmembrane protein ion channel, which is analogous to current fluctuations found recently in solid state microstructure electronic devices. Specifically the current through fully open single channels formed by Staphylococcus aureus α-toxin shows pH dependent fluctuations. We show that noise analysis of the open channel current can be used to evaluate the ionization rate constants, the number of sites participating in the ionization process, and the effect of recharging a single site on the channel conductance.

  16. Cosmic-ray electron injection from the ionization of nuclei

    CERN Document Server

    Morlino, G


    We show that the secondary electrons ejected from the ionization of heavy ions can be injected into the acceleration process that occurs at supernova remnant shocks. This electron injection mechanism works since ions are ionized during the acceleration when they move already with relativistic speed, just like ejected electrons do. Using the abundances of heavy nuclei measured in cosmic rays at Earth, we estimate the electron/proton ratio at the source to be ~10^-4, big enough to account for the nonthermal synchrotron emission observed in young SNRs. We also show that the ionization process can limit the maximum energy that heavy ions can reach.

  17. Cosmic-ray electron injection from the ionization of nuclei. (United States)

    Morlino, Giovanni


    We show that the secondary electrons ejected from the ionization of heavy ions can be injected into the acceleration process that occurs at supernova remnant shocks. This electron injection mechanism works since ions are ionized during the acceleration when they move already with relativistic speed, just like ejected electrons do. Using the abundances of heavy nuclei measured in cosmic rays measured at the Earth, we estimate the electron/proton ratio at the source to be approximately 10;{-4}, big enough to account for the nonthermal synchrotron emission observed in young supernova remnants. We also show that the ionization process can limit the maximum energy that heavy ions can reach.

  18. Thin-Film Ceramic Thermocouples Fabricated and Tested (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.


    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  19. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong


    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  20. Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting (United States)

    Xu, Menglei; Gao, Kun; Wu, Jiada; Cai, Hua; Yuan, Ye; Prucnal, S.; Hübner, R.; Skorupa, W.; Helm, M.; Zhou, Shengqiang


    ZnTe thin films on Si substrates have been prepared by pulsed laser deposition and subsequent pulsed laser melting (PLM) treatment. The crystallization during PLM is confirmed by Raman scattering, x-ray diffraction and room temperature photoluminescence (PL) measurements. The PL results show a broad peak at 574 nm (2.16 eV), which can be assigned to the transitions from the conduction band to the acceptor level located at 0.145 eV above the valence band induced by zinc-vacancy ionization. Our work provides an applicable approach to low temperature preparation of crystalline ZnTe thin films.