WorldWideScience

Sample records for advanced thermoelectric materials

  1. Recent advances on thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Jin-cheng ZHENG

    2008-01-01

    By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions,thermoelectric generators could be an important part of the solution to today's energy challenge.There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper,we will review recent efforts on improving thermoelectric efficiency. Particularly,several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals,low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.

  2. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  3. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  4. Advanced materials for high-temperature thermoelectric energy conversion

    Science.gov (United States)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles

    1992-01-01

    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  5. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  6. Thermoelectric materials and devices

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)

    2011-01-01

    New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.

  7. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  8. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  9. Advanced Low Temperature Thermoelectric Materials for Cryogenic Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work we will: 1) develop novel TE materials  with a factor of 2x or more improvement in the dimensionless TE figure of merit (ZT) over state-of-the-art...

  10. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  11. Porous Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Julian Goldsmid

    2009-08-01

    Full Text Available Thermoelectric materials are sometimes prepared using a sintering process in which the achievement of a high density is often one of the objectives. However, it has recently been shown that the introduction of a highly porous material is desirable in synthetic transverse thermoelements. Porosity may also be an advantage in conventional longitudinal thermoelectric modules in which a high thermal flux density creates problems, but heat transfer within the pores can degrade the thermoelectric figure of merit. The amount of this degradation is calculated and it is shown that it can be small enough to be acceptable in practical devices.

  12. Thermodynamics of Thermoelectric Materials

    Science.gov (United States)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the

  13. Size effect in thermoelectric materials

    Science.gov (United States)

    Mao, Jun; Liu, Zihang; Ren, Zhifeng

    2016-12-01

    Thermoelectric applications have attracted increasing interest recently due to its capability of converting waste heat into electricity without hazardous emissions. Materials with enhanced thermoelectric performance have been reported in recent two decades. The revival of research for thermoelectric materials began in early 1990s when the size effect is considered. Low-dimensional materials with exceptionally high thermoelectric figure of merit (ZT) have been presented, which broke the limit of ZT around unity. The idea of size effect in thermoelectric materials even inspired the later nanostructuring and band engineering strategies, which effectively enhanced the thermoelectric performance of bulk materials. In this overview, the size effect in low-dimensional thermoelectric materials is reviewed. We first discuss the quantum confinement effect on carriers, including the enhancement of electronic density of states, semimetal to semiconductor transition and carrier pocket engineering. Then, the effect of assumptions on theoretical calculations is presented. Finally, the effect of phonon confinement and interface scattering on lattice thermal conductivity is discussed.

  14. Materials, preparation, and characterization in thermoelectrics

    CERN Document Server

    Rowe, David Michael

    2012-01-01

    This book includes updated theoretical considerations which provide an insight into avenues of research most likely to result in further improvements in material performance. It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material. The book reviews the use of neutron beams to investigate phonons, whose behaviour govern the lattice thermal conductivity and includes a chapter on patents.

  15. Methods of synthesizing thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  16. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  17. Band engineering of thermoelectric materials.

    Science.gov (United States)

    Pei, Yanzhong; Wang, Heng; Snyder, G J

    2012-12-01

    Lead chalcogenides have long been used for space-based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl-type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies.

  18. Thermoelectrical Characterization of Organic Materials

    OpenAIRE

    2009-01-01

    Organic semiconductors are prime candidates for thermoelectric applications, because one can maximize the dimensionless figure of merit ZT (by maximizing the Seebeck coefficient and electrical conductivity) while simultaneously minimizing the thermal conductivity. In this work, we explore a few materials and try to find their thermoelectric characteristics. For the n-leg of the thermogenerator, we studied a modified fullerene (PCBM) which is doped with TDAE vapor. For the p-leg, we studied PE...

  19. High Efficiency Thermoelectric Materials and Devices

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  20. Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices

    Science.gov (United States)

    2015-05-12

    Distribution Unlimited Final Report: Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric...Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices Report Title The research

  1. Nanostructured materials for thermoelectric applications.

    Science.gov (United States)

    Bux, Sabah K; Fleurial, Jean-Pierre; Kaner, Richard B

    2010-11-28

    Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices.

  2. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  3. Thermoelectric Phenomena, Materials, Devices, and Applications

    Science.gov (United States)

    Toberer, Eric

    2013-03-01

    Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. However, advanced materials with improved conversion efficiency are required for widespread implementation. Improving thermoelectric efficiency requires reconciling competing electronic and thermal transport properties - a material must have both a large carrier effective mass and mobility and low lattice thermal conductivity. Historically, this has been achieved through engineering carrier scattering rates. This talk will focus on new approaches that achieve these conflicting properties through modifications of the electron and phonon band structures. Example materials such as Yb14MnSb11 and Ba8Ga16Ge30 will be discussed and pathways towards further material improvements will be highlighted. Such tailored control of transport properties will be vital to realize the next generation of energy materials.

  4. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    M N Tripathi; C M Bhandari

    2005-09-01

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good indicators of a material's thermoelectric `worth'. A simple yet useful performance indicator is possible with only two parameters-energy gap and lattice thermal conductivity. This indicator can outline all potentially useful thermoelectric materials. Thermal conductivity in place of lattice thermal conductivity can provide some additional information about the temperature range of operation. Yet another performance indicator may be based on the slope of vs. ln plots. plotted against ln shows a linear relationship in a simplified model, but shows a variation with temperature and carrier concentration. Assuming that such a relationship is true for a narrow range of temperature and carrier concentration, one can calculate the slope of vs. ln plots against temperature and carrier concentrations. A comparison between the variation of and slope suggests that such plots may be useful to identify potential thermoelectric materials.

  5. Encapsulated Thermoelectric Modules for Advanced Thermoelectric Systems

    Science.gov (United States)

    Kambe, Mitsuru; Jinushi, Takahiro; Ishijima, Zenzo

    2014-06-01

    An encapsulated thermoelectric (TE) module consists of a vacuum-tight stainless-steel container in which an SiGe or BiTe TE module is encapsulated. This construction enables maximum performance and durability because: the thermal expansion mismatch between the hot and cold sides of the container can be accommodated by a sliding sheet in the container; the TE module inside is always kept in a vacuum environment, therefore no oxidation can occur; and the pressure difference between the inside and outside of the container reduces thermal contact resistance inside the container. Our encapsulated SiGe module features higher operating temperature—up to 650°C for both hot and cold sides. Other high-temperature modules and conventional BiTe modules, including both-sides and one-side skeleton types, have been encapsulated. Several variants of the encapsulated module are available. Encapsulated thermoelectric modules with integrated coolers contain cooling panels through which water can pass. If the module hot side is heated by a radiating heat source (radiation coupling) or convection of a hot gas or fluid (convection coupling), no pressing force on the module is necessary. It therefore features minimum contact resistance with the cooling duct, because no pressure is applied, maximum TE power, and minimum installation cost. Another, larger, variant is a quadruple flexible container in which four modules (each of maximum size 40 mm × 40 mm) are encapsulated. These encapsulated modules were used in a powder metallurgy furnace and were in use for more than 3000 h. Application to cryogenic temperatures simulating the liquid nitrogen gas vaporizer has been also attempted.

  6. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  7. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  8. Coupled improvement between thermoelectric and piezoelectric materials

    Science.gov (United States)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  9. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  10. Solar Thermoelectricity via Advanced Latent Heat Storage

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  11. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  12. Superlattice Thermoelectric Materials and Devices

    Science.gov (United States)

    Venkatasubramanian, Rama

    2002-03-01

    We have recently demonstrated a significant enhancement in thermoelectric figure-of-merit (ZT) at 300K, of about 2.4 in p-type Bi2Te3/Sb2Te3 superlattices, using the concept of phonon-blocking electron-transmitting superlattice structures [1]. The phonon blocking arises from a complex localization-like behavior for phonons in nano-structured superlattices and the electron transmission is facilitated by optimal choice of band-offsets in these semiconductor hetero-structures. We will also discuss the ZT 1.2 results in n-type Bi2Te3/Bi2Te3-xSex superlattices and our initial understanding on the reasons behind the less-than-dramatic performance of these materials compared to the p-type superlattices. Due to the high ZT of the material, devices potentially offer high coefficient of performance (COP) in solid-state refrigeration. The thin-film devices, resulting from rather simple microelectronic processing, allow high cooling power densities to be achieved for a variety of high-power electronic applications. We have obtained 32K and 40K sub-ambient cooling at 298K and 353K, respectively, in these superlattice micro-thermoelements with potential localized active-cooling power densities approaching 700 W/cm2. In addition to high-performance (in terms of COP) and power densities, these thin-film microdevices are also extremely fast-acting, within 10 microsec and about a factor of 23,000 better than bulk thermoelectric technology. Thus, these are of significance for preventing thermal run-away in high-power electronics. We will present results to demonstrate this concept with infrared imaging of cooling/heating with superlattice micro-devices. We will also discuss outstanding issues such as heat removal from the heat sink towards the full exploitation of this technology. In addition, we will compare the state-of-the-art with other thin-film superlattice materials and device concepts. [1] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.C. O’Quinn, Thin

  13. Electrodeposition of nanoengineered thermoelectric materials

    Science.gov (United States)

    Xiao, Feng

    Thermoelectric (TE) energy converters are solid-state devices that can generate electricity by harvesting waste thermal energy, thereby improving the efficiency of a system. The many advantages of TE devices include solid-state operation, zero-emissions, vast scalability, no maintenance and a long operating lifetime. The efficiency of TE materials is directly related to a dimensionless figure of merit ZT. In order to compete with conventional refrigerators and power generators, ZT of 3 is required. Due to their limited energy conversion efficiencies (i.e. ZT thermoelectric devices currently have a rather limited set of applications. Classical and quantum mechanical size effects provide additional ways to enhance energy conversion efficiencies in nanostructured materials. Theoretical calculations predict that ZT of 5 can be achieved in one-dimensional nanostructures including nanowires and nanotubes. The goal of my work was to develop electrodeposition techniques to synthesis various thermoelectric nanostructures including 2-D superlatticed thin films, 1-D nanowires and nanotubes and quasi 0-D superlatticed nanowires and investigate their properties. Electrodeposition is selected because of the ability to "tailor-made" their morphology and properties. Specifically, the accomplishments of this thesis include the following: (1) Electrodeposition of PbTe thin films was systematically investigated in an acidic nitric bath. (2) Single crystalline PbTe cubes were electrodeposited on polycrystalline gold substrates. (3) Single crystalline PbTe nanowires were synthesized using a template-directed electrodeposition process. The temperature dependent electro-transport studies reveal that the conduction mechanism in the temperature range 150-220 K is different from that in the temperature range 220-300 K. (4) Bi1.8 Sb0.1Te3.1 and (Bi0.3Sb0.7) 2Te3 nanowires were electrodeposited from acidic tartaric-nitric baths and their temperature dependent electrical properties were

  14. Thermoelectric Devices Advance Thermal Management

    Science.gov (United States)

    2007-01-01

    Thermoelectric (TE) devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. In cooperation with NASA, Chico, California-based United States Thermoelectric Consortium Inc. (USTC) built a gas emissions analyzer (GEA) for combustion research. The GEA precipitated hydrocarbon particles, preventing contamination that would hinder precise rocket fuel analysis. The USTC research and design team uses patent-pending dimple, pin-fin, microchannel and microjet structures to develop and design heat dissipation devices on the mini-scale level, which not only guarantee high performance of products, but also scale device size from 1 centimeter to 10 centimeters. USTC continues to integrate the benefits of TE devices in its current line of thermal management solutions and has found the accessibility of NASA technical research to be a valuable, sustainable resource that has continued to positively influence its product design and manufacturing

  15. Thermal Expansion Studies of Selected High-Temperature Thermoelectric Materials

    Science.gov (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; van der Walde, Keith; Maricic, Lina; Sayir, Ali

    2009-07-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power ≤5.1 W/kg. A higher specific power would result in more onboard power for the same RTG mass, or less RTG mass for the same onboard power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermomechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  16. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    Science.gov (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  17. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  18. High Temperature Thermoelectric Materials for Waste Heat Regeneration

    Science.gov (United States)

    2013-01-01

    Thermoelectric Oxide Materials. Science of Advanced Materials 2011, 321 (1457), 682–686. 2. International World Energy, Wold Energy Outlook 2006 Edition...power is clearly limited to the inefficiencies of the TE material and is currently a major road block to wide TEG acceptance. A TE material can be...International World Energy, 2001. 3. Board, D. S. Report of the Defense Science Board Task Force on DoD Energy Strategy, More Fight-Less Fuel, Office

  19. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  20. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    Science.gov (United States)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  1. Alternative Approaches to Group IV Thermoelectric Materials

    Science.gov (United States)

    Snedaker, Matthew Loren

    In the pursuit of energy efficiency, there is a demand for systems capable of recovering waste heat. A temperature gradient across a thermoelectric material results in the thermal diffusion of charge carriers from the hot side to the cold side, giving rise to a voltage that can be used to convert waste heat to electricity. Silicon germanium (SiGe) alloys are the standard materials used for thermoelectric generators at high temperatures. We report an alternative method for preparing p-type Si1- xGex alloys from a boron-doped silica-germania nanocomposite. This is the first demonstration of the thermoelectric properties of SiGe-based thermoelectrics prepared at temperatures below the alloy's melting point through a magnesiothermic reduction of the (SiO 2)1-x(GeO2) x. We observe a thermoelectric power factor that is competitive with the literature record for the conventionally prepared SiGe. The large grain size in our hot pressed SiGe limits the thermoelectric figure of merit to 0.5 at 800°C for an optimally doped p-type Si80Ge 20 alloy. A phosphorus-doped oxide can yield n-type Si1- xGex; however, the current processing method introduces a background boron content that compensates ~10% of the donor impurities and limits the thermoelectric power factor. Spark plasma sintering of the nano-Si1-xGe x yields a heterogeneous alloy with thermal conductivity lower than that of the hot pressed homogeneous alloy due to a reduction in the average crystallite size. Magnesiothermic reduction in the presence of molten salts allows some control over crystallite growth and the extent of Si-Ge alloying.

  2. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials.

  3. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  4. Development Status and Plans of the Advanced Thermoelectric Converter (ATEC) Project

    Science.gov (United States)

    Ewell, Richard; Caillat, Thierry

    2008-01-01

    Advances in thermoelectric materials with high ZT in mid-90's, revived interest in advanced thermoelectric materials at DOE, DOD and NASA NASA. JPL, in collaboration with Universities, identified promising high temperature thermoelectric materials for potential use in next generation RTGs nder DOD and NASA funding (1995 to 2005). Based on these advances the ATEC project was initiated in January 2006 to develop an advanced converter by 2010 (10-12% couple efficiency). ATEC is a technology maturation project with an off-ramp to a proposed Advanced RTG (ARTG) providing 6-8 W/kg and 8-10% system efficiency to support potential future SMD missions as early as 2017. In addition, work is continuing on advancing the TE materials technology to support development of an RTG with 12-14 W/kg and 15 to 20% efficiency by 2020.

  5. Recent Progress on PEDOT-Based Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2015-02-01

    Full Text Available The thermoelectric properties of poly(3,4-ethylenedioxythiophene (PEDOT-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  6. Chalcopyrite Nanoparticles as a Sustainable Thermoelectric Material

    Directory of Open Access Journals (Sweden)

    Maninder Singh

    2015-10-01

    Full Text Available In this report, copper iron sulfide nanoparticles with various composition were synthesized by a thermolysis based wet chemical method. These inherently sustainable nanoparticles were then fully characterized in terms of composition, structure, and morphology, as well as for suitability as a thermoelectric material. The merits of the material preparation include a straightforward bulk material formation where particles do not require any specialized treatment, such as spark plasma sintering or thermal heating. The Seebeck coefficient of the materials reveals P-type conductivity with a maximum value of 203 µV/K. The results give insight into how to design and create a new class of sustainable nanoparticle material for thermoelectric applications.

  7. Designing high-performance layered thermoelectric materials through orbital engineering.

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  8. Designing high-performance layered thermoelectric materials through orbital engineering

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  9. Development in Zn4Sb-based thermoelectric materials

    DEFF Research Database (Denmark)

    Yin, Hao

    Thermoelectric material, as a functional material which has the dual ability of electrical-thermal energy conversion, has attracted tremendous interests in the last decades, especially against the background of global energy shortage and surging of new materials. The present work focuses...... on the notable Zn4Sb3, with the effort to further the basic understanding of the compound, as well as improve the thermoelectric performance to meet the commercial use. The maximum efficiency of a thermoelectric material is determined by its figure of merit, zT=TS2/ where S is the Seebeck coefficient...... or thermopower,  the electrical conductivity, the thermal conductivity and T the absolute temperature. The best thermoelectrics are heavily doped semiconductors with high thermoelectric power factors and low thermal conductivities, known as “Phonon Glasses Electrical Crystals”. Zn4Sb3 is one such material...

  10. Rare earth-doped materials with enhanced thermoelectric figure of merit

    Science.gov (United States)

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  11. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  12. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    Thermoelectric materials offer solid state solution to convert waste heat into usable electric energy or to use electrical power for cooling with no movable parts and with no maintenance required. Thermoelectrics possess a large potential in an ever increasing concern with power management...... and utilizing environmental energy sources to minimize the anthropogenic impact on global climate changes. The efficiency of the current state of the art thermoelectric materials will have to be increased for making a change on global scale. For this to happen a detail structural understanding is needed...... thermoelectric materials because of their low price and high performance, but that still have unknown structural aspects that needs to be understood for control and utilization of their full thermoelectric potential. A range of syntheses techniques have been used to prepare zinc antimony compounds, e.g., spark...

  13. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  14. Organic thermoelectric materials for energy harvesting and temperature control

    Science.gov (United States)

    Russ, Boris; Glaudell, Anne; Urban, Jeffrey J.; Chabinyc, Michael L.; Segalman, Rachel A.

    2016-10-01

    Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic-inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

  15. New Materials for Thermoelectric Applications Theory and Experiment

    CERN Document Server

    Hewson, Alex

    2013-01-01

    Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

  16. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  17. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    Science.gov (United States)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we

  18. Correlation between structure, doping and performance of thermoelectric materials

    OpenAIRE

    ZHAO Yu

    2014-01-01

    Thermoelectric materials can convert thermal energy into electrical energy and vice-versa. They are widely used in energy harvesters, thermal sensors, and cooling systems. However, the low efficiency and high cost of the known material compositions limit their widespread utilization in electricity generation applications. Therefore, there is a strong interest in identifying new thermoelectric materials with high figure of merit. In response to this need, this dissertation works on the synthes...

  19. Mg2(Si,Sn)-based thermoelectric materials and devices

    Science.gov (United States)

    Gao, Peng

    Thermoelectric effects are phenomena found in materials that can achieve direct conversion between heat flow and electricity. One important application of thermoelectric effects is thermoelectric generators, which can generate electricity when a temperature gradient is applied. Thermoelectric generators make use of various sources of heat and it is considered a promising solution for waste heat recovery. The conversion efficiency of thermoelectric generators depends on the materials used in the devices. Significant improvement in the performance of thermoelectric materials has been made in the past few decades. However, most of the good thermoelectric materials being investigated have limitations, such as the high materials cost, high materials density and toxicity of the constituent elements. The Mg2(Si,Sn)-based materials studied in this work are promising candidates for thermoelectric generators in the mid-temperature range and have drawn increasing research interest in recent years because these materials are high performance thermoelectrics that are low cost, low-density and non-toxic. In this work, systematic studies were performed on the Mg2(Si,Sn) thermoelectric materials. Thermal phase stability was studied for different compositions of Mg2Si1-xSnx and Mg2Si0.4Sn 0.6 was used as base material for further optimization. Both n-type and p-type samples were obtained by doping the materials with different elements. Peak ZT ˜ 1.5 for the n-type and ZT ˜ 0.7 for the p-type materials were obtained, both of which are among the best reported results so far. Experimental work was also done to study the techniques to develop the Mg2Si 0.4Sn0.6 materials into working devices. Different electrode materials were tested in bonding experiment for this compound, and copper was found to be the best electrode material for Mg2Si 0.4Sn0.6. Preliminary work was done to demonstrate the possibility of fabricating a Mg2Si0.4Sn0.6-based thermoelectric generator and the result is

  20. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  1. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is developing new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  2. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is to develop new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  3. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    Science.gov (United States)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  4. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  5. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO. Follow......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...... temperatures. Clear correlations between the initial crystallographic phase of the dopants and the thermoelectric properties of the resulting Al-doped ZnO were observed. For Al, Ga-dually doped ZnO, the spark plasma sintering conditions together with the microstructural evolution and thermoelectric properties...

  6. Research Progress on AgSbTe2-based Thermoelectric Materials

    Institute of Scientific and Technical Information of China (English)

    CAO Qigao; MA Guang; JIA Zhihua; ZHENG Jing; LI Jin

    2012-01-01

    Thermoelectric power generation represents a class of energy conversion technology,which has been used in power supply of aeronautic and astronautic exploring missions,now showing notable advantages to harvest the widely distributed waste heat and convert the abundant solar energy into electricity at lower cost than Si-based photovoltaic technology.Thermoelectric dimensionless figure of merit ZT plays a key role in the conversion efficiency from thermal to electrical energy.Low thermal conductivity and large Seebeck coefficient make the AgSbTe2 compound a very promising candidate for high efficiency p-type thermoelectric applications.The AgSbTe2-based thermoelectric system has been repeatedly studied as prospective thermoelectric materials.In this review,we firstly clarify some fundamental tradeoffs dictating the ZT value through the relationship ZT =S2σT/κ.We also pay special attentions to the recent advances in AgSbTe2-based thermoelectric materials.Finally,we provide an outlook of new directions in this filed.

  7. High-throughput Z T predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach

    Science.gov (United States)

    Hao, Qing; Xu, Dongchao; Lu, Na; Zhao, Hongbo

    2016-05-01

    The advancement of computational tools for material property predictions enables a broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven material search for novel materials. In this work, this need is eliminated under the limit of reduced nanostructure size within a bulk material, in which these mean free paths are restricted by the nanostructure size. A criterion for Z T evaluation is proposed for general nanoporous bulk materials and is demonstrated with representative oxides.

  8. Thermoelectric properties of porous (Bi0.15Sb0.85)2Te3 thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Guiying Xu; Tingjie Chen; Jianqiang Liu; Zhangjian Zhou

    2003-01-01

    In order to obtain thermoelectric materials with high figure of merit, the concept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials design were proposed. To demonstrate the theory, the materials of (Bio.15Sb0.85)2Te3 with porous structure have been fabricated. Their thermoelectric properties and the microstructure were investigated and compared with their density structure. It was found that the porous structure could improve their properties greatly.

  9. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  10. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.

    Science.gov (United States)

    Zhang, Qian; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2014-10-29

    The abundance of solar thermal energy and the widespread demands for waste heat recovery make thermoelectric generators (TEGs) very attractive in harvesting low-cost energy resources. Meanwhile, thermoelectric refrigeration is promising for local cooling and niche applications. In this context there is currently a growing interest in developing organic thermoelectric materials which are flexible, cost-effective, eco-friendly and potentially energy-efficient. In particular, the past several years have witnessed remarkable progress in organic thermoelectric materials and devices. In this review, thermoelectric properties of conducting polymers and small molecules are summarized, with recent progresses in materials, measurements and devices highlighted. Prospects and suggestions for future research efforts are also presented. The organic thermoelectric materials are emerging candidates for green energy conversion.

  11. Nano-materials for enhanced thermoelectric efficiencies

    Science.gov (United States)

    Boukai, Akram

    2010-04-01

    Energy is the ultimate currency that drives the world economy. Without energy, the global economy would cease to function normally. Most of the world's energy comes from the burning of fossil fuels such as coal and oil. Unfortunately, these fossil fuels are limited and pollute the atmosphere. The rising costs and demand of energy products and the alarming rate of global warming have focused research efforts into alternative forms of renewable energy. Thermoelectrics are one class of renewable energy producing devices. Thermoelectrics operate by converting temperature differences into electrical power and vice versa. They find limited use due to their low efficiencies and high cost. This article will review the operation of thermoelectrics and their current state-of-the-art. It will also explore future promising research endeavors that aim to increase their efficiency.

  12. Express method for contactless measurement of parameters of thermoelectric materials

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2015-08-01

    Full Text Available The paper presents an original method for contactless express measurement of parameters of thermoelectric materials. The presence of a combination of AC and DC magnetic fields in the gap of the oscillating circuit, where the monitored sample of the thermoelectric material is located, leads — due to Ampere force — to delamination of geometric regions of the occurrence of half-cycles of Foucault current. This in turn causes the appearance of additional heat losses in the oscillating circuit caused by Peltier effect. Computer modeling of these processes with the use of the software package ComsolFenlab 3.3 allowed determining the nature and magnitude of the electric currents in oscillating circuit, the range of operating frequencies, and the ratio of amplitudes of the variable and fixed components of the magnetic field. These components eventually cause a certain temperature difference along the controlled sample, which difference is proportional to the thermoelectric figure of merit Z of the material. The basic expressions are obtained for determining the value of the Seebeck coefficient a, thermal conductivity ?, electrical conductivity ? and thermoelectric figure of merit Z. A description is given to the design of the device for contactless express measurement of parameters of thermoelectric materials based on Bi—Te—Se—Sb solid solutions. Its distinctive feature is the ability to determine the symmetric and asymmetric components of the electric conductivity of the material values. The actual error in parameter measurement in this case is 2%.

  13. Thermoelectric Property Dependence and Geometry Optimization of Peltier Current Leads Using Highly Electrically Conductive Thermoelectric Materials

    Science.gov (United States)

    Fujii, Tomohiro; Fukuda, Shinji; Emoto, Masahiko; Osada, Koudai; Kawahara, Toshio; Hamabe, Makoto; Watanabe, Hirofumi; Ivanov, Yury; Sun, Jian; Yamaguchi, Satarou

    2011-05-01

    Thermoelectric materials are promising candidates for use in energy-saving devices in many fields. They are also useful in superconducting applications such as those using Peltier current leads (PCLs) to reduce system heat loss. In the case of PCLs, consideration must be given to Joule heating. Furthermore, the performance of PCLs is intricately dependent on their thermoelectric properties. In addition to the figure of merit Z, consideration of the electrical conductivity is also important for the design of high-performance PCLs. In this paper, we discuss the resistivity dependence of the performance of PCLs using model parameters obtained from real devices.

  14. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  15. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  16. Synthesis and characterization of Bi-Te-Se thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S. K., E-mail: surya.pu@ac.in [Department of Physics, Panjab University, Chandigarh, 160014 (India); Centre for Nanoscience & Nanotechnology, Panjab University, Chandigarh, 160014 (India); Kumari, Ankita [Centre for Nanoscience & Nanotechnology, Panjab University, Chandigarh, 160014 (India); Ridhi, R.; Kaur, Jagdish [Department of Physics, Panjab University, Chandigarh, 160014 (India)

    2015-08-28

    Bismuth Telluride (Bi{sub 2}Te{sub 3}) and its related alloys act as a promising thermoelectric material and preferred over other thermoelectric materials due to their high stability and efficiency under ambient conditions. In the present work, we have reported economical, environment friendly and low-temperature aqueous chemical method for the synthesis of Bi-Se-Te alloy. The prepared samples are characterized by X-Ray Diffraction to investigate the structural properties and UV-Visible spectroscopy for the spectroscopic analysis. The absorption spectrum reveals the sensitivity in the ultraviolet as well as in visible region.

  17. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  18. Thinking Like a Chemist: Intuition in Thermoelectric Materials.

    Science.gov (United States)

    Zeier, Wolfgang G; Zevalkink, Alex; Gibbs, Zachary M; Hautier, Geoffroy; Kanatzidis, Mercouri G; Snyder, G Jeffrey

    2016-06-06

    The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance.

  19. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  20. Avoided crossing of rattler modes in thermoelectric materials

    DEFF Research Database (Denmark)

    Christensen, Mogens; Abrahamsen, Asger Bech; Christensen, Niels Bech

    2008-01-01

    thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations...

  1. Nanoscaled In$_2$O$_3$:Sn films as material for thermoelectric conversion: achievements and limitations

    Indian Academy of Sciences (India)

    G KOROTCENKOV; V BRINZARI; B K CHO

    2016-09-01

    In this paper, thermoelectric properties of nanoscaled In$_2$O$_3$:Sn films are considered. The limitations that may appear during the usage of such materials in devices developed for the market of thermoelectric generatorsand refrigerators are also analysed. It is shown that nanoscaled In$_2$O$_3$:Sn is a promising material for thermoelectric applications. It is also established that insufficient thermal stability of nanostructured materials is themain limitation of these materials application in high-temperature thermoelectric converters. Optimization of grain boundary parameters and the usage of specific surrounding atmosphere can significantly improve the efficiency of thermoelectric conversion of nanostructured materials in the region of intermediate temperatures.

  2. Thermoelectric Figure of Merit of Low-temperature Generator Materials and Possibilities to Improve It

    Directory of Open Access Journals (Sweden)

    A.V. Simkin

    2014-01-01

    Full Text Available The thermoelectric properties of semiconductor material based on the bismuth telluride solid solution manufactured by the extrusion method, which has high mechanical properties, are studied in the work. Using the obtained values of thermoelectric semiconductor parameters, the coefficients of efficiency of generator thermopile of a flat design in the working temperature range are calculated. The ways to improve the efficiency of thermoelectric conversion through the use of bulk nanostructured thermoelectric materials based on bismuth telluride are considered.

  3. WSe2 nanoribbons: new high-performance thermoelectric materials.

    Science.gov (United States)

    Chen, Kai-Xuan; Luo, Zhi-Yong; Mo, Dong-Chuan; Lyu, Shu-Shen

    2016-06-28

    In this work, for the first time, we systematically investigate the ballistic transport properties of WSe2 nanoribbons using first-principles methods. Armchair nanoribbons with narrow ribbon width are mostly semiconductive but the zigzag nanoribbons are metallic. Surprisingly, an enhancement in thermoelectric performance is discovered moving from monolayers to nanoribbons, especially armchair ones. The maximum room-temperature thermoelectric figure of merit of 2.2 for an armchair nanoribbon is discovered. This may be contributed to by the effects of the disordered edges, owing to the existence of dangling bonds at the ribbon edge. H-passivation has turned out to be an effective way to stabilize the edge atoms, which enhances the thermodynamic stability of the nanoribbons. In addition, after H-passivation, all of the armchair nanoribbons exhibit semiconductive properties with similar band gaps (∼1.3 eV). Our work provides instructional theoretical evidence for the application of armchair WSe2 nanoribbons as promising thermoelectric materials. The enhancement mechanism of the disordered edge effect can also encourage further exploration to achieve outstanding thermoelectric materials.

  4. Noncontacting thermoelectric detection of material imperfections in metals

    Energy Technology Data Exchange (ETDEWEB)

    Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah

    2005-06-17

    This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.

  5. Thermoelectric Energy Conversion: Future Directions and Technology Development Needs

    Science.gov (United States)

    Fleurial, Jean-Pierre

    2007-01-01

    This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.

  6. Thermoelectric properties of p-type Bi-Sb-Te compositionally graded thermoelectric materials with different barriers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (BiSb)2Te3 (0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with different barriers were fabricated by conventional hot pressure method. Metals Fe, Co, Cu and Al were used as barriers between two segments. The effects of different barriers on thermoelectric properties of CGTM were investigated. The results show that metal Fe is more stable and suitable as the barrier.

  7. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    Science.gov (United States)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  8. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    Science.gov (United States)

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  9. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    Science.gov (United States)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  10. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    Mechanical Testing Measurements were made of the Young’s modulus and toughness of half-Heusler bulk materials with compositions [Zro.5Hfo...will be optimized to meet the needs of engineered devices. A microhardness tester will be used to obtain hardness measurements and determine the...modulus of elasticity for thermoelectric samples. These tests will be used to assess homogeneity of mechanical properties as a function of processing

  11. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Science.gov (United States)

    Zhao, Wenyu; Liu, Zhiyuan; Wei, Ping; Zhang, Qingjie; Zhu, Wanting; Su, Xianli; Tang, Xinfeng; Yang, Jihui; Liu, Yong; Shi, Jing; Chao, Yimin; Lin, Siqi; Pei, Yanzhong

    2017-01-01

    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an 'electron repository' role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.

  12. Oxide Thermoelectric Materials: A Structure-Property Relationship

    Science.gov (United States)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  13. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  14. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.

    Science.gov (United States)

    Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush; Zhang, Teng; Ko, Dong-Kyun

    2016-08-31

    The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method. We further demonstrate equipment-free fabrication of flexible thermoelectric modules using p- and n-type paper strips. Leveraged by paper's inherently low thermal conductivity and high flexibility, these paper modules have the potential to efficiently utilize heat available in natural and man-made environments by maximizing the thermal contact to heat sources of arbitrary geometry.

  15. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  16. Micro to Nano Scale Heat Conduction in Thermoelectric Materials

    Science.gov (United States)

    Maldovan, Martin

    2011-03-01

    Understanding and controlling heat transfer in solids is very important for increasing the efficiency of thermoelectric materials such as skutterudites, clatharates, superlattices, nanowires, and quantum dots. Although the mechanisms governing the thermal conductivity have been understood for years, a comprehensive theoretical method to calculate heat transfer, particularly at small scales, has not been available. This is mainly due to the complexity of anharmonic processes and phonon boundary scattering. We present a comprehensive theoretical model to calculate the thermal conductivity of thermoelectric materials at small length scales. The approach involves an exact calculation of the reduction of the phonon mean free paths due to boundary scattering and removes the need to solve the Boltzmann equation or to use adjustable terms as in the Callaway or Holland models. The analysis is based on the kinetic theory of transport processes and considers general expressions for dispersion relations, phonon mean free paths, and surface specularity parameters. The results show an excellent agreement with experiments for thin films, nanowires, and superlattices over a wide range of temperature and across multiple length scales. The theoretical approach can further be applied to a wide variety of problems involving the conduction of heat in micro/nanostructured thermoelectrics. This research was funded by the MIT Energy Initiative.

  17. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    Science.gov (United States)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and

  18. Thermoelectric materials: ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  19. Thermoelectric materials ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  20. Computational Identification of Promising Thermoelectric Materials Among Known Quasi-2D Binary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gorai, Prashun; Toberer, Eric S.; Stevanovic, Vladan

    2016-07-28

    Quasi low-dimensional structures are abundant among known thermoelectric materials, primarily because of their low lattice thermal conductivities. In this work, we have computationally assessed the potential of 427 known binary quasi-2D structures in 272 different chemistries for thermoelectric performance. To assess the thermoelectric performance, we employ an improved version of our previously developed descriptor for thermoelectric performance [Yan et al., Energy Environ. Sci., 2015, 8, 983]. The improvement is in the explicit treatment of van der Waals interactions in quasi-2D materials, which leads to significantly better predictions of their crystal structures and lattice thermal conductivities. The improved methodology correctly identifies known binary quasi-2D thermoelectric materials such as Sb2Te3, Bi2Te3, SnSe, SnS, InSe, and In2Se3. As a result, we propose candidate quasi-2D binary materials, a number of which have not been previously considered for thermoelectric applications.

  1. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  2. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel;

    For a given doping level a thermoelectric material is optimized for a given temperature. Thermoelectric modules, however, operates over large gradients in temperature. To circumvent this problem we have synthesized a functionally graded thermoelectric material optimized for large temperature...... gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap......, and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  3. Cascaded Thermoelectric Conversion-Advanced Radioisotope Power Systems (CTC-ARPSs)

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Conceptual designs of Advanced Radioisotope Power System (ARPS) with Cascaded Thermoelectric Converters (CTCs) are developed and optimized for maximum efficiency operation for End-Of Mission (EOM) electrical power of at least 100 We. These power systems each employs four General Purpose Heat Source (GPHS) bricks generating 1000 Wth at Beginning-of-Life (BOL) and 32 Cascaded Thermoelectric Modules (CTMs). Each CTM consists of a top and a bottom array of thermoelectric unicouples, which are thermally, but not electrically, coupled. The top and bottom arrays of the CTMs are connected electrically in series in two parallel strings with the same nominal voltage of > 28 VDC. The SiGe unicouples in the top array of the CTMs are optimized for nominal hot shoe temperature of 1273 K and constant cold shoe temperature of either 780 K or 980 K, depending on the thermoelectric materials of the unicouples in the bottom array. For a SiGe cold junction temperature of 780 K, the unicouples in the bottom array have p-legs of TAGS-85 and n-legs of 2N-PbTe and operate at constant hot junction temperature of 765 K and nominal cold junction temperature of 476.4 K. When the SiGe cold junction temperature is 980 K, the unicouples in the bottom arrays of CTMs have p-legs of CeFe3.5Co0.5Sb12 or CeFe3.5Co0.5Sb12 and Zn4Sb3, segments and n-legs of CoSb3 and operate at constant hot junction temperature of 965 K and nominal cold junction temperatures of 446.5 K or 493.5 K, respectively. The CTC-ARPSs have a nominal efficiency of 10.82% - 10.85% and generate BOL power of 108 We. This system efficiency is ~ 80% higher than that of State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs), requiring 7 GHPS bricks and generating 105 We at BOL. The CTC-ARPSs have specific powers of 8.2 We/kg to 8.8 We/kg, which are 71% to 83% higher, respectively, than that of the SOA-RTGs, and use ~ 43% less 238PuO2 fuel.

  4. Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials

    Science.gov (United States)

    Skomedal, Gunstein; Kristiansen, Nils R.; Engvoll, Marianne; Middleton, Hugh

    2014-06-01

    Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluated to enhance durability by protecting the materials from oxidation and sublimation during thermal cycles in air for up to 500 h and up to 873 K. The samples were characterized by SEM and EDS. The results showed it is possible to reduce degradation of the thermoelectric material without compromising overall thermoelectric efficiency.

  5. The Study of the Thermoelectric Properties of Phase Change Materials

    Science.gov (United States)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  6. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of

  7. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  8. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  9. High-entropy alloys as high-temperature thermoelectric materials

    Science.gov (United States)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  10. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  11. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  12. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  13. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  14. Nanoscale thermoelectrics

    CERN Document Server

    Wang, Xiaodong

    2013-01-01

    This book offers comprehensive coverage of thermoelectric materials and nanostructures. It provides the keys to understanding the theory underlying improvements in thermoelectric efficiency and describes a key enabling technology for energy applications.

  15. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  16. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity.

    Science.gov (United States)

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-06-21

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K.

  17. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  18. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    Science.gov (United States)

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  19. Recent Advance in Thermoelectric Devices for Electronics Cooling

    Science.gov (United States)

    Wang, Peng

    Thermal management of on-chip hot spot, with a heat flux of around 1000 W/cm2, has become one of the major challenges in the development of next-generation microprocessors. Solid state thermoelectric cooler (TEC) offers great promise for hot spot thermal management because of their compact structure, fast response, high reliability, localized cooling, and high flux removal capability. To date TEC has received great attentions in electronics cooling community as one of the potential hot spot cooling solutions. In this paper, recent development and application of hot spot cooling strategies based on micro thermoelectric technologies will be reviewed and discussed, three hot spot cooling concepts, including thinfilm thermoelectric cooling, mini-contact cooling, and semiconductor selfcooling in silicon substrate and germanium substrate will be discussed. The advantages and disadvantages of these on-chip cooling solutions for high flux hot spots will be evaluated.

  20. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  1. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  2. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel

    2010-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  3. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  4. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  5. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    Science.gov (United States)

    Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.

    2016-10-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  6. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    Science.gov (United States)

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  7. THERMAL AND ELECTRIC FIELDS AT SPARK PLASMA SINTERING OF THERMOELECTRIC MATERIALS

    Directory of Open Access Journals (Sweden)

    L. P. Bulat

    2014-09-01

    Full Text Available Problem statement. Improvement of thermoelectric figure of merit is connected with the usage of nanostructured thermoelectric materials fabricated from powders by the spark plasma sintering (SPS method. Preservation of powder nanostructure during sintering is possible at optimum temperature modes of thermoelectrics fabrication. The choice of these modes becomes complicated because of anisotropic properties of semiconductor thermoelectric materials. The decision of the given problem by sintering process simulation demands the competent approach to the problem formulation, a correct specification of thermoelectric properties, the properties of materials forming working installation, and also corrects boundary conditions. The paper deals with the efficient model for sintering of thermoelectrics. Methods. Sintering process of the bismuth telluride thermoelectric material by means of SPS-511S installation is considered. Temperature dependences of electric and thermal conductivities of bismuth telluride, and also temperature dependences of installation elements materials are taken into account. It is shown that temperature distribution in the sample can be defined within the limits of a stationary problem. The simulation is carried out in the software product Comsol Multiphysics. Boundary conditions include convective heat exchange and also radiation under Stefan-Boltzmann law. Results. Computer simulation of electric and thermal processes at spark plasma sintering is carried out. Temperature and electric potential distributions in a sample are obtained at the sintering conditions. Determinative role of graphite compression mould in formation of the temperature field in samples is shown. The influence of geometrical sizes of a graphite compression mould on sintering conditions of nanostructured thermoelectrics is analyzed. Practical importance. The optimum sizes of a cylindrical compression mould for fabrication of volume homogeneous samples based on

  8. A New Class of High Z Nanocrystalline and Textured Oxide-Based Thermoelectric Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high figure of merit (ZT) oxide-based thermoelectric materials. This will be accomplished by engineering a novel microstructure that will lead...

  9. Scanning thermoelectric and acoustic emission dignostic of structural inhomogeneities of thermocouple materials

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.J.

    2010-01-01

    Full Text Available New method for diagnostic of constructional and functional materials by means of thermoelectric and acoustic- emission measurements is proposed. The method allows not only to establish the defect location, but its partial temperature relaxation achieve.

  10. Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials

    Science.gov (United States)

    Suemori, Kouji; Watanabe, Yuichi; Hoshino, Satoshi

    2015-03-01

    Lightweight and flexible thermoelectric devices consisting of carbon nanotube (CNT)-based materials have the potential to be used for the various applications, such as energy harvesting from the low-temperature waste heat that exists ubiquitously in living areas. Because high-performance CNT-based materials are crucial for the broad-ranging employment of CNT-based thermoelectric devices, considerable efforts are being made to improve the power-generation capability of CNT-based thermoelectric materials. Here, we report high-performance thermoelectric composites consisting of CNT bundles and polystyrene fabricated by a planetary ball milling-based dispersion technique, which allows for the direct dispersion of the CNT bundles within the polystyrene matrix without causing the disaggregation of the bundled CNTs into individual ones. The CNT-bundles/polystyrene composites reported here exhibit a power factor of 413 μW/K2.m.

  11. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  12. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  13. Thermal transport in layered materials for thermoelectrics and thermal management

    Science.gov (United States)

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  14. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity.

    Science.gov (United States)

    He, Minhong; Zhao, Yan; Wang, Biao; Xi, Qing; Zhou, Jun; Liang, Ziqi

    2015-11-25

    Thermoelectric materials are prepared by developing 3D printing technology. The 3D fabricated Bi0.5 Sb1.5 Te3 samples exhibit amorphous characteristics and thus show an ultralow thermal conductivity of 0.2 W m(-1) K(-1) . 3D printing fabrication readily generates bulk thermoelectric samples of any shape, which is not the case with traditional hot-pressing and spark plasma sintering methods.

  15. Chalcopyrite CuGaTe{sub 2}: a high-efficiency bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Plirdpring, Theerayuth; Harnwunggmoung, Adul [Graduate School of Engineering, Osaka University, Suita (Japan); Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon Si Ayutthaya (Thailand); Kurosaki, Ken; Sugahara, Tohru; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita (Japan); Kosuga, Atsuko [Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Osaka (Japan); Day, Tristan; Snyder, G. Jeffrey [Department of Materials Science, California Institute of Technology, Pasadena, CA (United States); Firdosy, Samad [Jet Propulsion Laboratory, Pasadena, CA (United States); Ravi, Vilupanur [Jet Propulsion Laboratory, Pasadena, CA (United States); California State Polytechnic University, Pomona, CA (United States); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2012-07-17

    CuGaTe{sub 2} with a chalcopyrite structure demonstrates promising thermoelectric properties. The maximum figure of merit ZT is 1.4 at 950 K. CuGaTe{sub 2} and related chalcopyrites are a new class of high-efficiency bulk thermoelectric material for high-temperature applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High-Resolution ^125Te NMR of Novel Thermoelectric Materials

    Science.gov (United States)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Han, Mi-Kyung; Kanatzidis, M. G.

    2008-03-01

    Several novel Te-based thermoelectric materials with extraordinary figure of merit ZT >=1.4 have been studied by high-resolution 25 kHz magic angle spinning ^125Te nuclear magnetic resonance (NMR) in order to investigate variations in composition on the nano-scale. A 20-fold wider ^125Te NMR signal of both AgSbGe4Te6 and AgSbGe5.67Te7.67 (˜90 kHz) compared to that of PbTe (4.5 kHz) indicates a variation of shifts due to local composition fluctuations. The similar total shift of the main peak in Ag0.53Pb18Sb1.2Te20 (-1790 ppm) and PbTe (-1750 ppm) and similarly long T2 relaxation time show that the majority of Te atoms in both materials has a similar environment. A second peak in Ag0.53Pb18Sb1.2Te20 at -1600 ppm shows the presence of a second type of Te site, accounting for ˜1/3 of all Te. These are apparently located in Ag,Sb-rich inclusions, as indicated by a much shorter T2, which can be due to the effect of quadrupolar relaxation of ^121Sb or ^123Sb (spin 5/2 or 7/2, respectively) on ^125Te. Our data confirm suggestions made by Hsu et al., Science (2004) and by Chen et al., Appl. Phys. Lett. (2005) about the presence of nano-scale inclusions in Ag0.53Pb18Sb1.2Te20, which result in low lattice thermal conductivity and high ZT.

  17. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Directory of Open Access Journals (Sweden)

    Michael W. Gaultois

    2016-05-01

    Full Text Available The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er, which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  18. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Science.gov (United States)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  19. Numerical Modeling of Thermoelectric Generators with Varing Material Properties in a Circuit Simulator

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Condra, Thomas

    2009-01-01

    -compatible environment. This model of thermoelectric battery accounts for all temperature-dependent characteristics of the thermoelectric materials to include the nonlinear voltage, current, and electrothermal coupled effects. It is validated with simulation data from the recognized program ANSYS and experimental data......When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and cooptimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE...... from a real thermoelectric device, respectively.Within a common circuit simulator, the model can be easily connected to various electrical models of applied loads to predict and optimize the system performance....

  20. Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities

    Science.gov (United States)

    Bartholomé, Kilian; Balke, Benjamin; Zuckermann, Daniel; Köhne, Martin; Müller, Michael; Tarantik, Karina; König, Jan

    2014-06-01

    Half-Heusler (HH) compounds are some of the most promising candidates among the medium-temperature thermoelectric materials being investigated for automotive and industrial waste heat recovery applications. For n- as well as p-type material, peak ZT values larger than one have been published recently, and first modules have been built. The next step to facilitate the industrialization of thermoelectric module production is upscaling of material synthesis. In this paper, the latest results of the thermoelectric properties of HH compounds produced in kg batches are presented and compared with values published in the literature. The performance of modules built from these materials is analyzed with respect to power output and long-term stability of the material and electrical contacts.

  1. Mg2Si-Based Materials for the Thermoelectric Energy Conversion

    Science.gov (United States)

    Cheng, X.; Farahi, N.; Kleinke, H.

    2016-10-01

    Thermoelectric materials are capable of converting a temperature gradient into electricity (thermoelectric power generation) and vice versa (Peltier cooling). The thermoelectric power generation has been used for decades in spacecraft, where radioactive decay provides the heat source. Additional applications under consideration are based on the utilization of waste heat, for example in automotives or the manufacturing industries. Commercial thermoelectric materials are normally based on Bi2Te3, PbTe, or possibly in the future on the so-called filled skutterudites, such as YbxCo4Sb12. The downside of these materials is that some of their major constituent elements are toxic, namely tellurium, lead, and antimony, and in part rare and expensive (ytterbium, tellurium). Mg2Si on the other hand is composed of abundant, environmentally benign elements, and thus offers a huge advantage for commercial applications. Here, we provide a review of Mg2Si-based materials for thermoelectric energy conversion, discussing how competitive these materials have become in comparison to the above-mentioned more traditional materials.

  2. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  3. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    Science.gov (United States)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2016-08-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance (ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  4. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra

    2014-06-18

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  5. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  6. A Critical Overview of Recent Approaches to Improved Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Brian C [ORNL

    2007-01-01

    Thermoelectric devices can convert heat into useful electricity with no moving parts. Considerable progress has been made in improving the efficiency of these devices over the past 15 years. The key ideas responsible for most of this progress will be examined using specific examples. Recent improvements in thermoelectric efficiency appear to be dominated by a reduction in the lattice thermal conductivity. This reduction is accomplished by the careful introduction of 0.1 to 5 nm sized "objects" that effectively scatter acoustic phonons without significantly affecting electronic transport. Future research directions will be discussed.

  7. Improved thermal isolation of silicon suspended platforms for an all-silicon thermoelectric microgenerator based on large scale integration of Si nanowires as thermoelectric material

    Science.gov (United States)

    Fonseca, L.; Donmez, I.; Salleras, M.; Calaza, C.; Gadea, G.; Santos, J. D.; Morata, A.; Tarancon, A.

    2015-12-01

    Special suspended micro-platforms have been designed as a part of silicon compatible planar thermoelectric microgenerators. Bottom-up grown silicon nanowires are going to bridge in the future such platforms to the surrounding silicon bulk rim. They will act as thermoelectric material thus configuring an all-silicon thermoelectric device. In the new platform design other additional bridging elements (usually auxiliary support silicon beams) are substituted by low conductance thin film dielectric membranes in order to maximize the temperature difference developed between both areas. These membranes follow a sieve-like design that allows fabricating them with a short additional wet anisotropic etch step.

  8. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  9. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2016-01-01

    This book is a comprehensive introduction to all aspects of thermoelectric energy conversion. It covers both theory and practice. The book is timely as it refers to the many improvements that have come about in the last few years through the use of nanostructures. The concept of semiconductor thermoelements led to major advances during the second half of the twentieth century, making Peltier refrigeration a widely used technique. The latest materials herald thermoelectric generation as the preferred technique for exploiting low-grade heat. The book shows how progress has been made by increasing the thermal resistivity of the lattice until it is almost as large as it is for glass. It points the way towards the attainment of similar improvements in the electronic parameters. It does not neglect practical considerations, such as the desirability of making thermocouples from inexpensive and environmentally acceptable materials. The second edition was extended to also include recent advances in thermoelectric ener...

  10. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2016-11-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  11. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    Science.gov (United States)

    Wickramaratne, Darshana

    The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta

  12. Advanced composite materials and processes

    Science.gov (United States)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  13. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  14. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  15. Optimization of the thermoelectric properties of FeNbSb-based half-Heusler materials

    Science.gov (United States)

    Li, Wenfeng; Yang, Gui; Zhang, Jianwei

    2016-05-01

    FeNbSb-based half-Heusler compounds have recently been reported as promising materials for good high-temperature thermoelectric materials with a ZT  >  1. Their electronic structure and thermoelectric properties are investigated based on a first-principles simulation and the semi-classical Boltzmann transport theory. The band structures show not only light and heavy bands but also high band degeneracy near the valence band maximum, which is beneficial for thermoelectric performance. The calculated Seebeck coefficients of p-type FeNbSb at high carrier concentrations exhibit the expected high values, which is consistent with experimental data. The evolution of the electrical conductivity and power factor with carrier concentration at different temperatures is investigated. Our results show that the thermoelectric performance of p-type FeNbSb can be improved by appropriate substitution; for example, by doping Hf on the Nb site, the maximum ZT of the p-type FeNb1-x Hf x Sb can reach ~1.5 at 1200 K. This study can provide some theoretical guidance for experimental research to improve the thermoelectric performance of FeNbSb-based half-Heusler compounds.

  16. Biphasic thermoelectric materials derived from the half-Heusler/full-Heusler system Ti-Ni-Sn

    Science.gov (United States)

    Douglas, Jason Everett

    Among the possible avenues for increasing the efficiency of global energy usage, thermoelectrics are an exciting, solid-state option. Thermoelectric materials, which convert an internal temperature gradient into a voltage and vice versa, have found applications in refrigeration as well as power generation from waste heat. TiNiSn, a semiconductor of the half-Heusler (hH) crystal structure, is of particular interest due to its very favorable electronic transport properties, conductivity (sigma) and Seebeck coefficient ( S), at relevant temperature regimes (between 600 K and 900 K). Unfortunately, its overall efficiency is hampered by a comparatively high thermal conductivity (kappa). In the design of thermoelectric materials, a number of approaches have been taken to increase the thermoelectric figure of merit, ZT = ( S2sigma/kappa)T, where T is temperature. In this work we examine how microstructure can be used to alter these thermoelectric propertiesin a biphasic Ti-Ni-Sn materials containing full-Heusler (fH) TiNi2Sn embedded within hH thermoelectric TiNiSn. We explored a wide range of Ni compositions in TiNi1+xSn--from stoichiometric TiNiSn to high Heusler volume fraction, TiNi1.25Sn--materials prepared by levitation induction melting followed by annealing. Phase distributions and microstructure were characterized using synchrotron x-ray diffraction and optical and electron microscopy. In a sample of the nominal composition TiNi1.15Sn, a significant decrease in thermal conductivity (about 30%) is observed for the biphasic material despite the metallic second-phase particles existing at the micrometer scale; a 50% increase in the electrical conductivity is also measured. These result in a maximum figure of merit, ZT, of 0.44 at 800 K, which is 25% greater than is observed for the x = 0 sample. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as

  17. Enhanced Flexible Thermoelectric Generators Based on Oxide-Metal Composite Materials

    Science.gov (United States)

    Geppert, Benjamin; Brittner, Artur; Helmich, Lailah; Bittner, Michael; Feldhoff, Armin

    2017-04-01

    The thermoelectric performance of flexible thermoelectric generator stripes was investigated in terms of different material combinations. The thermoelectric generators were constructed using Cu-Ni-Mn alloy as n-type legs while varying the p-type leg material by including a metallic silver phase and an oxidic copper phase. For the synthesis of Ca_3Co_4O9/CuO/Ag ceramic-based composite materials, silver and the copper were added to the sol-gel batches in the form of nitrates. For both additional elements, the isothermal specific electronic conductivity increases with increasing amounts of Ag and CuO in the samples. The amounts for Ag and Cu were 0 mol.%, 2 mol.%, 5 mol.%, 10 mol.%, and 20 mol.%. The phases were confirmed by x-ray diffraction. Furthermore, secondary electron microscopy including energy dispersive x-ray spectroscopy were processed in the scanning electron microscope and the transmission electron microscope. For each p-type material, the data for the thermoelectric parameters, isothermal specific electronic conductivity σ and the Seebeck coefficient α, were determined. The p-type material with a content of 5 mol.% Ag and Cu exhibited a local maximum of the power factor and led to the generator with the highest electric power output P_el.

  18. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Science.gov (United States)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  19. Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study.

    Science.gov (United States)

    Zhang, Jie; Liu, Xiaolin; Wen, Yanwei; Shi, Lu; Chen, Rong; Liu, Huijun; Shan, Bin

    2017-01-25

    Good electronic transport capacity and low lattice thermal conductivity are beneficial for thermoelectric applications. In this study, the potential use as a thermoelectric material for the recently synthesized two-dimensional TiS3 monolayer is explored by applying first-principles method combined with Boltzmann transport theory. Our work demonstrates that carrier transport in the TiS3 sheet is orientation-dependent, caused by the difference in charge density distribution at band edges. Due to a variety of Ti-S bonds with longer lengths, we find that the TiS3 monolayer shows thermal conductivity much lower compared with that of transition-metal dichalcogenides such as MoS2. Combined with a high power factor along the y-direction, a considerable n-type ZT value (3.1) can be achieved at moderate carrier concentration, suggesting that the TiS3 monolayer is a good candidate for thermoelectric applications.

  20. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    Science.gov (United States)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  1. Materials development for solar thermoelectric generators, SOLAR-TEP - 2007 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Federal Laboratories for Materials Science and Technology EMPA in 2007 on Thermoelectric applications that are emerging as a potential technology that allows the conversion of heat into electric power. This energy conversion procedure uses the Seebeck effect to generate electricity without using moving parts or any chemical conversion. The Solar-TEP project is based on the idea of the potential use of concentrated solar heat as a source of energy for Solar Thermoelectric Generators (Solar-TEG). The development of novel functional materials with enhanced figures of merit, high temperature stability, and without harmful effects is commented on. The authors state that oxide ceramics can be used at high temperatures due to their chemical stability and their resistance to thermal oxidation in air. The advantages offered by thermoelectric modules based on oxide materials for the generation of power with increased temperature operating ranges are discussed. Additionally, thermoelectric oxide devices which can be realised on the basis of low-cost materials with low toxicity are discussed.

  2. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    have attracted much attention due to features such as a natural abundance of constituent elements, environmental benignity and durability at high temperature in air. This research aims to develop and investigate the misfit-layered cobaltate Ca3Co4O9+δ, which demonstrates a large potential for high......-combustion reaction for the synthesis of Ca3Co4O9+δ nano-powder is developed to realize nanostructuring for enhanced thermoelectric properties. The procedure is a modification of the conventional citrate–nitrate sol–gel method where an auto-combustion process is initiated by a controlled thermal oxidation...

  3. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  4. Copper Selenide Nanocrystals as a High Performance, Solution Processed Thermoelectric Material

    Science.gov (United States)

    Forster, Jason; Lynch, Jared; Coates, Nelson; Sahu, Ayaskanta; Liu, Jun; Cahill, David; Urban, Jeff

    Nano-structuring a thermoelectric material often results in enhanced performance due to a decrease in the materials' thermal conductivity. Traditional nano-structuring techniques involve ball milling a bulk material followed by spark plasma sintering, a very energy intensive process. In this talk, we will describe the development of a self-assembled, high-performing, nano-structured thin film based on copper selenide nanocrystals. Mild thermal annealing of these films results in concurrent increases in the Seebeck coefficient and electrical conductivity. We are able to achieve power factors at room temperature that are as high as the best spark plasma sintered materials. These solution-processed films have potential applications as conformal, flexible materials for thermoelectric power generation.

  5. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  6. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  7. Advanced Materials Technology

    Science.gov (United States)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  8. Molecular design and control of fullerene-based bi-thermoelectric materials.

    Science.gov (United States)

    Rincón-García, Laura; Ismael, Ali K; Evangeli, Charalambos; Grace, Iain; Rubio-Bollinger, Gabino; Porfyrakis, Kyriakos; Agraït, Nicolás; Lambert, Colin J

    2016-03-01

    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C80 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions.

  9. Terbium Ion Doping in Ca3Co4O9: A Step towards High-Performance Thermoelectric Materials

    Science.gov (United States)

    Saini, Shrikant; Yaddanapudi, Haritha Sree; Tian, Kun; Yin, Yinong; Magginetti, David; Tiwari, Ashutosh

    2017-01-01

    The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3−xTbxCo4O9 (x = 0.0–0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system. PMID:28317853

  10. Analysis of Phase Separation in High Performance PbTe–PbS Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Steven N. [Northwestern University; Schmidt-Rohr, Klaus [Ames Laboratory; Chasapis, Thomas C. [Northwestern University; Hatzikraniotis, Euripides [Aristotle University of Thessaloniki; Njegic, B. [Ames Laboratory; Levin, E. M. [Ames Laboratory; Rawal, A. [Ames Laboratory; Paraskevopoulos, Konstantios M. [Aristotle University of Thessaloniki; Kanatzidis, Mercouri G. [Northwestern University

    2013-02-11

    Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top-down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1-x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post-annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase-separated) samples of PbTe–PbS are analyzed by in situ high-resolution synchrotron powder X-ray diffraction, solid-state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state-of-the-art synchrotron X-ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally-induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.

  11. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  12. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  13. Modular Isotopic Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design.

  14. Use of Photothermally Generated Seebeck Voltage for Thermal Characterization of Thermoelectric Materials

    Science.gov (United States)

    Kuriakose, Maju; Depriester, Michael; King, Roch Chan Yu; Roussel, Frédérick; Sahraoui, Abdelhak Hadj

    2014-06-01

    A simple and accurate experimental procedure to measure simultaneously the thermal properties (conductivity, diffusivity, and effusivity) of thermoelectric (TE) materials using their Seebeck voltage is proposed. The technique is based on analysis of a periodically oscillating thermoelectric signal generated from a TE material when it is thermally excited using an intensity-modulated laser source. A self-normalization procedure is implemented in the presented method using TE signals generated by changing the laser heating from one side to another of the TE material. Experiments are done on a polyaniline carbon nanohybrid (6.6 wt.% carbon nanotubes), yielding a thermal conductivity of 1.106 ± 0.001 W/m-K. The results are compared with the results from photothermal infrared radiometry experiments.

  15. Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions

    Science.gov (United States)

    Roh, Im-Jun; Lee, Yun Goo; Kang, Min-Su; Lee, Jae-Uk; Baek, Seung-Hyub; Kim, Seong Keun; Ju, Byeong-Kwon; Hyun, Dow-Bin; Kim, Jin-Sang; Kwon, Beomjin

    2016-12-01

    Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for the Harman measurements with systematically varied samples (both bulk materials and TEMs) at various conditions. Among several PTEs, the heat transfer via electric wires is critical. Thus, we estimate the thermal conductance of the electric wires, and correct the measured properties for a certain sample shape and measuring temperature. The PTEs are responsible for the underestimation of the TEM properties especially under atmospheric conditions (10–35%). This study will be useful to accurately characterize the thermoelectric properties of materials and modules.

  16. Thermoelectric properties of p—type Bi—Sb—Te Compositionally Graded thermodelectric materials with different barriers

    Institute of Scientific and Technical Information of China (English)

    GuyingXu; ChangchunGe; 等

    2002-01-01

    In order to find more suitable materials as barriers and to improve the thermoelectric properties,p-type(Bi1-xSbx)2Te3(x=0.85,0.9) two segments compositionally graded thermoelectric materials(CGTM) with different barriers were fabricated by conventional hot pressure method.Metals Fe,Co,Cu and Al were used as barriers between two segments.The effects of different barriers on thermoelectric properties of CGTM were investigated.The results show that metal Fe is more stable and suitable as the barrier.

  17. Thermoelectric properties of p-type (Bi0.15Sb0.85)2Te3-PbTe graded thermoelectric materials with different barriers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The p-type (Bi0.15Sb0.85)2Te3 and PbTe are typical thermoelectric materials used for low and middle temperature range and functional graded materials (FGM) is an inevitable way to widen the working temperature range. Here two segments graded thermoelectric materials (GTM) consisting of (Bi0.15Sb0.85)2Te3, PbTe and different barriers were fabricated by the common hot pressure method. Metals Fe, Mg and Ni were used as barriers between the two segments. The diffusion of different barriers between the barriers and bases were analyzed by electron microprobe analysis (EMA). The phase and crystal structures were determined by X-ray diffraction analysis (XRD). The thermoelectric properties were measured at 303 K along the direction parallel to the pressing direction.The results show that the compositional diffusion occurs when there is no barrier at the interface of the two segments, and the diffusion of Pb is most obvious; as the barrier material, the diffusion of metals Fe, Mg and Ni between different bases is not very obvious,and the thermoelectric properties of GTM is much better than that of the original segment.

  18. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications.

    Science.gov (United States)

    Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad

    2017-01-23

    Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area.

  19. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya;

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... of the highest ZT values among those reported for ZnO based thermoelectric materials over the temperature range, e.g., its ZT value at 300 K, which is 0.012, is over 1 order of magnitude higher than that of the state-of-the-art nanostructured Al-doped ZnO, which is 0.0013. It suggests that this material...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  20. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  1. Advanced electron microscopy for advanced materials.

    Science.gov (United States)

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  2. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  3. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    Science.gov (United States)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  4. Thermoelectric Properties of Hot-Pressed Materials Based on Mg2Si n Sn1- n

    Science.gov (United States)

    Samunin, A. Yu.; Zaitsev, V. K.; Konstantinov, P. P.; Fedorov, M. I.; Isachenko, G. N.; Burkov, A. T.; Novikov, S. V.; Gurieva, E. A.

    2013-07-01

    Mg2Si n Sn1- n solid solutions consist of nontoxic widespread elements. In this work a number of samples of Mg2Si n Sn1- n solid solutions, where 1 ≥ n ≥ 0.7 with various carrier concentrations, were obtained using microcrystalline powder by hot pressing in vacuum. The Seebeck coefficient and the thermal and electrical conductivity were measured in the temperature range from 300 K to 800 K. It is shown that the specific thermoelectric figure of merit (the ratio of the thermoelectric figure of merit to the material density) of these samples weakly depends on the composition of the solid solution. Hence, whether a solid solution or pure Mg2Si is used depends on the application temperature of the material.

  5. Fabrication and property of high-performance Ag-Pb-Sb-Te system semiconducting thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    ZHOU Min; LI JingFeng; WANG Heng

    2007-01-01

    High performance Ag-Pb-Sb-Te system thermoelectric bulk materials were fabricated by a combination of mechanical alloying (MA) and spark plasma sintering (SPS). Phase composition and microstructure of the resultant materials were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. A special emphasis was paid to the effects of chemical composition, especially the Pb content on the thermoelectric properties of the Ag0.8Pb18+xSbTe20 samples, including electrical resistivity, Seebeck coefficient, power factor, thermal conductivity and dimensionless figure of merit.The present study reveals that the optimal composition of Ag0.8Pb18+xSbTe20 samples is Ag0.8Pb22.5SbTe20 and the maximum figure of merit (ZT) is 1.2 at 673 K.

  6. Advanced materials for space

    Science.gov (United States)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  7. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    9+δ and n-type doped-ZnO oxide systems is presented. The thermoelectric generator (TEG) devices based on these oxide materials were fabricated, examined, and demonstrated with various output applications. At a ΔT = 500 K, the maximum output power of our TEG composed of 32 p-n couples reached 1W......, which is among the best one so far and is enough for a practical application such as phone charge or GPS device (see Fig. 1)....

  8. Revisiting AgCrSe2 as a promising thermoelectric material.

    Science.gov (United States)

    Wu, Di; Huang, Sizhao; Feng, Dan; Li, Bing; Chen, Yuexing; Zhang, Jian; He, Jiaqing

    2016-08-24

    We revisited and investigated a layer-structured thermoelectric material AgCrSe2, which has an extremely low thermal conductivity. After using both differential scanning calorimetry and a comparative laser flash method, we realized that the specific heat of this material, the main contributor to the reported low thermal conductivity, is unlikely to be way below the Dulong-Petit limit as revealed in the literature. Besides, our in situ X-ray diffraction pattern up to 873 K indicated the instability of AgCrSe2 over 723 K, where it begins to decompose into Cr2Se3 and Ag2Se. This unexpected decomposition phenomenon resulted in the gradual increment of specific heat and thermal diffusivity, hence the deterioration of the overall thermoelectric performance. We deliberately introduced Ag and Cr vacancies into the lattice for carrier concentration optimization and could achieve an optimal figure of merit of ZT ∼ 0.5 at 723 K in the nominal composition Ag0.96CrSe2 in the direction perpendicular to the sintering press. Our findings suggest that more thorough investigations are necessary to ensure that AgCrSe2 is a promising thermoelectric material.

  9. A materials approach to improving the efficiency of thermoelectric cooling devices

    Science.gov (United States)

    Poduska, Kristin Marie

    Solid state thermoelectric devices are not yet efficient enough to replace conventional cooling technologies. Device efficiency will only improve with the development of better materials, as cooling is caused by simply flowing current through material junctions. Efficiency increases with each material's thermoelectric figure of merit (Z), which is proportional to the square of its thermopower and inversely proportional to its electrical resistivity and thermal conductivity. Since these properties are interdependent, developing materials with a favorable balance of transport properties is a formidable task. This dissertation focuses on two classes of materials which could yield this opportune balance: high-symmetry, large-volume semiconductors and intermediate-valent (IV), Ce-containing, intermetallic compounds. Theory indicates that a semiconductor's band extremum multiplicity near the Fermi energy (NV) directly influences thermoelectric efficiency: complex, high-symmetry semiconductors are more likely to have a higher NV, leading to a higher Z. Solid state reactants containing tetrahedral anions were used to form such large-volume, high-symmetry compounds. Efforts culminated in structural studies of two families of semiconductors which contain discrete tetrahedral [Ge(S,Se) 4]4- anions: the new cubic Pb2- xSnxS4- ySy solid solution, and the previously-reported hexagonal La3CuGe(S,Se)7 phases. These compounds are all brightly colored, suggesting that their carrier mobilities are too low for them to be good thermoelectric materials. Empirical evidence shows that Z peaks for an optimal carrier density, indicating that this is another important property for potential thermoelectric materials. Room temperature carrier concentrations for CeSbTe (a poor metal) and the NdxCe3-xPt 3Sb4 Kondo insulators are reported from Hall coefficient measurements. Metal-like IV compounds have been studied extensively because they display anomalously-large thermopowers. This work

  10. Advanced Aerospace Materials by Design

    Science.gov (United States)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  11. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  12. Future requirements for advanced materials

    Science.gov (United States)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  13. Research Update: Cu-S based synthetic minerals as efficient thermoelectric materials at medium temperatures

    Science.gov (United States)

    Suekuni, Koichiro; Takabatake, Toshiro

    2016-10-01

    Synthetic minerals and related systems based on Cu-S are attractive thermoelectric (TE) materials because of their environmentally benign characters and high figures of merit at around 700 K. This overview features the current examples including kesterite, binary copper sulfides, tetrahedrite, colusite, and chalcopyrite, with emphasis on their crystal structures and TE properties. This survey highlights the superior electronic properties in the p-type materials as well as the close relationship between crystal structures and thermophysical properties. We discuss the mechanisms of high power factor and low lattice thermal conductivity, approaching higher TE performances for the Cu-S based materials.

  14. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  15. Nanoscale Phase Immiscibility in High-ZT Bulk Lead Telluride Thermoelectric Materials

    Science.gov (United States)

    Girard, Steven Neal

    Renewable energy initiatives have increased interest in thermoelectric materials as an option for inexpensive and environmentally friendly waste heat-to-power generation. Unfortunately, low efficiencies have limited their wide-scale utilization. This work describes the synthesis and characterization of bulk nanostructured thermoelectric materials wherein natural phase immiscibility is manipulated to selectively generate nanoscale inclusions of a second phase that improve their efficiency through reductions in lattice thermal conductivity. The PbTe-PbS system exhibits natural phase separation by nucleation and growth or spinodal decomposition phase transformations depending on composition and temperature treatment. Through rapid quenching, nearly ideal solid solution alloys of PbTe-PbS are observed by powder X-ray diffraction. However, characterization by solid-state NMR and IR reflectivity show that solid solutions are obtained for rapidly quenched samples within the nucleation and growth region of the phase diagram, but samples within the spinodal decomposition region exhibit very slight phase immiscibility. We report the temperatures of phase separation using high temperature powder X-ray diffraction. Microscopy reveals that phase separation in PbTe-PbS naturally produces nanoinclusions. A decrease in lattice thermal conductivity is observed as a result of the solid solution-to-nanostructured phase transformation in this materials system, increasing thermoelectric figure of merit. Sn addition to PbTe-PbS produces a pseudobinary system of PbTe-PbSnS 2. This materials system produces microscale lamellae that effectively reduce lattice thermal conductivity. Unfortunately, the PbSnS2 inclusions also scatter electrons, reducing electrical conductivity and producing only a minimal increase in thermoelectric figure of merit. We additionally investigate PbSnS2 as prepared through Bridgman crystal growth. PbTe-PbS doped with Na appears to increase the kinetic rate of

  16. Low-Cost Structural Thermoelectric Materials: Processing and Consolidation

    Science.gov (United States)

    2015-01-01

    nanocrystalline materials11,12 and this research utilizes the existing powder processing infrastructure at ARL to explore nanostructured TE materials ...The process of utilizing mechanical alloying to produce bulk nanocrystalline materials is shown in Fig. 3. There are a number of different types of...consolidate nanocrystalline metal powders. In fact, the bottom image in Fig. 9 is the Ti–Ni–Sn material consolidated at 1,000 ◦C. The hollowed area is the

  17. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE

    2013-10-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  18. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  19. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  20. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  1. FTIR characterization of advanced materials

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  2. Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family.

    Science.gov (United States)

    Khazaei, Mohammad; Arai, Masao; Sasaki, Taizo; Estili, Mehdi; Sakka, Yoshio

    2014-05-01

    A newly synthesized family of two-dimensional transition metal carbides and nitrides, so-called MXenes, exhibit metallic or semiconducting properties upon appropriate surface functionalization. Owing to their intrinsic ceramic nature, MXenes may be suitable for energy conversion applications at high temperature. Using the Boltzmann theory and first-principles electronic structure calculations, we explore the thermoelectric properties of monolayer and multilayer M2C (M = Sc, Ti, V, Zr, Nb, Mo, Hf, and Ta) and M2N (M = Ti, Zr, and Hf) MXenes functionalized with F, OH, and O groups. From our calculations, it turns out that monolayer and multilayer nanosheets of Mo2C acquire superior power factors to other MXenes upon any type of functionalization. We therefore propose the functionalized Mo2C nanosheets as potential thermoelectric materials of the MXene family. The exceptional thermoelectric properties of the functionalized Mo2C nanosheets are attributed to the peculiar t2g band shapes, which are a combination of flat and dispersive portions. These types of band shapes allow Mo2C to gain a large Seebeck coefficient and simultaneously a good electrical conductivity at low carrier concentrations.

  3. Size effects in thermoelectric cobaltate heterostructures

    NARCIS (Netherlands)

    Brinks, Petrus

    2014-01-01

    Thermoelectric energy conversion is a promising method to convert (waste) heat into useful electrical energy. To improve the efficiency of this process, which is currently limited, materials with improved thermoelectric performance are required. The performance indicator for thermoelectric materials

  4. Thermoelectric properties of BiSbx (x=0.6-0.8) thermoelectric materials fabricated by different processing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to improve the thermoelectric properties, hot-pressing sintering and ultra high pressure sintering methods wereadopted to fabricate BiSbx. The phase and crystal structures were determined by X-ray diffraction analysis (XRD). The thermoelectricproperties were measured at 303 K along the direction parallel to the pressing direction. The electric conductivity of the samples wasmeasured at 303 K by the four-probe technique. To measure the Seebeck coefficient, heat was applied to the samples placed betweentwo Cu discs. The thermoelectric electromotive force (E) was measured upon applying small temperature differences ( △T<2℃)between the both ends of the samples. The Seebeck coefficient of the samples was determined from the value of E/△T. The resultsindicate that the thermoelectric properties of the samples fabricated by UHPS (ultra high pressure sintering) method are much higherthan that by HPS (hot pressing sintering) method and have the highest values at x=0.7.

  5. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  6. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    Science.gov (United States)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  7. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    Science.gov (United States)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  8. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  9. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    Science.gov (United States)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-10-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  10. Design of Ball-Milling Experiments on Bi2Te3 Thermoelectric Material

    Science.gov (United States)

    Kanatzia, A.; Papageorgiou, Ch.; Lioutas, Ch.; Kyratsi, Th.

    2013-07-01

    In this work, factorial ball-milling experiments have been applied to Bi2Te3 material, for the first time, aiming to investigate the effect of the main process parameters on the structural features and thermoelectric properties of the ball-milled materials. The selected main parameters were the duration of milling, the speed, and the ball-to-material ratio. Analysis suggests a strong effect of the speed and duration of processing, whereas the ball-to-material ratio is of minor importance. This approach is advantageous for better understanding of the milling mechanism and the importance of the role of each independent parameter as well as their interaction. All experiments led to nanocrystalline Bi2Te3, whose structural features were studied. The nanocrystalline size was estimated based on x-ray diffraction analysis, while transmission electron microscopy (TEM) studies were also performed to confirm the presence of nanoscale crystals. A mathematical model was developed based on statistical analysis for prediction of the crystalline size and the Seebeck coefficient of the nanopowders. The thermoelectric properties were also investigated on selected, highly dense pellets fabricated via hot-pressing of the nanopowders.

  11. A quick and efficient measurement technique for performance evaluation of thermoelectric materials

    Science.gov (United States)

    Rao, Ashwin; Banjade, Pawan; Bosak, Gregg; Joshi, Binay; Keane, Jennifer; Nally, Luke; Peng, Adam; Perera, Susanthri; Waring, Alfred; Joshi, Giri; Poudel, Bed

    2016-10-01

    Evaluating the performance of thermoelectric (TE) materials is critical for developing an efficient long lasting thermoelectric generator. Various parameters like resistance, TE power, TE efficiency as a function of temperature and time play an important role in developing and optimizing TE materials and legs. If one needs to evaluate the TE legs for performance or contact metallization optimization, study of a brazed or packaged device everytime could prove to be an expensive, time consuming process especially as a quick intermediate qualification. In this work, a simple approach that uses eutectic Gallium Indium (Ga-In) paste as a metallizing substitute with good electrical/thermal contact is employed which also avoids the need for brazing/welding (or any permanent joining) and provides a reliable platform for a quick leg qualification. Using open circuit voltage (V oc) and device voltage (V d), one can evaluate important TE quantities like peak power, material resistance changes, peak current and power versus current characteristics to understand the leg performance. The proposed approach is successfully demonstrated with three different TE material systems namely Bismuth Telluride, Skutterudite and Half Heusler systems.

  12. Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands

    Science.gov (United States)

    Wickramaratne, Darshana; Zahid, Ferdows; Lake, Roger K.

    2015-08-01

    The valence band of a variety of few-layer, two-dimensional materials consist of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a "Mexican hat" or a Rashba dispersion. The two-dimensional density of states is singular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III-VI materials GaS, GaSe, InS, InSe, for Bi2Se3, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III-VI materials and Bi2Se3 is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects.

  13. Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands

    Energy Technology Data Exchange (ETDEWEB)

    Wickramaratne, Darshana, E-mail: darshanaw@engineering.ucsb.edu, E-mail: rlake@ece.ucr.edu; Lake, Roger K., E-mail: darshanaw@engineering.ucsb.edu, E-mail: rlake@ece.ucr.edu [Laboratory for Terahertz and Terascale Electronics, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zahid, Ferdows [Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-08-21

    The valence band of a variety of few-layer, two-dimensional materials consist of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a “Mexican hat” or a Rashba dispersion. The two-dimensional density of states is singular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III–VI materials GaS, GaSe, InS, InSe, for Bi{sub 2}Se{sub 3}, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III–VI materials and Bi{sub 2}Se{sub 3} is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects.

  14. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials

    Science.gov (United States)

    Levin, E. M.; Besser, M. F.; Hanus, R.

    2013-08-01

    GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ˜700 K, GeTe has a very large power factor, 42 μWcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

  15. Thermoelectric properties of Al doped Mg{sub 2}Si material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwindercmp@gmail.com; Kumar, Ranjan [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Anita [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India)

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  16. Characterization of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Heffner, R.H.; Hundley, M.F. [and others

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Our goal has been to extend the Laboratory`s competency in nuclear and advanced materials by characterizing (measuring and interpreting) physical properties of advanced electronic materials and in this process to bridge the gap between materials synthesis and theoretical understanding. Attention has focused on discovering new physics by understanding the ground states of materials in which electronic correlations dominate their properties. Among several accomplishments, we have discovered and interpreted pressure-induced superconductivity in CeRh{sub 2}Si{sub 2}, boron content in UBe{sub 13-x}B{sub x} and the origin of small gaps in the spin and charge excitation spectra of Ce{sub 3}Bi{sub 4}Pt{sub 3}, and we provided seminal understanding of large magnetoresistive effects in La{sub 1-x}Ca{sub x}MnO{sub 3}. This work has established new research directions at LANL and elsewhere, involved numerous collaborators from throughout the world and attracted several postdoctoral fellows.

  17. Nanostructured multilayered thin film barriers for Mg2Si thermoelectric materials

    Science.gov (United States)

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-01

    The Mg2Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg2Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg2Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  18. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  19. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Science.gov (United States)

    Shiomi, Junichiro

    2016-10-01

    Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  20. Preparation of high performance Zn4Sb3 bulk thermoelectric materials%Zn4Sb3高性能热电材料的制备

    Institute of Scientific and Technical Information of China (English)

    陈中春; 辻村润一; 葳本遼

    2011-01-01

    A "reaction -extrusion process" has been developed to prepare Zn4Sb3 bulk materials with high thermoelectric performance. The synthesis, densification, and shape -forming of Zn4Sb3 bulk materials were realized simultaneously in one hot - extrusion process, and the resulting extrudates had high density with single β - Zn4 Sb3phase. A large extrusion ratio and a small punch speed are advantageous to enhance thermoelectric performance. The extruded Zn4Sb3 materials exhibited excellent thermoelectric performance, for example, the dimensionless thermoelectric figure of merit is 1.77 at 623 K, which is 36% higher compared to conventional hot - pressed materials. On the other hand, the incorporation of 1% SiC nanosized particles into Zn4Sb3 matrix leads to improvements in both thermoelectric and mechanical properties.

  1. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  2. Thermoelectric properties of LaFe3CoSb12 skutterudite materials with different nanostructures

    Institute of Scientific and Technical Information of China (English)

    LU Pengxian; WANG Chunhua; YAN Guojin; ZOU Wenjun; HU Xing

    2011-01-01

    Nanostructures with different morphologies could profoundly influence the electron and phonon transport in thermoelectric materials and thus their properties could be improved by tuning the nanostructures.The LaFe3CoSb12 skutterudite nano powders with different morphologies were fabricated via a hydro/solvo thermal route.The microstructures of the hot-pressed LaFe3CoSb12 bulks were characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the effects of the nanostructures on the thermoelectric properties were investigated by measuring the electrical conductivity,the Seebeck coefficient and the thermal conductivity.The results suggested that the mixed morphology of nanorods and nanospheres could enhance the electrical conductivity largely although the Seebeck coefficient was decreased and the themal conductivity was increased slightly.Differently,a higher Seebeck coefficient,a lower thermal conductivity and a lower electrical conductivity could be obtained for the LaFe3CoSb12 bulk with a single morphology of nanospheres.Consequently,the figure of merit of LaFe3CoSb12 bulk with a mixed morphology of nanorods and nanospheres could be increased by about 59% as compared to that with a single morphology of nanospheres.

  3. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  4. Two-dimensional oxides: multifunctional materials for advanced technologies.

    Science.gov (United States)

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.

  5. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  6. Thermoelectric heat exchange element

    Science.gov (United States)

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  7. Advanced Materials for Space Applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  8. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2016-11-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  9. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  10. Modular Isotopic Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  11. Design, modeling and utilization of thermoelectrical materials and devices in energy systems

    DEFF Research Database (Denmark)

    Chen, Min

    Thermoelectric generators can convert waste heat that abounds in modern societies into electricity in an environmentally-friendly and reliable manner, and many applications of thermoelectric devices can be envisaged. The research of this PhD dissertation focuses thermoelectric generator modeling...... at a device level as well as its applications in energy systems. The purpose is to introduce the use of thermoelectric generator into energy systems, and to indicate the impact of implementing thermoelectric generator on the design and operation of energy systems. For this purpose, this dissertation produces...... numerical models as versatile simulation tools to identify speci c optimum design criteria for thermoelectric generators used in various associated thermal and electrical systems, so that the generation performance can be improved due to the optimum system design....

  12. Japan researches new thermo-electric materials; Japan onderzoekt nieuwe thermo-elektrische materialen

    Energy Technology Data Exchange (ETDEWEB)

    Moitzheim, S.

    2012-10-15

    Research on thermoelectric materials is hot in Japan. These materials are able to generate heat from electricity. Due to their low efficiency, high cost and poor stability, however, they have never been applied on a large scale. An important motivation is to develop new cheap and safe materials from common materials The special properties of nanostructured materials, such as nanowires and nano cubes, make that possible. Such materials may be used for example in internal combustion engines and industrial furnaces in order to reduce consumption of energy [Dutch] In Japan vindt volop onderzoek plaats naar thermo-elektrische materialen, onder andere met steun van de overheid. Deze materialen zijn in staat om elektriciteit op te wekken uit warmte. Door hun lage efficientie, hoge kosten en geringe stabiliteit zijn ze echter nooit op grote schaal toegepast. Een belangrijke drijfveer is nu om nieuwe goedkope en veilige materialen uit veel voorkomende grondstoffen te ontwikkelen. De speciale eigenschappen van nanogestructureerde materialen zoals nanodraden en nanokubussen maken dat mogelijk. Als deze materialen zijn ontwikkeld, kunnen ze mogelijk toegepast worden in bijvoorbeeld verbrandingsmotoren en industriele ovens om het energieverbruik te verminderen.

  13. Strained and rolled up silicon: Electronic structure calculations of a promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Hinsche, Nicki; Yavorski, Bogdan; Zahn, Peter; Mertig, Ingrid [Martin-Luther-Universitaet, Institut fuer Physik, Halle/S. (Germany)

    2010-07-01

    Starting from bulk silicon, we studied the valley splitting due to symmetry breaking that occurs in rolled-up Si. Valley splitting in Si was studied recently because of tetragonal distortion and quantum well effects in heterostructures. The new aspect in nowadays experimentally accessible rolled-up Si tubes is that symmetry breaking occurs in all spatial directions. As a result, splitting of the six-fold degenerate conduction-band minimum is expected to be lifted. This has a strong influence on the transport properties as well. In detail, the anisotropy of the effective masses of charge carriers contributing to the conductivity in different directions are studied in dependence on the applied strain. The electronic structure is calculated self consistently within the framework of density functional theory. The transport properties of the promising thermoelectric material are studied in the diffusive limit of transport applying the Boltzmann theory in relaxation time approximation.

  14. Electrical and thermal transport property studies of high-temperature thermoelectric materials

    Science.gov (United States)

    Bates, J. L.

    1984-12-01

    High-temperature materials that exhibit small polaron conduction appear to exhibit the highest figures of merit. A thermoelectric model based on small polaron transport has been developed. The model predicts that broad-band semiconductors with small polarons hopping along inequivalent sites of distorted sublattices can result in increases in both the electrical conductivity and the Seeback coefficient with increasing temperature without significant increases in thermal conductivity. High figures of merit (ZT), greater than 1 at 1000K, that increase with increasing temperatures are predicted. The model is being applied to the divalent metal containing (Y,LA)Cr0(3) systems with an ABO(3) perovskite structure. Transport properties have been determined for various doping elements and for different compositions. These data are being used for the evaluation of this model.

  15. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Terumasa [Department of Applied Physics, The University of Tokyo, Tokyo 113-8656 (Japan); Tsuneyuki, Shinji [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan)

    2015-12-31

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi{sub 2}Te{sub 3} based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO{sub 3} can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  16. Electronic Inhomogeneity in PbTe-based High Performance Thermoelectric Materials Observed by NMR

    Science.gov (United States)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Kanatzidis, M. G.

    2009-03-01

    Effects of composition and synthesis conditions on the local structure and charge carrier concentration in AgxSbyPb18Te20 (LAST-18) thermoelectric (TE) materials have been studied by ^125Te and ^207Pb nuclear magnetic resonance (NMR) with magic-angle spinning. The high-resolution ^125Te NMR spectra show that most Sb and Ag is not part of Sb2Te3, AgSbTe2, or Ag2Te inclusions. Biexponential NMR spin-lattice (T1) relaxation as well as Knight shifts of ^125Te and ^207Pb NMR signals show that many LAST-18 materials contain two phases of similar composition but with free electron concentrations that differ by more than an order of magnitude, i.e. these materials are electronically inhomogeneous. The NMR data were calibrated against Hall- and Seebeck-effect measurements to give the charge carrier concentrations in the two phases. This electronic inhomogeneity may result in the appearance of potential barriers inside TE materials, similar to those observed for semiconductor-semiconductor or metal-semiconductor junctions. Such barriers may affect thermopower, electrical, and thermal conductivity of TE materials.

  17. Thermoelectric transport properties of novel nanoscaled materials via homemade and commercial apparatus measurements

    Science.gov (United States)

    Lukas, Kevin C.

    Thermoelectric (TE) materials are of broad interest for alternate energy applications, specifically waste heat applications, as well as solid-state refrigeration. The efficiency of TE materials can be improved through either the enhancement of the Seebeck coefficient and electrical conductivity, or through the reduction of the thermal conductivity, kappa, specifically the lattice portion of thermal conductivity, kappalatt. Nanostructuring has been proven to reduce kappalatt and therefore increase efficiency. The inability to accurately model the lattice and electronic contributions to kappa makes optimizing the reduction of kappalatt difficult. This work demonstrates that the lattice and electronic contributions to kappa in nanostructured materials can be directly measured experimentally by separating the contributions using magnetic field. We use this technique along with other characterization techniques to determine the effects of doping Ce, Sm, and Ho into Bi88Sb12. Along with enhancing the efficiency of the material, TE devices must be thermally stable in the temperature range of operation. Therefore we also study the effects of temperature cycling, annealing, oxidation, and diffusion barriers on TE devices. These studies are accomplished through both homemade and commercially available measurement equipment.

  18. Nanostructured complex cobalt oxides as potential materials for solar thermoelectric power generators

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Romer, S.; Weidenkaff, A. [Laboratory of Solid State Chemistry and Analyses, Empa Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Dubendorf (Switzerland); Reller, A. [Solid State Chemistry, University of Augsburg, Universitaetsstrasse 1, D-86150 Augsburg (Germany)

    2005-05-01

    Thermoelectrically active and stable perovskite-type materials e.g. La{sub 1-x}Ca{sub x}CoO{sub 3} (0thermoelectric values measured of the nanostructured ''misfit cobaltite Ca{sub 3}Co{sub 4}O{sub 9}'' shows a Seebeck coefficient of S{sub 300K} {proportional_to} + 123 {mu}VK{sup -1}, and a resistivity of {rho} {proportional_to} 1.9 m{omega} cm at room temperature, which is comparable to the reported value for single crystals. Ca- and Ti-substituted LaCoO{sub 3} reveal thermopower values in the range from S{sub 300K} {proportional_to} + 70 to + 180 {mu}VK{sup -1}. The electrical conductivity of the nanostructured compounds is high in spite of the fact that the grain boundary influence is increasing. The Seebeck coefficient values of the products are positive in the whole temperature range indicating p-type conduction. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  19. Chinese Advanced Materials Industry Grows Rapidly

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Revealed from "2005 China Annual Market Conference of Advanced Materials", the advanced materials industry in China grows rapidly, with market scale RMB ¥18.01 billion, increasing 27.7% over last year. By now, total 79 production bases of advanced materials have been built in China and constellation effect of rare earth industry has emerged. Beijing, Shenzhen and Shanghai have been developed into

  20. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  1. Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films

    Science.gov (United States)

    Budnik, A. V.; Rogacheva, E. I.; Pinegin, V. I.; Sipatov, A. Yu.; Fedorov, A. G.

    2013-07-01

    V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10-4 W/K2 m and 35 × 10-4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

  2. Hybrid thermoelectric piezoelectric generator

    Science.gov (United States)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  3. Numerical modeling of advanced materials

    NARCIS (Netherlands)

    Meinders, T.; Perdahcioglu, E.S.; Riel, van M.; Wisselink, H.H.

    2007-01-01

    The finite element (FE) method is widely used to numerically simulate forming processes. The accuracy of an FE analysis strongly depends on the extent to which a material model can represent the real material behavior. The use of new materials requires complex material models which are able to descr

  4. Application of advanced materials to rotating machines

    Science.gov (United States)

    Triner, J. E.

    1983-01-01

    In discussing the application of advanced materials to rotating machinery, the following topics are covered: the torque speed characteristics of ac and dc machines, motor and transformer losses, the factors affecting core loss in motors, advanced magnetic materials and conductors, and design tradeoffs for samarium cobalt motors.

  5. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg; Yin, Hao; Hung, Le Thanh; Iversen, Bo Brummerstedt

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost n-type material, Te-doped Mg3Sb1.5Bi0.5, that exhibits a very high figure of merit zT ranging from 0.56 to 1.65 at 300-725 K. Using combined theoretical prediction and experimental validation, we show that the high thermoelectric performance originates from the significantly enhanced power factor because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications.

  6. Microstructures of FeSi2 based thermoelectric materials prepared by rapid solidification and hot pressing

    Institute of Scientific and Technical Information of China (English)

    Haiyan Chen; Xinbing Zhao; Eckhard Mueller; Yufeng Lu; Cestmir Drasar; Antje Mrotzek

    2004-01-01

    FeSi2 based thermoelectric materials have been prepared by melt spinning and vacuum hot pressing. Most of the rapidly solidified (melt spinning) powders are thin flakes with a thickness less than 0.1 mm. Scanning electron microscope (SEM) surface profiles show there are further finer grain structures with the characteristic size of about 100 nm in a flake. The samples obtained by hot uniaxial pressing (HUP) in vacuum have densities higher than 90% the theoretical density of the materials. It was found by SEM observations that the microstructures are very different for vertical and parallel sections of the HUP samples. X-ray diffraction (XRD)analyses show there are some texture features in the samples. It is considered that the textures of the samples are originated from the orientation of the flakes that tended to align perpendicular to the hot press axis. WSi2 was introduced into the powders unexpectedly during melting process before the rapid solidification, but it makes the microstructures more easily to be explained.

  7. Opportunities and challenges in the use of heavily doped polycrystalline silicon as a thermoelectric material. An experimental study

    OpenAIRE

    2010-01-01

    Large-volume deployment of Si-based Seebeck generators can be foreseen only if polycrystalline rather than single crystalline materials can be actually used. The aim of this study was therefore to verify whether polycrystalline Si films deposited on top of a SiO$_2$ insulating layer can develop interesting thermoelectric power factors. We prepared 450-nm thick heavily boron doped polysilicon layers, setting the initial boron content in the film to be in excess of the boron solubility in polyc...

  8. Joining and surfacing of advanced materials

    Institute of Scientific and Technical Information of China (English)

    Andrzej Kolasa; Wladyslaw Wlosinski

    2004-01-01

    The application of advanced materials, i.e. advanced ceramics, glasses, intermetallic phases and various type of composites, not only depends on their manufacture processes including a great input of know-how, but also on their abilities for processing, among which the joining processes play an important role. The uses of advanced materials are changing rapidly, with a major emphasis on technical applications, especially the components of machines, apparatus and technical devices expected to withstand very heavy exploitation conditions. Furthermore,these materials are becoming more complex, in terms of being strengthened and toughened by transformation processes as well as by the addition of other ceramic or metallic materials including nanomaterials. The successful use of advanced materials requires the development of equally advanced joining materials, processes and technology. Some selected examples of results of joining advanced materials with the use of various procedures as well as surface modification of structural components with the use of advanced materials obtained in the Welding Engineering Department of Warsaw University of Technology, Poland, are presented.

  9. Sublimation measurements and analysis of high temperature thermoelectric materials and devices

    Science.gov (United States)

    Shields, V.; Noon, L.

    1983-01-01

    High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.

  10. Recent Advances in Superhard Materials

    Science.gov (United States)

    Zhao, Zhisheng; Xu, Bo; Tian, Yongjun

    2016-07-01

    In superhard materials research, two topics are of central focus. One is to understand hardness microscopically and to establish hardness models with atomic parameters, which can be used to guide the design or prediction of novel superhard crystals. The other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition of achieving materials harder than natural diamond. In this review, we present recent developments in both areas. The microscopic hardness models of covalent single crystals are introduced and further generalized to polycrystalline materials. Current research progress in novel superhard materials and nanostructuring approaches for high-performance superhard materials are discussed. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement.

  11. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  12. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2015-04-01

    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  13. Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material

    Science.gov (United States)

    Ao, W. Q.; Wang, L.; Li, J. Q.; Pan, Fred; Wu, C. N.

    2011-09-01

    To achieve low thermal conductivity, polythiophene (PTh)/bismuth telluride (Bi2Te3) nanocomposite has been prepared by spark plasma sintering using a mixture of nanosized Bi2Te3 and PTh powders. Bi2Te3 powder with spherical-shaped particles of 30 nm diameter and PTh nanosheet powder were first prepared by hydrothermal synthesis and chemical oxidation, respectively. X-ray diffraction analysis and scanning electron microscopy observations revealed that the hybrid composite consists of PTh nanosheets and spherical Bi2Te3. The organic PTh acts as an adhesive in the composite. Transport measurements showed that the PTh in the Bi2Te3 matrix can reduce its thermal conductivity significantly, but also dramatically reduces its electrical conductivity. As a result, the figure of merit of the composite is lower than that of pure Bi2Te3 prepared under the same conditions. The maximum value of ZT for the sample with 5% PTh (by weight) was 0.18 at 473 K, which is rather high compared with other polymer/inorganic thermoelectric material composites.

  14. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    Science.gov (United States)

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  15. Room-temperature pressure-induced nanostructural CuInTe(2) thermoelectric material with low thermal conductivity.

    Science.gov (United States)

    Kosuga, Atsuko; Umekage, Kouhei; Matsuzawa, Mie; Sakamoto, Yasuhiro; Yamada, Ikuya

    2014-07-07

    A room-temperature high-pressure synthesis method is proposed as an alternative way to induce nanoscale structural disorder in the bulk thermoelectric CuInTe2 matrix. This disorder stems from the coexistence of distinct domains with different degrees and geometries of disorder at Cu/In cation sites. The lattice thermal conductivity of high-pressure-treated CuInTe2 is substantially less than that of hot-pressed CuInTe2. The Debye-Callaway model reveals that the reduced lattice thermal conductivity is mainly attributed to disorder at the Cu/In cation sites and stacking faults, which were probably created during formation of the high-pressure-treated phases. This study demonstrates that room-temperature high-pressure synthesis can produce a radical change in the crystal structure and physical properties of conventional thermoelectric materials.

  16. Shock-loading response of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevant to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.

  17. Operational readiness review plan for the radioisotope thermoelectric generator materials production tasks

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H.; Martin, M.M.; Riggs, C.R.; Beatty, R.L.; Ohriner, E.K.; Escher, R.N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium-alloy component used to contain the plutonia heat source and a carbon-composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon-composite material. Because of the importance to DOE that Energy Systems deliver these high-quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP-24 entitled Operational Readiness Process'' describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management-approved readiness plan'' to be issued. This document is the readiness plan for the RTG materials production tasks. 6 refs., 11 figs., 1 tab.

  18. Electronic and thermoelectric properties of Mexican hat bands in van-der-Waals materials

    Science.gov (United States)

    Wickramaratne, Darshana; Zahid, Ferdows; Lake, Roger

    2015-03-01

    Mexican hat dispersions are relatively common in few-layer two-dimensional materials. In one to four monolayers of the group-III chalcogenides (GaS, GaSe, InS, InSe) and Bi2Se3 the valence band undergoes a band inversion from a parabolic to an inverted Mexican hat dispersion as the film thickness is reduced from bulk to a single monolayer. The band inversion is robust against changes in stacking order, omission or inclusion of spin-orbit coupling and the choice of functional. The Mexican hat dispersion results in a 1/√{ E} singularity in the two-dimensional density of states and a step-function turn on in the density of modes. The largest radius of the ring of states occurs for a single monolayer of each material. The dispersion with the largest radius coincides with the maximum power factor and ZT for a material at room temperature. Ab-initio electronic structure calculations are used with a Landauer approach to calculate the thermoelectric transport coefficients. Analytical models of the Mexican hat and the parabolic dispersions are used for comparison and analysis. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring this effect since the radius of the Mexican hat band edge increases linearly with vertical electric field. Support by the NSF and SRC-NRI Project 2204.001 (NSF-ECCS-1124733), FAME, one of six centers of STARnet, a SRC program sponsored by MARCO and DARPA and the use of XSEDE NSF Grant # OCI-1053575.

  19. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  20. Reassessment of the carrier concentration in GeTe-based thermoelectric materials by ^125Te NMR

    Science.gov (United States)

    Levin, E. M.; Acton, J. D.; Schmidt-Rohr, K.

    2012-02-01

    Ge1-xAgx/2Sbx/2Te p-type thermoelectric materials (``TAGS-n'') were studied extensively in the 1970s and then again recently. They exhibit an unusual combination of large thermopower, S, and high hole concentration, p, reported based on the Hall effect data, which has not been explained. To solve this puzzle, we have synthesized GeTe, GeTe:Bi, and TAGS-n with n = 97, 94, 90, and 85 and studied XRD, thermopower, electrical resistivity, thermal conductivity, and ^125Te NMR. Most importantly, we have determined the carrier concentrations using ^125Te NMR spin-lattice relaxation and Knight shift. In GeTe and GeTe:Bi, we found that carrier concentrations generally agree with the values reported from Hall effect. In TAGS-n, they are much lower but agree better with the values expected from S vs. p for GeTe-based materials, solving the puzzle partially. The NMR vs. Hall effect discrepancy in TAGS-n can be due to the presence not only of holes but also electrons generated by Sb atoms, which results in artificially high hole concentration from Hall effect. Even though the true hole concentration is lower than reported, the thermopower of TAGS-n is still significantly larger than that of GeTe and GeTe:Bi at similar carrier concentration. This can be explained by energy filtering enhanced by potential barriers formed due to Ag-Sb pairs in the TAGS-n lattice.

  1. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  2. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  3. Preparation and Thermoelectric Properties of SiO_2/β-Zn_4Sb_3 Nanocomposite Materials

    Institute of Scientific and Technical Information of China (English)

    RUAN Xuefeng; XIAO Wenkai

    2009-01-01

    A series of SiO_2/β-Zn_4Sb_3 core-shell composite particles with 3,6,9,and 12 nm of SiO_2 shell in thickness were prepared by coatingβ-Zn_4Sb_3 microparticles with SiO_2 nanoparticles formed by hydrolyzing the tetraethoxysilane in alcohol-alkali-water solution.SiO_2/β-Zn_4Sb_3 nanocomposite thermoelectric materials were fabricated with these core-shell composite particles by spark plasma sintering(SPS)method.Microstructure,phase composition,and thermoelectric properties of SiO_2/β-Zn_4Sb_3 nanocomposite thermoelectric materials were systemically investigated.The results show thatβ-Zn_4Sb_3 microparticles are uniformly coated by SiO_2 nanoparticles,and no any phase transformation reaction takes place during SPS process.The electrical and thermal conductivity gradually decreases,and the Seebeck coefficient increases compared to that ofβ-Zn_4Sb_3 bulk material,but the increment of Seebeck coefficient in high temperature range remarkably increases.The thermal conductivity of SiO_2/β-Zn_4Sb_3 nanocomposite material with 12 nm of SiO_2 shell is the lowest and only 0.56 W·m~(-1)·K~(-1)at 460 K.As a result,the ZT value of the SiO_2/β-Zn_4Sb_3 nanocomposite material reaches 0.87 at 700 K and increases by 30%.

  4. Advanced Materials for Exploration Task Research Results

    Science.gov (United States)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  5. Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity.

    Science.gov (United States)

    An, Cheng Jin; Kang, Young Hun; Lee, A-Young; Jang, Kwang-Suk; Jeong, Youngjin; Cho, Song Yun

    2016-08-31

    We suggest the fabrication of foldable thermoelectric (TE) materials by embedding conducting polymers into Au-doped CNT webs. The CNT bundles, which are interconnected by a direct spinning method to form 3D networks without interfacial contact resistance, provide both high electrical conductivity and high carrier mobility. The ZT value of the spun CNT web is significantly enhanced through two simple processes. Decorating the porous CNT webs with Au nanoparticles increases the electrical conductivity, resulting in an optimal ZT of 0.163, which represents a more than 2-fold improvement compared to the ZT of pristine CNT webs (0.079). After decoration, polyaniline (PANI) is integrated into the Au-doped CNT webs both to improve the Seebeck coefficient by an energy-filtering effect and to decrease the thermal conductivity by the phonon-scattering effect. This leads to a ZT of 0.203, which is one of the highest ZT values reported for organic TE materials. Moreover, Au-doped CNT/PANI web is ultralightweight, free-standing, thermally stable, and mechanically robust, which makes it a viable candidate for a hybrid TE conversion device for wearable electronics. When a 20 K temperature gradient is applied to the TE module consisting of seven p-n couples, 1.74 μW of power is generated.

  6. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  7. Advanced Materials for Neural Surface Electrodes.

    Science.gov (United States)

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  8. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  9. Solar-TEP - Development of materials for thermo-electric power generators; SOLAR-TEP - Materialentwicklung fuer solarthermoelektrische Stromerzeuger - Schlussbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Weidenkaff, A.

    2008-06-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the development of materials for thermo-electric power generators. Cobaltate phases are discussed as being suitable materials for thermoelectric applications at high temperatures. These potential thermoelectric materials are characterised with respect to their crystal structure, microstructure, composition, and thermal stability. The Seebeck coefficient, thermal conductivity and electrical resistivity of polycrystalline cobaltates with perovskite-type and layered-cobaltite structure are evaluated for a wide temperature range. The large Seebeck coefficient exhibited by both perovskite-type and layered cobaltite phases is analysed using the Heikes formula. The work is illustrated with results obtained for various materials in graphical form.

  10. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  11. Methane storage in advanced porous materials.

    Science.gov (United States)

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-07

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

  12. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  13. Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yuan, Qinghong; Deng, Huixiong; Wei, Su-Huai; Yakobson, Boris I.

    2017-01-12

    Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here we demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low-frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure of merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications.

  14. Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Jayasimhadri, M.; Sharma, Sakshi; Singh, Niraj Kumar; Haranath, D.; Srivastava, A. K.; Dhar, Ajay

    2015-04-01

    Copper selenide (Cu2Se) based materials are currently being investigated globally for efficient photovoltaic and thermoelectric (TE) device applications. Despite having enormous device potential its crystal structure and mechanical properties are still not fully explored owing to its complex behavior. Stereographic projection is one of such useful tools to estimate the crystallography of the material conclusively. In the current study, the crystal structure of α and β-phases of Cu2Se was determined by its stereographic projections in reciprocal space. Further, mechanical properties of Cu2Se are highly important to avoid catastrophic failure and ensure longevity of the TE devices made out of these materials. Cu2Se exhibited the compressive strength of 45 MPa with 3% of plastic strain and a fracture toughness value of 2±0.02 MPa√m, the latter being significantly higher than that of the other known TE materials. Finally, thermal shock resistance, which is one of the crucial parameters for the stability and longevity of the device applications, was calculated to be 281±12 W m-1. Superior mechanical properties coupled with highly reported thermoelectric behavior makes Cu2Se as a potential candidate for green energy generation.

  15. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  16. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  17. Materials Requirements for Advanced Propulsion Systems

    Science.gov (United States)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  18. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  19. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  20. Materials performance in advanced combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  1. Copper ion liquid-like thermoelectrics

    Science.gov (United States)

    Liu, Huili; Shi, Xun; Xu, Fangfang; Zhang, Linlin; Zhang, Wenqing; Chen, Lidong; Li, Qiang; Uher, Ctirad; Day, Tristan; Snyder, G. Jeffrey

    2012-05-01

    Advanced thermoelectric technology offers a potential for converting waste industrial heat into useful electricity, and an emission-free method for solid state cooling. Worldwide efforts to find materials with thermoelectric figure of merit, zT values significantly above unity, are frequently focused on crystalline semiconductors with low thermal conductivity. Here we report on Cu2-xSe, which reaches a zT of 1.5 at 1,000 K, among the highest values for any bulk materials. Whereas the Se atoms in Cu2-xSe form a rigid face-centred cubic lattice, providing a crystalline pathway for semiconducting electrons (or more precisely holes), the copper ions are highly disordered around the Se sublattice and are superionic with liquid-like mobility. This extraordinary ‘liquid-like’ behaviour of copper ions around a crystalline sublattice of Se in Cu2-xSe results in an intrinsically very low lattice thermal conductivity which enables high zT in this otherwise simple semiconductor. This unusual combination of properties leads to an ideal thermoelectric material. The results indicate a new strategy and direction for high-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronic conduction surrounded by liquid-like ions.

  2. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    Science.gov (United States)

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm.

  3. Search for Lower Temperature(T-100K) Thermoelectric Materials in the Pentatelluride System and other Low Dimensional Systems

    Science.gov (United States)

    2007-11-02

    International Conference of Thermoelectrics, Baltimore, MD, August 1999, p. 336, IEEE Press, (2000). - Bandgap Features and Thermoelectric Properties...Proceedings of the 18th International Conference of Thermoelectrics, Baltimore, MD, August 1999, IEEE Press, pg. 336, (2000). - Bandgap Features and...Johnson MRS Fall 2001 Symposium G: (# G5-3) - Transformation of Multiwalled Carbon Nanotube into Strings of Carbon Nanoshells B. Sadanadan, J

  4. Materials as additives for advanced lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep; Erdemir, Ali

    2016-09-13

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  5. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  6. Properties of thin film thermoelectric materials: application to sensors using the Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, A.; Cisse, E. (CEM, Sciences et Techniques du Languedoc, 34 - Montpellier (France))

    1992-03-30

    The main thermoelectric properties, i.e. Seebeck coefficient {alpha}, electrical resistivity, {rho}, thermal conductivity K and the coefficient Z of the thermoelectric merit, are determined for narrow-gap V{sub 2}VI{sub 3} semiconductors and semimetals. Variations in {alpha}, K and {rho} depending on the thickness e of the thin film are also measured. The essential technical characteristics such as the sensitivity S{sub f} to flux, the time constant {tau} and the noise equivalent power of a wide-band radiation detector are modelled acording to the adapted thermal conductance eK. The most significant results concerning specific applications are described. Knowledge of these data is useful for the production of sensors based on the Seebeck effect, such as thermocouples, thermopiles, radiation detectors, hyperfrequency power sensors and electrical converters. (orig.).

  7. Advancing Material Models for Automotive Forming Simulations

    Science.gov (United States)

    Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.

    2005-08-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations

  8. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  9. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  10. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  11. Recent Advances In Alkali Metal Thermoelectric Converter (AMTEC) Electrode Performance And Modeling

    Science.gov (United States)

    Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Cole, T.

    1988-04-01

    The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta"-alumina solid electrolyte (BASE). It has been operated at a device efficiency of 19% and at power densities near 1.0 W/cm2. This paper describes progress on the remaining scien-tific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with over-lying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/cm2 for hundreds of hours. Recent modeling results show that at least 0.7 W/cm2 can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, co-sputtered platinum/tungsten, has demon-strated 0.8 W/cm2 for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/cm2 will enable high efficiency (near 20%) space power systems.

  12. Advanced Industrial Materials (AIM) fellowship program

    Energy Technology Data Exchange (ETDEWEB)

    McCleary, D.D. [Oak Ridge Institute for Science and Education, TN (United States)

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  13. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  14. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    Directory of Open Access Journals (Sweden)

    Goupil Christophe

    2016-01-01

    Full Text Available Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant’s electrophysiological response. therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  15. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    CERN Document Server

    Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

    2015-01-01

    Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  16. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  17. Structural materials challenges for advanced reactor systems

    Science.gov (United States)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  18. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  19. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  20. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (~100 μV K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (~10,000 μV K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  1. Advances in geochemical research on nanometer materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Important advances have been made in the field of geochemistry since nanometer science and technology were introduced into the field of geoscience. The nanometer particulates have been discovered in naturally-occurring ore deposits, volcano-eruptive materials and geo-gases, and a more detailed exploration of the metallogenic mechanism of endogenic metallic ore deposits has been conducted. It is considered that some ore-forming metals may transport in the form of native particulates. Because they have very strong capabilities of adsorption, adsorption is always regarded as an important mechanism of metallogenesis under supergenic and low temperature conditions.Therefore, a new technology of ore exploration has also been developed. This paper attempts to review the new advances in geochemical research on nanometer materials, as well as its perspectivess.

  2. High temperature experimental characterization of microscale thermoelectric effects

    Science.gov (United States)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High

  3. Library of Advanced Materials for Engineering : LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-08-01

    Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.

  4. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  5. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  6. Protective coatings for CoSb{sub 3}-base thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska, E.; Zawadzka, K.; Mars, K.; Nocun, M.; Opoka, A.; Wojciechowski, K. [AGH-UST, Krakow (Poland). Faculty of Materials Science and Ceramics

    2010-07-01

    Doped cobalt antimonides, are used as components of thermoelectric devices at temperatures not exceeding 450 C because of poor thermal and chemical stability. In absence of oxygen they degrade by sublimation of antimony, while in air they easily oxidize to form volatile antimony oxides and non-volatile thick double oxide scales. In both cases, protective coatings are indispensable to ensure safe performance of thermoelectric devices over extended times. The most promising solution, reported so far, is a thick aerogel coating, which practically stops antimony loss by sublimation. The assessment of coating effectiveness is generally based on thermogravimetric tests in vacuum, so no conclusion can be drawn about permeability of oxygen and oxidation prevention. The paper presents investigations on the development of protective coatings, which would prevent oxidation of CoSb{sub 3}. Two types of coatings were applied: magnetron sputtered Cr-Si thin layers and thick enamel layers. Testing involved interrupted oxidation in air for 20-80 h at 500 C and 600 C. The Cr-Si thin layers appeared oxygen-tight at 500 C while the enamel layers - even at 600 C. (orig.)

  7. Synthesis of PbTe-SnTe particles by thermal decomposition of salts to create nano-structured thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, V.G.; Ivanova, L.D. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskii prospect, 49, 119991 Moscow (Russian Federation); Bente, K. [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Gremenok, V.F. [State Scientific and Production Association ' ' Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus' ' , P. Brovka str. 19, 220072 Minsk (Belarus)

    2012-05-15

    Micro- and nanocrystalline particles of Pb-Sn-Te mixed crystals were synthesized using thermal decomposition and chemical interaction of lead acetate, tin oxalate and tellurium powder mixture in H{sub 2} atmosphere. For the process parameter optimization data of thermal gravimetry (TG), X-ray diffraction (XRD), electronic microscopy (TEM, SEM) and measurements of the specific surface of particles were used. Additionally the influence of gas phases on the decomposition kinetics, crystal structure, size, specific surface of the particles, gains composition and the physical properties were analyzed. Seebeck coefficient values increased and conductivity decreased with decreasing tin concentration. The presented method for preparing PbTe-SnTe polydisperse particles is developed to create nano-structured thermoelectric materials with high figure of merit. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Development of Polythiophene and Its Derivatives as Thermoelectric Materials%聚噻吩及其衍生物热电材料研究进展

    Institute of Scientific and Technical Information of China (English)

    王大刚; 王雷; 王文馨; 朱光明; 白晓军; 李均钦

    2012-01-01

    In recent years, polymer thermoelectric material is considered to be one kind of the most promising thermoelectric materials due to low cost, abundant resources,low thermal conductivity, etc. Polythiophene and its derivatives are widely studied as thermoelectric materials. The recent development of polythiophene and its derivatives in thermoelectric field are reviewed. These results indicate that polythiophene and its derivatives possess high Seebeck coefficient, and Seebeck coefficient usually decreases with an increasing electrical conductivity. The thermoelectric properties of polythiophene and its derivatives can be enhanced by reducing the material dimension, compounding with highly conductive inorganic nano-particles, doping with appropriate dopants, and so on.%近来,聚合物热电材料因其成本低、资源丰富、热导率低等优势被认为是最有前途的热电材料之一.聚噻吩及其衍生物是研究较为广泛的一类聚合物热电材料.综述了近年来聚噻吩、聚噻吩衍生物以及聚噻吩基/无机复合热电材料在热电领域的研究进展.已有研究表明,聚噻吩及其衍生物热电材料具有高的Seebeck系数,其Seebeck系数与电导率通常是此消彼长的关系.通过制备低维材料,与高电导率的无机纳米材料复合以及适度掺杂等方法可有效提高聚噻吩及其衍生物的热电性能.

  9. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  10. Recent advances in organic semiconducting materials

    Science.gov (United States)

    Ostroverkhova, Oksana

    2011-10-01

    Organic semiconductors have attracted attention due to their low cost, easy fabrication, and tunable properties. Applications of organic materials in thin-film transistors, solar cells, light-emitting diodes, sensors, and many other devices have been actively explored. Recent advances in organic synthesis, material processing, and device fabrication led to significant improvements in (opto)electronic device performance. However, a number of challenges remain. These range from lack of understanding of basic physics of intermolecular interactions that determine optical and electronic properties of organic materials to difficulties in controlling film morphology and stability. In this presentation, current state of the field will be reviewed and recent results related to charge carrier and exciton dynamics in organic thin films will be presented.[4pt] In collaboration with Whitney Shepherd, Mark Kendrick, Andrew Platt, Oregon State University; Marsha Loth and John Anthony, University of Kentucky.

  11. International Symposium on Advanced Materials (ISAM 2013)

    Science.gov (United States)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  12. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  13. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  14. Advanced Materials Laboratory User Test Planning Guide

    Science.gov (United States)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. On the fracture toughness of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as

  16. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  17. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K.

    Science.gov (United States)

    Martin, Joshua; Nolas, George S

    2016-01-01

    We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.

  18. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K

    Science.gov (United States)

    Martin, Joshua; Nolas, George S.

    2016-01-01

    We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.

  19. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hong [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Burke, Peter G. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Gossard, Arthur C. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Zeng, Gehong [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Ramu, Ashok T. [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Bahk, Je-Hyeong [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Bowers, John E. [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  20. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  1. Polymers as advanced materials for desiccant applications

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A.W.

    1990-12-01

    This research is concerned with solid materials used as desiccants for desiccant cooling systems (DCSs) that process water vapor in an atmosphere to produce cooling. Background information includes an introduction to DCSs and the role of the desiccant as a system component. The water vapor sorption performance criteria used for screening the modified polymers prepared include the water sorption capacity from 5% to 80% relative humidity (R.H.), isotherm shape, and rate of adsorption and desorption. Measurements are presented for the sorption performance of modified polymeric advanced desiccant materials with the quartz crystal microbalance. Isotherms of polystyrene sulfonic acid (PSSA) taken over a 5-month period show that the material has a dramatic loss in capacity and that the isotherm shape is time dependent. The adsorption and desorption kinetics for PSSA and all the ionic salts of it studied are easily fast enough for commercial DCS applications with a wheel rotation speed of 6 min per revolution. Future activities for the project are addressed, and a 5-year summary of the project is included as Appendix A. 34 refs., 20 figs., 3 tabs.

  2. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  3. Influence of Thomson effect on the resultant local Seebeck coefficient in thermoelectric composite materials

    Science.gov (United States)

    Yamashita, Osamu; Odahara, Hirotaka; Ochi, Takahiro; Satou, Kouji

    2009-01-01

    The resultant local Seebeck coefficient α R (= α S- α T) at the interface of a thermoelement has not yet been measured, although it is an important factor governing the thermoelectric efficiency, where α S is the local Seebeck coefficient and α T is the one caused by the Thomson effect. It is shown in this paper that α S, α T, and α R of the p- and n-type Cu/Bi Te/Cu composites are obtained analytically and experimentally on the assumption that the local temperature of the composite on which the temperature difference Δ T is imposed varies linearly with changes in position along the composite. They were indeed estimated as a function of position from the local experimental data of R,Δ I,Δ T, and V generated by applying an additional current of ± I to the composite, where R is the electrical resistance and Δ I is a current generated by the composite. As a result, it was found that the absolute values of α S at the hot interface of the p- and n-type composites are approximately 1.5 and 1.4 times higher than their lowest values in the middle region of the composite, respectively, while those of α T are less than 8% of α S all over the composite and are so small that the relation α R≈ α S can be held. We thus succeeded in measuring α R at the interfaces of the composite.

  4. Thermoelectric system

    Science.gov (United States)

    Reiners, Eric A.; Taher, Mahmoud A.; Fei, Dong; McGilvray, Andrew N.

    2007-10-30

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  5. Optimization of p-type Segmented Bi2Te3/CoSb3 Thermoelectric Material Prepared by Spark Plasma Sintering

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; TANG Xinfeng; LIU Haiqiang; YANG Xiuli; ZHANG Qingjie

    2006-01-01

    A kind of p- type segmented Bi2 Te3/ CoSb3 thermoelectric material was prepared by spark plasma sintering( SPS ). When the segmented materials were used at the temperature ranging from 300 K to 800 K, the junction temperature was optimized, which is about 500 K, and the corresponding length ratio of CoSb3 to Bi2 Te3 is about 15:2. The measured maximum power output of segmented materials is about 320 W·m-2, which is about 1.8 times as high as that of monolithic material CoSb3 under the same measuring conditions.

  6. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2013-01-01

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

  7. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  8. NATO Conference on Materials for Advanced Batteries

    CERN Document Server

    Broadhead, J; Steele, B

    1980-01-01

    The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead Hig...

  9. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons.

    Science.gov (United States)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-17

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green's function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  10. Influence of light waves on the thermoelectric power under large magnetic field in III-V, ternary and quaternary materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, K.P. [Department of Electronic Science, The University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Bhattacharya, S. [Post Graduate Department of Computer Science, St. Xavier' s College, 30 Park Street, Kolkata 700 016 (India); Pahari, S. [Department of Administration, Jadavpur University, Kolkata 700 032 (India); De, D. [Department of Computer Science and Engineering, West Bengal University of Technology, B. F. 142, Sector I, Salt Lake, Kolkata 700 064 (India); Ghosh, S.; Mitra, M. [Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah 711 103 (India)

    2008-04-15

    We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III-V, ternary and quaternary materials, whose unperturbed energy-band structures, are defined by the three-band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n-InAs, n-InSb, n-Hg{sub 1-x}Cd{sub x}Te and n-In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band-structure dependent and is significantly influenced by the presence of the different energy-band constants. The well-known result for the TPM for nondegenerate wide-gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  12. On Electronic Structure Engineering and Thermoelectric Performance

    OpenAIRE

    Jeong, Changwook; Lundstrom, Mark S.

    2011-01-01

    In this paper, we address the question of how to engineer the electronic structure to enhance the performance of a thermoelectric material. We examine several different materials and show that all of them, even those for which giant Seebeck coefficients have been predicted, display a value that is expected from conventional thermoelectric theory. For molecular thermoelectrics, we show that the detailed lineshape plays an important role. Finally, using III-V alloy semiconductors as a model sys...

  13. Thermocouple Structure in Thermoelectric Conversion Devices

    Institute of Scientific and Technical Information of China (English)

    WU; Wei-ming; TANG; Xian; LUO; Zhi-fu

    2013-01-01

    The core of thermoelectric conversion device is the thermocouples which are constituted with P-type and N-type thermoelectric material.Thermocouple structure is very important for efficiency of thermoelectric power generation.Common thermocouple is the segmented structure,as shown in Fig.1.Each material works in its best temperature range.This structure ensures that the device get a high figure

  14. Advanced composite materials for optomechanical systems

    Science.gov (United States)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  15. In-Situ Growth of Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications

    Science.gov (United States)

    Nesbitt, James A.; Opila, Elizabeth J.; Nathal, Michael V.

    2012-01-01

    The compound Yb14MnSb11 is a p-type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000 C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit (zT) over that of Si-Ge at 1000 C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000 C (approximately 3 x 10(exp -3) grams per square centimeter hour) and efforts to reduce the sublimation rate with an in situ grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers.

  16. Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods

    Science.gov (United States)

    Sola, Francisco; Dynys, Frederick

    2015-03-01

    Silicon germanium (SiGe) thermoelectric (TE) alloys have been traditionally used in radioisotope thermoelectric generators (RTG) NASA applications. While RTG applications is the main driver of our current research, we are exploring other applications in the energy harvesting arena. There is still a need to improve the TE figure of merit (ZT) of SiGe based TE alloys and we have been working on ways to improve it by incorporating tungsten di-silicide (WSi2) phases in to the matrix by directional solidification process. Considerable efforts have been focused until now in microstructural engineering methods that can lead to ZT improvement by microstructure optimization. Although critical for the previous mentioned applications, work pertinent to the mechanical integrity of WSi2/SiGe based TE materials is lacking. In this presentation, we report local mechanical properties (hardness, modulus and fracture toughness) and microstructure of WSi2/SiGe multiphase thermoelectric material by nanoindentation, scanning electron microscopy, focused ion beam and transmission electron microscopy methods.

  17. Advanced materials and nanotechnology for drug delivery.

    Science.gov (United States)

    Yan, Li; Yang, Yang; Zhang, Wenjun; Chen, Xianfeng

    2014-08-20

    Many biological barriers are of great importance. For example, stratum corneum, the outmost layer of skin, effectively protects people from being invaded by external microorganisms such as bacteria and viruses. Cell membranes help organisms maintain homeostasis by controlling substances to enter and leave cells. However, on the other hand, these biological barriers seriously restrict drug delivery. For instance, stratum corneum has a very dense structure and only allows very small molecules with a molecular weight of below 500 Da to permeate whereas most drug molecules are much larger than that. A wide variety of drugs including genes needs to enter cells for proper functioning but cell membranes are not permeable to them. To overcome these biological barriers, many drug-delivery routes are being actively researched and developed. In this research news, we will focus on two advanced materials and nanotechnology approaches for delivering vaccines through the skin for painless and efficient immunization and transporting drug molecules to cross cell membranes for high-throughput intracellular delivery.

  18. Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.

    2016-08-16

    A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.

  19. Engineered Materials for Advanced Gas Turbine Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  20. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  1. Segmentation of low‐cost high efficiency oxide‐based thermoelectric materials

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Linderoth, Søren;

    2015-01-01

    efficiency of TE oxides has been a major drawback limiting these materials to broaden applications. In this work, theoretical calculations are used to predict how segmentation of oxide and semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, high temperature...... segmented legs based p-type Ca3Co4O9 and n-type ZnO oxides excluding electrical and thermal losses. It is found that the maximum efficiency of segmented unicouple could be linearly decreased with increasing the interfacial contact resistance. The obtained results provide useful tool for designing a low...... oxide-based segmented legs. The materials for segmentation are selected by their compatibility factors and their conversion efficiency versus material cost, i.e., “efficiency ratio”. Numerical modelling results showed that conversion efficiency could reach values of more than 10% for unicouples using...

  2. Inhomogeneous thermal conductivity enhances thermoelectric cooling

    Directory of Open Access Journals (Sweden)

    Tingyu Lu

    2014-12-01

    Full Text Available We theoretically investigate the enhancement of thermoelectric cooling performance in thermoelectric refrigerators made of materials with inhomogeneous thermal conductivity, beyond the usual practice of enhancing thermoelectric figure of merit (ZT of materials. The dissipation of the Joule heat in such thermoelectric refrigerators is asymmetric which can give rise to better thermoelectric cooling performance. Although the thermoelectric figure of merit and the coefficient-of-performance are slightly enhanced, both the maximum cooling power and the maximum cooling temperature difference can be enhanced significantly. This finding can be used to increase the heat absorption at the cold end. We further find that the asymmetric dissipation of Joule heat leads to thermal rectification.

  3. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  4. Lunar Base Thermoelectric Power Station Study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the

  5. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    Science.gov (United States)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  6. Pulsed thermoelectricity

    Science.gov (United States)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  7. Review of nanostructured devices for thermoelectric applications

    OpenAIRE

    Giovanni Pennelli

    2014-01-01

    A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will...

  8. Efficiency of Thermionic and Thermoelectric Converters

    Science.gov (United States)

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2007-02-01

    Thermoelectric and thermionic converters — also in micro- and nano-meter design — are considered for power generation and cooling applications. The potential of thermionic vacuum gap converters is investigated precisely by a new advanced theory with inclusion of backward currents from the 2nd electrode, losses due to thermal radiation and ohmic resistance in the electrodes, tunneling through the gap, image forces, and space charge effects. The efficiency of nano-meter gap thermionic converters is by far higher than for thermoelectric devices (including nano-structured superlattices) for operating temperatures above 800°K, however, there is no chance of realization with today's technology. For a vacuum gap width of about 1 μm the performance is higher than for hypothetical bulk- thermoelectric generators (TEGs) with ZT = 1 for T > 1000°K and also higher than for hypothetical nano-structured superlattices (ZT = 2.4) for T > 1200°K. A thermionic converter with gap width of 5μm has lower performance than a TEG with ZT = 1, however, also operates at T > 1200°K. Reasonable performance of thermionic converters at T ⩽ 500°K necessitates materials with workfunctions ⩽ 0.5 eV.

  9. Advanced insider threat mitigation workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2008-11-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  10. Predicted Thermoelectric Properties of the Layered XBi4S7 (X = Mn, Fe) Based Materials: First Principles Calculations

    Science.gov (United States)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya; Kanoun, Mohammed Benali

    2017-01-01

    We report a theoretical investigation of electronic structures, optical and thermoelectric properties of two ternary-layered chalcogenides, MnBi4S7 and FeBi4S7 , by combining the first principles density functional calculations and semi-local Boltzmann transport theory. The calculated electronic band structure have demonstrated that both compounds exhibit indirect band gaps. The optical transitions are explored via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity, and energy loss spectrum. These chalcogenides have exhibited interesting thermoelectric properties such as Seebeck's coefficient, electrical and thermal conductivity, and power factor as function of temperatures.

  11. Advanced thermoelectrics governed by a single parabolic band: Mg2Si(0.3)Sn(0.7), a canonical example.

    Science.gov (United States)

    Liu, Wei; Chi, Hang; Sun, Hui; Zhang, Qiang; Yin, Kang; Tang, Xinfeng; Zhang, Qingjie; Uher, Ctirad

    2014-04-21

    The well-known single parabolic band (SPB) model has been useful in providing insights into the understanding of transport properties of numerous thermoelectric materials. However, the conduction and valence bands of real semiconductors are rarely truly parabolic which limits the predictive power of the SPB model. The coincidence of the band edges of two parabolic bands, a situation arising in Mg2Si1-xSnx solid solutions when x∼ 0.7, naturally makes the SPB approximation applicable to evaluate all transport parameters. We demonstrate this in the case of Bi-doped Mg2Si0.3Sn0.7 where the minima of the two conduction bands at the X-point of the Brillouin zone coincide. The combination of a large density-of-states effective mass m* ∼ 2.6 me arising from the enhanced valley degeneracy Nv, high mobility μd due to low deformation potential Ed (8.77-9.43 eV), and ultra-low alloy scattering parameter Ea (0.32-0.39 eV) leads to an outstanding power factor, PFmax∝ (m*)(3/2)μd, of up to 4.7 mW m(-1) K(-2) at around 600 K. The specification and improved understanding of scattering parameters using the SPB model are important and instructive for further optimization of the thermoelectric performance of n-type Mg2Si0.3Sn0.7.

  12. NREL Advances Spillover Materials for Hydrogen Storage (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This fact sheet describes NREL's accomplishments in advancing spillover materials for hydrogen storage and improving the reproducible synthesis, long-term durability, and material costs of hydrogen storage materials. Work was performed by NREL's Chemical and Materials Science Center.

  13. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  14. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    Science.gov (United States)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  15. Nanostructured thermoelectrics: big efficiency gains from small features.

    Science.gov (United States)

    Vineis, Christopher J; Shakouri, Ali; Majumdar, Arun; Kanatzidis, Mercouri G

    2010-09-22

    The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data--especially related to materials--have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.

  16. Development of a Research Plan to Minimize Thermal Conductivity in Low Temperature Thermoelectric Materials

    Science.gov (United States)

    2010-12-03

    Mechanical refrigeration approaches such as Stirling , reverse Brayton, and Joule-Thomson cycle coolers are frequently used to attain such temperatures {3...an atomic level of detail. Each atom is represented as a classical particle connected to other atoms in the system through ‘springs’ whose...coupled dynamical motions of all particles in the system . Interatomic potential models for materials are determined by fitting parameters in the

  17. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Scott A.; Jana, Saumyadeep; Catalini, David; Overman, Nicole R.; Sharp, Jeffrey

    2016-04-13

    This work focused on the development of a new mechanical processing route, called Friction Consolidation Processing (FCP), for densifying bismuth-telluride (Bi2Te3) powders into bulk form. FCP is a solid-state process wherein a rotating tool was used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the non-equilibrium microstructure within the flow was locked into the material. FCP was demonstrated on -325 mesh (~44 micron) n-type Bi2Te3 feedstock powder to form pucks with 92% theoretical density having a diameter of 25.4mm and thickness of 4.2mm. FCP was shown to achieve highly textured bulk materials, with sub-micron grain size, directly from coarse particle feedstock powders in a single process. An average grain size of 0.8 microns was determined for one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure from another sample. These results indicate that FCP can yield highly refined grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT=0.37 at 336K was achieved for undoped stoichiometric Bi2Te3, which is near the “text book” value of ZT=0.5.

  18. Insulation materials for advanced water storages

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    2005-01-01

    This chapter gives an overview of different insulation materials that may be of interest for insulation of solar storage tanks. In order to understand the special characteristics of the different insulation materials the heat transfer mechanisms involved are shortly described. In the following...... sections different insulation materials are described with respect to material characteristics and some comments on the easiness of application for tank insulation. The material properties listed in this paper are typical values, which gives an idea of the possibilities but in case of a specific design...

  19. Advanced Insider Threat Mitigation Workshop Instructional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.

  20. High temperature thermoelectrics

    Science.gov (United States)

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  1. Thermoelectric Polymers and their Elastic Aerogels.

    Science.gov (United States)

    Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier

    2016-06-01

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  2. Advanced Magnetostrictive Materials for Sonar Applications

    Directory of Open Access Journals (Sweden)

    Rajapan Rajapan

    2005-01-01

    Full Text Available Piezoelectric or magnetostrictive materials can be utilised as active materials for electroacoustic underwater transducers. Piezoceramic materials gained edge over the conventional magnetostrictive materials during 1940s due to their unique electro-acoustic properties. At present, inspite of passive sonars there is a need of low-frequency high-power active sonars for the Navy. This led toresearch for new activematerials with competing characteristics to that of the existing piezo transducers. The discovery of a giant magnetostrictive material, commercially known as Terfenol-D, led to a breakthrough in the development of a new generation of sonar transducers. Now, the materials (including composites as well as sensors are commercially available. A new generation of transducers have emerged in ocean-related areas like acoustic tomography, longrange underwater communication, geophysical exploration, oil well exploration, etc.Indian Institute of Technology Madras, Chennai, has also developed the basic material technology a few years back. At present, in India, National Institute of Ocean Technology, Chennai, is developing underwater transducers utilising giant magnetostrictive materials as well as piezoelectric materials for marine applications like sub-bottom profiling (seafloor mapping and long-range underwater communications. A prototype of a portable, low-frequency medium power transmitter operating over a wide-frequency range has been developed. The main advantage of this transducer is its simplicity in design. In this paper, (he recent developments in material processes, importance of device-oriented material characterisation, and transducer design aspects have been emphasised. Some results on the underwater performance of a wide-band transducer have also been presented. These materials also have ultrasonic applications, capable of revolutionising the processing industry.

  3. Rapid Set Materials for Advanced Spall Repair

    Science.gov (United States)

    2010-08-01

    cement -based polymer- cement mortar and concrete • Magnesium -ammonium- phosphate - cement mortar and concrete • Polymer-based mortar and concrete...material or lodged debris from the joint or crack. • Place a small bead of caulk over the joint or crack. • If using a cement -based repair material, soak...placement equipment immediately after use. • When using cement repair materials, either wet cure or apply curing compound. • Remove the compressible spacer

  4. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  5. Advances in Rare Earth Application to Semiconductor Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    屠海令

    2004-01-01

    The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.

  6. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    Science.gov (United States)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  7. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances...... in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials...

  8. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    specimens were of PVC foam and were tested in compression. The tests were performed in order to validate the use of the measurement system on these materials and to obtain material data for use in numerical simulations. While some limitations were identified, the optical system performed well and appears...

  9. Review of nanostructured devices for thermoelectric applications.

    Science.gov (United States)

    Pennelli, Giovanni

    2014-01-01

    A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed.

  10. Review of nanostructured devices for thermoelectric applications

    Directory of Open Access Journals (Sweden)

    Giovanni Pennelli

    2014-08-01

    Full Text Available A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed.

  11. Advanced Materials and Cell Components for NASA's Exploration Missions

    Science.gov (United States)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  12. Advanced materials research for long-haul aircraft turbine engines

    Science.gov (United States)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  13. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  14. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed.

  15. Bulk dimensional nanocomposites for thermoelectric applications

    Science.gov (United States)

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  16. Towards high efficiency segmented thermoelectric unicouples

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Christensen, Dennis Valbjørn; Snyder, Gerald Jeffrey

    2014-01-01

    Segmentation of thermoelectric (TE) materials is a widely used solution to improve the efficiency of thermoelectric generators over a wide working temperature range. However, the improvement can only be obtained with appropriate material selections. In this work, we provide an overview...... of the theoretical efficiency of the best performing unicouples designed from segmenting the state-of-the-art TE materials. The efficiencies are evaluated using a 1D numerical model which includes all thermoelectric effects, heat conduction, Joule effects and temperature dependent material properties, but neglects...

  17. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  18. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  19. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    Science.gov (United States)

    2014-02-27

    temperature cubic polymorph. 125Te NMR studies confirmed the incorporation of rare earth cations into the GeTe-based lattice. Solid state synthesis was...the GeTe-based lattice. Solid state synthesis was successfully applied to the processing of rare-earth-doped TAGS-85 and has resulted in a further...GeTe-based lattice. Solid state synthesis was successfully applied to the processing of rare-earth-doped TAGS-85 and has resulted in a further increase

  20. Flow chemistry meets advanced functional materials.

    Science.gov (United States)

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products.

  1. Nanostructured Thermoelectrics and the New Paradigm

    Science.gov (United States)

    Kanatzidis, Mercouri

    2012-02-01

    A comprehensive and stable energy strategy would require proportionate attention to all three legs of the ``energy stool''; supply (sources), demand (efficiency) and storage/transport (delivery). Thermoelectric materials, that convert waste thermal energy into useful electrical energy, have an important role to play in any and all these three legs. The efficacy and efficiency of thermoelectrics is reflected in the figure of merit ZT, which is directly proportional to the power factor (comprising electrical conductivity and Seebeck coefficient) and inversely proportional to thermal conductivity (comprising carrier and lattice contributions). The recent emergence of nanostructured thermoelectrics has ushered in a new era for bulk thermoelectrics, which show considerable promise to enhance the ``contra-indicating'' parameters of high electrical conductivity and low thermal conductivity. This is achieved by introducing nanostructures in bulk thermoelectric host materials to significantly reduce lattice thermal conductivity via effective scattering of heat carrying phonon through hierarchical architecture of nanostructured thermoelectrics. The presentation will cover recent developments, current research in our EFRC and future prospects for high performance bulk materials. Systems based on lead chalcogenides (e.g., PbTe, PbSe, PbS) present key science challenges with promising properties and are given particular emphasis. We have achieved excellent control of synthesis and crystal growth of such materials resulting in record enhancements in the figure of merit. These enhancements derive from very large reductions in lattice thermal conductivity possible with nanostructuring. We have experimentally realized concurrent synergistic effect of phonon blocking and charge transmission via the endotaxial placement of nanocrystals in thermoelectric material host. In particular, we have shown that the enhanced performance is due to nanostructuring of thermoelectric host matrix

  2. Symmetry Analysis of Thermoelectric Energy Converters with Inhomogeneous Legs

    Science.gov (United States)

    Korzhuev, M. A.

    2010-09-01

    Symmetry analysis has been applied to thermoelectric energy converters [thermoelectric generators (TEG), coolers (TEC), and heaters (TEH)] with inhomogeneous legs. The features of the crystallographic symmetry of thermoelectric materials and the symmetry of legs, thermocouples, and modules are studied. The effect of symmetry on the figure of merit Z of thermoelectric energy converters is considered. A general rule for proper placement of legs in thermoelectric converters is developed. A modified tetratomic classification for thermoelectric energy converters with inhomogeneous legs (TEGa, TEGb, TEC, and TEH) is proposed. An increase in Z for thermoelectric energy converters with inhomogeneous legs is due to the bulk thermoelectric effect. An increase in Z gives the reduction of irreversible processes in the modules (Joule heating and thermal conductivity), accompanying breaking of the symmetry of the legs. It is found that violations of the symmetry requirements can lead to significant energy losses in converters.

  3. Advanced Insulation Materials for Cryogenic Propellant Storage Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  4. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  5. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.

  6. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)

    TANG; BenZhong

    2001-01-01

    High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.  ……

  7. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  8. Coating Thermoelectric Devices To Suppress Sublimation

    Science.gov (United States)

    Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2007-01-01

    A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure sublimation of antimony at 700 C. This was a considerable improvement, considering that uncoated CoSb3 had been found to decompose to form the lowest antimonide at the surface at only 600 C. Evidently, because the mean free path of Sb at the

  9. Recent advances in mass transport in materials

    CERN Document Server

    Ochsner, Andreas

    2012-01-01

    The present topical volume presents a representative cross-section of some recent advances made in the area of diffusion. The range of topics covered is very large, and, this reflects the enormous breadth of the topic of diffusion. The areas covered include diffusion in intermetallics, phenomenological diffusion theory, diffusional creep, kinetics of steel-making, diffusion in thin films, precipitation, diffusional phase transformations, atomistic diffusion simulations, epitaxial growth and diffusion in porous media. Review from Book News Inc.: In 13 invited and peer-reviewed papers, scientist

  10. n型CaMnO3基氧化物热电材料研究进展%Progress in n-type CaMnO3-based Oxide Thermoelectric Materials

    Institute of Scientific and Technical Information of China (English)

    张飞鹏; 郭志超; 刘剑; 王新练; 张坤书

    2013-01-01

      n型CaMnO3基氧化物是一种具有优异高温热电性能的n型热电材料体系,从CaMnO3基热电氧化物晶体结构、物性、电子结构、电热传输理论以及Ca位掺杂、Mn位掺杂、Ca和Mn位复合掺杂优化其电热输运性能的角度,综述了 n 型 CaMnO3基热电氧化物的最新研究进展,给出了存在的问题和今后研究的方向。%The n-type CaMnO3 oxide based compound is one of the most promising thermoelectric materials due to its high temperature thermoelectric properties. The paper summarizes the CaMnO3 oxide based thermoelectric materials, mainly in terms of the crystal structure, physical properties, electronic structure, thermoelectric transport theory and Ca site doping, Mn site doping, as well as double doping effects on thermoelectric transport properties. And the research issues and orientations in the near future are pointed out.

  11. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  12. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials.

    Science.gov (United States)

    Korkosz, Rachel J; Chasapis, Thomas C; Lo, Shih-han; Doak, Jeff W; Kim, Yoon Jun; Wu, Chun-I; Hatzikraniotis, Euripidis; Hogan, Timothy P; Seidman, David N; Wolverton, Chris; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-02-26

    Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring. Here we report the thermoelectric properties of the pseudoternary 2% Na-doped (PbTe)1-2x(PbSe)x(PbS)x system. The (PbTe)1-2x(PbSe)x(PbS)x system is an excellent platform to study phase competition between entropically driven atomic mixing (solid solution behavior) and enthalpy-driven phase separation. We observe that the thermoelectric properties of the PbTe-PbSe-PbS 2% Na doped are superior to those of 2% Na-doped PbTe-PbSe and PbTe-PbS, respectively, achieving a ZT ≈2.0 at 800 K. The material exhibits an increased the power factor by virtue of valence band modification combined with a very reduced lattice thermal conductivity deriving from alloy scattering and point defects. The presence of sulfide ions in the rock-salt structure alters the band structure and creates a plateau in the electrical conductivity and thermopower from 600 to 800 K giving a power factor of 27 μW/cmK(2). The very low total thermal conductivity values of 1.1 W/m·K of the x = 0.07 composition is accounted for essentially by phonon scattering from solid solution defects rather than the assistance of endotaxial nanostructures.

  13. Recent Progress in Advanced Materials for Lithium Ion Batteries

    OpenAIRE

    Jiajun Chen

    2013-01-01

    The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as ...

  14. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  15. Evaluation of advanced materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.

    1982-11-18

    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  16. Cumulative Damage Model for Advanced Composite Materials.

    Science.gov (United States)

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  17. Polymers Advance Heat Management Materials for Vehicles

    Science.gov (United States)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  18. PREFACE: Advanced Materials for Demanding Applications

    Science.gov (United States)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  19. Advanced Materials and Coatings for Aerospace Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  20. Advanced Functional Materials for Energy Related Applications

    Science.gov (United States)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  1. Classification of Valleytronics in Thermoelectricity

    Science.gov (United States)

    Norouzzadeh, Payam; Vashaee, Daryoosh

    2016-03-01

    The theory of valleytronics as a material design tool for engineering both thermal and electrical transport properties is presented. It is shown that the interplay among the valleytronics parameters such as the degeneracy of the band, intervalley transitions, effective mass, scattering exponent, and the Fermi energy may deteriorate or ameliorate any or all of the main thermoelectric properties. A flowchart classifying the different paths through which the valleytronics can influence the thermoelectric figure-of-merit ZT is derived and discussed in detail. To exemplify the application of the flowchart, valleytronics in four different semiconductors, Mg2Si, Si0.8Ge0.2, AlxGa1-xAs and clathrate Si46-VIII were studied, which showed different trends. Therefore, a degenerate multivalley bandstructure, which is typically anticipated for a good thermoelectric material, cannot be a general design rule for ZT enhancement and a detailed transport study is required to engineer the optimum bandstructure.

  2. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  3. Recent Advances in the Synthesis of High Explosive Materials

    OpenAIRE

    Jesse J. Sabatini; Karl D. Oyler

    2015-01-01

    This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  4. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini

    2015-12-01

    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  5. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  6. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  7. Experiments investigating advanced materials under thermomechanical loading

    Science.gov (United States)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  8. Combustion synthesis of advanced composite materials

    Science.gov (United States)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  9. Materials for advanced rocket engine turbopump turbine blades

    Science.gov (United States)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  10. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  11. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  12. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  13. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  14. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  15. Integration of advanced nuclear materials separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  16. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  17. Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers

    Science.gov (United States)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano

    2016-02-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.

  18. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  19. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  20. The investigation of thermal properties on multilayer Sb2Te3/Au thermoelectric material system with ultra-thin Au interlayers

    Science.gov (United States)

    Zhang, Haiming; Ye, Fengjie; Hu, Yangsen; Liu, Jun; Zhang, Yan; Wu, Yigui; Hu, Zhiyu

    2016-01-01

    The manipulation of heat transport across multilayer thin films with metal-semicounductor interfaces is of great interest for thermoelectric material optimization. Here we fabricated Sb2Te3/Au multilayer films with different Au thickness by magnetron sputtering. We demonstrated that the thermal conductivity of the system can be facilely manipulated by simply changing the Au layer thickness, where an optimal thickness (5 nm) value exists with the lowest thermal conductivity (˜0.44 Wm-1K-1, 44% of the pure Sb2Te3 thin film thermal conductivity). It has been proved that the decreased thermal conductivity was mainly attributed to the strong electron-phonon coupling in a metal-nonmetal multilayered system with Au layer thickness larger than 5 nm, where the Two Temperature Model (TTM) predicts the experimental data perfectly. It was also proposed that the grain boundary effect may dominiate the phonon scattering when the Au layer is in a discountinuous form (<5 nm).

  1. Application of high magnetic fields in advanced materials processing

    Institute of Scientific and Technical Information of China (English)

    MA Yanwei; XIAO Liye; YAN Luguang

    2006-01-01

    Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical viewpoint of magnetization energy.

  2. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... design is accurate and somewhat simple analysis tools, as well as a fundamental understanding of the physical phenomena responsible for the relevant effects. The emphasis of this work lies primarily in the investigation of various advanced material models, developing the necessary analytical tools...... to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple...

  3. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  4. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  5. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  6. Thermoelectric Properties of Hot-Pressed β-K2Bi8Se13- x S x Materials

    Science.gov (United States)

    Kyratsi, Theodora; Ioannou, Maria

    2013-07-01

    In this work, hot-pressed pellets of the K2Bi8Se13 family of compounds were prepared for the first time. The pellet fabrication of selected members of the K2Bi8Se13- x S x series was studied. Sintering parameters, such as temperature, pressure, and duration, were investigated based on a statistical design- of-experiments approach to identify the optimum conditions for fabrication of high-quality pellets. These optimum conditions were then applied for the K2Bi8Se13- x S x series, and the thermoelectric properties of the stoichiometric members for x = 0, 4, 6, and 8 were studied. Doping experiments were also investigated using sulfur excess in the x = 6 member in an attempt to modify its properties.

  7. Nondestructive testing of advanced materials using sensors with metamaterials

    Science.gov (United States)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  8. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  9. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    Science.gov (United States)

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  10. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    Science.gov (United States)

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  11. Modelling of advanced structural materials for GEN IV reactors

    Science.gov (United States)

    Samaras, M.; Hoffelner, W.; Victoria, M.

    2007-09-01

    The choice of suitable materials and the assessment of long-term materials damage are key issues that need to be addressed for the safe and reliable performance of nuclear power plants. Operating conditions such as high temperatures, irradiation and a corrosive environment degrade materials properties, posing the risk of very expensive or even catastrophic plant damage. Materials scientists are faced with the scientific challenge to determine the long-term damage evolution of materials under service exposure in advanced plants. A higher confidence in life-time assessments of these materials requires an understanding of the related physical phenomena on a range of scales from the microscopic level of single defect damage effects all the way up to macroscopic effects. To overcome lengthy and expensive trial-and-error experiments, the multiscale modelling of materials behaviour is a promising tool, bringing new insights into the fundamental understanding of basic mechanisms. This paper presents the multiscale modelling methodology which is taking root internationally to address the issues of advanced structural materials for Gen IV reactors.

  12. Materials/manufacturing element of the Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G. [Oak Ridge National Lab., TN (United States)] [and others

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  13. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  14. High Efficiency, Easy-to-Manufacture Engineered Nanomaterials for Thermoelectric Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR program, high thermoelectric figure-of-merit (ZT) nanocrystal quantum dot (NQD) thermoelectric (TE) materials will be developed that have...

  15. Thermoelectric Materials - New Directions and Approaches, Symposium Held in San Francisco, California, U.S.A. on March 31-April 3 1997

    Science.gov (United States)

    1997-01-01

    parameter ATmax in Centigrade leads to the calculation of the Coefficient of Performance and % of Camot efficiency. This calculation uses equation (9...thermoelectrics for the past 40 years. From this perspective the 10% of Camot Efficiency provided by thermoelectric devices, leads to their being

  16. Recent Research Progress on the Mg2Si Based Thermoelectric Materials%Mg2Si基热电材料的制备与掺杂研究现状

    Institute of Scientific and Technical Information of China (English)

    曹萌萌; 周园; 任秀峰; 年洪恩; 李翔

    2012-01-01

    Thermoelectric materials can convert electricity into heat reversible directly. It is a material which has a superior performance with a environment-friendly property. Mg2Si based semiconductor is one of the most promising material among the entire semiconductor materials which are nontoxic and cheap. It has a potentially high dimensionless figure of merit ZT. And it is very difficult to synthesize Mg2Si alloy because of the high activity of magnesium. So it becomes the researching key about how to synthesize high performance Mg2Si based thermoelectric materials. In this paper, the basic properties had been briefly introduced, the preparation methods and the doping of Mg-Si based thermoelectric materials and its research progress had been reviewed. Based on the introduction of the various synthetic methods, the advantages and disadvantages of these methods as well as how to improve them were summarized. Whats more, the development direction of thermoelectric materials had been prospected.%热电材料是一种性能优越的环境友好型材料,它能够直接把电能和热能相互转化,是目前新技术能源材料领域的关键材料.Mg2Si基半导体是一种新型的中温区热电材料,具有热电值高,原料无毒害等优点,由于镁的活性较高,如何制备出性能更加优良的Mg2Si基块体热电材料成为本领域研究的重点.本文简要介绍了Mg2Si基热电材料的基本性质,阐述其各种制备方法和掺杂研究现状,并展望其未来研究方向.

  17. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  18. Institute for Advanced Materials at University of Louisville

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L; Willing, G A; Robert W, Cohn

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostats and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs

  19. Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb;M=Zn, Cd) and their substitution variants:a class of potential thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    郭凯; 操齐高; 赵景泰

    2013-01-01

    Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb;M=Zn, Cd) is a new class of promising thermoelectrics owing to their intrinsic features in electronic and crystal structure, such as a small or even disappeared band-gap, large density-of-states at the Fermi level, covalently bonded network of M-Sb, as well as the layered stacking by cations A2+and anionic slabs (M2Sb2)2-. In addi-tion, the rich solid-state chemistry of Zintl phase allows structural modification and chemical substitution to adjust the fundamental transport parameters (carrier concentration, mobility, effective mass, electronic and lattice thermal conductivity) for improving the thermoelectric performance. In the present review, the recent advances in synthesis and thermoelectric characterization of title com-pounds AM2Sb2 were presented, and the effects of alloying or substitution for sites A, M and Sb on the electrical and thermal trans-port were emphasized. The structural disorder yielded by the incorporation of multiple ions significantly increased the thermoelectric figure of merit mainly resulted from the reduction of thermal conductivity without disrupting the carrier transport region in substance. Therefore, alloying or substitution has been a feasible and common route utilized to enhance thermoelectric properties in these Zintl phase compounds, especially for YbZn0.4Cd1.6Sb2 (ZT700 K=1.26), EuZn1.8Cd0.2Sb2 (ZT650 K=1.06), and YbCd1.85Mn0.15Sb2 (ZT650 K=1.14).

  20. Computer modeling of thermoelectric generator performance

    Science.gov (United States)

    Chmielewski, A. B.; Shields, V.

    1982-01-01

    Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.

  1. Perspective: n-type oxide thermoelectrics via visual search strategies

    Directory of Open Access Journals (Sweden)

    Guangzong Xing

    2016-05-01

    Full Text Available We discuss and present search strategies for finding new thermoelectric compositions based on first principles electronic structure and transport calculations. We illustrate them by application to a search for potential n-type oxide thermoelectric materials. This includes a screen based on visualization of electronic energy isosurfaces. We report compounds that show potential as thermoelectric materials along with detailed properties, including SrTiO3, which is a known thermoelectric, and appropriately doped KNbO3 and rutile TiO2.

  2. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    Science.gov (United States)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  3. p × n -Transverse Thermoelectrics: Single leg thermoelectrics with scalable integration and cryogenic promise

    Science.gov (United States)

    Grayson, M.

    Under the p × n -type transverse thermoelectric paradigm electrons dominate conduction in one direction and holes dominate perpendicularly, allowing electrical current to drive transverse heat flow. Bulk anisotropic crystals, superlattices, and nanowire arrays have all been previously proposed as viable p × n materials. This talk will describe the general philosophy behind p × n -type transverse thermoelectrics as well as the tensor equations that define their anisotropic Seebeck effect. The advantages of single-leg thermoelectric devices - available only to transverse thermoelectrics - are detailed. Various device geometries are discussed which take advantage of the single-leg nature, in particular to provide advantages for cryogenic thermoelectric cooling and integrated thermal management. Supported by AFOSR FA9550-15-1-0377.

  4. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  5. Materials Research for Advanced Inertial Instrumentation. Task 2. Gas Bearing Material Development.

    Science.gov (United States)

    1984-02-01

    AD-RA4e 435 MATERIALS RESEARCH FOR ADVANCED INERTIAL 1/i INSTRUMENTATION TASK 2 GAS BERRI..(U) CHARLES STARK DRAPER LAB INC CAMBRIDGE MR K KUMAR ET...I.25.2 - U-2 1Ŗ AmsaŚ MATERIALS RESEARCH FOR ADVANCE- INERTIAL INSTRUMENTATION TASK 2: GAS BEAR ING MATERIAL F4., FEBRUARY 1984". 414 K . KUMAR...HNEWBORN’ DAS 1 4 -r~ edfor fte Office of N w ta rdv mapch ~~ppr~vedfor public rele..; distribution ea- . . " 0*sinis granted to U.S. Govemn pr~t in

  6. Interpretation of thermoelectric properties of Cu substituted LaCoO3 ceramics

    Science.gov (United States)

    Choudhary, K. K.; Kaurav, N.; Sharma, U.; Ghosh, S. K.

    2014-04-01

    The thermoelectric properties of LaCo1-xCuxO3-δ is theoretically analyzed, it is observed that thermoelectric figure of merit ZT (=S2σT/κ) is maximized by Cu substitution in LaCoO3 Ceramics at x=0.15. The lattice thermal conductivity and thermoelectric power were estimated by the scattering of phonons with defects, grain boundaries, electrons and phonons to evaluate the thermoelectric properties. We found that Cu substitution increase the phonon scattering with grain boundaries and defects which significantly increase the thermoelectric power and decrease the thermal conductivity. The present numerical analysis will help in designing more efficient thermoelectric materials.

  7. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  8. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  9. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  10. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  11. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  12. Application of mesoscale modeling optimization to development of advanced materials

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaoyan

    2004-01-01

    The rapid development of computer modeling in recent years offers opportunities for materials preparation in a more economic and efficient way. In the present paper, a practicable route for research and development of advanced materials by applying the visual and quantitative modeling technique on the mesoscale is introduced. A 3D simulation model is developed to describe the microstructure evolution during the whole process of deformation, recrystallization and grain growth in a material containing particles. In the light of simulation optimization, the long-term stabilized fine grain structures ideal for high-temperature applications are designed and produced. In addition, the feasibility, reliability and prospects of material development based on mesoscale modeling are discussed.

  13. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  14. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer....../fullerene mixtures and evaporated metal electrodes in a flat multilayer geometry. It is likely that significant advances can be found by pursuing many of these novel ideas further and the purpose of this review is to highlight these reports and hopefully spark new interest in materials and methods that may...

  15. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  16. Design of advanced photocatalytic materials for energy and environmental applications

    CERN Document Server

    Coronado, Juan M; Hernández-Alonso, María D; Portela, Raquel

    2013-01-01

    Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970's. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited prompting the research and development of  a number of structural, morphological and chemical modifications of TiO2 , as well as a number of novel photocatalysts with very different composition. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides

  17. Dancing with light advances in photofunctional liquid-crystalline materials

    CERN Document Server

    Yu, Haifeng

    2015-01-01

    Recent progress in this field indicates that integrating photochromic molecules into LC materials enables one to photo-manipulate unique features such as photoinduced phase transition, photocontrolled alignment and phototriggered molecular cooperative motion, leading to their novel applications beyond displays. This book introduces readers to this field, from the primary- to the advanced level in photoresponsive LC materials. The subject is introduced step-by-step, including the basic knowledge of LCs, photoresponsive properties of LCs, and their detailed performances in the form of low-molecu

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  19. Advanced Construction Material for Airfield Pavements and Rapid Runway Repair

    Science.gov (United States)

    1990-12-01

    AIRFIELD PAVEMENTS AND RAPID RUNWAY REPAIR by Vincent Maurice Saroni, B.S.C.E. and David W. Fowler, Ph.D., P.E. T. U. Taylor Professor in...to my family, Betsy and Mark. ADVANCED CONSTRUCTION MATERIAL FOR AIRFIELD PAVEMENTS AND RAPID RUNWAY REPAIR Vincent Maurice Saroni, B.S.C.E. THESIS...85 C.4 Calculation Results of Modulus of Rupture, Density and Percent Voids for Uncompacted Siliceous G ravel

  20. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van

    1983-08-01

    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  1. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  2. Thermoelectric Skutterudite Compositions and Methods for Producing the Same

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Yang, Jian (Inventor); Yan, Xiao (Inventor); He, Qinyu (Inventor); Chen, Gang (Inventor); Hao, Qing (Inventor)

    2014-01-01

    Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.

  3. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and

  4. Powder Metallurgic Synthesis of Mid-temperature Lead-free AgSn18SbTe20 Ther-moelectric Materials and Processing Influence on Thermoelectric Performance%AgSn18SbTe20无铅中温热电材料的粉末冶金法制备工艺及其对性能的影响

    Institute of Scientific and Technical Information of China (English)

    邢志波; 李敬锋

    2015-01-01

    研究了制备p型AgSn18SbTe20无铅热电材料的机械合金化(MA)结合放电等离子烧结(SPS)工艺,调查了MA过程中球磨时间和SPS温度对材料电热传输性能和热电优值的影响,分析了样品的物相和显微结构。研究表明,适当延长球磨时间和降低烧结温度,可以有效提高材料的热电性能。优化制备条件可以实现59%的性能提升,最佳条件(球磨12 h、SPS温度743 K)下制备的样品ZT值在723 K达到0.62。%Lead-free thermoelectric materials gain increasing attention for environmentally friendly power- generation applications derived from waste-heat sources. In this work, mid-temperature lead-free p-type AgSn18SbTe20 thermoelectric materials were fabricated by a process combining mechanical alloying (MA) and spark plasma sintering (SPS). Electrical conductivity, Seeback coefficient, power factor and thermal conductivity of the sintered samples were measured in the temperature range from 300 K to 723 K, and the thermoelectric figure of merit, ZT, values were calculated. The phase structures and morphologies of the samples were observed. The effects of milling time and sintering temperatures on thermoelectric properties were investigated. And the results show that properly prolonging milling time and decreasing sintering temperature can enhance thermoelectric performance of the materials. TheZT value can be enhanced by 59% through optimizing the processing parameters, resulting in a relatively highZT up to 0.62 at 723 K when the materials are milled for 12 h and sintered at 743 K.

  5. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  6. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    Science.gov (United States)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  7. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  8. Marine Thermoelectric Devices and Installations,

    Science.gov (United States)

    thermoelectric devices and units as marine sources of electric power, Prospects for the use of thermoelectric generators in main ship propulsion plants, Electric propulsion complexes for marine thermoelectric plants).

  9. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and

  10. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    Science.gov (United States)

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  11. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  12. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  13. Research Update: Oxide thermoelectrics: Beyond the conventional design rules

    Science.gov (United States)

    Terasaki, Ichiro

    2016-10-01

    Materials' design for high-performance thermoelectric oxides is discussed. Since chemical stability at high temperature in air is a considerable advantage in oxides, we evaluate thermoelectric power factor in the high temperature limit. We show that highly disordered materials can be good thermoelectric materials at high temperatures, and the effects of strong correlation can further enhance the figure of merit by adding thermopower arising from the spin and orbital degrees of freedom. We also discuss the Kelvin formula as a promising expression for strongly correlated materials and show that the calculation based on the Kelvin formula can be directly compared with the cross-layer thermopower of layered materials.

  14. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  15. Review on advanced composite materials boring mechanism and tools

    Science.gov (United States)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  16. Thermoelectric Study of Copper Selenide

    Science.gov (United States)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  17. Advanced Tomography Techniques For Inorganic, Organic, and Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Friedrich, Heiner

    2016-07-01

    Three-dimensional (3D) tomography using electrons and x-rays has pushed our understanding of the micro- and nanoscale spatial organization for biological, organic and inorganic materials. While significant impact has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition and function of complex 3D assemblies across multiple scales. In this article we highlight several frontiers where new developments in tomography are empowering all new science across biology, chemistry and physics. The 5 articles that appear in this MRS Bulletin Issue describe in detail these latest developments in analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.

  18. Status and Trends in Advanced SOI Devices and Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A review of recently explored effects in advanced SOI devices and materials is given. The effects of key device parameters on the electrical and thermal floating body effects are shown for various device architectures.Recent advances in the understanding of the sensitivity of electron and hole transport to the tensile or compressive uniaxial and biaxial strains in thin film SOI are presented. The performance and physical mechanisms are also addressed in multi-gate Si, SiGe and Ge MOSFETs. New hot carrier phenomena are discussed. The effects of gate misalignment or underlap,as well as the use of the back gate for charge storage in double-gate nanodevices and of capacitorless DRAM are also outlined.

  19. Supramolecular polymer adhesives: advanced materials inspired by nature.

    Science.gov (United States)

    Heinzmann, Christian; Weder, Christoph; de Espinosa, Lucas Montero

    2016-01-21

    Due to their dynamic, stimuli-responsive nature, non-covalent interactions represent versatile design elements that can be found in nature in many molecular processes or materials, where adaptive behavior or reversible connectivity is required. Examples include molecular recognition processes, which trigger biological responses or cell-adhesion to surfaces, and a broad range of animal secreted adhesives with environment-dependent properties. Such advanced functionalities have inspired researchers to employ similar design approaches for the development of synthetic polymers with stimuli-responsive properties. The utilization of non-covalent interactions for the design of adhesives with advanced functionalities such as stimuli responsiveness, bonding and debonding on demand capability, surface selectivity or recyclability is a rapidly emerging subset of this field, which is summarized in this review.

  20. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to precisely control the flow of thermal, electrical and thermoelectrical energy by advancing the development of a new class of...

  1. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  2. Magnetic States of the Co-ions in Ca and Y Doped (Bi,Pb2Sr2Co2O8 Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Inge M. Sutjahja

    2012-11-01

    Full Text Available The magnetic states of Cobalt ions in magnetic thermoelectric materials of Bi1.5Pb0.5Ca2-zYzCo2O8 (z = 0, 0.1, 0.2, and 0.3 have been studied from the structural (X-ray diffraction and magnetic susceptibility data. The misfit structure was revealed from refinement of the XRD data, with reduction of the lattice parameters while increasing the Y doping content. Compared with the (Bi,Pb2Sr2Co2O8 parent compound system, the lattice parameter c was reduced significantly, while the misfit degree remained almost the same. The analysis of the magnetic data shows that the Cobalt ions are coupled antiferromagnetically within the CoO2 layers, with the existence of mixed valence states between Co3+ and Co4+ ions. Besides that, the effective magnetic moments of Cobalt ions are almost constant along the Y doping content. Assuming the orbital quenching as commonly found in most transition metal ions, the data are best fitted by taking the low-spin state of Co3+ ions and intermediate spin state of Co4+ ions. We argue qualitatively, that the spin-state transition across the gap are induced by the shrinkage of the charge transfer energy gaps between O 2p and Co levels due to reduction of the ionic spaces between Co and O ions.

  3. Efficient thermoelectric device

    Science.gov (United States)

    Ila, Daryush (Inventor)

    2010-01-01

    A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.

  4. Materials and Component Development for Advanced Turbine Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M A; Pettit, F; Meier, G H; Yanar, M; Helminiak, M; Chyu, M; Siw, S; Slaughter, W S; Karaivanov, V; Kang, B S; Feng, C; Tannebaum, J M; Chen, R; Zhang, B; Fu, T; Richards, G A; Sidwell, T G; Straub, D; Casleton, K H; Dogan, O M

    2008-07-01

    Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ~1425-1760°C (~2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

  5. Application of advanced polymeric materials for controlled release pesticides

    Science.gov (United States)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  6. Second World Materials Summit——Advanced Energy Materials and Sustainable Society Development

    Institute of Scientific and Technical Information of China (English)

    QIAO Lijing

    2009-01-01

    @@ In the current term,new energy will lead the fourth industrial revolution,and development of new energy is conducive to the worlds sustainable economic development.The Second World Materials Summit was held in Suzhou on October 12-15,2009 in such a background.It achieved a successful outcome and made an important declaration:Suzhou Declaration.The theme for the summit was"advanced energy materials and sustainable development of the society".The summit was organized by the Chinese Materials Research Society,and co sponsored by the International Union of Materials Research Society,the European Materials Research Society,as well as the Materials Research Society.

  7. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  8. Notes on Computational Methodology and Tools of Thermoelectric Energy Systems

    DEFF Research Database (Denmark)

    Chen, Min; Bach, Inger Palsgaard; Rosendahl, Lasse

    2007-01-01

    The SPICE model allows the concurrent simulation of thermoelectric devices and application electric sub-models. It is an important step to implement the thermoelectric modeling at the system level. In this paper, temperature dependent material properties in the SPICE model, temperature and heat...

  9. Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Chuang

    2016-04-01

    Full Text Available The intermetallic compounds formed during the diffusion soldering of a Bi2Te2.55Se0.45 thermoelectric material with a Cu electrode are investigated. For this bonding process, Bi2Te2.55Se0.45 was pre-coated with a 1 μm Sn thin film on the thermoelectric element and pre-heated at 250 °C for 3 min before being electroplated with a Ni barrier layer and a Ag reaction layer. The pre-treated thermoelectric element was bonded with a Ag-coated Cu electrode using a 4 μm Sn interlayer at temperatures between 250 and 325 °C. The results indicated that a multi-layer of Bi–Te–Se/Sn–Te–Se–Bi/Ni3Sn4 phases formed at the Bi2Te2.55Se0.45/Ni interface, ensuring sound cohesion between the Bi2Te2.55Se0.45 thermoelectric material and Ni barrier. The molten Sn interlayer reacted rapidly with both Ag reaction layers to form an Ag3Sn intermetallic layer until it was completely exhausted and the Ag/Sn/Ag sandwich transformed into a Ag/Ag3Sn/Ag joint. Satisfactory shear strengths ranging from 19.3 and 21.8 MPa were achieved in Bi2Te2.55Se0.45/Cu joints bonded at 250 to 300 °C for 5 to 30 min, dropping to values of about 11 MPa for 60 min, bonding at 275 and 300 °C. In addition, poor strengths of about 7 MPa resulted from bonding at a higher temperature of 325 °C for 5 to 60 min.

  10. THERMOELECTRIC POWER MODULES.

    Science.gov (United States)

    MODULES (ELECTRONICS), GENERATORS, THERMOELECTRICITY, PERFORMANCE(ENGINEERING), TABLES(DATA), HEAT, ALUMINUM, WEIGHT, SEMICONDUCTORS, SILICON, GERMANIUM, MEASUREMENT, VOLTAGE, ELECTRICAL RESISTANCE, POWER, TEMPERATURE, TIME.

  11. Transient Thermoelectric Solution Employing Green's Functions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  12. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N.; Testardi, L. [TecOne, Inc., Tallahassee, FL (United States); Niculescu, H. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida A and M Univ./Florida State Univ., Tallahassee, FL (United States) Coll. of Engineering; Schlenoff, J. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida State Univ., Tallahassee, FL (United States). Chemistry Dept.

    1998-12-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal paths can be orthogonal due to off-diagonal thermoelectricity (ODTE). The authors discuss the benefits of this form of thermoelectricity for device applications and describe a search for suitable thermoelectric properties in the air-stable conducting polymers polyaniline and polypyrrole. They find, at 300K for diagonal (ordinary) thermoelectricity (DTE), the general correlation that the logarithm of the electrical conductivity varies linearly with the Seebeck coefficient on doping, but with a proportionality in excess of a prediction from theory. The correlation is unexpected in its universality and unfavorable in its consequences for applications in DTE and ODTE. A standard model suggests that conduction by carriers of both signs occurs in these polymers, which thus leads to reduced thermoelectric efficiency. They also discuss polyacetylene (which is not air-stable), where this ambipolar conduction does not occur, and where properties seem more favorable for thermoelectricity.

  13. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  14. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  15. Advanced Hot Section Materials and Coatings Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  16. High-Pressure Design of Advanced BN-Based Materials.

    Science.gov (United States)

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  17. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  18. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  19. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  20. Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2017-01-01

    Full Text Available Microwave absorbing materials (MAMs are paving the way for exciting applications in electromagnetic (EM pollution precaution and national defense security, as they offer an advanced alternative to conventional reflection principles to fundamentally eliminate the EM waves. Conjugated polymer (CP-based composites appear as a promising kind of MAM with the desirable features of low density and high performance. In this review, we introduce the theory of microwave absorption and summarize recent advances in the fabrication of CP-based MAMs, including rational design of the microstructure of pure conjugated polymers and tunable chemical integration with magnetic ferrites, magnetic metals, transition metal oxides, and carbon materials. The key point of enhancing microwave absorption in CP-based MAMs is to regulate their EM properties, improve matching of characteristic impedance, and create diversified loss mechanisms. The examples presented in this review will provide new insights into the design and preparation of CP-based composites that can satisfy the high demands of the oncoming generation of MAMs.