WorldWideScience

Sample records for advanced thermal processing

  1. Advanced thermally assisted surface engineering processes

    CERN Document Server

    Chattopadhyay, Ramnarayan

    2007-01-01

    Preface. Acknowledgements. 1: Wear, Surface Heat and Surface Engineering. 2: Plasma Assisted Thermal Processes. 3: Ion Beam Processes. 4: Electron Beam Processes. 5: Microwave Assisted Surface Modification Processes. 6: Laser Assisted Surface Engineering Processes. 7: Solar Energy for Surface Modifications. 8: Combustion Processes for Surface Modification. 9: Friction Weld Surfacing. 10: Induction Surface Modification Processes. 11: Surfacing by Spark Deposition Processes. 12: Arc Assisted Advanced Surface Engineering Processes. 13: Hot Isostatic Press. 14: Fluid Bed Processes. 15: P

  2. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  3. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  4. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    International Nuclear Information System (INIS)

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production

  5. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    International Nuclear Information System (INIS)

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects

  6. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Kit Heung, L.; Sessions, H.T. [Savannah River National Laboratory - SRNL, Aiken, SC (United States)

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  7. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  8. ADVANCED COMPUTATIONALMETHODS FOR COMPLEX SIMULATION OF THERMAL PROCESSES IN POWER ENGINEERING

    Directory of Open Access Journals (Sweden)

    Risto V. Filkoski

    2007-04-01

    Full Text Available The overall frame and principal steps of complex numerical modelling of thermal processes in power boiler furnaces on pulverised coal with tangential disposition of the burners are presented in the paper. Computational fluid dynamics (CFD technique is used as a tool to perform comprehensive thermal analysis in two test cases. The methodology for creation of three-dimensional models of boiler furnaces is briefly described. Standard steady k- model is employed for description of the turbulent flow. The coupling of continuity and momentum is achieved by the SIMPLEC method. Coal combustion is modelled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Thermal radiation is computed by means of the simplified P-N model, based on expansion of the radiation intensity into an orthogonal series of spherical harmonics.Comparison between the simulation predictions and available site measurements leads to a conclusion that the model produces realistic insight into the furnace processes. Qualitative agreement of the results indicates reasonability of the calculations and validates the employed sub-models. The described test cases and other experiences with CFD modelling stress the advantages over a purely field data study, such as the ability to quickly and cheaply analyse a variety of design options without actually modifying the object and the availability of significantly more data to interpret the results.

  9. Advanced solar thermal receiver technology

    Science.gov (United States)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  10. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  11. Advanced materials processing

    International Nuclear Information System (INIS)

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni3Al and MoSi2. Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  12. Advanced exergy analysis and exergoeconomic performance evaluation of thermal processes in an existing industrial plant

    International Nuclear Information System (INIS)

    Highlights: • Exergoeconomic analysis of a complex industrial energy supply plant is presented. • Unavoidable exergy destruction is used to identify efficiency increase potential. • Measures for plant improvements are evaluated with respect to efficiency and costs. • Measures result with higher exergy efficiency and reduced fuel and product costs. - Abstract: Exergy analysis and exergoeconomics are often used to evaluate industrial energy systems performance from the thermodynamic and economic points of view. While the classical exergy analysis can be used to recognize the sources of inefficiency and irreversibilities, so called advanced exergy analysis is convenient for identifying real potential for thermodynamic improvements of the system by splitting exergy destruction into avoidable and unavoidable parts. In this paper, the advanced exergy analysis is used to identify performance critical components and the potential for exergy efficiency improvement of a complex industrial energy supply plant. This plant is a part of a rubber factory and its role is to provide steam, compressed air and cooling water to the production facilities, as well as hot water for space heating and sanitary use. The plant is first analyzed as is and the avoidable (and the unavoidable) part of exergy destruction is identified for each observed component. Then, the measures for removing the avoidable destruction are defined. Finally, the plant is analyzed as if the measures were implemented and avoidable losses eliminated. Numerical analysis is based on real data, some of which are collected during on site measurements. Large system of nonlinear and linear equations is defined and solved numerically using the Engineering Equation Solver. Results of the presented analysis show the difference in thermodynamic and economic operational parameters of the plant for the cases without and with the efficiency measures implemented, i.e. the current state and the state with the avoidable

  13. Advanced Thermally Stable Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  14. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  15. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  16. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the Land Processes DAAC for ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) aboard the...

  17. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  18. Advanced Biosignal Processing

    CERN Document Server

    Nait-Ali, Amine

    2009-01-01

    Presents the principle of many advanced biosignal processing techniques. This title introduces the main biosignal properties and the acquisition techniques. It concerns one of the most intensively used biosignals in the clinical routine, namely the Electrocardiogram, the Elektroenzephalogram, the Electromyogram and the Evoked Potential

  19. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  20. Thermal radiation processes

    NARCIS (Netherlands)

    Kaastra, J.S.; Paerels, F.; Durret, F.; Schindler, S.; Richter, P.

    2008-01-01

    We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed

  1. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  2. Advances in machining process modeling

    International Nuclear Information System (INIS)

    Ever increasing speed and affordability of computing resources together with the advances in the modeling techniques made it possible to use the numerical models like finite element method (FEM), to simulate the metal cutting processes numerically. This paper explains the recent technological advances made in the commercial DEFORMTM system to facilitate the modeling of metal cutting process. During the first phase of this work a 2D system has been developed which assumes orthogonal cutting conditions. The second phase of this work has resulted in the development of a modeling system for 3D machining processes with main focus on turning. The modeling tools developed in this project utilize a hybrid procedure including both transient and steady state approaches. Automated remeshing procedure is being used with great success. Multiple coating layers on the insert can be modeled to study their thermal effects. Elastic and thermal response of the insert during the machining process can also be modeled using this system. The Usui's wear model has also been implemented in the system to study the tool wear. The system developed has been validated with various results reported from actual cutting tests and comparisons are found to be reasonably accurate

  3. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  4. Thermal radiation processes

    OpenAIRE

    Kaastra, J. S.; Paerels, F.; Durret, F; S. Schindler; Richter, P.

    2008-01-01

    We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed and several practical examples are given that illustrate the most important diagnostic features in the X-ray spectra.

  5. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  6. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  7. Advances in speech processing

    Science.gov (United States)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  8. Advanced powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  9. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    OpenAIRE

    Engin GÜRTEKİN; Nusret ŞEKERDAĞ

    2008-01-01

    Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple ...

  10. Advanced Spacecraft Thermal Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  11. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  12. Study of thermal stability for tertiary pyridine ion exchange resin and anti-corrosion property of structural material toward eluents used in the advanced ORIENT cycle process

    International Nuclear Information System (INIS)

    A multi-functional separation process is proposed as one of the technologies for implementing the Adv.-ORIENT (Advanced Optimization by Recycling Instructive ElemeNTs) Cycle concept. The tertiary pyridine-type anion exchange resin (TPR) embedded in silica beads (silica-supported TPR) was demonstrated suitable for the separation process of actinides from spent fuel. In this process, hydrochloric acid (HCl) and a mixture of nitric acid (HNO3) and methanol (MeOH) are used as eluents. In order to apply this process to an engineering plant scale, two important issues must be evaluated to prove the system suitability. One is an environmental aspect represented by the use of HCl solution which is corrosive to many materials. The other is clarification of the reactive safety of silica-supported TPR and the HNO3-MeOH solvent mixture. Four types of metals, Ta, Zr, Nb, and Hastelloy-B (28%Mo-Ni) were selected as candidate materials which are anti-corrosive toward HCl. Corrosion experiments were conducted in HCl type simulated high level liquid waste (SHLLW) solution at room temperature for a maximum 720 h and at 90 deg C for 336 h. Ta showed an all-round anti-corrosion property in HCl type SHLLW solution, and Hastelloy-B was only acceptable at room temperature. Thermal analysis by differential scanning calorimetry was done to investigate the thermal stability of silica-supported TPR-NO3/MeOH/HNO3 mixtures. Heating experiment results on a gram scale were also obtained and evaluated to determine the conditions necessary to avoid runaway reactions. As a result, it was confirmed that a vigorous exothermic reaction can be avoided by controlled decrease of temperature. (author)

  13. IMPULSE - advanced nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenok, J.F. III; Wett, J.F. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1993-12-31

    The IMPULSE nuclear thermal rocket concept provides an evolutionary step toward high thrust-to-weight and specific impulse over a wide operating range. Most of the components and features of the concept are based on demonstrated or proven technology from the NER VA/Rover program. The performance increase is due to the use of a new solid nuclear fuel shape. The new fuel shape provides a large flow area while maintaining flow control and eliminating hot spots due to fuel-to-fuel contact. The control and eliminating hot spots due to fuel-to-fuel contact. The IMPULSE reactor utilizes a multi-pass, series flow configuration to provide excess turbine power while improving the thermal efficiency of the overall system. This configuration also provides a large area for moderator. The IMPULSE concept can provide a specific impulse of up to 1000 seconds and trust to weight ratios approaching 40. The improved performance will reduce the Initial Mass In Low Earth Orbit (IMLEO) and provide a consequent reduction in launch costs and logistics problems.

  14. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  15. Unraveling Hydrocarbon Microseepages in Onshore Basins Using Spectral-Spatial Processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    Science.gov (United States)

    Lammoglia, Talita; de Souza Filho, Carlos Roberto

    2013-05-01

    This study focuses on the spectral characterization of superficial effects caused by natural gaseous hydrocarbon (HC) escapes (microseepages) on onshore basins and means to detect the phenomena using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The Northern Tucano basin (NTB) (Brazil) displays archetypal onshore microseepages, and it is used here as a case study area. Regional HC geochemical data yielded from NTB soil samples helped to outline the strategies for imagery processing and assessment of results. We firstly devised a generic detection model for onshore basins in which microseepages indicated by HC geochemistry should spatially match a number of surface expressions with key remote sensing signatures, such as bleached soil and rocks (i.e., reduction in Fe3+ to Fe2+), concentration of specific clays (kaolinite), and carbonates (siderite) and geobotanical markers. These evidences guided the use of remote sensing data and information extraction techniques to find more sites favorable to host HC microseepages in the NTB. ASTER data processed through spectral mixing analysis and supervised and unsupervised neural network systems highlighted sites where features predicted in the detection model concurred seamlessly with geochemical anomalies. The approach also revealed other sites with similar characteristics, but for which no geochemical data exist. These sites are taken as new potential targets for the presence of microseepages and possibly HC reservoirs. The research demonstrated the potential of remote sensing data and spectral-spatial methodologies for economical, onshore detection of HCs for exploration purposes. Potential ramifications of the study include indirect detection of gaseous HC reservoirs in terrestrial planets (fostering the search for signs of life) and depiction of non-negligible, replenishable continental sources of HC emissions on Earth that may contribute to global warming.

  16. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  17. Nuclear Thermal Propulsion for Advanced Space Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  18. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  19. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  20. Advanced Thermal Hydraulics Design of Commercial SFRs

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe pool type sodium cooled fast reactor, which is in an advanced stage of construction in India. As a follow-up to PFBR, six commercial sodium cooled fast reactors (Commercial SFR) of similar capacity are to be constructed, wherein the focus is improved economy and enhanced safety. These reactors are envisaged to have twin-unit concept. Design and construction experiences from PFBR provided the motivation to achieve an optimum design for the Commercial SFR with significant design changes. Some of the changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus, (iii) dome shaped roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. Advanced computational fluid dynamic studies have been performed towards thermal hydraulic design of these components. This paper covers thermal hydraulic design validation of the chosen options, including hot pool thermal hydraulics, influence of control plug shape on pool hydraulics, flow requirement for main vessel cooling, safety analysis of primary pipe rupture event and thermal management top shield and reactor vault. (author)

  1. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  2. Development of demonstration advanced thermal reactor

    International Nuclear Information System (INIS)

    The design of the advanced thermal demonstration reactor with 600 MWe output was started in 1975. In order to make the compact core, 648 fuel assemblies, each comprising 36 fuel rods, were used, and the mean channel output was increased by 20% as compared with the prototype reactor. The heavy water dumping mechanism for the calandria was abolished. Advanced thermal reactors are suitable to burn plutonium, since the control rod worth does not change, the void reactivity coefficient of coolant shifts to the negative side, and the harmful influence of high order plutonium is small. The void reactivity coefficient is nearly zero, the fluctuation of output in relation to pressure disturbance is small, and the local output change of fuel by the operation of control rods is small, therefore, the operation following load change is relatively easy. The coolant recirculation system is of independent loop construction dividing the core into two, and steam and water are separated in respective steam drums. At present, the rationalizing design is in progress by the leadership of the Power Reactor and Nuclear Fuel Development Corp. The outline of the demonstration reactor, the reactor construction, the nuclear-thermal-hydraulic characteristics and the output control characteristics are reported. (Kako, I.)

  3. Rapid thermal processing science and technology

    CERN Document Server

    Fair, Richard B

    1993-01-01

    This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other

  4. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  5. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  6. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  7. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  8. Thermal fatigue durability for advanced propulsion materials

    Science.gov (United States)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  9. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  10. Thermal effects in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  11. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  12. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  13. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  14. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    Science.gov (United States)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  15. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  16. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  17. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  18. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  19. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    wires / Shuling Zhang, Dawei Xing and Jianfei Sun -- Effect of Yb addition on the microstructure and tensile properties of Mg-5Al alloy / Su Mi Jo ... [et al.] -- Finite element analysis of the warm deep-drawing process of magnesium matrix composite reinforced with CNTs / Li Weixue and Zhang Hujun -- Effect of ultrasonic shot peening on the microstructural evolution and mechanical properties of SUS304 / Deokgi Ahn ... [et al.] -- Microstructure of Fe-Cr surface infiltrated composite layer on gray iron substrate / Gui-Rong Yang ... [et al.] -- Effect of carbon contents and Ti addition on the microstructure of ultra-low carbon steel / Yinsheng He ... [et al.].Microstructure and mechanical property of laser direct manufacturing metal thin wall cylinder / X. D. Zhang ... [et al.] -- Evolution of morphology and composition of the carbides in Cr-Mo-V steel after service exposure / Jiling Dong ... [et al.] -- Thermal annealing treatment to achieve switchable and reversible wettability on ZnO nanowires surface / Changsong Liu ... [et al.] -- Physical and electrochemical properties of nanostructured nickel sulfide as a cathode material for lithium ion batteries / Seong-Ju Sim ... [et al.] -- Effect of heat treatment on fatigue behavior of biomedical Ni-Ti alloy wires under ultrasonic conditions / Zhou Huimin ... [et al.] -- The electrochemical behavior of Mg-Ce-Zn system / Kyung Chul Park ... [et al.] -- Fabrication of highly-oleophobic and superhydrophobic surfaces on microtextured Al substrates / Changsong Liu ... [et al.] -- Effect of cooling rate on microstructure and properties of Fe3Al intermetallics / Li Ya-Min, Liu Hong-Jun and Hao Yuan -- Calculation of laser transformation hardening with a circle beam / Binggong Yan and Jichang Liu -- The application of the unified homogeneous periodical boundary conditions to the prediction of effective elastic stiffness in a widespread field / Dong Yu, Hong Yang and Dong-Mei Luo -- Cyclic visco-plastic behavior of API X80 line

  20. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  1. Radiation Processing of Advanced Composite Materials

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and γ-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose

  2. Nighttime activity of moving objects, their mapping and statistic making, on the example of applying thermal imaging and advanced image processing to the research of nocturnal mammals

    Science.gov (United States)

    Pregowski, Piotr; Owadowska, Edyta; Pietrzak, Jan; Zwolenik, Slawomir

    2005-09-01

    The paper presents method of acquiring a new form of statistical information about the changes at scenery, overseen by thermal imaging camera in static configuration. This type of imagers reach uniquely high efficiency during nighttime surveillance and targeting. The technical issue we have solved, resulted from the problem: how to verify the hypothesis that small, nocturnal rodents, like bank voles, use common paths inside their range and that they form a common, rather stable system? Such research has been especially difficult because the mentioned mammals are secretive, move with various speed and due to low contrast to their natural surroundings - as leaves or grass - nearly impossible for other kind of observations from a few meters distance. The main advantage of the elaborated method showed to be both adequately filtered long thermal movies for manual analyses, as well as auto-creation of the synthetic images which present maps of invisible paths and activity of their usage. Additional file with logs describing objects and their dislocations as the ".txt" files allows various, more detailed studies of animal behavior. The obtained results proved that this original method delivers a new, non-invasive, powerful and dynamic concept of solving various ecological problems. Creation of networks consisted of uncooled thermal imagers - of significantly increased availability - with data transmissions to digital centers allows to investigate of moving - particularly heat generated - objects in complete darkness, much wider and much more efficiently than up today. Thus, although our system was elaborated for ecological studies, a similar one can be considered as a tool for chosen tasks in the optical security areas.

  3. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  4. Electron processing of fibre-reinforced advanced composites

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author)

  5. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  6. Advances in imaging with thermal neutrons

    International Nuclear Information System (INIS)

    Experiments have been conducted using a modern high-resolution 3He two-dimensional position-sensitive detection chamber combined with coded apertures to produce images by means of thermal neutrons. These images are comparable to those produced by gamma ray imaging, but with some important differences. The detector is much less sensitive to the fast neutrons than to the thermalized component. Therefore, assuming that the neutron source has a fission spectrum, the brightest regions in an image represent moderating material in close proximity to the source, rather than the source itself. Earlier experiments have shown that useful contrast can be produced with thermal neutrons using thin masks made of metallic Cd sheet, but the resolution in those experiments was detector-limited at a few centimeters per pixel. The newer detector can resolve a line image with a fwhm resolution of about 1 mm. The technique could in principle be used in re-entry vehicle on-site inspections to count multiple nuclear warheads. Thermal neutrons carry no detailed spectral information, so their detection should not be as intrusive as gamma ray imaging. This technique can be used in nuclear materials management and arms control

  7. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes...

  8. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes...

  9. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  10. Thermal hydraulic R and D of Chinese advanced reactors

    International Nuclear Information System (INIS)

    The Chinese government sponsors a program of research, development, and demonstration related to advanced reactors, both small modular reactors and larger systems. These advanced reactors encompass innovative reactor concepts, such as CAP1400 - Chinese large advanced passive pressurized water reactor, Hualong one - Chinese large advanced active and passive pressurized water reactor, ACP100 - Chinese small modular reactor, SCWR- R and D of super critical water-cooled reactor in China, CLEAR - Chinese lead-cooled fast reactor, TMSR - Chinese Thorium molten-salt reactor. The thermal hydraulic R and D of those reactors are summarised. (J.P.N.)

  11. Thermal synthesis apparatus and process

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, James R.; Detering, Brent A.

    2004-11-23

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  12. Solidification process control for advanced superalloys

    Science.gov (United States)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  13. Advancements in Big Data Processing

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration

    2012-01-01

    The ever-increasing volumes of scientific data present new challenges for Distributed Computing and Grid-technologies. The emerging Big Data revolution drives new discoveries in scientific fields including nanotechnology, astrophysics, high-energy physics, biology and medicine. New initiatives are transforming data-driven scientific fields by pushing Bid Data limits enabling massive data analysis in new ways. In petascale data processing scientists deal with datasets, not individual files. As a result, a task (comprised of many jobs) became a unit of petascale data processing on the Grid. Splitting of a large data processing task into jobs enabled fine-granularity checkpointing analogous to the splitting of a large file into smaller TCP/IP packets during data transfers. Transferring large data in small packets achieves reliability through automatic re-sending of the dropped TCP/IP packets. Similarly, transient job failures on the Grid can be recovered by automatic re-tries to achieve reliable Six Sigma produc...

  14. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  15. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  16. Advanced Electrorefining Process at KAERI

    International Nuclear Information System (INIS)

    In order to enhance the throughput of a pyro-processing in which electrochemical processes are mostly engaged, the design of a continuous concept is required. The graphite cathode in the electro-refiner enables the uranium deposit on the cathodes to be stripped off spontaneously, resulting in a continuous reaction. The collected uranium deposits at the bottom of the inner cone of the reactor are transferred by a conveyor. The residuals in the anode basket after the uranium is depleted are noble metals. These are also collected at the bottom of the outer shell of the reactor, and conveyed from the reactor for a further treatment. This work addresses the design of the electro-refiner for a continuous operation. The behavior of particles such as uranium dendrites or noble metals was analyzed to achieve the proper operating conditions. The operating conditions for the cathode processor in which molten salt is distilled were also investigated. (authors)

  17. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  18. Advanced solidification processing of an industrial gas turbine engine component

    Science.gov (United States)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  19. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  20. Advanced oxidation processes: overall models

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Curco, D.; Addardak, A.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica. Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    Modelling AOPs implies to consider all the steps included in the process, that means, mass transfer, kinetic (reaction) and luminic steps. In this way, recent works develop models which relate the global reaction rate to catalyst concentration and radiation absorption. However, the application of such models requires to know what is the controlling step for the overall process. In this paper, a simple method is explained which allows to determine the controlling step. Thus, it is assumed that reactor is divided in two hypothetical zones (dark and illuminated), and according to the experimental results, obtained by varying only the reaction volume, it can be decided if reaction occurs only in the illuminated zone or in the all reactor, including dark zone. The photocatalytic degradation of phenol, by using titania degussa P-25 as catalyst, is studied as reaction model. The preliminary results obtained are presented here, showing that it seems that, in this case, reaction only occurs in the illuminated zone of photoreactor. A model is developed to explain this behaviour. (orig.)

  1. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  2. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  3. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  4. Advances In Mesoscale Thermal Management Technologies for Microelectronics

    OpenAIRE

    Garimella, S V

    2005-01-01

    This paper presents recent advances in a number of novel, high-performance cooling techniques for emerging electronics applications Critical enabling thermal management technologies covered include microchannel transport and micropumps, jet impingement, miniatur flat heat pipes, transient phase change energy storage systems, piezoelectric fans, and prediction of interface contact conductance. (c) 2005 Elsevier Ltd. All rights reserved.

  5. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  6. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    Energy Technology Data Exchange (ETDEWEB)

    Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  7. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U3O8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO2 pellet into U3O8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U3O8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO2+x granules into UO2 granules at 1000 .deg. C in an atmosphere of 4%H2-Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  8. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  9. Recent advances on thermal analysis of stretchable electronics

    Directory of Open Access Journals (Sweden)

    Yuhang Li

    2016-01-01

    Full Text Available Stretchable electronics, which offers the performance of conventional wafer-based devices and mechanical properties of a rubber band, enables many novel applications that are not possible through conventional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1–2 °C temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.

  10. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  11. Advanced Thermal Interface Material Systems for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M&P) engineering technology to reduce thermal resistance between space...

  12. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...... of these processes is, in general, thermally dependent, and leads either to enhancement or quenching of the luminescence with increasing temperature. Previous studies have measured the combined thermal activation characteristics of all three processes, and show a strong dependence on stimulation energy....... In this article, an initial attempt is made to isolate only the recombination part of the luminescence cycle, and determine its thermal characteristics separately. A Variety of luminescence transitions are examined in a range of both alkali and plagioclase feldspars; three distinct emission types are identified...

  13. Economic analysis of thermal solvent processes

    International Nuclear Information System (INIS)

    Vapour extraction (VAPEX) uses horizontal well pairs and a gaseous solvent to mobilize the oil. Hybrid solvent processes inject a light hydrocarbon solvent in addition to sufficient amounts of steam to vaporize the solvent. This paper reviewed various laboratory model experiments that evaluated VAPEX and solvent-based processes for the recovery of heavy oil or bitumen. The project compared a VAPEX process, a thermal solvent reflux process and a hybrid-solvent SAGD process using scaled laboratory models. Several experimental models were used. The first high-pressure thermal solvent experiment was conducted with a laboratory model designed to scale a 20 m thick Burnt Lake reservoir. Propane was used as the solvent. The second sequence of experiments scaled a range of processes from VAPEX to hybrid solvents for an Athabasca bitumen reservoir using a sealed can type of model confined by a gaseous overburden with propane as the solvent. The third experiment was a hybrid solvent experiment in which propane and steam were injected simultaneously into the injector well. The final experiment was a propane-steam hybrid experiment at a higher steam injection rate. The aim of the study was to evaluate the processes, build a database of experimental performance and to determine whether any single process had a significant economic advantage. It was concluded that the lowest cost process for Athabasca bitumen was the thermal solvent hybrid process followed by low pressure SAGD. The thermal solvent experiment using hot propane injection recovered heavy oil at costs competitive to SAGD. Many of the experiments suggested a process life longer than 15 years, as the high viscosity of Athabasca bitumen and the resulting low diffusivity resulted in a slower oil recovery process. 5 refs., 3 tabs., 16 figs

  14. Process development of thermal hydrodechlorination. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    ten Kate, A.J.B.

    1993-10-04

    The properties that make chlorinated compounds so attractive during their economic lifetime are closely related to, if not similar to, the properties causing the environmental problems. A very promising method for proper chlorinated waste treatment is thermal hydrodechlorination. This process turns chlorinated waste into HC1, that might be recycled, and into organics which can be used as a fuel. The objective of the study underlying this thesis is scaling up thermal hydrodechlorination to a waste destruction process at industrial scale. To get answers to the unknown two installations have been raised: a mini pilot plant, and a bench scale installation.

  15. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    Science.gov (United States)

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  16. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    Science.gov (United States)

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  17. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  18. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  19. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  20. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  1. Advanced thermal hydraulic method using 3x3 pin modeling

    International Nuclear Information System (INIS)

    Advanced thermal hydraulic methods are being developed as part of the US DOE sponsored Nuclear Hub program called CASL (Consortium for Advanced Simulation of LWRs). One of the key objectives of the Hub program is to develop a multi-physics tool which evaluates neutronic, thermal hydraulic, structural mechanics and nuclear fuel rod performance in rod bundles to support power uprates, increased burnup/cycle length and life extension for US nuclear plants. Current design analysis tools are separate and applied in series using simplistic models and conservatisms in the analysis. In order to achieve key Nuclear Hub objectives a higher fidelity, multi-physics tool is needed to address the challenge problems that limit current reactor performance. This paper summarizes the preliminary development of a multi-physics tool by performing 3x3 pin modeling and making comparisons to available data. (author)

  2. Thermal Storage Advanced Thruster System (TSATS) Experimental Program

    Science.gov (United States)

    Rose, M. Frank; Lisano, Michael E., II

    1991-01-01

    The Thermal Storage Advanced Thruster System (TSATS) rocket test stand is completely assembled and operational. The first trial experimental runs of a low-energy TSATS prototype rocket was made using the test stand. The features of the rocket test stand and the calibration of the associated diagnostics are described and discussed. Design and construction of the TSATS prototype are discussed, and experimental objectives, procedures, and results are detailed.

  3. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  4. Shielding analysis of the advanced voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Park, J. J.; Lee, J. W.; Shin, J. M.; Park, G. I.; Song, K. C

    2008-09-15

    This report deals describes how much a shielding benefit can be obtained by the Advanced Voloxidation process. The calculation was performed with the MCNPX code and a simple problem was modeled with a spent fuel source which was surrounded by a concrete wall. The source terms were estimated with the ORIGEN-ARP code and the gamma spectrum and the neutron spectrum were also obtained. The thickness of the concrete wall was estimated before and after the voloxidation process. From the results, the gamma spectrum after the voloxidation process was estimated as a 67% reduction compared with that of before the voloxidation process due to the removal of several gamma emission elements such as cesium and rubidium. The MCNPX calculations provided that the thickness of the general concrete wall could be reduced by 12% after the voloxidation process. And the heavy concrete wall provided a 28% reduction in the shielding of the source term after the voloxidation process. This can be explained in that there lots of gamma emission isotopes still exist after the advanced voloxidation process such as Pu-241, Y-90, and Sr-90 which are independent of the voloxidation process.

  5. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    Science.gov (United States)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  6. Advances in image processing and pattern recognition

    International Nuclear Information System (INIS)

    The conference papers reported provide an authorative and permanent record of the contributions. Some papers are more theoretical or of review nature, while others contain new implementations and applications. They are conveniently grouped into the following 7 fields (after a general overview): Acquisition and Presentation of 2-D and 3-D Images; Static and Dynamic Image Processing; Determination of Object's Position and Orientation; Objects and Characters Recognition; Semantic Models and Image Understanding; Robotics and Computer Vision in Manufacturing; Specialized Processing Techniques and Structures. In particular, new digital image processing and recognition methods, implementation architectures and special advanced applications (industrial automation, robotics, remote sensing, biomedicine, etc.) are presented. (Auth.)

  7. Advanced thermal management needs for Lunar and Mars missions

    International Nuclear Information System (INIS)

    Significant improvements in thermal management technologies will be required to support NASA's planned Lunar and Mars missions. The developments needed include the application of advanced materials to reduce radiator system masses, enhanced survivability, and the use of alternative working fluids. Current thermal management systems utilize one of two heat rejection alternatives; either single phase pumped loops, or two phase heat pipes constructed with thick walled metal casings. These two technologies have proven themselves to be reliable performers in the transport and rejection of waste heat from spacecraft. As thermal management needs increase with increased power consumption and activity required on spacecraft, these metal based thermal management systems will become mission limiting. Investigations into the use of light weight ceramic materials for high temperature thermal management systems have been conducted by NASA, the Department of Energy, and the Department of Defense since the early 1980s, with results showing that significant mass savings can be obtained by replacing some of the metallic functions with ceramic materials

  8. Micropollutant removal by advanced oxidation processes

    OpenAIRE

    Autin, Olivier

    2012-01-01

    The use of pesticides in agriculture has been associated to high concentrations found in surface waters and ultimately to the tightening of drinking water regulations. Whilst traditional granular activated carbon filtration or ozone are effective barriers for the large majority of pesticides, new polar pesticides such as clopyralid or metaldehyde are not readily removed by such technologies. The use of advanced oxidation processes (AOPs) is suggested as an effective alternative...

  9. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  10. Advanced oxidation process sanitization of eggshell surfaces.

    Science.gov (United States)

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  11. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  12. Advanced concepts in ground thermal energy storage systems

    Science.gov (United States)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  13. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  14. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  15. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    Science.gov (United States)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  16. Advancement in thermal interface materials for future high-performance electronic applications. Part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Jakaboski, Blake Elaine; Wong, Chung-Nin Channy; Huber, Dale L.; Rightley, Michael J.; Emerson, John Allen

    2006-02-01

    As electronic assemblies become more compact and increase in processing bandwidth, escalating thermal energy has become more difficult to manage. The major limitation has been nonmetallic joining using poor thermal interface materials (TIM). The interfacial, versus bulk, thermal conductivity of an adhesive is the major loss mechanism and normally accounts for an order magnitude loss in conductivity per equivalent thickness. The next generation TIM requires a sophisticated understanding of material and surface sciences, heat transport at submicron scales, and the manufacturing processes used in packaging of microelectronics and other target applications. Only when this relationship between bond line manufacturing processes, structure, and contact resistance is well-understood on a fundamental level will it be possible to advance the development of miniaturized microsystems. This report examines using thermal and squeeze-flow modeling as approaches to formulate TIMs incorporating nanoscience concepts. Understanding the thermal behavior of bond lines allows focus on the interfacial contact region. In addition, careful study of the thermal transport across these interfaces provides greatly augmented heat transfer paths and allows the formulation of very high resistance interfaces for total thermal isolation of circuits. For example, this will allow the integration of systems that exhibit multiple operational temperatures, such as cryogenically cooled detectors.

  17. Recent advances in nonlinear speech processing

    CERN Document Server

    Faundez-Zanuy, Marcos; Esposito, Antonietta; Cordasco, Gennaro; Drugman, Thomas; Solé-Casals, Jordi; Morabito, Francesco

    2016-01-01

    This book presents recent advances in nonlinear speech processing beyond nonlinear techniques. It shows that it exploits heuristic and psychological models of human interaction in order to succeed in the implementations of socially believable VUIs and applications for human health and psychological support. The book takes into account the multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s foreword). To this aim, the book is organized in 6 sections, each collecting a small number of short chapters reporting advances “inside” and “outside” themes related to nonlinear speech research. The themes emphasize theoretical and practical issues for modelling socially believable speech interfaces, ranging from efforts to capture the nature of sound changes in linguistic contexts and the timing nature of speech; labors to identify and detect speech features that help in the diagnosis of psychological and neuronal disease, attempts to improve the effectiveness and performa...

  18. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  19. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  20. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  1. Advanced solar thermal technologies for the 21st century

    Science.gov (United States)

    Kohout, L. L.; Perez-Davis, M. E.

    1986-01-01

    The paper considers the present status of solar thermal dynamic space power technologies and projects the various attributes of these systems into the future, to the years 2000 and 2010. By the year 2000, collector weights should decrease from 1.25 kg/sq m (1985 value) to about 1.0 kg/sq m. The specific weight is also expected to decrease from 6.0 kg/kw. By the year 2010, slight improvements in the free piston Stirling energy conversion system are postulated with efficiencies reaching 32 percent. In addition, advanced concentrator concepts should be operational.

  2. Isoconversional kinetics of thermally stimulated processes

    CERN Document Server

    Vyazovkin, Sergey

    2015-01-01

    The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understand

  3. Optimisation of the HVOF thermal spray process for coating, forming and repair of components

    OpenAIRE

    Tan, Jit Cheh

    1997-01-01

    The High Velocity Oxy-Fuel (HVOF) Thermal Spraying technique has been widely adopted in many industries due to its flexibility, and cost effectiveness in producing superior quality of coating. The demand of high-technology industries and the availability of new advanced materials have generated major advances in this field. The HVOF thermal spray process has been utilised in many industries to apply coatings on components to protect against wear, heat and corrosion, and also to build up worn ...

  4. Characterisation of advanced windows. Determination of thermal properties by measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K.

    2001-04-01

    This report describes work carried out with the aim of facilitating a full energy performance characterisation of advanced windows and glazings by means of measurements. The energy performance of windows and glazings are characterised by two parameters: The thermal transmittance (U-value) and the total solar energy transmittance (g-value) and methods to determine these two parameters by measurements have been investigated. This process has included the improvement of existing equipment and existing measuring methods as well as the development of new measuring equipment and new methods of measuring and data treatment. Measurements of the thermal transmittance of windows and glazings in a guarded hot box have been investigated. The calibration and measuring procedures for determining the U-values of facade windows were analysed and a suggestion for a new calibration and measuring procedure for determining the U-values of roof windows in a guarded hot box was elaborated. The accuracy of the guarded hot box measurements was examined by comparisons to measurements in a hot-plate device and excellent agreement between the results was obtained. Analysis showed that the expected uncertainty in the U-value measurement is about 5% for a specimen with a U-value of 1.75 W/m{sup 2}K. The U-values of three different windows were measured in two separate round robin tests applying two different calibration procedures. The windows U-values where ranging from 1.1 to 2.5 W/m{sup 2}K and all measured results were within the expected uncertainties of the measurements. On the basis of the investigations on hot box measurements a high degree of confidence in the measurement accuracy and the measuring procedure of the guarded hot box at the Department of Buildings and Energy has been obtained. Indoor g-value measurements in a calorimetric test facility (the METSET) mounted in a solar simulator have been investigated and a number of problems regarding these measurements have been

  5. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  6. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  7. Advanced monitoring with complex stream processing

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  8. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  9. Processing and properties of advanced metallic foams

    Science.gov (United States)

    Brothers, Alan Harold

    Since the development of the first aluminum foams in the middle of the 20th century [178], great advances have been made in the processing and fundamental understanding of metallic foams. As a result of these advances, metallic foams are now penetrating a number of applications where their unique suite of properties makes them superior to solid materials, such as lightweight structures, packaging and impact protection, and filtration and catalysis [3]. The purpose of this work is to extend the use of metallic foams in such applications by expanding their processing to include more sophisticated base alloys and architectures. The first four chapters discuss replacement of conventional crystalline metal foams with ones made from high-strength, low-melting amorphous metals, a substitution that offers potential for achieving mechanical properties superior to those of the best crystalline metal foams, without sacrificing the simplicity of processing methods made for low-melting crystalline alloys. Three different amorphous metal foams are developed in these chapters, and their structures and properties characterized. It is shown for the first time that amorphous metal foams, due to stabilization of shear bands during bending of their small strut-like features, are capable of compressive ductility comparable to that of ductile crystalline metal foams. A two-fold improvement in mechanical energy absorption relative to crystalline aluminum foams is shown experimentally to result from this stabilization. The last two chapters discuss modifications in foam processing that are designed to introduce controllable and continuous gradients in local foam density, which should improve mass efficiency by mimicking the optimized structures found in natural cellular materials [64], as well as facilitate the bonding and joining of foams with solid materials in higher-order structures. Two new processing methods are developed, one based on replication of nonuniformly-compressed polymer

  10. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  11. A graphene superficial layer for the advanced electroforming process

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  12. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  13. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  14. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  15. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    International Nuclear Information System (INIS)

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Synthesis report on thermally driven coupled processes

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  17. Synthesis report on thermally driven coupled processes

    International Nuclear Information System (INIS)

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  18. Advanced materials and biochemical processes for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.; van Rooyen, D.; Premuzic, E.T.

    1987-04-01

    Two Geothermal Technology Division (GTD)-sponsored programs: (1) Geothermal Materials Development, and (2) Advanced Biochemical Processes for Geothermal Brines, are described. In the former, work in the following tasks is in progress: (1) high temperature elastomeric materials for dynamic sealing applications, (2) advanced high temperature (300/sup 0/C) lightweight (1.1 g/cc) well cementing materials, (3) thermally conductive composites for heat exchanger tubing, (4) corrosion rates for metals in brine-contaminated binary plant working fluids, and (5) elastomeric liners for well casing. Methods for the utilization and/or the low cost environmentally acceptable disposal of toxic geothermal residues are being developed in the second program. This work is performed in two tasks. In one, microorganisms that can interact with toxic metals found in geothermal residues to convert them into soluble species for subsequent reinjection back into the reservoir or to concentrate them for removal by conventional processes are being identified. In the second task, process conditions are being defined for the encapsulation of untreated or partially biochemically treated residues in Portland cement-based formulations and the subsequent utilization of the waste fractions in building materials. Both processing methods yield materials which appear to meet disposal criteria for non-toxic solid waste, and their technical and economic feasibilities have been established.

  19. Advances in modeling plastic waste pyrolysis processes

    Directory of Open Access Journals (Sweden)

    Y. Safadi, J. Zeaiter

    2014-01-01

    Full Text Available The tertiary recycling of plastics via pyrolysis is recently gaining momentum due to promising economic returns from the generated products that can be used as a chemical feedstock or fuel. The need for prediction models to simulate such processes is essential in understanding in depth the mechanisms that take place during the thermal or catalytic degradation of the waste polymer. This paper presents key different models used successfully in literature so far. Three modeling schemes are identified: Power-Law, Lumped-Empirical, and Population-Balance based equations. The categorization is based mainly on the level of detail and prediction capability from each modeling scheme. The data shows that the reliability of these modeling approaches vary with the degree of details the experimental work and product analysis are trying to achieve.

  20. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  1. Advanced Neutron Source Reactor thermal analysis of fuel plate defects

    International Nuclear Information System (INIS)

    The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U3Si2 fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included

  2. A graphene superficial layer for the advanced electroforming process.

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-07-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties. PMID:26949072

  3. Thermal processes for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  4. Advanced sludge reduction and phosphorous removal process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia ρ(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous ρ(TP) is 6.0 - 9.0 mg/L in influent, the system still ensures ρ(COD)<23 mg/L, ρ(NH3-N)<3.2 mg/L and ρ(TP)<0.72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91%. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.

  5. Induced effects of advanced oxidation processes

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  6. NEPTUNE: A new software platform for advanced nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    The NEPTUNE project constitutes the thermal-hydraulic part of the long-term Electricite de France and Commissariat a l'Energie Atomique joint research and development program for the next generation of nuclear reactor simulation tools. This program is also financially supported by the Institut de Radioprotection et Surete Nucleaire and AREVA NP. The project aims at developing a new software platform for advanced two-phase flow thermal hydraulics covering the whole range of modeling scales and allowing easy multi-scale and multidisciplinary calculations. NEPTUNE is a fully integrated project that covers the following fields: software development, research in physical modeling and numerical methods, development of advanced instrumentation techniques, and performance of new experimental programs. The analysis of the industrial needs points out that three main simulation scales are involved. The system scale is dedicated to the overall description of the reactor. The component or subchannel scale allows three-dimensional computations of the main components of the reactors: cores, steam generators, condensers, and heat exchangers. The current generation of system and component codes has reached a very high level of maturity for industrial applications. The third scale, computational fluid dynamics (CFD) in open medium, allows one to go beyond the limits of the component scale for a finer description of the flows. This scale opens promising perspectives for industrial simulations, and the development and validation of the NEPTUNE CFD module have been a priority since the beginning of the project. It is based on advanced physical models (two-fluid or multi field model combined with interfacial area transport and two-phase turbulence) and modern numerical methods (fully unstructured finite volume solvers). For the system and component scales, prototype developments have also started, including new physical models and numerical methods. In addition to scale

  7. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R and D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R and D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are

  8. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  9. Teaching an advanced processing course with hands-on projects

    OpenAIRE

    Simar, Aude; International Conference on Materials Education

    2015-01-01

    The present work discusses an advanced processing course with 10 magisterial courses (2h each) where theoretical aspects are covered and three hands-on projects. This advanced manufacturing course follows a basic course reviewing all manufacturing technologies. The courses concern process selection, advanced machining and additive manufacturing. To each of these topics a project is associated where the use of computer technologies for manufacturing is emphasized. The process selection process...

  10. Natural language processing and advanced information management

    Science.gov (United States)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  11. Commercial aspects of rapid thermal processing (RTP)

    International Nuclear Information System (INIS)

    In its broadest sense, Rapid Thermal Processing (RTPTM) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Commercial RTPTM activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. 'bio-crude') from biomass for fuel and chemical markets. RTPTM is not an incineration process. In commercial applications, it is simply the liquification of biomass by the addition of heat at atmospheric pressure in the absence of air or oxygen. There is no direct combustion in the conversion unit. In effect, wood is converted to liquid wood, bagasse to liquid bagasse, straw to liquid straw, etc. The liquid is pourable and pumpable at room temperature, and has approximately the same heating value as the feedstock entering the conversion unit. The typical liquid yield from a representative hardwood at 10 - 15 % moisture content is about 73 % by mass in industrial operations. In general, the yield increases slightly with an increase in feedstock cellulose composition and slightly decreases with an increase in feedstock lignin composition. However, the energy yield remains approximately constant since lignin-derived liquids have a higher energy content than cellulose-derived liquids. RTPTM was commercialised in 1989 after about 10 years of research, development and demonstration. Current product applications include boiler fuel and food chemicals. It is important to note that the primary liquid product or 'bio-crude' is essentially the same whether it is destined for the fuel or the food chemicals markets. refs

  12. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  13. Operational experiences in MOX fuel fabrication for the FUGEN advanced thermal reactor

    International Nuclear Information System (INIS)

    The Japan Nuclear Cycle Development Institute, JNC, has fabrication the MOX fuel for the Advanced Thermal Reactor, ATR, ''FUGEN'' in the Plutonium Fuel Fabrication Facility, PFFF, since 1974. For these 25 years, the MOX fuel fabrication has progressed in stable manner after overcoming several problems at the start up of FUGEN fuel fabrication. Through the experience, improvements on process equipment and conditions have been taken place to achieve efficient MOX fuel fabrication on an engineering scale as 10 tons MOX per year. Main features of current fabrication process are digested as one step blending with ball milling, pelletizing without granulation and sintering with batch type furnaces. This fabrication process has been demonstrated and confirmed to be applicable techniques for the MOX fuel fabrication on this scale. This paper discusses the FUGEN fuel fabrication focused on the MOX pellet fabrication with operational experiences and improvements to the process. (author)

  14. A thermal energy storage process for large scale electric applications

    OpenAIRE

    Desrues, T; Ruer, J; Marty, P.; Fourmigué, JF

    2009-01-01

    Abstract A new type of thermal energy storage process for large scale electric applications is presented, based on a high temperature heat pump cycle which transforms electrical energy into thermal energy and stores it inside two large regenerators, followed by a thermal engine cycle which transforms the stored thermal energy back into electrical energy. The storage principle is described, and its thermodynamic cycle is analyzed, leading to the theoretical efficiency of the storage...

  15. Thermally Activated Processes in Polymer Glasses

    OpenAIRE

    V. Parihar; Drosdoff, D.; Widom, A.; Srivastava, Y. N.

    2005-01-01

    A derivation is given for the Vogel-Fulcher-Tammann thermal activation law for the glassy state of a bulk polymer. Our microscopic considerations involve the entropy of closed polymer molecular chains (i.e. polymer closed strings). For thin film polymer glasses, one obtains open polymer strings in that the boundary surfaces serve as possible string endpoint locations. The Vogel-Fulcher-Tammann thermal activation law thereby holds true for a bulk polymer glass but is modified in the neighborho...

  16. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    Science.gov (United States)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  17. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  18. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  19. Thermal conductivities of minor actinide oxides for advanced fuel

    International Nuclear Information System (INIS)

    The thermal diffusivities of americium oxide and neptunium dioxide were determined by a laser flash method. It was found that the thermal diffusivities of AmO2-x and NpO2 decreased with increasing temperature. It was also found that the decrease in O/Am ratio during the thermal diffusivity measurements under vacuum resulted in a slight decrease in thermal diffusivity of AmO2-x. The thermal conductivities of AmO2-x and NpO2 were evaluated from the measured thermal diffusivities, heat capacities and bulk densities. The thermal conductivity of AmO2-x was smaller than those of the literature values of UO2 and PuO2. On the other hand, the thermal conductivity of NpO2 from 873 to 1473 K lay between those of UO2 and PuO2. The thermal conductivities of AmO2-x and NpO2 decreased with increasing temperature in the temperature range investigated. This temperature dependence of thermal conductivities showed a similar tendency as those of UO2, PuO2 and (U0.8Pu0.2)O2-x. (authors)

  20. Commercial aspects of rapid thermal processing (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.G.; Huffman, D.R. [Ensyn Technologies Inc., Greely, ON (Canada)

    1996-12-31

    In its broadest sense, Rapid Thermal Processing (RTP{sup TM}) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Scientifically, it is based on the general premise that products which result from the extremely rapid application of heat to a given feedstock are inherently more valuable than those which are produced when heat is applied much more slowly over longer periods of processing time. Commercial RTP{sup TM} activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. `bio-crude`) from biomass for fuel and chemical markets. Chemicals are of significant interest from an economical point of view since they typically have a higher value than fuel products. Liquid fuels are of interest for many reasons: (1) Liquid fuels do not have to be used immediately after production, such as is the case with hot combustion gases or combustible gases produced via gasification. This allows the decoupling of fuel production from the end-use (ie. the conversion of fuel to energy). (2) The higher energy density of liquid fuels vs. that of fuel gases and solid biomass results in a large reduction in the costs associated with storage and transportation. (3) The costs to retrofit an existing gas or oil fired combustion system are much lower than replacement with a solid fuel combustor. (4) In general, liquid fuel combustion is much more efficient, controllable, and cleaner than the combustion of solid fuels. (5) The production of liquid `bio-crude` permits the removal of ash from the biomass prior to combustion or other end-use applications. (6) Gas or liquid fuel-fired diesel or turbine engines cannot operate commercially on solid fuels. Although wood represents the biomass which is of principal commercial interest (including a vast array of wood residues

  1. Advanced oxide powders processing based on cascade plasma

    International Nuclear Information System (INIS)

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies

  2. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    Science.gov (United States)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  3. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  4. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  5. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  6. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    article, an initial attempt is made to isolate only the recombination part of the luminescence cycle, and determine its thermal characteristics separately. A Variety of luminescence transitions are examined in a range of both alkali and plagioclase feldspars; three distinct emission types are identified...

  7. Advances in heuristic signal processing and applications

    CERN Document Server

    Chatterjee, Amitava; Siarry, Patrick

    2013-01-01

    There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a spec

  8. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  9. Present status of advanced aqueous separation process technology development

    International Nuclear Information System (INIS)

    In 'the Feasibility study on commercialized fast reactor cycle systems' begun in 1999, the commercialized candidate concept of the process as the advanced aqueous reprocessing system has been examined. This process, named NEXT, includes such advanced process elements as high efficiency dissolution, crystallization, U/Pu/Np co-recovery, and MA recovery. Small scale hot tests of these process elements have been conducted with irradiated fuel of the experimental Fast Reactor 'JOYO' in Chemical Processing Facility (CPF). The prospect of the technical feasibility of the NEXT process is being obtained as a promising candidate concept. (author)

  10. Recent advances in imaging subcellular processes.

    Science.gov (United States)

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  11. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  12. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  13. Studies of the thermal processes occurring during electron-beam processing of steels

    International Nuclear Information System (INIS)

    The paper presents results from studies on the thermal processes taking place during electron-beam treatment of tool steels. A thermal model is presented describing these processes and results are given of calculations performed concerning the thermal field and the dimensions of the zone of structural changes due to electron-beam modification of specimens of tool steels.

  14. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  15. Advances in the Application of Image Processing Fruit Grading

    OpenAIRE

    Fang, Chengjun; Hua, Chunjian

    2013-01-01

    In the perspective of actual production, the paper presents the advances in the application of image processing fruit grading from several aspects, such as processing precision and processing speed of image processing technology. Furthermore, the different algorithms about detecting size, shape, color and defects are combined effectively to reduce the complexity of each algorithm and achieve a balance between the processing precision and processing speed are keys to automatic apple grading.

  16. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    OpenAIRE

    Goyal, Vivek Kumar

    2011-01-01

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the nex...

  17. Relevant thermal hydraulic aspects of advanced reactors design: status report

    International Nuclear Information System (INIS)

    This status report provides an overview on the relevant thermalhydraulic aspects of advanced reactor designs (e.g. ABWR, AP600, SBWR, EPR, ABB 80+, PIUS, etc.). Since all of the advanced reactor concepts are at the design stage, the information and data available in the open literature are still very limited. Some characteristics of advanced reactor designs are provided together with selected phenomena identification and ranking tables. Specific needs for thermalhydraulic codes together with the list of relevant and important thermalhydraulic phenomena for advanced reactor designs are summarized with the purpose of providing some guidance in development of research plans for considering further code development and assessment needs and for the planning of experimental programs

  18. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  19. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  20. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  1. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  2. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  3. Recent advances in radiation processing of food

    International Nuclear Information System (INIS)

    Commercial application of radiation technology for food processing started in the nineties after it was approved by FAO/IAEA/WHO and Codex Alimentarius Commission in the eighties. Sanitary applications were initially explored commercially with microbial decontamination of spices and dry ingredients as the primary commodities to be processed on a large scale. Subsequently, with the emergence of E.coli O157:H7 as the potential food poisoning risk in ground beef, irradiation of meat was initiated in the late nineties in the USA. Since then irradiation, has become a very useful food safety tool and the technology has been approved for addressing food safety risks in moluscan shellfish and vegetables like lettuce, spinach, and more recently for raw uncooked meat by USFDA. Phytosanitary applications assumed importance after USFDA approved irradiation as a method of phytosanitary treatment and subsequent endorsement of the process by International Plant Protection Convention (IPPC) in 2003. These approvals were responsible for development of international trade in agricultural commodities. The first to demonstrate the feasibility of the process were India and Australia, the countries that exported mangoes to New Zealand and USA, respectively. As far as the source of radiation is concerned, the world is slowly moving towards deployment of machine sources, thereby reducing its dependence on radioisotopes for commercial irradiation. (author)

  4. Advanced signal processing technology by softcomputing

    CERN Document Server

    Hsu, Charles

    2000-01-01

    This book presents worldwide outstanding research and recent progress in the applications of neural networks, fuzzy logic, chaos, independent component analysis, etc to fields related to speech recognition enhancement, supervised Fourier demixing noise elimination, acoustic databases, the human hearing system, cancer detection, image processing, and visual communications.

  5. Decontamination of nuclear graphite by thermal processing

    International Nuclear Information System (INIS)

    The main problem in view of the direct disposal of the nuclear graphite is its large volume. This waste contains long-lived and short-lived radionuclides which determine the waste strategy. The irradiated graphite possess high amount of the 14C isotope. The main object of the present work was the selective separation of 14C isotope from the isotope 12C by thermal treatment (pyrolysis, partial oxidation). A successful separation could reduce the radiotoxicity and offer a different disposal strategy. Three different graphite types were investigated. The samples originate from the reflector and from the flaking of spherical fuel elements of the high-temperature reactor (AVR) Juelich. The samples from the thermal column of the research reactor (Merlin, Juelich) were also investigated. The maximum tritium releases were obtained both in inert gas atmosphere (N2) and under water vapour-oxidizing conditions at 1280 C and 900 C. Furthermore it could be shown that 28% of 14C could be released under inert gas conditions at a 1280 C. By additive of oxidizing agent such as water vapour and oxygen the 14C release could be increased. Under water vapour-oxidizing conditions at a temperature of 1280 C up to 93% of the 14C was separated from the graphite. The matrix corrosion of 5.4% was obtained. The selective separation of the 14C is possible, because a substantial part of the radiocarbon is bound near the grain boundary surfaces. (orig.)

  6. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching.......Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  7. Proceedings of the second international conference on advanced oxidation processes

    International Nuclear Information System (INIS)

    The major objective of the conference is to discuss the recent developments in diversified fields in advanced oxidation processes. Development of new and modern technologies for water purification is vital to water management in any country. Advanced oxidation process is among the latest methodologies which are under tremendous researches in the recent past. In-situ generation of highly oxidizing species using chemical, photochemical, sonochemical and radiation chemical techniques were the focus of the discussions. Papers relevant to INIS are indexed separately

  8. 9 CFR 381.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... development or determination of a process schedule, including any associated incubation tests, shall be...

  9. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  10. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  11. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  12. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  13. Technology advances for Space Shuttle processing

    Science.gov (United States)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  15. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  16. Advanced field theory micro, macro, and thermal physics

    CERN Document Server

    Umezawa, Hiroomi

    1995-01-01

    This work begins by distinguishing the difference between quantum mechanics and quantum field theory. It then attempts to extend field theory by adding a thermal degree of freedom to phenomena occurring within a vacuum. The resulting quantum field theory is called Thermo Field Dynamics (TFD).

  17. Advances in NASA's Nuclear Thermal Propulsion Technology project

    Science.gov (United States)

    Peecook, Keith M.; Stone, James R.

    1993-01-01

    The status of the Nuclear Thermal Propulsion (NTP) project for space exploration and the future plans for NTP technology are discussed. Current activities in the framework of the NTP project deal with nonnuclear material tests; instrumentation, controls, and health management; turbopumps; nozzles and nozzle extension; and an exhaust plume.

  18. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  19. Development of Advanced Voloxidation Process for Treatment of Spent Fuel

    International Nuclear Information System (INIS)

    Data for evaluation of the effects of advanced voloxidation on pyroprocessing of spent oxide fuel with a determination for a path forward such was produced as follows: effect of particle size and particle structure on oxide reduction, assessment of decladding options for pyroprocessing, effect of removal timing of fission products, analysis of radioactivity and decay heat of advanced voloxidation process, proliferation resistance of advanced voloxidation process, Effect of advanced voloxidation process on shielding. Also, performance objectives for advanced voloxidation with respective to the down stream effects was established. The technology on design and manufacture of voloxidation and off gas treatment equipment was established. The possibility of fabrication of porous granule as a feed material for electro-reduction process was confirmed using rotary voloxidizer and SIMFUEL. The operational conditions for advanced voloxidation process consisting of 4 steps heat treatment was drawn to vaporize fission products and fabricate UO2 granule. The trapping test of Cs and Re(surrogate material of Tc) using newly developed filter were selectively separated at trapping efficiency of 99%, respectively. Data for oxidative decladding, vaporization rate of fission products, and particle size from experiment on voloxidation using spent fuel in ILN hot cell was acquisited including data of off gas trapping characteristics and verification of excellent performance of filter

  20. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  1. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  2. Process and device for thermal energy production

    International Nuclear Information System (INIS)

    The main aim of the invention is to create a heating cycle arrangement, for the energy production facilities as from liquid metal cooled nuclear reactors, that will stand up to the temperature changes of the heated steam at least as from the high pressure turbine. This arrangement includes a first system in which flows a liquid metal coolant between a heat source, a steam generator and a utilisation system on which flows a vaporisable fluid from this generator, passing through a first turbine, a heater, at least a second turbine and a condenser. The steam heated in the heater is heated by the liquid metal coolant. A preheater is located in the heated steam system upstream of the heater. This preheater is connected so as to heat the steam to a preset, practically constant value, before this steam to be heated enters the heater heated by the liquid metal. This arrangement reduces the thermal transitions in the superheater and the heater during load changes. In a preferential design mode, the steam from the steam generator is sent to a moisture extraction drum and the heater is exposed to the steam in this drum

  3. Radiofrequency thermal treatment with chemoradiotherapy for advanced rectal cancer.

    Science.gov (United States)

    Shoji, Hisanori; Motegi, Masahiko; Osawa, Kiyotaka; Okonogi, Noriyuki; Okazaki, Atsushi; Andou, Yoshitaka; Asao, Takayuki; Kuwano, Hiroyuki; Takahashi, Takeo; Ogoshi, Kyoji

    2016-05-01

    We previously reported that patients with a clinical complete response (CR) following radiofrequency thermal treatment exhibit significantly increased body temperature compared with other groups, whereas patients with a clinical partial response or stable disease depended on the absence or presence of output limiting symptoms. The aim of this study was to evaluate the correlation among treatment response, Hidaka radiofrequency (RF) output classification (HROC: termed by us) and changes in body temperature. From December 2011 to January 2014, 51 consecutive rectal cancer cases were included in this study. All patients underwent 5 RF thermal treatments with concurrent chemoradiation. Patients were classified into three groups based on HROC: with ≤9, 10-16, and ≥17 points, calculated as the sum total points of five treatments. Thirty-three patients received surgery 8 weeks after treatment, and among them, 32 resected specimens were evaluated for histological response. Eighteen patients did not undergo surgery, five because of progressive disease (PD) and 13 refused because of permanent colostomy. We demonstrated that good local control (ypCR + CR + CRPD) was observed in 32.7% of cases in this study. Pathological complete response (ypCR) was observed in 15.7% of the total 51 patients and in 24.2% of the 33 patients who underwent surgery. All ypCR cases had ≥10 points in the HROC, but there were no patients with ypCR among those with ≤9 points in the HROC. Standardization of RF thermal treatment was performed safely, and two types of patients were identified: those without or with increased temperatures, who consequently showed no or some benefit, respectively, for similar RF output thermal treatment. We propose that the HROC is beneficial for evaluating the efficacy of RF thermal treatment with chemoradiation for rectal cancer, and the thermoregulation control mechanism in individual patients may be pivotal in predicting the response to RF

  4. Power and thermal efficient numerical processing

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Numerical processing is at the core of applications in many areas ranging from scientific and engineering calculations to financial computing. These applications are usually executed on large servers or supercomputers to exploit their high speed, high level of parallelism and high bandwidth to me...

  5. 9 CFR 318.302 - Thermal processing.

    Science.gov (United States)

    2010-01-01

    ... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... defined in § 318.300(n) of this subpart) for each canned meat product to be packed by the establishment... concerning all aspects of the development or determination of a process schedule, including any...

  6. Advances in the Process Development of Biocatalytic Processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Al-Haque, Naweed;

    2013-01-01

    Biocatalysis is already established in chemical synthesis on an industrial scale, in particular in the pharmaceutical sector. However, the wider implementation of biocatalysis is currently hindered by the extensive effort required to develop a competitive process. In order that resources spent...... on development are used in the most efficient manner for these challenging systems, a holistic view on process development and a more in-depth understanding of the underlying constraints (process related as well as biocatalyst related) are required. In this concept article a systematic approach to solve...

  7. Advanced welding for closed structure. Pt. 3 The thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Sacripanti, A.; Bonanno, G.; Paoloni, M.; Sagratella, G. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Arborino, A.; Varesi, R.; Antonucci, A. [DUNE, (Italy)

    1999-07-01

    This report describes the activities developed for the European Contract BRITE AWCS III to study the use of thermal sensing techniques to obtain an accurate detection of the internal reinforcement of the closed steel structures employed in the shipbuilding industry. After a description of the methods, normally developed in Russia, about the techniques and problems, for the thermal testing of materials in the conventional approach, a new thermal detector was utilized, a new bolometric thermo camera is introduced with a special software for the on line image analysis, there are also shown the experimental tests and results. The obtained conclusion shows that the thermal non destructive testing techniques with the new detector should be useful to assemble a complete sensing system with one ultrasonic head. [Italian] Questo rapporto descrive le attivita' sperimentali sviluppate nell'ambito del contratto europeo BRITE AWCS III, in cui si sono utilizzate tecniche termiche per ottenere un preciso rilevamento dei rinforzi interni di strutture metalliche chiuse utilizzate nell'industria delle costruzioni navali. Dopo la descrizione dei metodi sviluppati essenzialmente in Russia, circa le tecniche e i problemi riguardanti il testing termico dei materiali, e' stato introdotto un approccio innovativo basato su un nuovo sensore: una termocamera bolometrica connessa con un software dedicato per l'analisi online del setto; vengono inoltre mostrati i risultati sperimentali ottenuti. Le conclusioni ottenute mostrano che nel nuovo approccio, il testing termico non distruttivo dovrebbe essere utile per assemblare un sistema sensoriale completo che utilizzi anche un sensore di tipo ultrasonico.

  8. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  9. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  10. Thermal Aspects during Depressurization of Process Systems

    OpenAIRE

    Henriksen, Stian

    2009-01-01

    The present work investigates the internal heat transfer mechanisms in a gas- and liquid filled pressurized vessel during depressurization and aims to improve the models for determining minimum temperatures in depressurization scenarios without a fire. Basic aspects concerning depressurization systems in oil- and gas processing plant are also presented.Relevant heat transfer theory have been thoroughly presented and discussed. The most important heat transfer mechanisms include free- and forc...

  11. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  12. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. Nickel silicides in semiconductor processing: thermal budget considerations

    International Nuclear Information System (INIS)

    Nickel silicide (NiSi) is emerging to be the choice material for contact application in semiconductor device processing for 65 nm technology node and beyond. However, process integration issues are yet to be completely understood and addressed. The focus of present work is to facilitate better understanding of the influence of thermal budget on nickel silicide solid-state reaction. The reaction couple consists of single-crystal silicon wafers with nickel layers deposited on them. Requirements for low temperature anneal and improved within wafer sheet resistance uniformity pose challenges for conventional lamp-based rapid thermal processing (RTP) due to lamp response effects on temperature controllability. Extendibility of such a system is presented with emphasis on process chamber technology. Low temperature 'spike' anneal is demonstrated for temperatures 2Si changes as a function of thermal exposure during the first anneal step; this plays an important role in determining the thermal stability of the low resistance mono-silicide during integration. It is postulated that lowering the Ni2Si/Si interface energy favors the delay (in temperature) of the agglomeration of the NiSi. RTP performance stability of less than 1 deg. C is presented for a sub-300 deg. C process. Understanding and resolving the issues around process monitoring methodologies for low temperature anneal are important. The ability to monitor the total thermal exposure down to sub-200 deg. C regime may be necessary for successful integration of nickel silicide in device manufacturing flow

  14. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  16. Combination of irradiation and thermal processing

    International Nuclear Information System (INIS)

    Recently, the technology and methods of food preservation have searched for ever better and less destructive methods and procedures which prolong the shelf-life of the primary products so that they do not undergo degradation processes. New non-traditional methods of preservation, as well as the procedures based on scientifically controlled combination of two or more preservation methods give increasingly higher chances for the improvement of the quality of canned products. Such combinations should reduce the intensity of the adverse effects of separately applied preservation methods. The aim is to achieve synergic or additive effects of the decisive factors, which would ensure microbiological adequacy and storage stability of canned foods, including maximum retention of their nutritional and sensory characteristics. If the published scientific papers dealing with non-traditional methods of food preservation and application of combination of preservation methods are evaluated, it can be seen that there is no work which provides an analysis of this problem. The use of ionizing radiation can reduce the number of microorganisms on foods and doses of up to 10 kGy are not considered to present any toxicological risks. However results have not been satisfactory mainly due to the interaction of ionizing radiation with the components of the irradiated foods. It is desirable to reduce the side effects of radiosterilizing doses by reducing the dose and using another method to complete the processing. Special attention is paid particularly to the use of combinations of heat and irradiation, since this is suitable mainly for the preservation of meat products but can also be applied to vegetables and other products. (author)

  17. An Improvement in Thermal Modelling of Automated Tape Placement Process

    International Nuclear Information System (INIS)

    The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.

  18. Diffusion mechanisms for chemical-thermal metal processing

    International Nuclear Information System (INIS)

    To describe volumetric diffusion in metals, some possible mechanisms are offered: exchange, cyclic (circular), interstitial idle time and interstitial with cumulative and vacancy replacement. It is revealed that at chemical-thermal processing the diffusion process is complex where there is multidimensional movement of atoms and displacement of crystal lattices

  19. MICROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING

    OpenAIRE

    Brandner, Juergen; Anurjew, E.; Henning, T.; Schygulla, U.; Schubert, K.

    2006-01-01

    In this publication, an overview of the work dealing with thermal and chemical micro process engineering performed at the Institute for Micro Process Engineering (IMVT) of Forschungszentrum Karlsruhe will be given. The focus will be set on manufacturing of metallic microstructure devices and on microstructure heat exchangers. A brief outlook will describe possible future application fields.

  20. Treatment of Landfill Leachate by Advanced Oxidation Processes

    OpenAIRE

    Koçak, Seda; Güney, Cansu; Argun, M. Tuna; Tarkın, Begüm; Kırtman, E. Özlem; Akgül, Deniz; MERTOGLU, Bulent

    2013-01-01

    Organic and inorganic pollutants found in municipal landfill leachate lead to severe problems for the environment when directly discharged to water bodies without treatment. Due to the existence of recalcitrant organics in leachate, advanced oxidation processes (AOP) are mostly applied to biologically treated leachate as a polishing step. In this study, the effectiveness of Fenton process on leachate treatment was examined. The Fenton process was applied to both young (untreated) and biologic...

  1. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  2. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  3. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  4. A study on the advanced statistical core thermal design methodology

    International Nuclear Information System (INIS)

    A statistical core thermal design methodology for generating the limit DNBR and the nominal DNBR is proposed and used in assessing the best-estimate thermal margin in a reactor core. Firstly, the Latin Hypercube Sampling Method instead of the conventional Experimental Design Technique is utilized as an input sampling method for a regression analysis to evaluate its sampling efficiency. Secondly and as a main topic, the Modified Latin Hypercube Sampling and the Hypothesis Test Statistics method is proposed as a substitute for the current statistical core thermal design method. This new methodology adopts 'a Modified Latin Hypercube Sampling Method' which uses the mean values of each interval of input variables instead of random values to avoid the extreme cases that arise in the tail areas of some parameters. Next, the independence between the input variables is verified through 'Correlation Coefficient Test' for statistical treatment of their uncertainties. And the distribution type of DNBR response is determined though 'Goodness of Fit Test'. Finally, the limit DNBR with one-sided 95% probability and 95% confidence level, DNBR95/95' is estimated. The advantage of this methodology over the conventional statistical method using Response Surface and Monte Carlo simulation technique lies in its simplicity of the analysis procedure, while maintaining the same level of confidence in the limit DNBR result. This methodology is applied to the two cases of DNBR margin calculation. The first case is the application to the determination of the limit DNBR where the DNBR margin is determined by the difference between the nominal DNBR and the limit DNBR. The second case is the application to the determination of the nominal DNBR where the DNBR margin is determined by the difference between the lower limit value of the nominal DNBR and the CHF correlation limit being used. From this study, it is deduced that the proposed methodology gives a good agreement in the DNBR results with

  5. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  6. Optimization of a thermal manufacturing process: drawing of optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Cheng; Jaluria, Y. [State University of New Jersey, Piscataway, NJ (United States). Dept. of Mechanical and Aerospace Engineering

    2005-08-01

    The optimization of thermal systems and processes has received much less attention than their simulation and often lags behind optimization in other engineering areas. This paper considers the optimization of the important thermal manufacturing process involved in the drawing of optical fibers. Despite the importance of optical fibers and the need to enhance product quality and reduce costs, very little work has been done on the optimization of the process. The main aspects that arise in the optimization of such thermal processes are considered in detail in order to formulate an appropriate objective function and to determine the existence of optimal conditions. Using validated numerical models to simulate the thermal transport processes that govern the characteristics of the fiber and the production rate, the study investigates the relevant parametric space and obtains the domain in which the process is physically feasible. This is followed by an attempt to narrow the feasible region and focus on the domain that could lead to optimization. Employing standard optimization techniques, optimal conditions are determined for typical operating parameters. The study thus provides a basis for choosing optimal design conditions and for more detailed investigations on the feasibility and optimization of this complicated and important process. (author)

  7. Advanced wellbore thermal simulator GEOTEMP2 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, L.A.; Duda, L.E.

    1984-11-01

    GEOTEMP2 is a wellbore thermal simulator computer code designed for geothermal drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward, and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables suchas flow rate to change with time enabling a realistic treatment of well operations. This user manual describes the input required to properly operate the code. Ten sample problems are included which illustrate all the code options. Complete listings of the code and the output of each sample problem are provided.

  8. Adaptive thermal compensation of test masses in advanced LIGO

    CERN Document Server

    Lawrence, R; Fritschel, P; Marfuta, P; Shoemaker, D M; Lawrence, Ryan; Zucker, Michael; Fritschel, Peter; Marfuta, Phil; Shoemaker, David

    2002-01-01

    As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument's sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ~2007, increasing strain sensitivity through improved suspensions and test mass substrates, active seismic isolation, and higher input laser power. Even with the highest quality optics available today, however, finite absorption of laser power within transmissive optics, coupled with the tremendous amount of optical power circulating in various parts of the interferometer, result in critical wavefront deformations which would cripple the performance of the instrument. Discussed is a method of active wavefront correction via direct thermal actuation on optical elements of the interferometer. A simple nichrome heating element suspended off the face of an affected optic w...

  9. Advanced Image Processing for Defect Visualization in Infrared Thermography

    Science.gov (United States)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  10. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  11. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  12. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  13. The heat recovery thermal vapour-compression desalting system: a comparison with other thermal desalination processes

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, M.A.; El-Dessouky, Hisham [Kuwait Univ., Coll. of Engineering and Petroleum, Safat (Kuwait)

    1996-03-01

    Technical factors affecting the choice of distillation system for desalting water are presented. In particular, the thermal vapour-compression process is compared with the predominant multi-stage flash (MSF) desalting system. It was shown that the conventional multi-effect (ME) system can produce desalted water at a lower cost than the MSF system when both are supplied with steam after its expansion in steam turbines. Mechanical or thermal vapour-compression desalting systems are more cost-effective when compared with directly boiler-operated MSF systems. Thermal analysis of the multi-effect thermo-vapour-compression system is presented with an example. (author)

  14. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  15. Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes

    Science.gov (United States)

    Killinger, Andreas; Gadow, Rainer; Mauer, Georg; Guignard, Alexandre; Vaßen, Robert; Stöver, Detlev

    2011-06-01

    Thermal spray coatings from liquid feedstock such as suspensions and solution precursors have received increasing interest due to the unique coating properties obtainable by these processes. Several research groups are working on the basis of plasma as well as on high-velocity oxy-fuel approaches to manufacture advanced nanostructured and nanophased materials. These activities are reflected in various recent publications and conference presentations about feedstock preparation, equipment and process design, modeling techniques, in-process diagnostics, coating characterization, and emerging applications. This article will review these recent developments to give an up-to-date overview and to trace the current trends.

  16. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  17. Integrated homeland security system with passive thermal imaging and advanced video analytics

    Science.gov (United States)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.

  18. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    Science.gov (United States)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  19. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system

  20. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system

  1. Heat engine requirements for advanced solar thermal power systems

    Science.gov (United States)

    Jaffe, L. D.; Pham, H. Q.

    1981-01-01

    Requirements and constraints are established for power conversion subsystems, including heat engine, alternator and auxiliaries, of dish concentrator solar thermal power systems. In order to be competitive with conventional power systems, it is argued that the heat engine should be of less than 40 kW rated output, in a subsystem with an efficiency of at least 40% at rated output and at least 37% at half power. An interval between major overhauls of 50,000 hours is also desirable, along with minor maintenance and lubrication not more than four times a year requiring no more than one man-hour each time, and optimal reliability. Also found to be important are the capability for hybrid operation using heat from a solar receiver, fuel-fired combustor or both simultaneously, operation at any attitude, stability to transients in input power and output loading, operation at ambient temperatures from -30 to 50 C, and compatibility with environmental and safety requirements. Cost targets include a price of $180/kWe, and operation, maintenance and replacement costs averaging $0.001/kWh for 30 years of operation.

  2. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  3. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  4. Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal equilibrium

    International Nuclear Information System (INIS)

    We present a model in which the immediate environment of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin form. The molecular chain consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs and leads to different transition dynamics for the activated process. Thus, all else (temperature, damping, coupling parameters between the chain and the bistable system) being the same, the hard chain may provide an environment described as diffusion-limited and more effective in the activation process, while the soft chain may provide an environment described as energy-limited and less effective. The importance of a detailed understanding of the thermal environment toward the understanding of the activation process itself is thus highlighted. (c) 2000 American Institute of Physics

  5. Fuel thermal performance analysis using thermal models of dry-processed fuel

    International Nuclear Information System (INIS)

    Recently, the performance analyses of a dry-processed fuel were carried out through the irradiation test in HANARO and post irradiation examination. Addition to these tests, the computer code for fuel performance analysis was required to be developed. In order to do that, FEMAXI-IV code was modified with thermal conductivity model so that it can be applied to fuel performance analysis of the dry-processed fuel. And the safety reports for the irradiation test in HANARO were prepared with using its results. But, FEMAXI-V has been recently developed with the update of numerical scheme and high burnup application and published in open literature. Hence, FEMAXI-V code, which has been applied to PWR and BWR fuel rod, was selected for the establishment of computer code system for dry-processed fuel performance analysis modifying the program modules related to the thermal properties, especially thermal conductivity and thermal expansion. The thermal characteristics of UO2 fuel and dry-processed fuel were compared by the calculation results obtained from the modified FEMAXI-V code. Also, these results will be utilized to compare with the irradiation and post-irradiation test data which were obtained from the 3th and the 4th irradiations of the mini-elements in HANARO

  6. Advanced Information Processing System - Fault detection and error handling

    Science.gov (United States)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  7. Processing effects on the nutritional advancement of probiotics and prebiotics

    OpenAIRE

    Ananta, E.; Birkeland, S.-E.; Corcoran, B.; Fitzgerald, Gerald F.; Hinz, S.; Klijn, A.; Matto, J.; Mercernier, A.; Nilsson, U.; Nyman, M.; O’Sullivan, E; Parche, S; Rautonen, N.; Ross, R. Paul; Saarela, M.

    2004-01-01

    Investigates the processing effects on the nutritional advancement of probiotics and prebiotics. Efforts of health researchers to overcome difficulties that impact on the performance of functional foods; Importance of characterizing the interactions between probiotics and prebiotics in starter cultures or in functional foods prior to human consumption; Role of prebiotics on the viability and stability of probiotic cultures within food matrices during processing and storage.

  8. Ceramic component processing development for advanced gas-turbine engines

    Science.gov (United States)

    Mcentire, B. J.; Hengst, R. R.; Collins, W. T.; Taglialavore, A. P.; Yeckley, R. L.; Bright, E.; Bingham, M. G.

    1991-01-01

    A review of ceramic component advancements directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls is presented. The first three components are being produced from HIPed Si3N4, while scrolls were prepared from a series of siliconized silicon-carbide materials. Developmental work has been conducted on all aspects of the fabrication process utilizing Taguchi experimental design methods. An assessment of material properties for various components from each process and material are made.

  9. Advanced multiresponse process optimisation an intelligent and integrated approach

    CERN Document Server

    Šibalija, Tatjana V

    2016-01-01

    This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.

  10. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  11. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    OpenAIRE

    C. L. P. S. Zanta; Martínez-Huitle, C. A.

    2009-01-01

    In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton p...

  12. AE Monitoring and Analysis of HVOF Thermal Spraying Process

    Science.gov (United States)

    Faisal, N. H.; Ahmed, R.; Reuben, R. L.; Allcock, B.

    2011-09-01

    This work presents an in situ monitoring of HVOF thermal spraying process through an acoustic emission (AE) technique in an industrial coating chamber. Single layer thermal spraying on substrate was carried out through slits. Continuous multilayer thermal spraying onto the sample without slit was also conducted. The AE was measured using a broadband piezoelectric AE sensor positioned on the back of the substrate. A mathematical model has been developed to determine the total kinetic energy of particles impacting the substrate through slits. Results of this work demonstrate that AE associated with particle impacts can be used for in situ monitoring of coating process. Results also show that the amplitude and AE energy is related to the spray gun transverse speed and the oxy-fuel pressure. The measured AE energy was found to vary with the number of particles impacting the substrate, determined using the mathematical model.

  13. Comparative Evaluation of the Loss and Thermal Performance of Advanced Three Level Inverter Topologies

    DEFF Research Database (Denmark)

    Anthon, Alexander; Zhang, Zhe; Andersen, Michael A. E.; Holmes, Grahame; McGrath, Brendan; Teixeira, Carlos

    This paper presents a comparative evaluation of the loss and thermal performance of two advanced three-level inverter topologies, namely the SiC based T-Type and the Hybrid-NPC, both of which are aimed at reducing the high switching losses associated with a conventional Si based T-Type inverter. ...

  14. Surface Catalytic Efficiency of Advanced Carbon Carbon Candidate Thermal Protection Materials for SSTO Vehicles

    Science.gov (United States)

    Stewart, David A.

    1996-01-01

    The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.

  15. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  16. Abstraction of Thermal Hydrology and Coupled Processes for TSPA

    International Nuclear Information System (INIS)

    The thermal-hydrologic (TH) and coupled process models describe the evolution of a potential geologic repository as heat is released from emplaced waste. The evolution (thermal, hydrologic, chemical, and mechanical) of the engineered barrier and geologic systems is heavily dependent on the heat released by the waste packages and how the heat is transferred from the emplaced wastes through the drifts and through the repository host rock. The essential elements of this process are extracted (or abstracted) from the process-level models that incorporate the basic energy and mass conservation principles and applied to the total system models used to describe the overall performance of the potential repository. The process of total system performance assessment (TSPA) abstraction is the following. First is a description of the parameter inputs used in the process-level models. A brief description is given hereof past inputs for the viability assessment (e.g., for TSPA-VA) and current inputs for the site recommendation (TSPA-SR). This is followed by a highlight of the process-level models from which the abstractions are made. These include descriptions of TH, thermal-hydrologic-chemical (THC), and thermal-mechanical (TM) processes used to describe the performance of individual waste packages and waste emplacement drifts as well as the repository as a whole. Next is a description of what (and how) information is abstracted from the process-level models. This also includes an accounting of the features, events, and processes (FEPs) that are important to both the regulators and the international repository community in general. Finally, an identification of the TSPA model components that utilize the abstracted information to characterize the overall performance of a potential geologic repository is given

  17. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    Science.gov (United States)

    Heydt, Gerald T.

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation, and the history of the process is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory in Hawaii, which are discussed in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  18. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as high performance fuel concepts now under development for delivery in the late 1980s. The paper also discusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability

  19. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  20. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  1. Exercises in 80223 Numerical Modelling of Thermal Processing of Materials

    DEFF Research Database (Denmark)

    Frandsen, Jens Ole

    , guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book is a updated version of the exercise book from 1999. The exercise book is used in the course 42224 'Numerical Process Modelling' which earlier was called 80223 'Numerical Modelling of Thermal...

  2. Thermal decomposition of uranylnitrate by the Spray-Dryer process

    International Nuclear Information System (INIS)

    The proposal of this work consist in the thermal decomposition of uranyl nitrate solutions by the Spray-Dryer process aiming the production of highly reactive fluidized UO3, adequate for the use in posterior of reduction to UO2 and hydrofluorination to UF4, in a fluidized bed for the obtention of UF6 in the cicle of nuclear fuels. (author)

  3. Recent advances in nuclear fuels technology for thermal reactors

    International Nuclear Information System (INIS)

    In today's competitive electrical generation, many nuclear power generators are lowering operating and fuel cycle costs by extending burnups, utilizing longer cycles, reducing outage duration, increasing peaking factors for more efficient fuel management; and by up rating to maximize energy output from the reactors. To better equip nuclear operators to meet these competitive challenges, Westinghouse has strategically aligned its goals to ensure that customer needs are met and that fuel supplied operates flawlessly. Westinghouse's fuel performance program implements design features and manufacturing processes to maximize margins to failure, specify bounds of reactor operation, and monitor critical operating parameters using BEACON software as well as specify and implement a robust Post Irradiation Examination (PIE) to obtain early feedback on fuel performance. Westinghouse's unwavering commitment to achieve flawless fuel performance and to innovate resulted in exceptional pressurized water reactor (PWR), boiling water reactor (BWR), and VVER fuel performance worldwide. This paper covers decades of continuous innovation in fuel design and manufacturing process which supports our outstanding fuel performance in all LWR fuel types. This paper also includes information about Westinghouse's state-of-the-art tools and methodologies utilized to improve fuel performance as well as recent developments in fuel cladding material. (author)

  4. Environmental aspects of heavy oil recovery by thermal EOR processes

    International Nuclear Information System (INIS)

    Production of heavy oil resources by thermal techniques is greatly impacted by environmental regulations. Environmental laws affecting oil production by thermal techniques are administered by federal, state, and local agencies. Frequently, jurisdictions overlap and duplicate reporting actions are required. While the environmental specialist within a company may be familiar with the regulations, others may not. The technical and operating personnel responsible for reporting actions must also be aware of the essence of these regulations, so that inadvertent noncompliance with applicable environmental rules can be avoided. It is the purpose of this paper to familiarize practicing engineers and other interested personnel with applicable environmental rules and regulations. The various environmental rules, standards or criteria enacted or enforced by federal, state, and/or local governments are summarized and their impact on thermal processes assessed. Since California's environmental standards are considerably more stringent than those required by federal regulations, major emphasis is placed on detailing the state regulations. Further, the potential environmental deterioration likely to be generated by thermal EOR techniques and the nature or type of pollutants to be discharged during their application have been examined. The regulations pertaining to air and water quality and their relevance to thermal EOR processes are briefly discussed

  5. Advanced CO2 removal process control and monitor instrumentation development

    Science.gov (United States)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  6. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a...... linearised CSTR. Advantages and disadvantages of these controllers will be discussed. All three controller types shows a set of common undesirable characteristics, which must be accounted for. At the end of the evaluation horizon the "optimal" solution has an unstable characteristics, which can be suppressed...

  7. Photo-thermal processing of semiconductor fibers and thin films

    Science.gov (United States)

    Gupta, Nishant

    Furnace processing and rapid thermal processing (RTP) have been an integral part of several processing steps in semiconductor manufacturing. The performance of RTP techniques can be improved many times by exploiting quantum photo-effects of UV and vacuum ultraviolet (VUV) photons in thermal processing and this technique is known as rapid photo-thermal processing (RPP). As compared to furnace processing and RTP, RPP provides higher diffusion coefficient, lower stress and lower microscopic defects. In this work, a custom designed automated photo assisted processing system was built from individual parts and an incoherent light source. This photo-assisted processing system is used to anneal silica clad silicon fibers and deposit thin-films. To the best of our knowledge, incoherent light source based rapid photo-thermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination, Raman spectroscopy and electrical measurements showed a considerable enhancement of structural and crystalline properties of RPP treated silicon fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers. To explore further applications of RPP, thin-films of Calcium Copper Titanate (CaCu3Ti4O12) or CCTO and Copper (I) Oxide (Cu2O) were also deposited using photo-assisted metal-organic chemical vapor deposition (MOCVD) on Si/SiO2 and n-Si substrate respectively. CCTO is one of the most researched giant dielectric constant materials in recent years. The given photo-assisted MOCVD approach provided polycrystalline CCTO growth on a SiO2 surface with grain sizes as large as 410 nm. Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and

  8. Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large- sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings.Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.

  9. Numerical simulation for thermal flow filling process of casting

    Institute of Scientific and Technical Information of China (English)

    CHEN Ye; ZHAO Yu-hong; HOU Hua

    2006-01-01

    The solution algorithm (SOLA) method was used to solve the velocity and pressure field of the thermal flow filling process, and the volume of fluid (VOF) method for the free surface problem. Since the "donor-acceptor" rule often results in the free interface vague, the explicit difference method was adopted, and a method describing the free surface state at 0<F<1 was proposed to deal with this problem. In order to raise the computation efficiency, such algorithms were investigated and invalidated as: 1) internal and external area separation simplification algorithm; 2) the reducing necessary search area method. With the improved algorithms, the filling processes of the valve cover castings with gravity cast and an up cylinder block casting with low-pressure cast were simulated, the simulation results are believable and the computation efficiency is greatly improved. The SOLA-VOF model and its difference method for thermal fluid flow filling process were introduced.

  10. Unvented thermal process for treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    An Unvented Thermal Process is being developed that does not release gases during the thermal treatment operation. The main unit in the process is a fluidized-bed processor containing a bed of calcined limestone (CaO), which reacts with gases given off during oxidation of organic materials. Gases that will react with CaO include CO2, SO2, HCI, HBr, and other acid gases. Water vapor formed during the oxidation process is carried off with the fluidizing gas and is removed in a condenser. Oxygen is added to the remaining gas (mainly nitrogen), which is recirculated to the oxidizer. The most flexible arrangement of equipment involves separating the processor into two units: An oxidizer, which may be any of a variety of types including standard incinerators, and a carbon dioxide sorber

  11. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim;

    1996-01-01

    The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained at...... effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model...... of Miller and Glarborg show satisfactory agreement. The implications of the results for application of thermal de-NOx in high-pressure systems, such as pressurized fluidized bed combustion and gas turbines, are discussed....

  12. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem. A...... pseudo code based algorithm is suggested to deal with the equality constraints of the problem for accelerating the optimization process. The simulation results show that the proposed PSO methods are capable of obtaining higher quality solutions efficiently in wind-thermal coordination problems....

  13. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    Science.gov (United States)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  14. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  15. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  16. Advanced oxidation processes for wastewater reuse - removal of micropollutants

    OpenAIRE

    James, Christopher P.

    2013-01-01

    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power...

  17. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Hikmat S. Al-Salim

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42. doi:10.9767/bcrec.4.2.28.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.28.37-42

  18. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue......-regulator structure. It enables oset free control; it can be computed eciently on-line using several optimization algorithms; and accommodates soft constraint for the outputs and for shaping the set-point tracking penalty function. We report selected observations using this implementation and discuss their practical...... models and integration of the innovation errors. If the disturbances increases, oset-free control cannot be achieved without violation of process constraints. A target calculation function is used to calculate the optimal achievable target for the process. The use of soft constraints for process output...

  19. Highest efficiency rapid thermal processed multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noel, S.; Muller, J.C. [Laboratoire PHASE, Strasbourg (France); Lautenschlager, H. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)

    2001-07-01

    The formation of pn junctions and surface passivation by rapid thermal processing is being proved as a new and competitive method for silicon solar cell production. As the main process mechanisms are enhanced, the total process time at high temperature can be kept in the minute range, for the realization of emitter, back surface field (BSF) and surface passivation. In this work, we demonstrate for the first time that this knowledge, avoiding any in-situ annealing step acquired on the sc-Si, can also be applied on industrial mc-Si (Polix) without bulk degradation, leading to a record conversion efficiency of 16.7%. (author)

  20. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  1. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    Science.gov (United States)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  2. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  3. Use of advanced oxidation processes for removal of micropollutants

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    One of the big challenges of modern water treatment is the handling of micropollutants. These are compounds found in very low concentrations, often at ppt or ppb level, but are still capable of having a potent effect on the environment, and possibly humans as well. One of the emerging technologies...... for removal of micropollutants is the use of advanced oxidation processes (AOPs). AOPs use highly reactive hydroxyl radicals to degrade the micropollutants, but the processes are very energy intensive, which may limit their applications. To investigate the feasibility of introducing AOPs in the Danish...

  4. Process development status report for advanced manufacturing projects

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  5. Power beams and their comparative positioning in advanced materials processing

    International Nuclear Information System (INIS)

    Power Beam Technology covering laser, electron and plasma beams belongs to a class of novel manufacturing techniques. Availability of high power density in localized area along with flexible-controllability of the process makes them attractive for material processing applications. The use of power beams in cutting, welding and melting has been known for over five decades. However, it is only recently that the use of power beams in non-thermal and non-equilibrium processing is emerging as an area of active interest. This paper addresses some of the issues related to the underlying principles of power beams, the comparative strengths and weaknesses of the different techniques and their implementation in processing environment. (author)

  6. Thermal hydraulic analysis of advanced Pb-Bi cooled NPP using natural circulation

    Science.gov (United States)

    Novitrian, Su'ud, Zaki; Waris, Abdul

    2012-06-01

    We present thermal hydraulic analysis for a low power advanced nuclear reactor cooled by lead-bismuth eutectic. In this work is to study the thermal hydraulic analysis of a low power SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) reactor with 125 MWth which a design a core with very small volume and fuel column height, resulting in a negative coolant temperature coefficient and very low channel pressure drop. And also at full power the heat can be completely removed by natural circulation in the primary circuit, thus eliminating the needs for pumps.

  7. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  8. Remote sensing of volcanic plumes using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    Science.gov (United States)

    Henney, Lorna Alison

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been used to quantify SO2 emissions from passively degassing volcanoes. This dissertation explores ASTER's capability to detect SO 2 with satellite validation, enhancement techniques and extensive processing of images at a variety of volcanoes. ASTER is compared to the Mini UV Spectrometer (MUSe), a ground based instrument, to determine if reasonable SO2 fluxes can be quantified from a plume emitted from Lascar, Chile. The two sensors were in good agreement with ASTER proving to be a reliable detector of SO2. ASTER illustrated the advantages of imaging a plume in 2D, with better temporal resolution than the MUSe. SO2 plumes in ASTER imagery are not always discernible in the raw TIR data. Principal Component Analysis (PCA) and Decorrelation Stretch (DCS) enhancement techniques were compared to determine how well they highlight a variety of volcanic plumes. DCS produced a consistent output and the composition of the plumes was easy to identify from explosive eruptions. As the plumes became smaller and lower in altitude they became harder to distinguish using DCS. PCA proved to be better at identifying smaller low altitude plumes. ASTER was used to investigate SO2 emissions at Lascar, Chile. Activity at Lascar has been characterized by cyclic behavior and persistent degassing (Matthews et al. 1997). Previous studies at Lascar have primarily focused on changes in thermal infrared anomalies, neglecting gas emissions. Using the SO2 data along with changes in thermal anomalies and visual observations it is evident that Lascar is at the end an eruptive cycle that began in 1993. Declining gas emissions and crater temperatures suggest that the conduit is sealing. ASTER and the Ozone Monitoring Instrument (OMI) were used to determine the annual contribution of SO2 to the troposphere from the Central and South American volcanic arcs between 2000 and 2011. Fluxes of 3.4 Tg/a for Central America and 3

  9. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO2+x and U3O8 powders as an alternate technique. Further, the temperature difference (ΔTmax) between the two exothermic peaks obtained in UO2+x powder oxidation is related to sintered density of UO2 pellets. (author)

  10. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing.

    Science.gov (United States)

    Singh, Anika; Pratap Singh, Anubhav; Ramaswamy, Hosahalli S

    2016-06-01

    This work introduces the concept of a controlled agitation thermal process to reduce quality damage in liquid-particulate products during agitation thermal processing. Reciprocating agitation thermal processing (RA-TP) was used as the agitation thermal process. In order to reduce the impact of agitation, a new concept of "stopping agitations after sufficient development of cold-spot temperature" was proposed. Green beans were processed in No. 2 (307×409) cans filled with liquids of various consistency (0% to 2% CMC) at various frequencies (1 to 3 Hz) of RA-TP using a full-factorial design and heat penetration results were collected. Corresponding operator's process time to impart a 10-min process lethality (Fo ) and agitation time (AT) were calculated using heat penetration results. Accordingly, products were processed again by stopping agitations as per 3 agitation regimes, namely; full time agitation, equilibration time agitation, and partial time agitation. Processed products were photographed and tested for visual quality, color, texture, breakage of green beans, turbidity, and percentage of insoluble solids in can liquid. Results showed that stopping agitations after sufficient development of cold-spot temperatures is an effective way of reducing product damages caused by agitation (for example, breakage of beans and its leaching into liquid). Agitations till one-log temperature difference gave best color, texture and visual product quality for low-viscosity liquid-particulate mixture and extended agitations till equilibration time was best for high-viscosity products. Thus, it was shown that a controlled agitation thermal process is more effective in obtaining high product quality as compared to a regular agitation thermal process. PMID:27096606

  11. EXAFS investigation of nanoparticles produced in a thermal plasma process

    International Nuclear Information System (INIS)

    Nanosized ceramic powders (Cu/SiC, Y2O3-stabilized cubic ZrO2) were produced by evaporation of coarsely grained powders of the respective materials in an inductively coupled thermal plasma process and rapid quenching of the vapor. The atomic short range order of these nanoparticles with an average diameter of about 10 nm was investigated ex situ with EXAFS. The results are compared to crystalline reference materials. (au)

  12. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  13. The Physicochemical Changes of Black Garlic during Thermal Processing

    OpenAIRE

    Mengmeng Lei; Zesheng Zhang; Rui Liu; Min Zhang; Mengying Xu

    2015-01-01

    To explore the physicochemical changes of black garlic during the thermal processing steps and further reveal the role of Maillard reaction in the formation mechanism of black garlic. The physicochemical changes including UV-Vis absorbance, fluorescence and color difference were determined. The UV absorbance at 294 nm and browning intensity at 420 nm gradually increased with increasing heating time, while the fluorescence intensity showed a maximum value at the heating time of 3 days. The col...

  14. Conceptual Design of a Thermal Process Plant Weblab

    OpenAIRE

    Marco Túlio Corrêa de Siqueira; Marcio Luiz Debner dos Santos; Luciano Antonio Mendes

    2012-01-01

    Weblabs, or remote experimentation laboratories, make possible carrying out real-time experiments through the internet by using integrated laboratorial systems, software, hardware and multimedia resources, having important applications in engineering education and research teams cooperation. This paper presents the conceptual design of a Weblab for a thermal process plant, based on the systematic model for planning and development of Weblabs. Its approach comprises three layers (physical syst...

  15. Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  16. Modelling of the Heating Process in a Thermal Screw

    International Nuclear Information System (INIS)

    The procedure of separating efficiently dry-stuff (proteins), fat, and water is an important process in the handling of waste products from industrial and commercial meat manufactures. One of the sub-processes in a separation facility is a thermal screw where the raw material (after proper mincing) is heated in order to melt fat, coagulate protein, and free water. This process is very energy consuming and the efficiency of the product is highly dependent on accurate temperature control of the process. A key quality parameter is the time that the product is maintained at temperatures within a certain threshold. A detailed mathematical model for the heating process in the thermal screw is developed and analysed. The model is formulated as a set of partial differential equations including the latent heat for the melting process of the fat and the boiling of water, respectively. The product is modelled by three components; water, fat and dry-stuff (bones and proteins). The melting of the fat component is captured as a plateau in the product temperature. The model effectively captures the product outlet temperature and the energy consumed. Depending on raw material composition, 'soft' or 'dry', the model outlines the heat injection and screw speeds necessary to obtain optimal output quality.

  17. Modelling of the Heating Process in a Thermal Screw

    Science.gov (United States)

    Zhang, Xuan; Veje, Christian T.; Lassen, Benny; Willatzen, Morten

    2012-11-01

    The procedure of separating efficiently dry-stuff (proteins), fat, and water is an important process in the handling of waste products from industrial and commercial meat manufactures. One of the sub-processes in a separation facility is a thermal screw where the raw material (after proper mincing) is heated in order to melt fat, coagulate protein, and free water. This process is very energy consuming and the efficiency of the product is highly dependent on accurate temperature control of the process. A key quality parameter is the time that the product is maintained at temperatures within a certain threshold. A detailed mathematical model for the heating process in the thermal screw is developed and analysed. The model is formulated as a set of partial differential equations including the latent heat for the melting process of the fat and the boiling of water, respectively. The product is modelled by three components; water, fat and dry-stuff (bones and proteins). The melting of the fat component is captured as a plateau in the product temperature. The model effectively captures the product outlet temperature and the energy consumed. Depending on raw material composition, "soft" or "dry", the model outlines the heat injection and screw speeds necessary to obtain optimal output quality.

  18. Radiation-thermal processes of conversion in the coals

    International Nuclear Information System (INIS)

    Full text: The brief review, history, modern condition and bibliographic data on research of radiation-stimulated processes in coals are adduced in the report. Results of new researches of influence of gamma - radiation and accelerated electrons on pyrolysis, gasification, desulphurization, paramagnetism, adsorption and optical properties of coals in wide intervals of change of absorbed dose, dose rate, temperature, radiation type and other parameters of processes are stated. As object of researches Turkish (Yeni koy, Yatagan) and Russian (Siberia) coals were used. Specific peculiarities of influence of ionizing radiations on fossil fuels, bringing in change of their reactivity as result of destruction and polycondensation processes are considered. a)Pyrolysis: Under action of gamma-radiation and accelerated electrons the rate of thermal (t) pyrolysis grows and the ratio of radiation-thermal (rt) and thermal (t) processes: Wrt/ Wt depends on dose rate and temperature. By increase of dose rate the radiation effects grows, and at increase of temperature this effect is reduced. The influence of high rate heating of coals under pulls action of accelerated electrons on conversion degree and product composition has been established. The investigation regularities of formation liquid and gas products is resulted at radiation - thermal processing of mixtures of lignites with fuel oil. These experiments were conducted in flowing conditions in the interval of temperature T=350-500 degrees centigrade, power of the pulls accelerated electrons P=30-50 W, flow velocity of fuel oil 0,2-2 ml/minute. As a index of process were controlled conversion degree of coals, overall yield, contents and characteristic of liquid and gas products. The products of thermal treatment of these mixtures and also radiation-thermal treatment of separate components significantly less than radiation-thermal conversion of binary mixtures. It has been established that radiation effect has a positive

  19. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  20. Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned

    CERN Document Server

    Baily, Charles; Pollock, Steven J

    2013-01-01

    When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

  1. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  2. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    Science.gov (United States)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  3. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  4. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  5. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    Directory of Open Access Journals (Sweden)

    Cora Lind

    2010-04-01

    Full Text Available Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  6. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors

    Directory of Open Access Journals (Sweden)

    Vinet Jean-Yves

    2009-07-01

    Full Text Available The sensitivity of present ground-based gravitational wave antennas is too low to detect many events per year. It has, therefore, been planned for years to build advanced detectors allowing actual astrophysical observations and investigations. In such advanced detectors, one major issue is to increase the laser power in order to reduce shot noise. However, this is useless if the thermal noise remains at the current level in the 100 Hz spectral region, where mirrors are the main contributors. Moreover, increasing the laser power gives rise to various spurious thermal effects in the same mirrors. The main goal of the present study is to discuss these issues versus the transverse structure of the readout beam, in order to allow comparison. A number of theoretical studies and experiments have been carried out, regarding thermal noise and thermal effects. We do not discuss experimental problems, but rather focus on some theoretical results in this context about arbitrary order Laguerre–Gauss beams, and other “exotic” beams.

  7. Development of an advanced thermal hydraulics model for nuclear power plant simulation

    International Nuclear Information System (INIS)

    This paper summarizes the development of an advanced digital computer thermal hydraulics model for nuclear power plant simulation. A review of thermal hydraulics code design options is presented together with a review of existing engineering models. CAE has developed an unequal temperatures-unequal velocities five equation model based on the drift flux formalism. CAE has selected the model on the basis that phase separation and thermal non-equilibrium are required to simulate complex and important phenomena occurring in systems such as reactor cooling systems (RCS) and steam generators (SG). The drift flux approach to phase separation and countercurrent flow was selected because extensive testing and validation data supports full-range drift flux parameters correlations. The five equation model was also chosen because it conserves important quantities, i.e. mass and energy of each phase, and because of numerical advantages provided by the case of coupling phasic mass conservation equations with phasic energy conservation equations. The basis of CAE's model as well as supporting models for convection and conduction heat transfer, break flow, interphase mass and heat transfer are described. Comparison of code calculations with experimental measurements taken during a small break LOCA test with the OTIS facility are presented. The use of such advanced thermal hydraulics model as plant analyzer considerably improves simulation capabilities of severe transient as well as of normal operation of two phase systems in nuclear power plants. (orig./HP)

  8. An advanced Thermal-FSI approach to flow heating/cooling

    International Nuclear Information System (INIS)

    Actually, two-way thermal-energy exchange between working fluid and solid material of a casing is a leading problem for modern – semi automatic – design techniques. Many questions should be solved, especially, the turbulent mode of thermal energy transport both in fluid and solid, should be re-examined and reformulated from the primary principles. In the present paper, a group of researchers from Energy Conversion Department of IMP PAN at Gdańsk, tries to summarise a last three-years efforts towards to mathematical modelling of advanced models of thermal energy transport. This extremely difficult problem in 'thermal-FSI' ('Fluid Solid Interaction') means that the both for solid and fluid mathematical model of a surface layer should be self-equilibrated and self-concise. Taking these requirements into account, an advanced Reynolds-Stanton analogy has been discussed and implemented. Some numerical examples concerning of the benchmarks experiments and industrial applications have also been developed and presented.

  9. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  10. Optimized rapid thermal process for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noeel, S.; Slaoui, A.; Muller, J.C. [Laboratoire PHASE, 23, rue du Loess, 67037 Strasbourg (France); Peters, S.; Lautenschlager, H.; Schindler, R. [FhG ISE, Oltmannstr.5, 79100 Freiburg (Germany)

    2001-01-01

    Rapid thermal processing is opening new possibilities for a low-cost and environmentally safe silicon solar cell production, keeping the process time at high temperature in the order of 1min, due to enhanced diffusion and oxidation mechanisms. Controlling the surface concentration of the junction is one of the major parameters, in order to obtain suitable front surface recombination velocities. Simultaneous diffusion of phosphorus and aluminum is used to realize emitter and back surface field in a single high-temperature step, with optimized gettering effect. Controlling the mentioned parameters on industrial 1{omega}cm Cz material lead in 17.5% efficient solar cells on a surface of 25cm{sup 2}. All results are discussed in terms of process temperature, dopant source concentration and effective process time, below 1min including high heating and cooling rates.

  11. Thermal verification procedure for dispersive composite solidification process

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2006-04-01

    Full Text Available Purpose: The aim of this work was optimization of composite matrix solidifcation process with use of thermal properties of components and geometrical characteristics of transition zone related with reinforcing particles morphology.Design/methodology/approach: The method was based on quantitive image analysis. The reinforcing particles morphology was described by morphological modulus. With use of numerical simulation the changes in temperature and its derivatives after time and direction in studied composite micro – region appeared.Findings: As a result of this studies the forecast procedure for composite structure evaluation was obtained and for which optional solidification theory can be used. Analysis of particles morphology influence on matrix solidification process is a proposed novelty.Research limitations/implications: The work enables in enginereeng practice verification of components from technological point of view by thermal and geometrical properties selection and thus by introducing changes to the particle – matrix (casting – mould – surrounding system. In this stage the procedure does not include the diffusion between matrix and reinforcement related to its relative motion. Evaluation of incomplete wetting and transition zone phases occurance does not permit tribological or fatique properties forecasting.Originality/value: The proposed procedure is useful for composite properties forecasting based on components thermal and geometrical characteristics.

  12. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  13. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian;

    2016-01-01

    This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented. B...

  14. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Ahmmed S. Ibrehem

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42.  doi:10.9767/bcrec.4.2.7109.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.7109.37-42 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7109 ] 

  15. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  16. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  17. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  18. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    International Nuclear Information System (INIS)

    As the semiconductor industry roadmap passes through the 0.1 μm technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 μm in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied

  19. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  20. H Scan/AHP advanced technology proposal evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S. [Energetics, Inc., Columbia, MD (United States); Valladares, M.R.S. de [National Renewable Energy Lab., Washington, DC (United States)

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  1. Advances in multi-photon processes and spectroscopy, v.5

    CERN Document Server

    Lin, Sheng H

    1989-01-01

    In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in many interdisciplinary fields, an Advanced Series that contains review papers readable not only to active researchers in these areas but also to those who are not experts in the field but intend to enter the field is very necessary. This series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much prepar

  2. Advanced computational modelling for drying processes – A review

    International Nuclear Information System (INIS)

    Highlights: • Understanding the product dehydration process is a key aspect in drying technology. • Advanced modelling thereof plays an increasingly important role for developing next-generation drying technology. • Dehydration modelling should be more energy-oriented. • An integrated “nexus” modelling approach is needed to produce more energy-smart products. • Multi-objective process optimisation requires development of more complete multiphysics models. - Abstract: Drying is one of the most complex and energy-consuming chemical unit operations. R and D efforts in drying technology have skyrocketed in the past decades, as new drivers emerged in this industry next to procuring prime product quality and high throughput, namely reduction of energy consumption and carbon footprint as well as improving food safety and security. Solutions are sought in optimising existing technologies or developing new ones which increase energy and resource efficiency, use renewable energy, recuperate waste heat and reduce product loss, thus also the embodied energy therein. Novel tools are required to push such technological innovations and their subsequent implementation. Particularly computer-aided drying process engineering has a large potential to develop next-generation drying technology, including more energy-smart and environmentally-friendly products and dryers systems. This review paper deals with rapidly emerging advanced computational methods for modelling dehydration of porous materials, particularly for foods. Drying is approached as a combined multiphysics, multiscale and multiphase problem. These advanced methods include computational fluid dynamics, several multiphysics modelling methods (e.g. conjugate modelling), multiscale modelling and modelling of material properties and the associated propagation of material property variability. Apart from the current challenges for each of these, future perspectives should be directed towards material property

  3. Recent Technological Advances in Natural Language Processing and Artificial Intelligence

    OpenAIRE

    Shah, Nishal Pradeepkumar

    2012-01-01

    A recent advance in computer technology has permitted scientists to implement and test algorithms that were known from quite some time (or not) but which were computationally expensive. Two such projects are IBM's Jeopardy as a part of its DeepQA project [1] and Wolfram's Wolframalpha[2]. Both these methods implement natural language processing (another goal of AI scientists) and try to answer questions as asked by the user. Though the goal of the two projects is similar, both of them have a ...

  4. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    OpenAIRE

    Barazesh, JM; Hennebel, T; Jasper, JT; Sedlak, DL

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low con...

  5. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  6. The Numerical Tours of Signal Processing - Advanced Computational Signal and Image Processing

    OpenAIRE

    Peyré, Gabriel

    2011-01-01

    The Numerical Tours of Signal Processing is an online collection of tutorials to learn advanced computational signal and image processing. These tours allow one to follow a step by step Matlab or Scilab implementation of many important processing algorithms. This implementation is commented and the connexions with the relevant mathematical notions are exposed. These algorithms are applied to various signal, image, movie and 3D mesh datasets. These tours are suitable for practitioners in the f...

  7. A new VLSI compatible rapid thermal processing system

    Science.gov (United States)

    Aitken, D.; Mehta, S.; Parisi, N.; Russo, C. J.; Schwartz, V.

    Rapid thermal processing (RTP) is increasingly becoming a significant tool to meet the challenge of fabricating miniaturized MOS and bipolar devices. The primary advantages of RTP over conventional furnace annealing include the shorter heat cycle, well-controlled soak times at peak temperatures and the capability to rapidly change anneal ambients, thereby enhancing its flexibility as a process tool. The major applications of RTP in VLSI technology that are presently being pursued include: (i) implant-damage annealing/dopant activation, (ii) silicide formation, (iii) glass reflow, (iv) thin film growth/deposition (oxides, nitrides, oxy-nitrides) and (v) contact alloying. This paper discusses a new rapid thermal processor, RTP-800/8000, recently introduced by Varian. The discussion will include mechanical and electrical design, software, heating process compatibility, process uniformity and repeatability, process setup and noncontact temperature measurement. The heating system consists of a tungsten lamp array surrounded by a highly reflective mirror system designed to provide good temperature uniformity for wafer sizes up to 200 mm. The RTP-8000 has a serial cassette-to-cassette automatic wafer handling system. The RTP-800 possesses a single wafer, operator-assisted wafer handling system. The RTP-800/8000 has an automated multiple gas flow control and also has the optional capability of processing wafers in vacuum. An infrared optical pyrometer measures the wafer temperature from the backside of the wafer. In the RTP-8000, touch screen operation of the menu-driven recipes is easy with user-friendly software. A separate electroluminescent flat panel display provides information for maintenance and servicing and reports the system status. Process information is provided on this display in the RTP-800.

  8. Wide-Area Thermal Processing of Light-Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Quick, N. (AppliCote Associates, LLC)

    2011-09-30

    Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is

  9. Safety Analysis of Soybean Processing for Advanced Life Support

    Science.gov (United States)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  10. Finite element process modelling of inertia friction welding advanced nickel-based superalloy

    International Nuclear Information System (INIS)

    A sequentially coupled thermal and mechanical finite element (FE) model has been developed to describe inertia friction welding (IFW) using the DEFORM 8.2 package. All modelling and experimental work was undertaken on inertia friction welds made from RR1000, which is an advanced high γ' content nickel-based superalloy. The accuracy of the thermal predictions has been assessed by an analysis of γ' distribution across the weld region as compared to those recorded during prescribed thermal simulations, while the mechanical model has been validated by comparing predicted and measured upsets and weld pressures. Finally the residual stress predictions have been compared against measurements (by neutron diffraction). In all cases excellent agreement was found between predicted and experimental data. This exercise revealed that the clamping forces applied during the welding process may have a strong influence on the axial stress field. The validated model was then used to study the effect of welding pressure on material flow, thermal history and residual stresses. The work shows that with increasing weld pressure the width of the heat-affected zone (HAZ) is reduced, while the peak temperature and strain rate is increased. In addition the peak stresses in the hoop direction near the weldline were found to be largely unaffected by the weld pressure. However, for lower welding pressures a broader high tensile hoop stress region was found in accordance with the increased HAZ.

  11. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  12. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    Science.gov (United States)

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-03-11

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications. PMID:25629307

  13. Fabrication of low cost cutting wheel via thermal spray process

    Science.gov (United States)

    Anasyida, A. S.; Nurulakmal, M. S.

    2012-09-01

    The present study is mainly focused on development of metal cutting wheel. The process involved hard particles (abrasives) being bonded on the wheel to enhance the cutting capability by thermal spraying process and followed by polymer bonding. The purpose of this work is to produce low cost cutting wheel and study the performance of cutting behavior. Two different types of powders; silicon carbide (SiC) as bonding agent and chromium carbide (Cr3C2) as abrasives were used. Wear loss and depth of cut as function of load, cutting time and cutting speed were evaluated. The results showed that the speed and load were the main factors that affected the cutting efficiency and the optimum cutting process can be performed at low cutting speed and high load or at high cutting speed and low load.

  14. High-frequency thermal processes in harmonic crystals

    CERN Document Server

    Kuzkin, Vitaly A

    2016-01-01

    We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...

  15. Study on process basic requirements of experimental facility of advanced spent fuel management process

    International Nuclear Information System (INIS)

    The advanced spent fuel management process, which was proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. Hot cell facilities of α-γ type and inert atmosphere are required essentially for safe hot test and verification of this process. In this study, design basic data are established, and these data include process flow, process condition and yields, mass and radioactivity balance of radionuclides, process safety considerations, etc. And also, these data will be utilized for basic and detail design of hot cell facility, secured conservative safety and effective operability

  16. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  17. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency......-division multiplexing (OFDM) systems, with a particular emphasis on the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard as a study case. Signal processing in wireless receivers can be designed following different strategies. On the one hand, one can use intuitive argumentation to define...... the applicability of MF methods to the problem of estimation of sparse signals. Among the contributions within the area of heuristic approaches, we highlight our study of iterative MIMO detection, interference cancellation and decoding for LTE systems. A detailed study of channel estimation algorithms for OFDM...

  18. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  19. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  20. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  1. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    Science.gov (United States)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  2. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  3. An advanced aqueous process for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    To develop an advanced aqueous reprocessing process using a minimal organic solvent and compact equipment to separate U, Pu and long-lived minor actinides from spent nuclear fuels, we have developed a new type of anion exchanger (AR-01) and several novel extraction resins containing a chelating ligand such as CMPO, Cyanex-301 and R-BTP. A hot separation experiment for a spent BWR-fuel solution was carried out by an ion exchange column packed with AR-01. To enhance the separation factor between U and FPs, electrolytic reduction of UO22+ to U+4 was studied using a flow type electrolysis cell with carbon-fiber electrode. Separation behavior of Am(III) from simulated HLW by CMPO and R-BTP impregnated resins were investigated. On the basis of the experimental results, an advanced aqueous process which consists of anion exchange as main separation method, electrolytic reduction for reducing U(VI) to U(IV) and extraction chromatography for MA partitioning has been designed and evaluated preliminarily. (author)

  4. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually. PMID:15533022

  5. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  6. A Hydrogen Containment Process For Nuclear Thermal Engine Ground Testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    A hydrogen containment process was proposed for ground testing of a nuclear thermal engine. The hydrogen exhaust from the engine is contained in two unit operations: an oxygen-rich burner and a tubular heat exchanger. The burner burns off the majority of the hydrogen, and the remaining hydrogen is removed in the tubular heat exchanger through the species recombination mechanism. A multi-dimensional, pressure-based multiphase computational fluid dynamics methodology was used to conceptually sizing the oxygen-rich burner, while a one-dimensional thermal analysis methodology was used to conceptually sizing the heat exchanger. Subsequently, a steady-state operation of the entire hydrogen containment process, from pressure vessel, through nozzle, diffuser, burner and heat exchanger, was simulated numerically, with the afore-mentioned computational fluid dynamics methodology. The computational results show that 99% of hydrogen reduction is achieved at the end of the burner, and the rest of the hydrogen is removed to a trivial level in the heat exchanger. The computed flammability at the exit of the heat exchanger is less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  7. An Approach to Thermal Modeling of Laser Polishing Process

    Science.gov (United States)

    Ukar, E.; Lamikiz, A.; Tabernero, I.; Liebana, F.; del Pozo, D.

    2009-11-01

    Polishing operation of die and molds represents up to 30% of the total manufacturing cost, since it is a high added value operation that is necessary carried out manually by qualified personnel. There are several alternatives to hand operations, such as abrasive automated methods operated by robots, ball burnishing or laser polishing process in order to reduce operation time and costs. The presented article proposes a laser based polishing operation which consists in the application of a laser beam in a very controlled way. The radiated energy melts a microscopic layer which flows and re-solidifies smoothing the topographic irregularities of the surface resulting in a reduction of the initial roughness. The article presents, in addition to some experimental results of laser polishing process, a thermal model developed based on the finite difference method. The model is able to take into account different types of lasers; in particular, simulations for a CO2 laser and a high power diode laser have been carried out. As the model gets the full map of temperatures in 3D, it is possible to predict the melted material layer thickness, which is a crucial parameter in the laser polishing process. Finally, two types of validation tests are presented: First, some tests measured by pyrometers on the test part surface. Secondly, the comparison of a series of metallographic analysis on W.-Nr.1.2379 tool steel, where the metallurgical changes caused by the laser radiation can be observed with the thermal field estimated by the model.

  8. Chemical reactions during the thermal processing of borazene polymers

    International Nuclear Information System (INIS)

    A class of borazene polymers was developed which consists of a two-dimensional array of six-membered borazene rings with the borons of adjacent borazene rings separated by -NH- groups. Pyrolysis of these polymers above ∼1000 degrees C leads to crystalline graphite-like boron nitride (h-BN). The thermal chemistry of thin films of one polymer deposited on KOH-etched aluminum was examined by thermal decomposition mass spectroscopy (TDMS) and thermal gravimetric analysis (TGA) and the gas evolution chemistry was found to be essentially complete at temperatures less than 400 degrees C. All products desorb with the same temperature profile and the major desorbing species are NH3 and N2, consistent with a loss of excess nitrogen and hydrogen in the polymer, and HCI from decomposition of byproducts of the synthesis step. Since the formation of ordered crystalline h-BN films requires heating to temperatures of the order of 1000 degrees C, whereas the gas evolution chemistry is complete by roughly 400 degrees C, it is concluded that gas evolution chemical processes are not rate limiting in BN ceramic production

  9. Virtual Mold Technique in Thermal Stress Analysis during Casting Process

    Institute of Scientific and Technical Information of China (English)

    Si-Young Kwak; Jae-Wook Baek; Jeong-Ho Nam; Jeong-Kil Choi

    2008-01-01

    It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.

  10. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an advanced cold process canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie local-iced corrosion for the steel or copper canisters can be dismissed as a failure mechanism; The evaluation of the effects of processed outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. For completeness also evaluation of post-failure behaviour was carried out. Analyses were focussed on low probability phenomena from faults in canisters. Some items were identified where further research is justified in order to increase knowledge of the phenomena and thus strengthen the confidence of safety margins. However, it can be concluded that the risks of these scenarios can be judged to be acceptable. This is due to the fact that firstly, the probability of occurrence of most of these scenarios can be controlled to a large extent through technical measures. Secondly, these analyses indicated that the consequences would not be severe

  11. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  12. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an Advanced Cold Process Canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. The canister design was originally proposed by TVO. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. Throughout the analysis, present day underground conditions has been assumed to persist during the service life of the canister. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie localized corrosion for the steel or copper canisters can be dismissed as a failure mechanism. The evaluation of the effects of processes outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. This factor will ensure the safety of the concept. (orig.)

  13. The Physicochemical Changes of Black Garlic during Thermal Processing

    Directory of Open Access Journals (Sweden)

    Mengmeng Lei

    2015-03-01

    Full Text Available To explore the physicochemical changes of black garlic during the thermal processing steps and further reveal the role of Maillard reaction in the formation mechanism of black garlic. The physicochemical changes including UV-Vis absorbance, fluorescence and color difference were determined. The UV absorbance at 294 nm and browning intensity at 420 nm gradually increased with increasing heating time, while the fluorescence intensity showed a maximum value at the heating time of 3 days. The color value of black garlic increased after heating at 70-80°C for 10 days. These results indicated Maillard reaction was primarily responsible for the formation of black garlic.

  14. Controlling the thermally induced focal shift in laser processing heads

    Science.gov (United States)

    Negel, Jan-Philipp; Abt, Felix; Blázquez-Sánchez, David; Austerschulte, Armin; Hafner, Margit; Liebig, Thomas; von Strobl-Albeg, Philipp; Weber, Rudolf; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-03-01

    A system being able to in situ measure and control not simply the distance between the workpiece and the focusing optics, but the true focal position on the workpiece including the thermally induced focal shift in a laser processing head is presented. In order to achieve this, a bundle of astigmatic measurement beams is used following the same optical path as the welding beam. A camera and a software algorithm allow to keep the focal position constant within a range of 4 mm and with a resolution between 150 μm and 500 μm.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  16. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe3O4) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion release to

  17. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  18. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    Science.gov (United States)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  19. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  20. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  1. Applications of advanced oxidation processes: present and future.

    Science.gov (United States)

    Suty, H; De Traversay, C; Cost, M

    2004-01-01

    The use of advanced oxidation processes (AOPs) to remove pollutants in various water treatment applications has been the subject of study for around 30 years. Most of the available processes (Fenton reagent, O3 under basic conditions, O3/H2O2, O3/UV, O3/solid catalyst, H2O2/M(n+), H2O2/UV, photo-assisted Fenton, H2O2/solid catalyst, H2O2/NaClO, TiO2/UV etc.) have been investigated in depth and a considerable body of knowledge has been built up about the reactivity of many pollutants. Various industrial applications have been developed, including ones for ground remediation (TCE, PCE), the removal of pesticides from drinking water, the removal of formaldehyde and phenol from industrial waste water and a reduction in COD from industrial waste water. The development of such AOP applications has been stimulated by increasingly stringent regulations, the pollution of water resources through agricultural and industrial activities and the requirement that industry meet effluent discharge standards. Nevertheless, it is difficult to obtain an accurate picture of the use of AOPs and its exact position in the range of water treatment processes has not been determined to date. The purpose of this overview is to discuss those processes and provide an indication of future trends. PMID:15077976

  2. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  3. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  4. Conceptual Design of a Thermal Process Plant Weblab

    Directory of Open Access Journals (Sweden)

    Marco Túlio Corrêa de Siqueira

    2012-12-01

    Full Text Available Weblabs, or remote experimentation laboratories, make possible carrying out real-time experiments through the internet by using integrated laboratorial systems, software, hardware and multimedia resources, having important applications in engineering education and research teams cooperation. This paper presents the conceptual design of a Weblab for a thermal process plant, based on the systematic model for planning and development of Weblabs. Its approach comprises three layers (physical system, hardware and software, being prescribed the following steps: definition of requirements; system technical specification; conceptual synthesis; analysis, simulation and dimensioning; detailing and documentation; integration and start up test. The users (qualitative and project (technical, quantitative requirements have been compiled in a previous work through the application of the House of Quality matrix from the QFD method. The functional structure, the morphological chart and the use of Pugh's method to select the best design solution, as well as a description of the developed conceptual solution, are presented. The conceptual solution includes the thermal process plant remote configuration to allow the variation of the experimental setup parameters, offering three variants of control engineering exercises. The presented results provide the basis for the next stage of the Weblab development.

  5. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    International Nuclear Information System (INIS)

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O3), hydrogen peroxide (H2O2), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  6. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    Science.gov (United States)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  7. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  8. Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

    1993-02-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

  9. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  10. Experimental investigation of thermal limits in parallel plate configuration for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    The Advanced Neutron Source Reactor (ANSR) is currently being designed to become the world's highest-flux, steady-state, thermal neutron source for scientific experiments. Highly subcooled, heavy-water coolant flows vertically upward at a very high velocity of 25 m/s through parallel aluminum fuel-plates. The core has average and peak heat fluxes of 5.9 and 12 MW/m2, respectively. In this configuration, both flow excursion (FE) and true critical heat flux (CHF), represent potential thermal limitations. The availability of experimental data for both FE and true CHF at the conditions applicable to the ANSR is very limited. A Thermal Hydraulic Test Loop (THTL) facility was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of both thermal limits under the expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 14 MW/m2 and a corresponding velocity range of 8 to 21 m/s. Both the exit pressure (1.7 MPa) and inlet temperature (45 degrees C) were maintained constant for these tests, while the loop was operated in a ''stiff''(constant flow) mode. Limited experiments were also conducted at 12 MW/m2 using a ''soft'' mode (near constant pressure-drop) for actual FE burnout tests and using a ''stiff' mode for true CHF tests, to compare with the original FE experiments

  11. Advanced WC-Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B. [Centre for Advanced Materials Processing, Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, West Bengal (India)], E-mail: bnmondal@rediffmail.com; Das, P.K. [Central Glass and Ceramic Research Institute, Kolkata (India); Singh, S.K. [Institute of Minerals and Materials Technology (IIMT), Bhubeneswar (India)

    2008-12-20

    The synthesis of titanium carbonitride (TiCN) powders by thermal plasma using extended arc thermal plasma reactor and the effect of TiCN reinforcement for the development of advanced WC-Co cermets has been studied with respect to hardness and fracture toughness. These classes of materials are being investigated for future application in wear-resistant seals, cutting tools, etc. Metallurgical reactions and microstructural developments during sintering of cermets and functionally graded cemented carbonitrides are being investigated by analytical methods such as differential thermal analysis/thermo-gravimetric analysis, X-ray diffraction and analytical Scanning electron microscopy with energy dispersive X-ray spectroscopy. By an in-depth understanding of the complex phase reactions and the mechanisms that govern the sintering process and metallurgical reactions, new cermets and different types of functionally graded cemented carbonitrides with desired microstructures and properties have been attempted to develop. The significant improvement of micro-hardness was observed with optimal concentration of TiCN reinforcement addition in WC-Co system without sacrificing much fracture toughness value of the composite cermets.

  12. Advanced information processing system: Inter-computer communication services

    Science.gov (United States)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  13. Evaluation methodologies for an advanced information processing system

    Science.gov (United States)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  14. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  15. Advanced information processing system: Input/output system services

    Science.gov (United States)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  16. Homogeneity survey of advanced spent fuel conditioning process hot cell

    International Nuclear Information System (INIS)

    The hot cell facility (ACPF) for research activities related to the advanced spent fuel conditioning process (ACP) is being constructed. The hot cell construction work will be finished in May, 2005. Hot cell is designed to permit safe handling of radioactive materials up to 1,385 TBq and to keep gamma and neutron dose-rate lower than the recommended ones. The dose-rate limit values following the Korean nuclear laws are 0.01 mSv/h at operation area and 0.15 mSv/h at maintenance area. The ACPF is a concrete structure with two rooms, and made its exterior walls of heavy concrete with density of 3.45 g/cm3 and the wall thickness is more than 90 cm

  17. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  18. Medium Access Control for Thermal Energy Harvesting in Advanced Metering Infrastructures

    DEFF Research Database (Denmark)

    Vithanage, Madava D.; Fafoutis, Xenofon; Andersen, Claus Bo; Dragoni, Nicola

    In this paper we investigate the feasibility of powering wireless metering devices, namely heat cost allocators, by thermal energy harvested from radiators. The goal is to take a first step toward the realization of Energy-Harvesting Advanced Metering Infrastructures (EH-AMIs). While traditional...... the potential energy that can be harvested from Low Surface Temperature (LST) radiators. The experiments are based on a developed Energy-Harvesting Heat Cost Allocator (EH-HCA) prototype. On the basis of this measured power budget, we model and analytically compare the currently used Medium Access...

  19. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  20. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  1. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    Science.gov (United States)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  2. In-process thermal imaging of the electron beam freeform fabrication process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-05-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  3. In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-01-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  4. Investigation of Thermal Stress Distribution in Laser Spot Welding Process

    Directory of Open Access Journals (Sweden)

    Osamah F. Abdulateef

    2009-01-01

    Full Text Available The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser welded workpiece which showed good correlations between analytical and numerical results. It was found that the temperature gradients during laser welding are usually very large and it was viewed that very high temperature at the center of the workpiece, and is decreased very significantly as propagating along the radial direction. Also it found that the thermal residual stresses around the laser spot due to plastic strains were very small and localized within 1.0 mm range. It is concluded that the laser welding process is effective to reduce the welding residual stress. The stresses along the lateral direction of the workpiece changed from compression at the spot under the laser beam and tension away from the spot at the end of welding to tension at the spot under the laser beam and compression away from the spot when it cooled, which are in a good agreement with the published results.

  5. Simplified model of VVER–1000 thermal hydraulic process

    International Nuclear Information System (INIS)

    This report introduce developed mathematical model of thermal hydraulic process which occurs in the core of VVER – 1000 type of nuclear reactor and the coolant flow is considered in one dimension. Navier – Stokes differential equations system is taken like basis – namely continuity equation and momentum and energy conservation equations with two algebraic equations of state by which closure relationship is done. Following the approach of simplifying the model in momentum and energy equations some simplifying assumptions is made like Reynolds term in momentum equation is neglected and diffusion term – in energy equation. The differential equations system can be split into two parts: at one hand continuity equation and momentum equation are solved regarding velocity and pressure distribution and at another – solving energy equation. This report is considering the second case – solving the unsteady energy equation at prescribed distributions of velocity and pressure. By using one of the algebraic state equation, i=cvT, the energy equation is written regarding the temperature. Velocity and pressure given in the model are estimated by the thermal hydraulics means. The energy equation is solved by finite volumes method at which considered region is divided by N finite volumes, scalar values T and P are represented at central points at volumes and the velocity – at borders of these volumes by so called staggered grid. The equation is integrated at the boundaries of every finite volume and in time at the interval [t; t+ t]. For results obtained by integration is applied Crank-Nicolson semi-implicit scheme. As a result this gives an algebraic system with three diagonal matrix which can be solved with Crout effective algorithm. Keywords: finite volumes method, RELAP5, thermal hydraulics

  6. Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability

    Science.gov (United States)

    Yadav, Devinder; Bauri, Ranjit; Kauffmann, Alexander; Freudenberger, Jens

    2016-08-01

    The present investigation shows that alternate to the ceramic particles, hard metallic particles can be used as reinforcement in an aluminum matrix to achieve a good strength-ductility combination in a composite. Titanium particles were incorporated into aluminum by friction stir processing (FSP) to process an Al-Ti particulate composite. FSP led to uniform distribution of the particles in the stir zone without any particle-matrix reaction, thereby retaining the particles in their elemental state. Fracture and twinning of the Ti particles with different frequency of occurrence on the advancing and retreating sides of the stir zone was observed. Twinning of the particles was studied by focused ion beam-assisted transmission electron microscopy. The processed Al-Ti composite exhibited a significant improvement in strength and also retained appreciable amount of ductility. The thermal stability of the fine-grained structure against abnormal grain growth (AGG) was improved by the Ti particles. The AGG in the Al-Ti composite occurred at 713 K (440 °C) compared to 673 K (400 °C) in the unreinforced aluminum processed under the same conditions. On the other hand, the particle-matrix reaction occurred only at 823 K (550 °C), and hence the Ti particles were thermally more stable compared to the matrix grain structure.

  7. Microstructure characterisation of chromium carbides coatings deposited by thermal spraying processes

    Directory of Open Access Journals (Sweden)

    M.W. Richert

    2012-11-01

    Full Text Available Purpose: The Cr3C2-NiCr coatings were deposited by plasma spraying (PS and high velocity oxy-fuel (HVOF processes. The objective of the work concerns characterization of microstructure of sprayed coatings. In the investigated samples, apart from Cr3C2 carbide particles, the carbides Cr7C3 were also present according to the reported through X-ray diffraction analyses. It is likely that Cr7C3 carbides were formed thorough decarburization of Cr3C2. The microstructure of the thermal sprayed Cr3C2-NiCr coatings was characterized by optical (MO, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The fine-grained and nano-crystalline microstructure was found in the investigated coatings. The microhardness of coatings was measured. It was found that the coatings deposited in HVOF process have higher microhardnes than the plasma spraying one. The formation of chromium carbide phases in the coatings was discussed based on the microstructure observation results.Design/methodology/approach: The investigations of coating microstructure by optical microscopy (MO Olympus GX51, scanning electron microscopy STEREOSCAN 420 and transmission electron microscopy JEM2010 ARP (TEM were performed. The examination of phase consistence was determined by Brucker D8 Discover - Advance diffractometer with copper tubing. The microhardness of coatings was measured by Vickers method.Findings: The microstructures of Cr3C2-NiCr coatings were observed and analyzed. On the base of the microstructure investigations and contend of the chromium carbides the mechanism of thermal sprayed coating formation was discussed.Practical implications: The performed investigations contribute to the improvement of microstructure and properties of thermal spraying coatings used in the industrial applications.Originality/value: It was assumed that thermal spraying processes are able to form nano-crystalline microstructure of the chromium carbide coatings.

  8. Thermal processing of EVA encapsulants and effects of formulation additives

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F.J.; Glick, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  9. Dissipation process of binary gas mixtures in thermally relativistic flow

    Science.gov (United States)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  10. Dissipation process of binary mixture gas in thermally relativistic flow

    CERN Document Server

    Yano, Ryosuke

    2016-01-01

    In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...

  11. Thermal gasification or direct combustion? Comparison of advanced cogeneration systems in the sugarcane industry

    International Nuclear Information System (INIS)

    We compare different cogeneration system scenarios for efficient energy production from bagasse fuel in an Indonesian sugar and ethanol factory. These scenarios include the use of condensing-extraction steam turbines, variable speed electric drives for process equipment, measures to reduce low pressure steam demand for process needs, and two advanced cogeneration systems. One advanced system includes an 80 bar high pressure direct combustion steam Rankine cycle (advanced SRC), while the other uses a biomass integrated gasifier combined cycle (BIGCC); both utilize fuel dryers. Using steady-state thermodynamic models, we estimate that the net electricity generation potentials of the BIGCC and advanced SRC systems are approximately seven and five times the potential of the existing factory, respectively. The maximum net electricity generation potentials for the respective systems are 170 kWh/tc (BIGCC) and 140 kWh/tc (advanced SRC). However, the BIGCC system needs a bagasse feed rate that is 50 percent higher than the advanced SRC system to satisfy the factory low pressure steam demand for sugar and ethanol processing, which may affect its ability to provide steam and electricity during the off-season. For the Indonesian sugar factory, the annual revenue potential of the BIGCC system is US$14 million per year, approximately 50 percent higher than that of the advanced SRC system (electricity sale rate: US$45/MsWh; carbon credit price: US$13.60). BIGCC technology is still in an early stage of development and there are no commercial systems in sugar factories, so an advanced SRC system may be a more suitable option in the near future. -- Highlights: ► We use steady state thermodynamic models to simulate a sugar-ethanol factory. ► We compare existing performance with five improved and advanced cogeneration system scenarios. ► High pressure steam Rankine cycle can significantly increase electricity generation. ► Biomass integrated gasification combined cycle can

  12. Influence of thermal boundary condition on casting process of metal matrix composite

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2010-03-01

    Full Text Available Purpose: of this paper is to present a computer simulation as a tool for modelling the gravity casting process of metal matrix composite (MMCs in the sand mould and predicting the arrangement of heterophase reinforcement particles in the composite and impact of the parameter which characterizes the thermal boundary condition on the course of solidification process (speed, direction and thus, on the arrangement of reinforcement particles.Design/methodology/approach: Computer simulations have been carried out following the methods and procedures included in the program Fluent. The calculation are based on two-dimensional model in which the Volume of Fluid (VOF, enthalpy method and the Discrete Phase Model (DPM have been applied to describe two-phase system, solidification and behaviour of reinforcement particles, respectively. The calculations also include the method which allows to model the contact resistance at the interface between mould wall and liquid alloy.Findings: Obtained results show that the cast solidification as well as final arrangement of heterophase reinforcement particles depend on the assumed thermal boundary conditions. The appearance of the contact resistance lengthens the solidification process and extends the effect of aggregation, sedimentation and particle engulfment or pushing ahead of solidification front.Research limitations/implications: The created model and procedures can be treated as a basis for more advanced researches.Practical implications: Presented simulations allows to study phenomena occurring during the casting process and predict the behaviour of the reinforcement particles (distribution of reinforcement for the different thermal boundary conditions.Originality/value: The applied simulation methods allows to study the course of the casting process of metal matrix composite and arrangement of the reinforcement particles.

  13. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  14. Thermal spraying of polyethylene-based polymers: Processing and characterization

    Science.gov (United States)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational

  15. Study of the thermally processed lanthanum hexaboride surface

    International Nuclear Information System (INIS)

    Opportunity of growing a lanthanum oxide (La2O3) on the surface of lanthanum hexaboride (LaB6) with (100)- and (100/110)- orientation by thermal annealing process to produce a metal-oxide-metal structure has been studied. Electron microscopic images, X-ray and optical spectra revealed La2O3 layer of cubic symmetry. The features of the current-voltage and capacitance-voltage characteristics of the Al/La2O3 /(100)LaB6 and Al/La2O3/(100/110)LaB6 structures were analyzed. The electrical conductance mechanism is explained on the basis of space charge limited current

  16. Thermal casting process for the preparation of membranes

    Science.gov (United States)

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  17. Synthesis of nanoporous silicon carbide ceramics by thermal evaporation process

    Science.gov (United States)

    Wei, Jian

    2010-09-01

    New nanoporous β-SiC ceramics were synthesized by a simple thermal evaporation method with commercial silicon powder and activated carbon fragments. The results of scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicated that the microstructure of the β-SiC nanoporous ceramics was uniform and consistent with the pore size of 50-100 nm. The β-SiC nanocrystal grains of 50-200 nm were accumulated together to form a nanopore network. The formation mechanism was attributed to a template synthesis process, in which activated carbon fragments were employed as the template and they reacted with vaporized silicon through a vapor-solid way.

  18. Synthesis of nanoporous silicon carbide ceramics by thermal evaporation process

    International Nuclear Information System (INIS)

    New nanoporous β-SiC ceramics were synthesized by a simple thermal evaporation method with commercial silicon powder and activated carbon fragments. The results of scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicated that the microstructure of the β-SiC nanoporous ceramics was uniform and consistent with the pore size of 50-100 nm. The β-SiC nanocrystal grains of 50-200 nm were accumulated together to form a nanopore network. The formation mechanism was attributed to a template synthesis process, in which activated carbon fragments were employed as the template and they reacted with vaporized silicon through a vapor-solid way.

  19. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  1. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H2O2 / Fe+2) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H2O2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO3 as a white precipitate resulting from the reaction between the Ba(OH)2 and the CO2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe+2 /H2O2 30%) at 100 deg C after 2 hours. (author)

  2. Thermal flow analysis for design and development of advanced vitrification melter

    International Nuclear Information System (INIS)

    The numerical analysis of thermal flow of molten glass in a melter, which is carried out to support design and development of advanced melter, is introduced. Control of noble metal, which is involved in waste composition, is important for operation of joule-heated ceramic melter. If molten glass has high noble metal content, it has high viscosity and joule-heating efficiency is decreased by low electrical resistance and possibility of deterioration of operational performance is increased. Case study was carried out by thermal flow analysis to determine the suitable structure of melter and operational condition as the change of temperature distribution of molten glass is under the condition of suitable control. In the computational fluid dynamics model, enthalpy, velocity, pressure, electric potential and concentration of noble metal particles are coupled each other. Non-steady state simulation was performed to simulate temperature response by operational sequence. Stable batch-cycle operation as mentioned above is maintained with developed furnace shape and operating conditions. The adaptability of analysis model of behavior of noble metal particles in molten glass will be confirmed by mock-up test data of advanced melter. The analysis model aims to be applied to evaluate the operating mode such as recovery operation in case of transient state. (author)

  3. The work function engineering and thermal stability of novel metal gate electrodes for advanced CMOS devices

    Science.gov (United States)

    Zhao, Penghui

    depleted silicon on insulator (FDSOI) NMOS or PMOS with thermal stability up to 1000°C. Compared to MoXSi YNZ (X=46% Y=12%, Z=42%) gates on HfO2, the gates on FlfSiO provides better thermal stability up to 1000°C with no degradation of work function (˜4.4 eV), EOT, fixed charge density, or gate leakage current. These results suggest that MoSiN films with optimized compositions could be promising metal gate candidates for advanced CMOS devices. The thermal stability of FUSI NiSi metal gate electrodes on both SiON and Hf-based high-kappadielectrics after typical back-end of line (BEOL) thermal annealing has been also investigated. It has been found that the thermal stability of FUSI NiSi metal gates is strongly dependent on the dopants and annealing ambient. The dependence of nickel diffusion on the dielectric thickness and dopants into the silicon channel is discussed in detail. It was found that 5 nm gate dielectric layers are sufficient to inhibit any detectable nickel diffusion from the FUSI NiSi metal gates into the silicon channel.

  4. Thermal Inactivation of Feline Calicivirus in Pet Food Processing.

    Science.gov (United States)

    Haines, J; Patel, M; Knight, A I; Corley, D; Gibson, G; Schaaf, J; Moulin, J; Zuber, S

    2015-12-01

    Extrusion is the most common manufacturing process used to produce heat-treated dry dog and cat food (pet food) for domestic use and international trade. Due to reoccurring outbreaks of notifiable terrestrial animal diseases and their impact on international trade, experiments were undertaken to demonstrate the effectiveness of heat-treated extruded pet food on virus inactivation. The impact of extrusion processing in a pet food matrix on virus inactivation has not been previously reported and very few inactivation studies have examined the thermal inactivation of viruses in complex food matrices. The feline calicivirus vaccine strain FCV F-9 was used as a surrogate model RNA virus pathogen. Small-scale heat inactivation experiments using animal-derived pet food raw materials showed that a > 4 log10 reduction (log10 R) in infectivity occurred at 70 °C prior to reaching the minimum extrusion manufacturing operating temperature of 100 °C. As anticipated, small-scale pressure studies at extrusion pressure (1.6 MPa) showed no apparent effect on FCV F-9 inactivation. Additionally, FCV F-9 was shown not to survive the acidic conditions used to produce pet food palatants of animal origin that are typically used as a coating after the extrusion process. PMID:26208948

  5. Advanced thermal-hydraulic and neutronic codes: current and future applications. Summary and conclusions

    International Nuclear Information System (INIS)

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  6. Proceedings of the workshop on advanced thermal-hydraulic and neutronic codes: current and future applications

    International Nuclear Information System (INIS)

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  7. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  8. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  9. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields

    Science.gov (United States)

    Han, Tiancheng; Qiu, Cheng-Wei

    2016-04-01

    The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area.

  10. Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel

    International Nuclear Information System (INIS)

    Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergun and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR. (authors)

  11. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  12. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    Science.gov (United States)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  13. Simplified model of VVER–1000 thermal hydraulic process

    International Nuclear Information System (INIS)

    This report introduce developed mathematical model of thermal hydraulic process which occurs in the core of VVER – 1000 type of nuclear reactor and the coolant flow is considered in one dimension. Navier – Stokes differential equations system is taken like basis – namely continuity equation and momentum and energy conservation equations with two algebraic equations of state by which closure relationship is done. Following the approach of simplifying the model in momentum and energy equations some simplifying assumptions is made like Reynolds term in momentum equation is neglected and diffusion term – in energy equation. The differential equations system can be split into two parts: at one hand continuity equation and momentum equation are solved regarding velocity and pressure distribution and at another – solving energy equation. This report is considering the second case – solving the unsteady energy equation at prescribed distributions of velocity and pressure. By using one of the algebraic state equation, i=cvT, the energy equation is written regarding the temperature. Velocity and pressure given in the model are estimated by the thermal hydraulics means. The energy equation is solved by finite volumes method at which considered region is divided by N finite volumes, scalar values T and P are represented at central points at volumes and the velocity – at borders of these volumes by so called staggered grid. The equation is integrated at the boundaries of every finite volume and in time at the interval [t; t+ t]. For results obtained by integration is applied Crank-Nicolson semi-implicit scheme. As a result this gives an algebraic system with three diagonal matrix which can be solved with Crout effective algorithm.

  14. Advanced water processing system (AWPS), including advanced filtration system (AFS) and advanced ion selective system (AISS) for improved utility (PWR/BWR) water processing performance

    International Nuclear Information System (INIS)

    The advanced water processing system (AWPS) has the potential for wide spread success on a worldwide scale in both PWR and BWRs. The AWPS incorporates the advanced features (patent pending) of advanced filtration and advanced ion selective technologies (patented). Typical problems encountered in current filtration systems include: (1) poor effluent quality, (2) short run lengths on filters, (3) frequent filter change-outs/backwashes, (4) large waste volumes, and (5) failed filter cartridges. The advanced filtration system (AFS) features reduced waste production per million gallons of water processed, cleaner water for recycle or release to the environment, filter element volume 100 times less than that of competitive filters, and a far lower capital cost compared to systems with similar performance. The AWPS should be of interest to plants that are upgrading, or to new plants to lower both their capital and operating costs, as well as total curie discharge levels. In addition, the AWPS will function in non-nuclear, as well as nuclear, applications of water purification, specially where pre coat filtration/ion exchange or reverse osmosis (RO) is being applied to process water with high concentrations of colloidal contaminants. Pilot testing has been successfully completed in the U. S. at the Byron (PWR), LaSalle (BWR), and Dresden(BWR) nuclear plants for Commonwealth Edison, and the Bruce several spent filters in a High Integrated Container these bench- and pilot-scale demonstrations will be presented herein. Full-scale designs or systems have been shipped to these locations. In all cases, the testing demonstrated: (1) longer run lengths (300,000 gallons between backwashes--a 100 fold improvement), (2) recoverability of cartridge filters after backwash (cartridge lives of approximately 6 months to a year--a 5 to 10 fold improvement in filter life), (3) large removal efficiencies for colloidal particles (reduced discharge curies), and (4) reduced waste volumes

  15. Robustness of advanced nuclear fuel reprocessing processes. Study on solvent extraction processes adjusted to advanced reprocessing process. Document on collaborative study

    International Nuclear Information System (INIS)

    The advanced nuclear fuel reprocessing process with crystallization uranium recovery has been proposed to enhance economical incentive and to reduce amount of discharged waste. Because a solvent extraction process following the crystallization uranium recovery will be operated with new process parameters due to different parameters of loading of heavy metals, decontamination factors, flow rates etc, fundamental studies on chemical flowsheet of the process are required to verify robustness of the process and to understand influence of process variation upon process performance. In this study, theoretical and computational studies were performed from this kind of aspect. Firstly, separation characteristics with the chemical flowsheet were studied for the steady-state, and recovery yields of uranium and plutonium, decontamination factor, process waste amount were computated for the normal process condition. Secondary, transient behaviors were computated with some variations in flow rates, heavy metal loading and so on from the normal process condition. Finally, influence of small fluctuation of the process condition was analyzed and the robustness of the new solvent extraction process was verified. This work was performed by Nagoya University and Japan Nuclear Cycle Development Institute under the JNC Cooperative Research Scheme on the Nuclear Fuel Cycle. (author)

  16. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  17. Recent advances in lactic acid production by microbial fermentation processes.

    Science.gov (United States)

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  18. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  19. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  20. Update to advanced neutron source steady-state thermal-hydraulic report

    International Nuclear Information System (INIS)

    This report is intended to be a supplement to ORNL/TM-12398, Steady-State Thermal-Hydraulic Design Analysis of the Advanced Neutron Source Reactor. It updates the core thermal-hydrualic design to the latest three-element configuration and also provides the most recent information on the thermal-hydraulic statistical uncertainty analysis. In addition, it includes calculations of beam tube cooling and control rod lift forces, which were not addressed in the initial report. This report describes work that is a snapshot in time as it stood at the end of the project. The three-element core calculations include a description of changes made to the overall coolant system; however, most of the analysis is focused on fuel loading thermal-hydraulic calculations. This analysis uses updated uncertainty values and indicates that a two-dimensional fuel grading in the three-element core would still be necessary to meet the desired operating and safety criteria. Analysis of cooling in the reflector tank examines various cooling options for the reflector tank components. This work investigated multiple forced convection designs as well as natural convection cooling requirements. Lift forces on the inner control rods caused by the upward coolant flow were also examined. Initial control rod designs were such that a sheared control rod would tend to lift because of flow forces. Design changes were recommended that would eliminate this issue. They included geometry changes to the inner control rod cooling channels, changes to the orificing in the central hole region, and reduction of inner control rod coolant velocity

  1. Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C. [and others

    1993-10-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

  2. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  3. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  4. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs)

    International Nuclear Information System (INIS)

    Highlights: ► We summarize currently used insensitive polymer based explosives and their ingredients. ► We examine the calculation methods that are suitable for kinetic evaluation of polymer based explosives. ► The calculation method for thermal stability parameters of polymer based explosives are summarized, which mainly include shelf life, explosion delay, critical temperature, thermostability threshold, 500 day cookoff temperature and approximate time to explosion. ► The polymer bases could greatly affect the thermal properties of PBXs, including their thermal stability, kinetic parameters and thermodynamic properties. ► PBXs, containing some innovative energetic fillers such as CL-20, NTO, Fox-12 and BCHMX, are only at design stage, which need more research work in the future. - Abstract: In this paper, several fundamental investigations published over the past decades with regard to the thermal analysis of polymer-based explosives (PBXs) have been briefly reviewed. A number of explosive fillers and polymer bases that were used as their main ingredients of PBXs are summarized herein. In addition, the calculation methods for their decomposition kinetics and thermal stability parameters are also introduced in detail. It was concluded that only PBXs based on HMX, RDX and TATB have been widely investigated, and that some other PBXs containing innovative fillers, such as CL-20, TNAZ, NTO and BCHMX are at the design stage. The isoconversional methods and model fitting procedures are usually used to analyze the discrete thermolysis processes of PBXs. In addition, their thermal stability parameters such as shelf life, explosion delay, critical temperature, thermostability threshold, 500-day cookoff temperature and approximate time to explosion could be calculated easily from the kinetic data.

  5. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1995-02-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

  6. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    Science.gov (United States)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  7. Growth process and microstructure of Y123 film fabricated by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The advanced metal organic deposition (MOD) process using F-free salt of Cu and trifluroacetates (TFA) salts (Superconductivity Research Laboratory (SRL)-Method) was applied to form well oriented Y123 film on LaAlO3 substrate. In order to clarify the growth mechanism of the Y123 film by the advanced TFA-MOD process, two methods were introduced. One was the quenching method to get samples under several different conditions during the process, and the microstructures were observed by transmission electron microscopy (TEM). The other was in situ observation method to know surface changes of the film by the generation of liquid and/or gas. From the θ-2θ X-ray diffraction (XRD) analysis of YBa2Cu3O7-δ (YBCO) films fabricated by suitable conditions (0 0 n) diffraction peaks were obtained indicating they had strongly c-axis oriented structure. The thin YBCO films had critical current density (J C) of 3.8-4.9 MA/cm2 (77 K,0 T) measured by the four-probe-method. A growth model with some process-controlling parameters was proposed based on the above observed results

  8. NiTi-Polyimide Composites Prepared Using Thermal Imidization Process

    Science.gov (United States)

    Vokoun, D.; Sysel, P.; Heller, L.; Kadeřávek, L.; Svatuška, M.; Goryczka, T.; Kafka, V.; Šittner, P.

    2016-05-01

    We manufactured NiTi plate-polyimide composite samples and analyzed their thermomechanical behavior. The residual stresses formed in the composite result from the shift of transformation temperatures and shape changes during thermal cycling. We demonstrate the use of finite element analysis for modeling the shape changes. The shape changes result from the difference in coefficients of thermal expansion and from the changes of Young's modulus and of the coefficient of thermal expansion in the NiTi shape memory alloy.

  9. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  10. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing

    Science.gov (United States)

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E.; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-01-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems. PMID:27427243

  11. Processes development for high temperature solar thermal Kalina power station

    Directory of Open Access Journals (Sweden)

    Ganesh Shankar N.

    2014-01-01

    Full Text Available Kalina cycle system (KCS operates at a heat source temperature up to 600ºC with an improved heat recovery. The current work focuses on thermodynamic processes development and assessment of a KCS configuration to augment the power from a heat recovery of solar thermal collectors operating from 250ºC to 600ºC. There are three pressure levels in current cycle i.e. high pressure (HP, intermediate pressure (IP and low pressure (LP. The superheated vapor expands from HP to LP and the separator is located at IP. The current work develops a new methodology for thermodynamic evaluation with more flexibility compared to the reported method in literature. Separator inlet condition (temperature and concentration, turbine inlet condition (pressure, temperature and concentration and solar radiation have been identified as key parameters for the plant evaluation. The performance is improving with an increase in separator temperature, turbine inlet pressure, source temperature and solar radiation. But it is decreasing with an increase in separator and turbine inlet concentrations. The cycle efficiency, plant efficiency and specific power have been found as 23.5%, 7.5% and 675 kW at 0.3 separator concentration and 0.5 turbine concentration.

  12. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  13. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing.

    Science.gov (United States)

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-01-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems. PMID:27427243

  14. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x1070 s-1 and Ea=4.5x105 J mole-1, were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  15. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    Science.gov (United States)

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  16. Microstructure evolution of YBCO films deposited by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    We have investigated microstructure evolution of YBa2Cu3O7-y (YBCO) films through the two steps of heat-treatments in the advanced TFA-MOD process, by means of transmission electron microscopy. In the calcination process, precursor films including nanopores are formed with shrinkage of the film after a remarkable increase of the thickness caused by gas generation due to thermal decomposition of metalorganic salts in the starting solution. During the crystallization process, the densification and shrinkage of the film occurs after agglomeration of nanopores and unreacted phase particles such as Y2Cu2O5, CuO and Ba-O-F in the precursor films. Before starting of YBCO epitaxial growth, the densification and shrinkage of the film occurs. The YBCO films are epitaxially grown with remaining the unreacted phase particles in the film, subsequently pores are generated again by a reaction of these unreacted particles to form YBCO accompanying with the volume reduction. In conclusion, it is important to control the densification of precursor films and the coarsening of the unreacted phase particles in the crystallization process, in order to fabricate YBCO final films with fine crystallinity and high IC values

  17. Selected thermal and hydraulic experimentation in support of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    The ANS Reactor has unique thermal-hydraulic characteristics in comparison to other research and commercial reactors: Heavy water coolant, Parallel Rectangular channels (involute), Very small channel gap (1.27 mm), Very high velocity (25 m/s), Very high exit subcooling, Moderately high heat flux, High average power density. The objective was to determine experimentally the appropriate core thermal hydraulic limits at ANS conditions. Advanced Neutron Source (ANS) Thermal Hydraulic Test Loop (THTL) was designed to operate in 'Stiff', 'Soft' and 'Modified Stiff' Modes.Summary of Thermal Hydraulic Limit Testing and Analysis shows: FE data has been acquired at ANS typical flow velocities; An extensive OSV/OFI data base has been developed with a very broad parameter range, A modification of the Saha-Zuber correlation was proposed to account for reduced subcooling effects; Closeout activities include continued investigation of wider span test channels; Some testing for HFIR will be performed to evaluate the effect of reduced channel gap; Future plans called for additional testing at 3-core conditions, hot spot testing, etc. The Objective of Fuel Plate Stability Testing was to experimentally evaluate the structural response of ANS fuel plates to hydraulic loads. Summary of Fuel Plate Stability Testing shows: A Method Has Been Developed to Predict Structural Response of Fuel Plates to Hydraulic Loading Prediction of AP across plates Determine deflection/stress levels using structural analysis; ANS, Specific Conclusions are: no evidence of potential plate collapse in the coolant velocity range from 050 m/s, no evidence of plate flutter with coolant velocities below 33 m/s, local stress levels appear to dictate plate limits as opposed to plate deflection. The objective of Flow Blockage Testing was to experimentally determine local thermal and fluid. Summary of Flow Blockage Testing and Analysis showed: CFD code has been benchmarked against prototypic ANS flow conditions and

  18. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    Energy Technology Data Exchange (ETDEWEB)

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio [Nuclear and Energy Research Institute, Av. Lineu Prestes, 2242., Sao Paulo, SP. (Brazil); Passos Piveli, Roque; Campos, Fabio [The Polytechnic School of the University of Sao Paulo, Av. Prof. Almeida Prado, 83, trav.2. Sao Paulo, SP (Brazil)

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the

  19. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    International Nuclear Information System (INIS)

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  20. Advances in thermal energy storage development at the German Aerospace Center(DLR)

    Institute of Scientific and Technical Information of China (English)

    Laing; Doerte; Steinmann; Wolf-Dieter; Tamme; Rainer; Wrner; Antje; Zunft; Stefan

    2012-01-01

    Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR’s Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW~1 MW).The paper gives an overview on DLR’s current developments.

  1. Thermal performance of a photographic laboratory process: Solar Hot Water System

    Science.gov (United States)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  2. 21 CFR 113.87 - Operations in the thermal processing room.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Operations in the thermal processing room. 113.87... CONTAINERS Production and Process Controls § 113.87 Operations in the thermal processing room. (a) Operating... Food and Drug Administration. (b) A system for product traffic control in the retort room shall...

  3. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  4. Damage-repair processes in thermal neutron capture therapy

    International Nuclear Information System (INIS)

    Radiobiological specificity of thermal neutron capture therapy was examined using cultured cell lines of B16 mouse melanoma cells and of V79 Chinese hamster cells, with particular reference to the recovery from sublethal radiation damage (SLD) and potentially lethal radiation damage (PLD). A boron compound used was 10B1-para-boronophenylalanine (10B1-BPA). Cell survival curves of B16 melanoma cells irradiated with thermal neutrons alone had no shoulders. Cells treated with 10B1-BPA followed by thermal neutron irradiation showed remarkably enhanced killing in proportion to the concentration of 10B1-BPA. Neither B16 cells nor V79 cells possessed the ability to repair SLD. The B16 cells possessed little ability to repair 10B1-BPA plus thermal neutrons-induced PLD. Some cells possessed the ability to sequentially repair PLD when caffeine was added to the cell medium during irradiation. B16 cells efficiently repaired x ray-induced slow type PLD, but could not repair thermal neutron-induced PLD or 10B1-BPA plus thermal neutron-induced PLD. V79 cells possessed a greater ability to repair both x ray-induced PLD and thermal neutron-induced PLD than B16 melanoma cells. (Namekawa, K.)

  5. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  6. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  7. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Roach; D. B. Lopukh; A. P. Martynov; B. S. Polevodov; S. I. Chepluk

    2008-02-01

    The Idaho National Laboratory (INL) and the St. Petersburg Electrotechnical University “LETI” (ETU) have collaborated on development and validation of an advanced numerical model of the cold crucible induction melting (CCIM) process. This work was conducted in support of the Department of Energy (DOE) Office of Environmental Management Technology and Engineering (EM-20) International Program. The model predicts quasi-steady state temperature distributions, convection cell configurations, and flow field velocities for a fully established melt of low conductivity non-magnetic materials at high frequency operations. The INL/ETU ANSYS© finite element model is unique in that it has been developed specifically for processing borosilicate glass (BSG) and other glass melts. Specifically, it accounts for the temperature dependency of key material properties, some of which change by orders of magnitude within the temperature ranges experienced (temperature differences of 500oC are common) in CCIM processing of glass, including density, viscosity, thermal conductivity, specific heat, and electrical resistivity. These values, and their responses to temperature changes, are keys to understanding the melt characteristics. Because the model has been validated, it provides the capability to conduct parametric studies to understand operational sensitivities and geometry effects. Additionally, the model can be used to indirectly determine difficult to measure material properties at higher temperatures such as resistivity, thermal conductivity and emissivity. The model can also be used to optimize system design and to predict operational behavior for specific materials and system configurations, allowing automated feedback control. This becomes particularly important when designing melter systems for full-scale industrial applications.

  8. Redesign of the Advanced Education processes in the United States Coast Guard

    OpenAIRE

    Johnson, Lamar V.; Sanders, Marc F.

    1999-01-01

    The processes used in the operation of the Coast Guard Advanced Education Program have evolved as most business processes that were developed prior to the introduction of information technology. These processes include the selection, management, assignment and tracking of advanced education students. These processes are still fully dependent on physical files and the mail system. The Coast Guard has an information technology infrastructure that supports better processes, however it is not bei...

  9. Formation of niobium nitride by rapid thermal processing

    Science.gov (United States)

    Angelkort, C.; Lewalter, H.; Warbichler, P.; Hofer, F.; Bock, W.; Kolbesen, B. O.

    2001-09-01

    The formation of group V transition metal nitride films by means of rapid thermal processing (RTP) has been investigated. Here we focus on the nitridation of niobium films of 200-500 nm thickness in the temperature range from 500 to 1100°C under laminar flow of molecular nitrogen or ammonia. The nitride phases formed were characterized by X-ray diffraction (XRD). Secondary neutral mass spectrometry (SNMS) and transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) were carried out on samples of selected experiments to provide more detailed information about the initial stages of nitride formation and the microstructure of the films. A classical formation sequence of nitride phases was observed with increasing nitrogen content in the order: α-Nb(N)→β-Nb 2N→γ-Nb 4N 3→δ'-NbN→Nb 5N 6. Furthermore, oxide enriched regions were discovered inside the metal films. These turned out to be formed mainly in the nitride sequence between the a-αNb(N) and β-Nb 2N-phases at the Nb/SiO 2 interface due to a reaction of the Nb with the SiO 2 layer of the silicon substrates on which the films had been deposited. The SiO 2 layer acts as diffusion barrier for nitrogen but also as source for oxygen, according to SNMS and TEM/EELS studies, resulting in the formation of Nb-oxides and/or oxynitrides at the Nb/SiO 2 interface.

  10. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Processing for long YBCO coated conductors by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The long tape process was developed using the advanced TFA precursor solution. In a long tape production, the advanced TFA precursor solution was coated by a die-coater using the reel-to-reel system, and the multi-coating method was applied for thicker film fabrication. We successfully fabricated long uniform precursor films. In the high temperature treatment, a large scale equipment for the continuous long tape process was developed. This equipment had a perpendicular gas flow system to the tape length which is effective to fabricate the uniform films. Ic values and its distribution in the YBCO tape fabricated by this method on CeO2/IBAD-Gd2Zr2O7/Hastelloy were measured. And the uniform and high performance was confirmed. A 0.25 m long YBCO film with 1.38 μm in thickness on the metal substrate shows the high Ic performance of 210 A with end to end at 77.3 K in self-fields

  13. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  14. Organic conductors as novel ``molecular rulers`` for advanced manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1995-12-31

    Future advanced manufacturing equipment used in high technology programs will require ultra-high precision and associated machining tool operations that require placement accuracy of {approximately} 1--100 nm (1 nm = 10 {angstrom}). There is consensus among engineers that this equipment will be based on STM (Scanning Tunneling Microscope) technology. All such STM-based ``drivers`` must contain a metrology system that requires absolute length standards referenced to atomic spacings for calibration. Properly designed organic conductor substrate crystals have the potential to be molecular rulers for STM-based advanced manufacturing equipment. The major challenges in future organic conductor research aimed at STM metrology application are listed.

  15. Advances in Thermal Modeling of Selective Laser Sintering of Metal Powders

    CERN Document Server

    Xiao, Bin

    2016-01-01

    Selective laser sintering (SLS) of single component metal powders is a rapid prototyping technology in which a high-energy laser beam scans, melts, shrinks and consolidates metal powders with single component. For better understanding physical mechanisms during laser sintering of single-component metal particles, a temperature transforming model with the consideration of shrinkage and convective flows is introduced to analyze the thermal/fluid behaviors in selective laser sintering of single powder layer. The model is also applied to investigate the sintering of powders on top of existing sintered layers under single- multiple-line scanning manners according to the practical manufacturing processes.

  16. Evaluation of Failure Micromechanisms of Advanced Thermal Spray Coatings by In Situ Experiment

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Taltavull, C.; Lopez Galisteo, A.J.; Curry, N.

    Vol. 606. Zurich : Trans Tech Publications Ltd, 2014 - (Haušíld, P.; Materna, A.; Vilémová, M.), s. 187-190 ISSN 1662-9795. [International Conference on Local Mechanical Properties, LMP 2013/10./. Kutná Hora (CZ), 06.11.2013-08.11.2013] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : thermal spray coating * fracture * failure process * in-situ observation Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.scientific.net/KEM.606.187

  17. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  18. Experimental investigation of the thermal charging process using calcium chloride dihydrate in an open thermochemical system

    OpenAIRE

    Tborski, Eya

    2013-01-01

    Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Thermo-chemical energy storage (TCS) is an emerging method with the potential for high energy density storage. Where space is limited, therefore, TCS system has the highest potential to achieve the required compact TES. Experimental investigation and analyses are applied to assess and compare the beha...

  19. Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach

    OpenAIRE

    Ribas, Albert; Van Buggenhout, Sandy; Palmero, Paola; Hendrickx, Marc; Van Loey, Ann

    2014-01-01

    Changes in cell wall integrity upon thermal treatment were assessed in carrot cells using novel microscopic approaches using Congo red and different cell wall polysaccharide specific probes (JIM7, LM10, LM11, LM15, LM21, LM22 and CBM3a). Strong thermal processing induced an increased accessibility of cellulose and hemicelluloses by Congo red and the specific probes, except galactomannan, which detection was not affected by the thermal processing. Detection of pectin by JIM7 disappeared upon t...

  20. Numerical Investigation of Effective Heat Conductivity of Fluid in Charging Process of Thermal Storage Tank

    OpenAIRE

    Taheri, H.; Schmidt, F.P.; Gabi, M.

    2015-01-01

    This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...

  1. Apparatus for measuring local stress of metallic films, using an array of parallel laser beams during rapid thermal processing

    International Nuclear Information System (INIS)

    The novel apparatus described here was developed to investigate the thermo-mechanical behavior of metallic films on a substrate by acquiring the wafer curvature. It comprises an optical module producing and measuring an array of parallel laser beams, a high resolution scanning stage, a rapid thermal processing (RTP) chamber and several accessorial gas control modules. Unlike most traditional systems which only calculate the average wafer curvature, this system has the capability to measure the curvature locally in 30 ms. Consequently, the real-time development of biaxial stress involved in thin films can be fully captured during any thermal treatments such as temperature cycling or annealing processes. In addition, the multiple parallel laser beam technique cancels electrical, vibrational and other random noise sources that would otherwise make an in situ measurement very difficult. Furthermore, other advanced features such as the in situ acid treatment and active cooling extend the experimental conditions to provide new insights into thin film properties and material behavior

  2. Apparatus for measuring local stress of metallic films, using an array of parallel laser beams during rapid thermal processing

    Science.gov (United States)

    Huang, R.; Taylor, C. A.; Himmelsbach, S.; Ceric, H.; Detzel, T.

    2010-05-01

    The novel apparatus described here was developed to investigate the thermo-mechanical behavior of metallic films on a substrate by acquiring the wafer curvature. It comprises an optical module producing and measuring an array of parallel laser beams, a high resolution scanning stage, a rapid thermal processing (RTP) chamber and several accessorial gas control modules. Unlike most traditional systems which only calculate the average wafer curvature, this system has the capability to measure the curvature locally in 30 ms. Consequently, the real-time development of biaxial stress involved in thin films can be fully captured during any thermal treatments such as temperature cycling or annealing processes. In addition, the multiple parallel laser beam technique cancels electrical, vibrational and other random noise sources that would otherwise make an in situ measurement very difficult. Furthermore, other advanced features such as the in situ acid treatment and active cooling extend the experimental conditions to provide new insights into thin film properties and material behavior.

  3. A Study on Advanced Ultrasonic Technique for Thermal Fatigue Crack Detection of Thermal Stratification Pipeline in NPPs

    International Nuclear Information System (INIS)

    Ultrasonic inspection techniques are widely used to ensure the reliable operation and lifetime extension of nuclear power plants. Thermal stratification typically occurs in the surge line or the main feed water lines in nuclear power plants. Thermal stratification is a flow condition in which hotter fluid flows over a colder region of fluid in pipeline. Since a change in temperature causes a change in the density of the pipe wall, these thermal conditions might lead to increased overall bending stresses in pipelines. In addition, cyclic changes in stratification height cause thermal stress. This cycling can lead to thermal fatigue crack initiation and crack growth. If thermal fatigue crack grows continuously, the leakage of water or steam will occur and this may cause serious problems on reactor cooling system. Therefore, these cracks must be detected before the crack growth reaches for leakage. In this study, an ultrasonic technique was employed for evaluation of thermal fatigue cracks due to thermal stratification in pipelines of nuclear power plants. The angle beam ultrasonic techniques(time-of-flight diffraction(TOFD) and shadow effect method) were used to detect thermal fatigue cracks which grow from the inner surface of the pipeline. The angle beam ultrasonic technique is usually used for the detection of cracks on the inside of the structures. When ultrasonic waves generated from the angle probe encounters a crack, ultrasonic waves of the shear modes are reflect or transmit from the crack wall. Also ultrasonic waves generated from the angle probe shear modes are diffracted from the tip of the crack, and the shear wave is reflected from the corner of the crack

  4. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil

  8. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  9. Advanced thermally stable jet fuels. Technical progress report, November 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Arumugam, R.; Bortiatynski, J.; Dutta, R.; Gergova, K.; Hou, L.; Lai, W-C.; Li, J.; McKinney, D.; Peng, Y.; Sanghani, P.; Selvaraj, L.; Sobkowiak, M.

    1993-03-01

    The pyrolysis of octylbenzene (OB) at various temperatures, 400{degrees}C, 425{degrees}C and 450{degrees}C, has been studied. This work represents a continuous effort in the study of the effects of alkylbenzenes in the high temperature thermal degradation of jet fuels, following up the detailed study of the behavior of four isomers of butylbenzenes (1). There are some general similarities in the reactions of OB and butylbenzenes. For example, both produce a large amount of smaller alkylbenzenes during pyrolysis. Reaction kinetics of OB have been calculated based on the temperature range mentioned above, and the major chemical process in its thermal reactions have been analyzed. As expected, temperature plays the most significant role in the degradation process, as shown in Figure 1. The reaction shows only a moderate rate at 400{degrees}C, 8.18 mol% of OB remaining after 16 hours of stressing. At 450{degrees}C, however, there is virtually no OB left after 8 hours of stressing. Rough comparison of the yields (wt%) of gaseous, liquid and solid products formed (Figures 2, 3 and 4) shows a uniform change in this temperature range. For example, a steady increase of the yields (wt%) of gas and solid formation can be observed in Figures 2 and 3. Global kinetics of the reaction of octylbenzene have been calculated.

  10. Recent advances in the GPUSPH model for the thermal and rheological evolution of lava flows

    Science.gov (United States)

    Zago, Vito; Bilotta, Giuseppe; Cappello, Annalisa; Dalrymple, Robert A.; Fortuna, Luigi; Ganci, Gaetana; Herault, Alexis; Del Negro, Ciro

    2016-04-01

    GPUSPH is a fully three-dimensional model for the simulation of the thermal and rheological evolution of lava flows that relies on the Smoothed Particle Hydrodynamics (SPH) numerical method. Thanks to the Lagrangian, meshless nature of SPH, the model incorporates a more complete physical description of the emplacement process and rheology of lava that considers the free surface, the irregular boundaries represented by the topography, the solidification fronts and the non-Newtonian rheology. Because of the very high degree of parallelism, GPUSPH is implemented very efficiently on high-performance graphics processing units (GPUs) employing the Compute Unified Device Architecture (CUDA), a parallel programming language developed by NVIDIA for GPU computing. GPUSPH follows the very general Herschel-Bulkley rheological model, which encompasses Newtonian, power-law and Bingham flow behaviour and can thus be used to explore in detail the impact of rheology on the behaviour of lava flows and on their emplacement. We present here the first validation tests of the GPUSPH model against well known analytical problems, considering the different rheological models, heat exchanges by thermal conduction and radiation, and providing the relative error estimates.

  11. Distribution of radionuclides in the process of thermal decontamination of asphalt layers

    International Nuclear Information System (INIS)

    Autoradiographical analysis was used to investigate the radionuclides distribution in the process of thermal decontamination of asphalt. Cs-137 and Sr-90 were introduced in asphalt to simulate real contamination. It was found that penetration of these radionuclides is very small (about 1 mm). No significant emission of radionuclides was observed in the process of thermal decontamination

  12. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  13. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  14. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  15. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  16. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  17. Mathematical Model for Thermal Processes of Single-Core Power Cable

    Directory of Open Access Journals (Sweden)

    D. Zalizny

    2014-09-01

    Full Text Available The paper proposes a mathematical model for thermal processes that permits to calculate non-stationary thermal processes of core insulation and surface of a single-core power cable in real-time mode. The model presents the cable as four thermal homogeneous bodies: core, basic insulation, protective sheath and internal environment. Thermal processes between homogeneous bodies are described by a system of four differential equations. The paper contains a proposal to solve this system of equations with the help of a thermal equivalent circuit and the Laplace transform. All design ratios for thermal parameters and algorithm for calculating temperature of core insulation and temperature of power cable surface. These algorithms can be added in the software of microprocessor devices. The paper contains results of experimental investigations and reveals that an absolute error of the mathematical model does not exceed 3ºС.

  18. Kinetic Analysis of the Thermal Processing of Silica and Organosilica

    NARCIS (Netherlands)

    Kappert, Emiel J.; Bouwmeester, H.J.M.; Benes, N.E.; Nijmeijer, A.

    2014-01-01

    The incorporation of an organic group into sol–gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy, p

  19. Advanced Thermal Status Control of Crews in EVA and Escape Suits

    Science.gov (United States)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.

    Over the course of the manned space program, there has been an accumulation of experience on methods to control the thermal status of astronauts in open space. However, there remains a significant need for a simple method to monitor the astronaut's level of heat exchange during EVA, particularly in an emergency period, or during crew escape. The liquid cooling/warming tubing system that covers the body surface creates considerable complexity for evaluating the body's overall thermal response. Moreover, the methods used to monitor core temperature (Tc) are problematic in regard to their invasiveness and accuracy. NASA is currently attempting to develop a unified methodology for protection during EVA and crew escape that would necessarily include the control of astronaut thermal status. The findings from our research program have significant implications for solving this still-vexing problem. Our experimental paradigm centers on the assessment of thermodynamic processes with subjects donned in a specially designed symmetrically divided multi-compartment liquid cooling/warming garment consisting of 16 zones, 8 on each side of the body (hands, forearms, shoulders, torso, head, thighs, calves and feet). This garment configuration enables the study of heat exchange under nonuniform temperatures on the body surface by systematically varying the proportions of nonuniform temperatures (warm/cold) in different experimental conditions. Tc was assessed by rectal (Tr), esophageal (Tes), and ear canal temperature (Tec). Skin temperature (Tsk) was measured by a total of 26 sensors placed symmetrically on the left and right sides of the body, the main magistral vessels (carotid, brachial, femoral), and local vessel networks. We paid particular attention to the thermal status of the fingers by measuring blood perfusion, temperature (Tfing), heat flux, and thermal/comfort perception. The monitoring of Tfing and heat flux in different experimental conditions was highly informative

  20. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor

    2016-04-05

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  1. Thermal hydraulic test apparatus to develop advanced BWR fuel bundles with spectral shift rods (SSR)

    International Nuclear Information System (INIS)

    An advanced water rod (WR) called the spectral shift rod (SSR), which replaces a conventional WR in a BWR fuel bundle, enhances the BWR's merit of uranium saving through the spectral shift operation. The SSR consists of an inlet hole, a wide ascending path, a narrow descending path and an outlet hole. The inlet hole locates below a lower tie plate (LTP) and the outlet hole is set above it. In the SSR, water boils by neutron and gamma-ray heating and water level is formed in the ascending path. This SSR water level can be controlled by core flow rate, which amplifies core void fraction change, resulting in the amplified spectral shift effect. Steady state and transient tests were conducted to evaluate SSR thermal-hydraulic characteristics under BWR operation condition. The several types of SSR configuration were tested, which covers SSR design in both next generation and conventional BWRs. In this paper, the test apparatus overview and measurement systems especially two phase water level measures in the SSR are presented. (author)

  2. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  3. Korean development of advanced thermal-hydraulic codes for water reactors and HTGRS: space and gamma

    International Nuclear Information System (INIS)

    Korea has been developing SPACE(Safety and Performance Analysis CodE) and GAMMA(GAs Multicomponent Mixture Analysis) codes for safety analysis of PWRs and HTGRs, respectively. SPACE is being developed by the Korea nuclear industry, which is a thermal-hydraulic analysis code for safety analysis of a PWR. It will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWR and the design of an advanced PWR. It consists of the up-to-date physical models of two-phase flow dealing with multi-dimensional two-fluid, three-field flow. The GAMMA code consists of the multi-dimensional governing equations consisting of the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of n species. GAMMA is based on a porous media model so that we can deal with the thermo-fluid and chemical reaction behaviors in a multicomponent mixture system as well as heat transfer within the solid components, free and forced convection between a solid and a fluid, and radiative heat transfer between the solid surfaces. GAMMA has a model for helium turbines for HTGRs based on the throughflow calculation. We performed extensive code assessment for the V&V of SPACE and GAMMA. (author)

  4. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  5. Containment vessel, its auxiliary system and plant air conditioning system of advanced thermal reactor Fugen

    International Nuclear Information System (INIS)

    The functional requirement for, the design and the construction of, and the functional test on the containment vessel, its auxiliary system, the plant air conditioning and ventilation system of the advanced thermal reactor, Fugen, are described in detail. The main specifications of the containment vessel are as follows: The type enclosed cylinder, the maximum operating pressure 1.35 kg/cm2g, the maximum operating temperature 100 deg C, the leak rate 0.4%/day, the inner diameter 36 m. The height 64 m, the volume 40,900 m3, and the material JIS G3118, SGV-49. The containment vessel is provided with an hatch of 5 m diameter for carrying equipments in two air locks, many high and low voltage cable penetrations, pipe penetrations, a transfer shoot and isolation values. The functions and the specifications of the containment vessel and its auxiliary equipments are explained. The relating auxiliary systems are composed of the containment vessel spray system, the pool facility for steam blow-down, the recirculation system for the air in the vessel, the annulus evacuation system and its pressure control devices, the pressure measuring instruments and pressure relief valves and the temperature measuring devices for the containment vessel, and the object, function, layout and installation of these systems are explained. Concerning the air conditioning system, each main building has the special subsystem, and they are introduced. The progress stage of construction works and the procedure and results of the functional test at the site are described. (Nakai, Y.)

  6. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  7. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  8. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik;

    in the sampling equipment. The use of the IR technique for determination of particle temperatures, particle sizes, and number density proved reliable in both the swirl burner and the laboratory scale fixed bed reactor. When the technique was used in the swirl burner the subsequent data treatment was......This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...

  9. Infrared emitters for efficient thermal industrial processes; Infrarot-Strahler fuer effiziente industrielle Waermeprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, Marie-Luise [Heraeus Noblelight GmbH, Hanau (Germany)

    2011-03-15

    Drying of paint on metal parts, curing of anti-corrosion coatings on brake pads, forming of plastic components - innumerable thermal processes are used in industrial production. In certain cases, however, they can prove a serious challenge to manufacturers, since these operations frequently involve significant energy-consumption and therefore costs. Infrared radiation can be tailored to specific products and processes, and thus provide energy-efficient solutions for many thermal industrial processes. A range of examples illustrate that it is worthwhile analyzing thermal processes more precisely to find the most energy-efficient solutions. (orig.)

  10. Mapping Glacial Weathering Processes with Thermal Infrared Remote Sensing: A Case Study at Robertson Glacier, Canada

    Science.gov (United States)

    Rutledge, A. M.; Christensen, P. R.; Shock, E.; Canovas, P. A., III

    2014-12-01

    Geologic weathering processes in cold environments, especially subglacial chemical processes acting on rock and sediment, are not well characterized due to the difficulty of accessing these environments. Glacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to map the extent of glacial weathering in the front range of the Canadian Rockies using remotely detected infrared spectra. We ground-truth our observations using laboratory infrared spectroscopy, x-ray diffraction, and geochemical analyses of field samples. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities. Robertson Glacier, Alberta, Canada is an excellent field site for this technique as it is easily accessible and its retreating stage allows sampling of fresh subglacial and englacial sediments. Infrared imagery of the region was collected with the ASTER satellite instrument. At that same time, samples of glacially altered rock and sediments were collected on a downstream transect of the glacier and outwash plain. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. Our initial conclusion is that the majority of the weathering seems to be occurring at the glacier-rock interface rather than in the outwash stream. Results from both laboratory and ASTER data indicate the presence of leached weathering rinds. A general trend of decreasing carbonate abundances with elevation (i.e. residence time in ice) is observed, which is consistent with increasing calcium ion

  11. Advanced Control of a Continuous Solution Copolymerization Process

    OpenAIRE

    Nádson Murilo Nascimento Lima; Lamia Zuñiga Liñan; Flavio Manenti; Rubens Maciel Filho; Marcelo Embiruçu; Maria Regina Wolf Maciel

    2011-01-01

    A model-based predictive control system is designed for a copolymerization reactor. These processes typically have such a high nonlinear dynamic behavior to make practically ineffective the conventional control techniques, still so widespread in process and polymer industries. A predictive controller is adopted in this work, given the success this family of controllers is having in many chemical processes and oil refineries, especially due to their possibility of including bounds on both mani...

  12. Design of solar thermal dryers for 24-hour food drying processes

    Science.gov (United States)

    Solar drying is a method that has been adopted for many years as a food preservation method. To this date, significant advancements have been made in this field with the adoption of a multitude of solar thermal dryer designs for single-layer and multi-layer drying of fruit and vegetables e.g. cabine...

  13. AGU governance's decision-making process advances strategic plan

    Science.gov (United States)

    McPhaden, Michael; Finn, Carol; McEntee, Chris

    2012-10-01

    A lot has happened in a little more than 2 years, and we want give AGU members an update on how things are working under AGU's strategic plan and governance model. AGU is an organization committed to its strategic plan (http://www.agu.org/about/strategic_plan.shtml), and if you have not read the plan lately, we encourage you to do so. AGU's vision is to be an organization that "galvanizes a community of Earth and space scientists that collaboratively advances and communicates science and its power to ensure a sustainable future." We are excited about the progress we have made under this plan and the future course we have set for the Union. Everything the Board of Directors, Council, and committees put on their agendas is intended to advance AGU's strategic goals and objectives. Together with headquarters staff, these bodies are working in an integrated, effective manner to carry out this plan. The best way to demonstrate the progress made and each group's role is to walk through a recent example: the creation of a new Union-level award (see Figure 1).

  14. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  15. Advanced nonlinear signal processing in silicon-based waveguides

    OpenAIRE

    Petropoulos, P.; Ettabib, M.A.; Bottrill, K.R.H.; Lacava, C.; Parmigiani, F.; Hammani, K.; BRUN, M.; Labeye, P.; Nicoletti, S.; Bogris, A.; Kapsalis, A.; Syvridis, D.

    2015-01-01

    This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.

  16. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    Science.gov (United States)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  17. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    International Nuclear Information System (INIS)

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  18. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories, P.O. Box 5800 MS 0736, Albuquerque, NM 87185 (United States); Blink, James [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Carter, Joe [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark [Lawrence Livermore National Laboratory (United States); Howard, Robert [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  19. Kinetic Analysis of the Thermal Processing of Silica and Organosilica

    OpenAIRE

    Kappert, Emiel J.; Bouwmeester, H.J.M.; Benes, N.E.; Nijmeijer, A.

    2014-01-01

    The incorporation of an organic group into sol–gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy, pre-exponential constant, and reaction models) have been determined from mass loss data for the dehydration, dehydroxylation, and decomposition reactions that take place upon heating silica and orga...

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.