WorldWideScience

Sample records for advanced technology large-aperture

  1. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  2. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    Science.gov (United States)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  3. Advanced Technology Large-Aperture Space Telescope (ATLAST): Characterizing Habitable Worlds

    CERN Document Server

    Postman, M; Krist, J; Stapelfeldt, K; Brown, R; Oegerle, W; Lo, A; Clampin, M; Soummer, R; Wiseman, J; Mountain, M

    2009-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.

  4. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    Science.gov (United States)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  5. Thermal analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8-meter primary mirror

    Science.gov (United States)

    Hornsby, Linda; Hopkins, Randall C.; Stahl, H. Philip

    2010-07-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 point and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The objective is to maintain the primary mirror at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop®1. A detailed model of the primary mirror was required in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew and a 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the solar environment that influences the thermal performance. All assumptions that were used in the analysis are also documented. Estimates of mirror heater power requirements are reported. The thermal model is used to predict gradients across and through the primary mirror using an idealized boundary temperature on the back and sides of the mirror of 280 K.

  6. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  7. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  8. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  9. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  10. Ultrasonic large aperture imaging system

    International Nuclear Information System (INIS)

    A new ultrasonic large aperture imaging technique is described. This device combines a focussed transducer as a transmitter, producing a small ultrasonic beam, with N transducers as receivers. We show that is possible to considerably reduce the number of receivers if, on the one hand, we limit the reconstitution process to the emitter beam area and, on the other hand, we ensure that the artefacts, caused by the spatial sampling of the reception, are outside this area. Under these conditions, the result is a high resolution image which does not require large reconstitution processing times. Theoretical and experimental results are given

  11. The Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.

  12. Interdisciplinary science with large aperture detectors

    Directory of Open Access Journals (Sweden)

    Wiencke Lawrence

    2013-06-01

    Full Text Available Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  13. Large aperture calorimeter for fusion laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.G.; Smith, P.A.

    The authors designed and constructed a large aperture calorimeter intended for laser fusion measurements on beams up to 20 cm diameter. The laser beam is absorbed in a glass disc backed by a disc carry a resistance wire. Although it performs essentially as expected with a noise equivalent energy of 20 mJ and a maximum energy of about 100 J, difficulties in construction give a 17% variation of sensitivity across the aperture. To overcome this problem it would probably be necessary to adopt an integral construction with the resistance bridge formed from an etched film on the back of the absorbing glass.

  14. Technological Advancements

    Science.gov (United States)

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  15. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    Science.gov (United States)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  16. Development of a large aperture Nb$_{3}$ Sn racetrack quadrupole magnet

    CERN Document Server

    Ferracin, Paolo; Caspi, Shlomo; Dietderich, D R; Gourlay, Stephen A; Hafalia, Aurelio R; Hannaford, C R; Lietzke, A F; Mattafirri, Sara; McInturff, A D; Nyman, M A; Sabbi, Gianluca

    2005-01-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb/sub 3/Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb/sub 3/Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  17. Ultra-Lightweight Large Aperture Support Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  18. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture antennas are of interest to NASA for applications in establishing high-speed communication relays for interplanetary missions. Design goals include...

  19. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  20. ACR-700 advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L.; Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Yu, S.K.W. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Olmstead, R.; Speranzini, R.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-12-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  1. Editorial: Advanced learning technologies

    OpenAIRE

    Yu-Ju Lan; Gang-Shan Fu; Stephen J.H. Yang; Jeff J.S. Huang

    2012-01-01

    Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile tech...

  2. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R

    2003-02-10

    differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter

  3. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    Science.gov (United States)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  4. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  5. Editorial: Advanced learning technologies

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lan

    2012-03-01

    Full Text Available Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile technologies and social media towards learner centered learning. This editorial note provides an overview of relevant issues discussed in this special issue.

  6. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  7. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  8. Advanced uranium enrichment technologies

    International Nuclear Information System (INIS)

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described

  9. Large-aperture, high-damage-threshold optics for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J. [and others

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  10. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  11. Factors affecting the performance of large-aperture microphone arrays.

    Science.gov (United States)

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  12. LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    CERN Document Server

    Camacho, R; Diaz, G; Guada, C; Hamar, V; Hoeger, H; Melfo, A; Nunez, L A; Perez, Y; Quintero, C; Rosales, M; Torrens, R

    2009-01-01

    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulate...

  13. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  14. Technological advances transforming rheumatology

    OpenAIRE

    Robinson, William H.; Mao, Rong

    2015-01-01

    Technological advances over the past decade have revolutionized many areas of rheumatology, ranging from diagnosis, prognosis and therapeutic development to the mechanistic understanding of rheumatic diseases. This overview highlights key technological innovations and discusses the major impact that these developments are having on research and clinical practice.

  15. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  16. AMTD - Advanced Mirror Technology Development in Mechanical Stability

    Science.gov (United States)

    Knight, J. Brent

    2015-01-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  17. End-to-end assessment of a large aperture segmented ultraviolet optical infrared (UVOIR) telescope architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Olivier; Stark, Chris; Arenberg, Jon

    2016-07-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield exo-earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an exo-earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and exo-earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling these missions.

  18. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R

    2003-02-10

    differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter

  19. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  20. The balloon-borne large aperture submillimeter telescope

    Science.gov (United States)

    Truch, Matthew David Patey

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is designed to produce large (1-100 deg 2 ) maps of the sky at 250, 350, and 500 pm. The balloon platform lifts BLAST above most of the atmosphere, which is nearly opaque in the submillimeter, making BLAST significantly more sensitive than existing ground-based submillimeter telescopes. BLAST has had three successful flights on a high-altitude balloon. This thesis is in three parts. In the first part, the design, construction, and operation of BLAST is described in detail. Specifically, the submillimeter telescope and receiver, the cryogenic system, the various pointing sensors, and the command and control systems are covered. The processes of launching and landing the gondola are also discussed. In the second part, the analysis of BLAST data is discussed, and specifically data from the BLAST05 flight. The process of cleaning and preparing bolometer time-streams for map-making is discussed. The process of calibrating the data, flat-fielding the bolometer responsivity, removing time-varying changes in bolometer responsivity, and absolute flux calibration based on the fluxes of a known astronomical submillimeter source is detailed. Reconstructing the pointing solution from the data from the in-flight pointing sensors is discussed. Finally, combining the calibrated bolometer data with the reconstructed pointing solution to generate maps is described. In the third part, BLAST05 flight data and results are presented. Several compact sources were mapped, including solar system, Galactic, and extragalactic targets. These included Pallas and Saturn in the solar system, K3-50, W 75N, IRAS 20126+4104, CRL 2688, IRAS 21078+5211, LDN 1014, IRAS 21307+5049, IRAS 22134+5834, and IRAS 23011+6126 in the Galaxy, and the galaxies NGC 4565, Mrk 231, and Arp 220. Fluxes and spectral energy distributions (SEDs) of each of these sources at the BLAST wavelengths are presented, and these are compared with previous

  1. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. ASAT will create an Advanced Situation...

  2. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make...... it possible to examine surfaces all the way down to their atomic layers and also to perform realistic durability tests. The many surface techniques are described in clear and simple language, and the book is richly illustrated with detailed drawings and photos. It also deals with replacing environmentally...... of the components. It covers everything from biocompatible surfaces of IR absorbent or reflective surfaces to surfaces with specific properties within low friction, hardness, corrosion, colors, etc. The book includes more than 400 pages detailing virtually all analysis methods for examining at surfaces....

  3. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. This powerful technology will also...

  4. Advanced finite element technologies

    CERN Document Server

    Wriggers, Peter

    2016-01-01

    The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

  5. Buildings for advanced technology

    CERN Document Server

    Teague, E; Murday, James

    2015-01-01

    This book deals with the design and construction of buildings for nanoscale science and engineering research. The information provided in this book is useful for designing and constructing buildings for such advanced technologies as nanotechnology, nanoelectronics and biotechnology. The book outlines the technology challenges unique to each of the building environmental challenges outlined below and provides best practices and examples of engineering approaches to address them: • Establishing and maintaining critical environments: temperature, humidity, and pressure • Structural vibration isolation • Airborne vibration isolation (acoustic noise) • Isolation of mechanical equipment-generated vibration/acoustic noise • Cost-effective power conditioning • Grounding facilities for low electrical interference • Electromagnetic interference (EMI)/Radio frequency interference (RFI) isolation • Airborne particulate contamination • Airborne organic and chemical contamination • Environment, safety a...

  6. State Technologies Advancement Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy

  7. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    Science.gov (United States)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  8. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility

    Institute of Scientific and Technical Information of China (English)

    Lili; Hu; Shubin; Chen; Jingping; Tang; Biao; Wang; Tao; Meng; Wei; Chen; Lei; Wen; Junjiang; Hu; Shunguang; Li; Yongchun; Xu; Yasi; Jiang; Junzhou; Zhang; Zhonghong; Jiang

    2014-01-01

    Large aperture Nd:phosphate laser glass is a key optical element for an inertial confinement fusion(ICF) facility. N31,one type of neodymium doped phosphate glasses, was developed for high peak power laser facility applications in China. The composition and main properties of N31 glass are given, together with those of LHG-8, LG-770, and KGSS-0180 Nd:phosphate laser glasses, from Hoya and Schott, and from Russia. The technologies of pot melting, continuous melting, and edge cladding of large size N31 phosphate laser glass are briefly described. The small signal gain profiles of N31 glass slabs from both pot melting and continuous melting at various values of the pumping energy of the xenon lamp are presented. N31 glass is characterized by a stimulated emission cross section of 3.8 × 10-20cm2 at 1053 nm,an absorption coefficient of 0.10–0.15% cm-1at laser wavelength, small residual stress around the interface between the cladding glass and the laser glass, optical homogeneity of ~2 × 10-6in a 400 mm aperture, and laser damage threshold larger than 42 J/cm2 for a 3 ns pulse width at 1064 nm wavelength.

  9. Advanced Adaptive Optics Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  10. Stimulated Brillouin Scattering Damage of Large-Aperture Fused Silica Grating

    Institute of Scientific and Technical Information of China (English)

    HAN Wei; ZHENG Wan-Guo; HUANG Wan-Qing; LI Ke-Yu; WANG Fang; FENG Bin; JIA Huai-Ting; LI Fu-Quan; XIANG Yong; JING Feng

    2010-01-01

    @@ Laser induced damage experiment fs carried out on a large aperture laser facility.Severe damage is observed on a large-aperture fused silica grating which presents dense craters on the front surface and six cracks alternatively located at the front and the rear surface.The bizarre fact about the damage on the grating is that,unlike other optics,the damage craters are almost on the front surface.According to observation,damage phenomenon is due to the stimulated Brillouin scattering(SBS)effect occurring in the grating,which includes the transverse SBS,the back SBS and the zigzag SBS.

  11. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    Science.gov (United States)

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage. PMID:20309212

  12. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...

  13. Advances in FIV vaccine technology

    OpenAIRE

    Uhl, Elizabeth W.; Martin, Marcus; Coleman, James K.; Yamamoto, Janet K

    2008-01-01

    Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterizat...

  14. Nuclear propulsion technology advanced fuels technology

    Science.gov (United States)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  15. Path-average rainfall estimation from optical extinction measurements using a large-aperture scintillometer

    NARCIS (Netherlands)

    Uijlenhoet, R.; Cohard, J.M.; Gosset, M.

    2011-01-01

    The potential of a near-infrared large-aperture boundary layer scintillometer as path-average rain gauge is investigated. The instrument was installed over a 2.4-km path in Benin as part of the African Monsoon Multidisciplinary Analysis (AMMA) Enhanced Observation Period during 2006 and 2007. Measur

  16. Infrasonic interferometry applied to microbaroms observed at the Large Aperture Infrasound Array in the Netherlands

    NARCIS (Netherlands)

    Fricke, J.T.; Evers, L.G.; Smets, P.S.M.; Wapenaar, C.P.A.; Simons, D.G.

    2014-01-01

    We present the results of infrasonic interferometry applied to microbaroms, obtained from ambient noise. For this purpose the “Large Aperture Infrasound Array” (LAIA) was used, which has been installed in the Netherlands. Preprocessing appeared to be an essential step in enhancing the microbarom sig

  17. Advanced fuel technology and performance

    International Nuclear Information System (INIS)

    The purpose of the Advisory Group Meeting on Advanced Fuel Technology and Performance was to review the experience of advanced fuel fabrication technology, its performance, peculiarities of the back-end of the nuclear fuel cycle with regard to all types of reactors and to outline the future trends. As a result of the meeting recommendations were made for the future conduct of work on advanced fuel technology and performance. A separate abstract was prepared for each of the 20 papers in this issue

  18. New advances in erectile technology

    OpenAIRE

    Stein, Marshall J.; Lin, Haocheng; Wang, Run

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants,...

  19. Advances in production technology

    CERN Document Server

    2015-01-01

    This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”,  held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

  20. Advances in photovoltaic technology

    Science.gov (United States)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  1. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    Science.gov (United States)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  2. Advanced composites technology

    Energy Technology Data Exchange (ETDEWEB)

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  3. Preliminary results from a new large-aperture seismic and GPS array in southern Mexico

    Science.gov (United States)

    Cabral-Cano, E.; Demets, C.; Brudzinski, M.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Correa-Mora, F.

    2006-12-01

    A multi-year deployment of a large aperture seismic and GPS array in southern Mexico, for the purpose of studying the Oaxaca segment of the Middle America subduction zone, entered its second development phase during the summer of 2006. The Oaxaca segment is one of the few places on earth where land-based geophysical observations can be used to study both the locked, seismogenic area of a subduction interface and region of deeper transitional slip, where episodic tremor and slip may originate. The newly expanded array, consisting of eight broad-band seismic and nine continuous GPS stations, measures deformation in the state of Oaxaca and adjacent areas. Important goals of the deployment are to better understand the spatial and temporal histories of episodic slip transients, and their role in either relieving or increasing strain accumulating along the seismogenic portion of a subduction interface. The combined GPS and seismic arrays will be a powerful tool for studying slow slip and non-volcanic tremor, as well as imaging spatial and temporal variations in frictional coupling along the locked and transitional zones beneath our network. Preliminary analysis of seismic data indicates that the seismic stations are uniformly characterized by low noise in the non-volcanic tremor passband of 1-5 Hz, accomplishing an important goal of our site selection. We attribute this to our use of a newly developed, on-site 'listening test' in which our seismic equipment was used to record 30-60 minutes of data before the vault was excavated at a potentially low noise site. The data were processed on site with newly developed software to determine whether the amplitude of the background noise within the frequency band of non-volcanic tremors was low enough to observe the amplitude of tremors previously recorded in Cascadia. Using this test, we confirmed in advance that our selected seismic sites had sufficiently low noise to observe non-volcanic tremor if it is similar to that in

  4. Large aperture solar optical telescope and instruments for the SOLAR-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K.

    2014-08-01

    A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements.

  5. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  6. The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    OpenAIRE

    Fissel, Laura M.; Ade, Peter A. R.; Angile, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Devlin, Mark J.; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; David H. Hughes; Klein, Jeffrey; Korotkov, Andrei L.; Marsden, Galen; Matthews, Tristan G.; Moncelsi, Lorenzo

    2010-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The...

  7. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  8. [Technological advances in neurorehabilitation].

    Science.gov (United States)

    Gutiérrez-Martínez, Josefina; Núñez-Gaona, Marco Antonio; Carrillo-Mora, Paul

    2014-07-01

    Neurological rehabilitation arose as formal method in the 60's, for the therapeutic treatment of patients with stroke or spinal cord injury, which develop severe sequelae that affect their motor and sensory abilities. Although the Central Nervous System has plasticity mechanisms for spontaneous recovery, a high percentage of patients should receive specialized therapies to regain motor function, such as Constraint Induced Movement Therapy or Upright physical Therapy. The neurorehabilitation has undergone drastic changes over the last two decades due to the incorporation of computer and robotic electronic devices, designed to produce positive changes in cortical excitability of the cerebral hemisphere damaged and so to improve neuroplasticity. Among equipment, we can mention those for electrotherapy devices, apparatus for transcranial magnetic stimulation, the robotic lower limb orthoses, robot for upper limb training, systems for functional electrical stimulation, neuroprosthesis and brain computer interfaces. These devices have caused controversy because of its application and benefits reported in the literature. The aim of Neurorehabilitation technologies is to take advantage of the functional neuromuscular structures preserved, and they compensate or re-learn the functions that previously made the damaged areas. The purpose of this article is to mention some clinical applications and benefits that these technologies offer to patients with neuronal injury.

  9. Advanced information technology

    International Nuclear Information System (INIS)

    The potential risk of critical situations at hazardous industrial plants has drawn increased attention to emergency organisations. The emphasis on these organisations is to minimise the environmental effects of serious, although unlikely, disturbances in operation. Experience gained from previous incidents and emergency drills has revealed the complexity that must be faced in making these organisations work properly. Modern information technology may be used in order to develop more reliable preparedness systems. These problems are being treated in a joint Nordic project, NKA/INF, with participating research institutes from Denmark, Finland, Norway, and Sweden. The project started in 1985 and is expected to be finished in 1989. This report gives an overview of the project and a short description of the conceptual ideas behind the project. (author)

  10. Advanced solar thermal receiver technology

    Science.gov (United States)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  11. Advanced Aerogel Technology

    Science.gov (United States)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  12. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  13. Energy Storage (II): Developing Advanced Technologies

    Science.gov (United States)

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  14. Advances in PCB decontamination technologies

    International Nuclear Information System (INIS)

    Since 1985 several million kilograms of PCB equipment and millions of litres of PCB contaminated oil have been processed in Canada for reduction of PCB concentrations below government guidelines. Advances in extraction and metal recovery from electrical equipment, chemical dechlorination and distillation of PCB-contaminated oils were the significant technological options utilized. For example, using the Decontaksolv technology owners of PCB equipment in Canada have decontaminated three million kilograms of electrical equipment, which resulted in the reintegration of 2.7 million kilograms of useful metals (steel, copper, aluminium) into the economic circuit. The equipment decontaminated included transformers, electromagnets, relays, radiators, circuit breakers, tanks, pipes, valves, and drums. The most recent advances in this technology include improvements that makes the economical processing of capacitors, possible. Chemical dechlorination has virtually eliminated PCB-contaminated oils which are normally present in large transformers, to the point where some service companies have curtailed or discontinued their oil decontamination activities in Canada. Recent advances in this technology center around techniques for the decontamination of waste hydrocarbons, and to a lesser extent, dielectric fluids. Two example projects to illustrate recent advances have been briefly described

  15. A compact, large-aperture tunable lens with adaptive spherical correction

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2014-01-01

    In this paper, we present the proof of concept of a very fast adaptive glass membrane lens with a large aperture/diameter ratio, spherical aberration correction and integrated actuation. The membrane is directly deformed using two piezo actuators that can tune the focal length and the conical parameter. This operating principle allows for a usable aperture of the whole membrane diameter. Together with the efficient actuation mechanism, the aperture is around 2/3 of the total system diameter - at a thickness of less than 2mm. The response time is a few milliseconds at 12mm aperture, which is fast compared to similar systems.

  16. SP-100 advanced technology program

    International Nuclear Information System (INIS)

    The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project

  17. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  18. Advanced tufted carpet patterning technology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After a review of the tufting industry's development, and a brief introduction to available systems for producing patterned tufted carpets, the principle of ICN (Individually Controlled Needle) and the related advanced tufting technology Colortec are presented. Finally, Colortec machine, Axminster weaving machine, and Wilton loom are compared. It is believed that the Cobble Colortec machine is a significant jump forward in the tufted carpets industry as it now allows access to all major carpet markets in a competitive fashion.

  19. Designs for a large-aperture telescope to map the CMB 10× faster.

    Science.gov (United States)

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope. PMID:26974631

  20. Designs for a large-aperture telescope to map the CMB 10× faster.

    Science.gov (United States)

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope.

  1. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  2. Advances in SIS receiver technology

    Science.gov (United States)

    Frerking, M. A.

    1988-01-01

    Significant advances in SIS receiver technology since the last Asilomar meeting include: superconductor materials, integrated inductive tuning elements, and planar mounting structures. The effect of these advances is to push the upper frequency operating limit from about 600 to 1500 GHz, and to enhance the feasibility of focal plane arrays of heterodyne receivers. A fundamental high frequency operating limit of SIS mixers is set by the superconducting energy gap. A practical limitation for high frequency operation of SIS junctions is their parasitic capacitance and resistance. The performance of the mixer will be degraded by the Resistor-Capacitor rolloff. Several designs were reported for inductive elements integrated on the same substrate as the SIS junctions to tune out the bulk junction capacitance. Most millimeter SIS-based heterodyne receivers have used waveguide coupling structures. Technology has advanced to the state where programs that have a high probability of success can be defined to produce arrays of SIS receivers for frequencies as high as 1500 GHz.

  3. Advanced USC technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masafumi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    The 600deg-C class Ultra Super-Critical(USC) steam condition technology was mainly developed through projects led by J-Power in the '80s and 90s'. In 2001, the project was successfully finished with newly developed 9-12% chromium steels. These materials were selected for the major parts of the USC power plants in Japan and almost half of the coal power plants have the USC steam condition today. However, aged plants, which were built in the '70s and early '80s will reach the point where they will need to be rebuilt or refurbished in the near future. The steam temperatures of the older plants are 538 deg-C or 566deg-C. We did a case study, retrofitting these plants with the USC and an advanced USC technology that takes a 700deg-C class steam temperature to increase thermal efficiency and to reduce CO{sub 2} emissions. The study showed that the advanced USC Technology(A-USC) is suitable for the retrofitting of aged plants and can reduce CO{sub 2} emissions by about 15%. The Japanese government launched the ''Cool Earth-Innovative Energy Technology Program'' in 2008 March to promote international cooperation and actively contribute to substantial global greenhouse gas emissions reductions. 21 technologies that will contribute to substantial reductions in CO{sub 2} emissions by efficiency improvement and low carbonization were selected. The A-USC that aims at 46% (net, HHV) thermal efficiency of coal power generation is included in the technologies. We started a large-scale development project of the A-USC technology in 2008 August. 700deg-C class boiler, turbine and valve technologies, which include high temperature material technology, will be developed. Some candidate materials for boilers are being tested. Turbine rotor and casing materials are being developed and tested, as well. Two years from the beginning of the project, we have obtained some useful test results regarding the candidate materials. (orig.)

  4. Advances in Genome Biology & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  5. Advances in nondestructive evaluation technology

    Science.gov (United States)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  6. [Technological advances: the coming radiology].

    Science.gov (United States)

    García, César; Ortega, Dulia

    2002-06-01

    We are living in a changing world, acknowledging all kinds of changes: social, technological, and ethical. This is the environment encircling medical and radiological work: demanding, with high expectations and a cohort of amazing technological advances, in all areas of human knowledge. We need to make the necessary reflections about these faster and faster changes. Radiology, as an important part of clinical work, is facing no minor challenges: technological and other most prevalent like: Who will be specialists in the next future? How are we prepared to face the radiological teaching and formation of radiologists? How to finance this technological developments? Meanwhile, in our context of an underdeveloped country, this sounds as far as the Moon, but changes will reach us sooner or later. We must resolve some problems that are a little bit more basic, such as a good level of education and health care for our people, then we will be ready to incorporate some of these amazing new technologies. PMID:12194695

  7. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  8. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  9. Advances in traction drive technology

    Science.gov (United States)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  10. Large aperture focus stacking with max-gradient flow by anchored rolling filtering.

    Science.gov (United States)

    Yin, Xuanwu; Wang, Guijin; Li, Wentao; Liao, Qingmin

    2016-07-10

    Focus stacking is a computational technique to extend the depth of field through combining multiple images taken at various focus distances. However, in the large aperture case, there are always defects caused by the large blur scale, which, to the best of our knowledge, has not been well studied. In our work, we propose a max-gradient flow-based method to reduce artifacts and obtain a high-quality all-in-focus image by anchored rolling filtering. First, we define a max-gradient flow to describe the gradient propagation in the stack. The points are divided into trivial and source points with this flow. The source points are extracted as true edge points and are utilized as anchors to refine the depth map and the composited all-in-focus image iteratively. The experiments show that our method can effectively suppress the incorrect depth estimations and give a high-quality all-in-focus image. PMID:27409303

  11. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  12. Energy measurement system of a large-aperture high power laser experiment platform

    Institute of Scientific and Technical Information of China (English)

    Yanwen; Xia; Yue; Liang; Sen; Li; Junpu; Zhao; Zhitao; Peng; Hongguang; Li; Hua; Liu; Zhihong; Sun; Kuixing; Zheng; Xiaofeng; Wei

    2013-01-01

    An energy measurement system in a large-aperture high power laser experiment platform is introduced. The entire measurement system includes five calorimeters, which carry out the energy measurement of the fundamental frequency before the frequency conversion unit, remaining fundamental frequency, remaining second-harmonics, third-harmonics,as well as the energy balance measurement after the frequency conversion unit. Combinational indirect calibration and direct calibration are employed to calibrate the sampling coefficients of the calorimeters. The analysis of the data showed that, regarding the energy balance coefficients, combinational calibration approach gives a higher precision, and leads to an energy balance with 1%; and regarding the energy sampling coefficients for the various wavelengths after the frequency conversion, the results from direct and combinational calibration are consistent. The uncertainties for all energy sampling coefficients are within 3%, which guarantees the reliability of the energy measurement for the laser facility.

  13. A large-aperture telescope to map the CMB 10X faster

    CERN Document Server

    Niemack, Michael D

    2015-01-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly $10^4$ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. This paper introduces new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by over an order of magnitude to enable high efficiency illumination of $>10^5$ detectors in a next generation CMB telescope.

  14. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    CERN Document Server

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  15. Terahertz Radiation from Large Aperture Bulk Semi-insulating GaAs Photoconductive Dipole Antenna

    Institute of Scientific and Technical Information of China (English)

    施卫; 贾婉丽; 侯磊; 许景周; 张希成

    2004-01-01

    We report the experimental results of a large-aperture biased semi-insulating GaAs photoconductive dipole antenna, with a gap of 3mm between two Au/Ge/Ni electrodes, triggered by 800nm Ti-sapphire laser pulses with 82 MHz repetition rate. A direct comparison is made between insulated GaAs dipole antenna with a Si3N4 layer and bare GaAs dipole antenna. Both the current in the antenna and the radiation amplitude present as linear to the exciting power when the applied voltage is fixed. The Si3N4 insulated GaAs dipole antenna can hold higher biased voltage than a normal GaAs dipole antenna; its terahertz radiation generation efficiency is significantly higher than that of a normal GaAs dipole antenna.

  16. Conceptual Design of a Large-aperture Dipole Magnet for HL-LHC Upgrade

    CERN Document Server

    Xu, K; Nakamoto, T; Ogitsu, T; Sasaki, K; Takeuchi, T; Terashima, A; Todesco, E; Tsuchiya, K; Yamamoto, A

    2012-01-01

    The development of a large-aperture (120-180 mm) dipole magnet is proposed in the framework of the CERN-KEK cooperation program. The application target is the D1 magnet (separation dipoles) replacement for the HL-LHC (High Luminosity - Large Hadron Collider) upgrade. The Cos-theta type coil cross section and the shell-based structure are adopted in the conceptual design of this magnet. The nominal field is estimated to be 6-10 T at 1.9 K with a 30-mm-width coil arranged in two layers. The candidates of superconductor are Nb3Al, Nb3Sn and Nb-Ti. We present the analytical estimation of the key parameters of this magnet, and the magnetic & mechanical simulation results of the actual design, including the field quality in the aperture, the stray field of the magnet, and the stress distribution in the coil.

  17. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  18. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  19. Advanced Modular Inverter Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main

  20. Latest Technology Advances in Cosmaceuticals

    Directory of Open Access Journals (Sweden)

    Nageen Arora

    2012-07-01

    Full Text Available World consumers are looking for personal care products that supply multiple benefits with minimal efforts. They also expect the latest technology advances to be incorporated into innovative formulations. The trend toward therapeutic cosmetics will lead to a better understanding of modern ingredients and their assessment techniques. To obtain skin care formulations with real consumer-perceivable benefits and to optimize sensory attributes, formulators are resorting to technology that until recently was exclusively used in cosmetic products. Various formulations comes under special delivery systems like Vesicular, Particulate systems, emulsions type Particulate type and other delivery systems along with their applications are shown in this article, as it results in an economic uplift of cosmetic industry in various parts of the world. Little evidence is seen that nanoparticles in cosmetics and sunscreen might be a problem at this time and its need is further explored for a better understanding of these novel technologies. Thus, novel cosmaceutical delivery systems reviewed here possess enormous potential as next-generation smarter carrier systems.

  1. Advances in medical diagnostic technology

    CERN Document Server

    Lai, Khin Wee; Mohamad Salim, Maheza Irna; Ong, Sang-Bing; Utama, Nugraha Priya; Myint, Yin Mon; Mohd Noor, Norliza; Supriyanto, Eko

    2014-01-01

    This book provides the most recent findings and knowledge in advanced diagnostics technology, covering a wide spectrum including brain activity analysis, breast and lung cancer detection, echocardiography, computer aided skeletal assessment to mitochondrial biology imaging at the cellular level. The authors explored magneto acoustic approaches and tissue elasticity imaging for the purpose of breast cancer detection. Perspectives in fetal echocardiography from an image processing angle are included. Diagnostic imaging in the field of mitochondrial diseases as well as the use of Computer-Aided System (CAD) are also discussed in the book. This book will be useful for students, lecturers or professional researchers in the field of biomedical sciences and image processing.

  2. General survey of Korean advanced technology

    International Nuclear Information System (INIS)

    This book includes advanced technology, world trend of advanced technology, technological innovation study for strengthening international competitiveness, patterns of Korea industrialization and its causes, structures of Korea electronic equipment and development direction, middle and long-term prospects of home appliance, the world of computer, current situation and prospect of robot industry, homework for strengthening international competitiveness of machine industry, direction for rationalization of materials industry, current situations of technical textile, future technology of developed countries, and trend of Korea technological activities.

  3. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  4. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  5. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    Science.gov (United States)

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  6. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths

    CERN Document Server

    Datta, R; Niemack, M D; McMahon, J J; Britton, J; Wollack, E J; Beall, J; Devlin, M J; Fowler, J; Gallardo, P; Hubmayr, J; Irwin, K; Newburgh, L; Nibarger, J P; Page, L; Quijada, M A; Schmitt, B L; Staggs, S T; Thornton, R; Zhang, L

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 degrees with low cross-polarization. We describe the design, tolerance, m...

  7. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    Science.gov (United States)

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching. PMID:27410061

  8. Large Aperture, Tip Tilt Mirror for Beam Jitter correction in High Power Lasers

    Directory of Open Access Journals (Sweden)

    Devinder Pal Ghai

    2013-12-01

    Full Text Available This paper describes a large aperture tip-tilt mirror (TTM assembly for correction of beam jitter in high power lasers. The design intricacies and trade-offs among various parameters of TTM to meet the desired goals are discussed. The TTM assembly uses a 180 mm diameter and 5 mm thick silicon mirror glued onto the movable ring of a solid flexure. Four stacked piezo-ceramic based actuators have been used to incorporate angular tilts of the mirror along two orthogonal directions. Simulation studies have been carried out to study the dynamics of the TTM. The performance of the TTM assembly in both static and dynamic condition is provided. An experimental set-up is described to test the TTM performance in closed loop conditions. A tilt correction of ±200 micro-radians along two orthogonal directions with a closed loop bandwidth of 20 Hz has been achieved.Defence Science Journal, 2013, 63(6, pp.606-610, DOI:http://dx.doi.org/10.14429/dsj.63.5760

  9. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon [Rare Isotope Science Project, Institute for Basic Science, Yuseong, Daejeon, 305-811 (Korea, Republic of)

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  10. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  11. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  12. The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    CERN Document Server

    Fissel, Laura M; Angile, Francesco E; Benton, Steven J; Chapin, Edward L; Devlin, Mark J; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Hughes, David H; Klein, Jeffrey; Korotkov, Andrei L; Marsden, Galen; Matthews, Tristan G; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, C Barth; Novak, Giles; Olmi, Luca; Pascale, Enzo; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek; Wiebe, Donald V

    2010-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolutio...

  13. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    Science.gov (United States)

    Rambikur, Evan H; Chávez, José L

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  14. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    Science.gov (United States)

    Truch, M. D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; Marsden, G.; Martin, P. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100 hr flight from northern Sweden in 2005 June (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 μm BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

  15. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    CERN Document Server

    Truch, M D P; Bock, J J; Chapin, E L; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; Marsden, G; Martin, P G; Mauskopf, P; Netterfield, C B; Olmi, L; Pascale, E; Patanchon, G; Rex, M; Scott, D; Semisch, C; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2008-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100-hour flight from northern Sweden in June 2005 (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W 75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 um BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instrume...

  16. A Large Aperture UWB Antenna Array for Real Beam Radar Imaging

    Directory of Open Access Journals (Sweden)

    Chao-Hsiang Liao

    2012-01-01

    Full Text Available The development of four-element ultra-wideband (UWB comb taper slot antenna array with 18 cm element spacing for real beam radar imaging is described. The four-element UWB array system with optimum element spacing is analyzed by energy pattern. A wideband double ridge horn antenna is used as the transmitting antenna, the developed large aperture UWB array is used as the receiving antenna. The transmitting antenna and the receiving antenna are combined with impulse time domain measurement system to achieve real beam radar imaging. The receiving impulse signals at various positions are processed by the time delay and sum algorithm. The examples of several aluminum cans have been verified in the resolution and compared with using the UWB array as a receive antenna and the double ridge horn as a transmit antenna in the test setup. The crossrange resolution of UWB antenna array is better than wideband double ridge horn antenna because the beam width of UWB array is narrower.

  17. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    Science.gov (United States)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  18. Validation of fluxes of an extra large aperture scintillometer at Cabauw using Sky Arrow aircraft flux measurements

    NARCIS (Netherlands)

    Moene, A.F.; Meijninger, W.M.L.; Kohsiek, W.; Gioli, B.; Miglietta, F.; Bosveld, F.C.

    2006-01-01

    An extra-large aperture scintillometer (XLAS) has been operated at the Cabauw tower for several years over a path of 9.8 kilometers, at an average height of 43 meters (Kohsiek et al., 2002). This yields a long term record of the area-averaged sensible heat flux. During the RECAB summer campaign on J

  19. Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface

    NARCIS (Netherlands)

    Beyrich, F.; DeBruin, H.A.R.; Meijninger, W.M.L.; Schipper, J.W.; Lohse, H.

    2002-01-01

    A large-aperture scintillometer (LAS) was operated continuously during a period of more than one year over a heterogeneous land surface in Central Europe at the transition between marine and continental climates. The LAS measurements of the refractive index structure parameter, C N2, were used to es

  20. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    Science.gov (United States)

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  1. HI at z 20: The Large Aperture Experiment to Detect the Dark Ages

    Science.gov (United States)

    Greenhill, Lincoln J.; Werthimer, D.; Taylor, G.; Ellingson, S.; LEDA Collaboration

    2012-05-01

    When did the first stars form? Did supermassive black holes form at the same time, earlier, or later? One of the great challenges of cosmology today is the study of these first generation objects. The Large Aperture Experiment to Detect the Dark Ages (LEDA) project seeks to detect, in total-power, emission from neutral Hydrogen (21 cm rest wavelength) in the intergalactic medium about 100 million years after the Big Bang (redshifts 20). Detection would deliver the first observational constraints on models of structure formation and the first pockets of star and black holes formation in the Universe. LEDA will develop and integrate by 2013 signal processing instrumentation into the new first station of the Long Wavelength Array (LWA). This comprises a large-N correlator serving all 512 dipole antennas of the LWA1, leveraging a packetized CASPER architecture and combining FPGAs and GPUs for the F and X stages. Iterative calibration and imaging will rely on warped snapshot imaging and be drawn from a GPU-enabled library (cuWARP) that is designed specifically to support wide-field full polarization imaging with fixed dipole arrays. Calibration techniques will include peeling, correction for ionospheric refraction, direction dependent dipole gains, deconvolution via forward modeling, and exploration of pulsar data analysis to improve performance. Accurate calibration and imaging will be crucial requirements for LEDA, necessary to subtract the bright foreground sky and detect the faint neutral Hydrogen signal. From the computational standpoint, LEDA is a O(100) TeraFlop per second challenge that enables a scalable architecture looking toward development of radio arrays requiring power efficient 10 PetaFlop per second performance. Stage two of the Hydrogen Epoch of Reionization Array (HERA2) is one example.

  2. LTE-advanced air interface technology

    CERN Document Server

    Zhang, Xincheng

    2012-01-01

    Opportunities are at hand for professionals eager to learn and apply the latest theories and practices in air interface technologies. Written by experienced researchers and professionals, LTE-Advanced Air Interface Technology thoroughly covers the performance targets and technology components studied by 3GPP for LTE-Advanced. Besides being an explanatory text about LTE-Advanced air interface technology, this book exploits the technical details in the 3GPP specification, and explains the motivation and implication behind the specifications.After a general description of wireless cellular techno

  3. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    Energy Technology Data Exchange (ETDEWEB)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  4. Advances in information technologies for electromagnetics

    CERN Document Server

    Tarricone, Luciano

    2006-01-01

    Talks about the achieved and potentially obtainable advances in electromagnetics with innovative IT technologies. This work contains tutorial chapters, which introduce technologies, such as parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures.

  5. Advanced laptop and small personal computer technology

    Science.gov (United States)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  6. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  7. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  8. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    Science.gov (United States)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  9. Isotope separation and advanced manufacturing technology

    Science.gov (United States)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  10. Low speed propellers: Impact of advanced technologies

    Science.gov (United States)

    Keiter, I. D.

    1980-01-01

    Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft.

  11. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature manufacturing technology to enable fabrication of single-piece integrally-stiffened launch vehicle structures to replace expensive, heavy, and...

  12. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem

    OpenAIRE

    S. M. Liu; Xu, Z.W.; Wang, W Z; Z. Z. Jia; Zhu, M. J.; J. Bai; Wang, J.M.

    2011-01-01

    We analyzed the seasonal variations of energy balance components over three different surfaces: irrigated cropland (Yingke, YK), alpine meadow (A'rou, AR), and spruce forest (Guantan, GT). The energy balance components were measured using eddy covariance (EC) systems and a large aperture scintillometer (LAS) in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site and discussed the differences be...

  13. Advanced location-based technologies and services

    CERN Document Server

    Karimi, Hassan A

    2013-01-01

    Due to the rapid increase in the number of mobile device users worldwide, location-based services (LBSs) have become pervasive, and the demand for them will continue to grow. Exploring recent changes in the technology and its uses, Advanced Location-Based Technologies and Services takes an in-depth look at new and existing technologies, techniques, applications, and opportunities. Under the editorial guidance of Hassan Karimi, with contributions from experts in the field, the book examines the breadth and depth of advanced LBS technologies and techniques. The book provides up-to-date informati

  14. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  15. Costs and Benefits of Advanced Aeronautical Technology

    Science.gov (United States)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  16. LTE-Advanced Relay Technology and Standardization

    CERN Document Server

    Yuan, Yifei

    2013-01-01

    LTE-Advanced Relay Technology and Standardization provides a timely reference work for relay technology with the finalizing of LTE Release 10 specifications. LTE-Advanced is quickly becoming the global standard for 4G cellular communications. The relay technology, as one of the key features in LTE-Advanced, helps not only to improve the system coverage and capacity, but also to save the costs of laying wireline backhaul. As a leading researcher in the field of LTE-Advanced standards, the author provides an in-depth description of LTE-A relay technology, and explains in detail the standard specification and design principles.     Readers from both academic and industrial fields can find sections of interest to them: Sections 2 & 4 could benefit researchers in academia and those who are engaged in exploratory work, while Sections 3 & 4 are more useful to engineers. Dr. Yifei Yuan is the Technical Director at the Standards Department of ZTE Inc.

  17. Estimating Evapotranspiration over Heterogeneously Vegetated Surfaces using Large Aperture Scintillometer, LiDAR, and Airborne Multispectral Imagery

    Science.gov (United States)

    Geli, H. M.; Neale, C. M.; Pack, R. T.; Watts, D. R.; Osterberg, J.

    2011-12-01

    Estimates of evapotranspiration (ET) over heterogeneous areas is challenging especially in water-limited sparsely vegetated environments. New techniques such as airborne full-waveform LiDAR (Light Detection and Ranging) and high resolution multispectral and thermal imagery can provide enough detail of sparse canopies to improve energy balance model estimations as well as footprint analysis of scintillometer data. The objectives of this study were to estimate ET over such areas and develop methodologies for the use of these airborne data technologies. Because of the associated heterogeneity, this study was conducted over the Cibola National wildlife refuge, southern California on an area dominated with tamarisk (salt cedar) forest (90%) interspersed with arrowweed and bare soil (10%). A set of two large aperture scintillometers (LASs) were deployed over the area to provide estimates of sensible heat flux (HLAS). The LASs were distributed over the area in a way that allowed capturing different surface spatial heterogeneity. Bowen ratio systems were used to provide hydrometeorological variables and surface energy balance fluxes (SEBF) (i.e. Rn, G, H, and LE) measurements. Scintillometer-based estimates of HLAS were improved by considering the effect of the corresponding 3D footprint and the associated displacement height (d) and the roughness length (z0) following Geli et al. (2011). The LiDAR data were acquired using the LASSI Lidar developed at Utah State University (USU). The data was used to obtain 1-m spatial resolution DEM's and vegetation canopy height to improve the HLAS estimates. The BR measurements of Rn and G were combined with LAS estimates, HLAS, to provide estimates of LELASas a residual of the energy balance equation. A thermal remote sensing model namely the two source energy balance (TSEB) of Norman et al. (1995) was applied to provide spatial estimates of SEBF. Four airborne images at 1-4 meter spatial resolution acquired using the USU airborne

  18. Innovative Experimental Particle Physics through Technological Advances

    OpenAIRE

    Cheung, Harry W. K.

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniq...

  19. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  20. Advanced technologies for remote handling

    International Nuclear Information System (INIS)

    Master slave manipulators (MSMs), in-cell cranes and power manipulators are the general-purpose remote handling tools used in nuclear industry. In-cell cranes and power manipulators can handle heavy objects; whereas MSMs can handle objects with precision and dexterity. The department had identified the importance of indigenising these technologies and developed a variety of mechanical MSMs and Servo Manipulators. This paper traces the history and evolution of these technologies. It also mentions about the telepresence technologies that are set to transform the operator's experience of manipulation by bringing in visual, haptic and aural immersion in the slave environment. (author)

  1. Rotorcraft technology at Boeing Vertol: Recent advances

    Science.gov (United States)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  2. ADVANCED TECHNOLOGY AND KNOWLEDGE TRANSFER

    OpenAIRE

    Tandon, Geetanjali; Sonka, Steven T.

    2002-01-01

    This paper reports on a specific project, employing new technological capabilities to better transfer expert knowledge. The specific project considered for the paper is the World Initiative for Soy in Human Health (WISHH), a Multi Organization Enterprise promoting the use of soy and soy products in humanitarian and development aid around the world. VisIT, which stands for Visualization of Information Technology, is a potentially powerful organizational tool. It is compared against the traditi...

  3. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  5. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  6. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  7. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  8. Assurance Technology Challenges of Advanced Space Systems

    Science.gov (United States)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  9. TASTEX: Tokai Advanced Safeguards Technology Exercise

    International Nuclear Information System (INIS)

    During the years 1978 to 1981 the Governments of France, Japan and the United States of America cooperated with the International Atomic Energy Agency in the TASTEX (Tokai Advanced Safeguards Technology Exercise) programme. The aim of this programme was to improve the technology for the application of international safeguards at reprocessing facilities, and the results are presented in the present report

  10. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R. [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  11. Advanced Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  12. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  13. Recent advances in hypersonic technology

    Science.gov (United States)

    Dwoyer, Douglas L.

    1990-01-01

    This paper will focus on recent advances in hypersonic aerodynamic prediction techniques. Current capabilities of existing numerical methods for predicting high Mach number flows will be discussed and shortcomings will be identified. Physical models available for inclusion into modern codes for predicting the effects of transition and turbulence will also be outlined and their limitations identified. Chemical reaction models appropriate to high-speed flows will be addressed, and the impact of their inclusion in computational fluid dynamics codes will be discussed. Finally, the problem of validating predictive techniques for high Mach number flows will be addressed.

  14. Advances in liquid phase technology

    Energy Technology Data Exchange (ETDEWEB)

    Jijin, P.J.A. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-12-31

    The liquid phase methanol (LPMEOH) process uses a slurry reactor to convert synthesis gas (primarily a mixture of hydrogen and carbon monoxide) to methanol. Through its superior heat management, the process is ultimately suitable to handle synthesis gas generated through gasification of natural gas and other materials, such as coal, petroleum coke, residual oil, wastes and other environmentally disadvantaged hydrocarbon feedstocks. Apart from production of chemical grade methanol, the process provides economic advantages in the Integrated Gasification Combined Cycle (IGCC) power generation application. Coproduction of power and methanol via the IGCC and the LPMEOH process provides opportunities for energy storage for peak-shaving of electrical demand and/or clean fuel for export. The LPMEOH technology has been developed since the 1980`s, extensively proven in a process development unit in LaPorte, Texas and elected for demonstration under The Clean Coal Technology Program. The slurry reactor being demonstrated is also suitable for other exothermic synthesis gas conversion reactions, like synthesis of Dimethyl Ether and other alcohols/oxygenates. This paper presents an overview of LPMEOH and other liquid phase technology aspects and highlights the demonstration project at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee. Commercial aspects of the LPMEOH process are also discussed.

  15. 78 FR 292 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2013-01-03

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  16. 76 FR 59659 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2011-09-27

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  17. 77 FR 59592 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2012-09-28

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. ] SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  18. 76 FR 29195 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2011-05-20

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  19. Advances in core drilling technology

    Science.gov (United States)

    Holdsworth, G.

    Some notable technical advances in drill design were reported at the meeting, held in Canada August 30-September 1, 1982, at the University of Calgary. Chief amongst these was a battery powered, computer assisted electromechanical core drill which has recently been used by the Danes in Greenland to continuously core to the base of the ice sheet at 2038 m. This is the deepest coring operation so far on the Greenland ice sheet. (The record for deep glacier drilling is held by the U.S. Army Cold Regions Research and Engineering Laboratory for the continuous coring through 2164 m of ice to bedrock at Byrd Station, Antarctica, in 1968). In early 1982, a current Soviet core drilling operation was reported to be at a depth of 2000 m at Vostok station, Antarctica, where the total ice thickness is about 4000 m; the goal of core drilling the entire ice thickness there could be achieved before the end of 1983.

  20. Modern Imaging Technology: Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  1. Modern Imaging Technology: Recent Advances

    International Nuclear Information System (INIS)

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area

  2. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  3. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  4. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  5. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. Recent advances in CIM technology

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2008-01-01

    Full Text Available In this article the PIM (Powder Injection Moulding technology is described in brief. After that the benefits and advantages were analyzed and summarized. Ceramic injection moulding (CIM process was analyzed in more detail: CIM- alumina, CIM-zirconia and CIM ferrites as the most common technical ceramics in CIM ceramic parts production, medical applications and accessories in chemical laboratories, and cores in electronic inductive components. After that our results for CIM barium hexaferrite and piezo ceramics (barium titanate are given. The main powder characteristics, the shrinkage and density and the main electrical characteristics of the sintered samples were compared for the isostatically pressed PM (powder metallurgy and CIM formed samples. SEM fractographs of CIM and PM samples are given for CIM green parts, debinded (white parts and sintered parts, and PM green parts and sintered parts. The results obtained were compared to literature data before they were applied in ceramic components production.

  8. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    International Nuclear Information System (INIS)

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst

  9. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [APC, CNRS et Universite Paris 7 (France); Allekotte, I. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Alvarez, C. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Asorey, H. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Barros, H. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Bertou, X. [Centro Atomico Bariloche, Instituto Balseiro (Argentina)], E-mail: bertou@cab.cnea.gov.ar; Burgoa, O. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Gomez Berisso, M. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Martinez, O. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Miranda Loza, P. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Murrieta, T.; Perez, G. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Rivera, H. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Rovero, A. [Instituto de Astronomia y Fisica del Espacio (Argentina); Saavedra, O. [Dipartimento di Fisica Generale and INFN, Torino (Italy); Salazar, H. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Tello, J.C. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Ticona Peralda, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Villasenor, L. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Instituto de Fisica y Matematicas, Universidad de Michoacan (Mexico)

    2008-09-21

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  10. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  11. Development of advanced PWR system analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. D.; Kim, S. O.; Jung, B. D.; Kim, Y. I.; Chang, M. H.; Lee, Y. J.; Yun, J. H.

    1997-12-31

    The scope of this project is to establish the basic analysis technologies for the advanced designed with the passive and inherent safety concepts. The scope is extended to the application of these technologies to the performance and safety analysis of the passive reactor. Since the different design concepts are applied depending on the reactor power, the study is conducted for the small and medium sized integral reactor as well as the large scale passive reactors by focusing on the analysis technology development for the passive components. The design concepts which can be applied for the safety enhancement of the domestic advanced reactor are developed through evaluating the technical information of the overseas advanced reactor concepts.

  12. SUPERPOLISHED SI COATED SIC OPTICS FOR RAPID MANUFACTURE OF LARGE APERTURE UV AND EUV TELESCOPES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG/Tinsley proposes an innovative optical manufacturing process that will allow the advancement of state-of-the-art Silicon Carbide (SiC) mirrors for large...

  13. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  14. Technological Advances in Psychiatric Nursing: An update.

    Science.gov (United States)

    Bostrom, Andrea C

    2016-06-01

    Understanding and treating mental illness has improved in many ways as a result of the fast pace of technological advances. The technologies that have the greatest potential impact are those that (1) increase the knowledge of how the brain functions and changes based on interventions, (2) have the potential to personalize interventions based on understanding genetic factors of drug metabolism and pharmacodynamics, and (3) use information technology to provide treatment in the absence of an adequate mental health workforce. Technologies are explored for psychiatric nurses to consider. Psychiatric nurses are encouraged to consider the experiences of psychiatric patients, including poor health, stigmatization, and suffering.

  15. Technological advances for studying human behavior

    Science.gov (United States)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  16. Technologies for Advanced Induction Accelerators

    CERN Document Server

    Hernández, M A; Autrey, D; Duncan, G; Friedman, A; Grote, D P; Halaxa, E; Hanks, R; Kamin, G; Sangster, C; Sharp, W; Williams, C

    2000-01-01

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerato...

  17. Advances in software science and technology

    CERN Document Server

    Kakuda, Hiroyasu; Ohno, Yoshio

    1992-01-01

    Advances in Software Science and Technology, Volume 3 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 11 chapters, this volume begins with an overview of the development of a system of writing tools called SUIKOU that analyzes a machine-readable Japanese document textually. This text then presents the conditioned attribute grammars (CAGs) and a system for evaluating them that can be applied to natural-language processing. Other chapters c

  18. Advances in software science and technology

    CERN Document Server

    Ohno, Yoshio; Kamimura, Tsutomu

    1991-01-01

    Advances in Software Science and Technology, Volume 2 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into four parts encompassing 12 chapters, this volume begins with an overview of categorical frameworks that are widely used to represent data types in computer science. This text then provides an algorithm for generating vertices of a smoothed polygonal line from the vertices of a digital curve or polygonal curve whose position contains a certain amount of error. O

  19. Advances in software science and technology

    CERN Document Server

    Hikita, Teruo; Kakuda, Hiroyasu

    1993-01-01

    Advances in Software Science and Technology, Volume 4 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 10 chapters, this volume begins with an overview of the historical survey of programming languages for vector/parallel computers in Japan and describes compiling methods for supercomputers in Japan. This text then explains the model of a Japanese software factory, which is presented by the logical configuration that has been satisfied by

  20. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  1. Flextensional Microactuators for Large-Aperture Lightweight Cryogenic Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision single crystal flextensional piezoelectric microactuators for cryogenic optic devices such as large...

  2. Advanced sensing technology in environmental field.

    Science.gov (United States)

    Wakida, Shin-ichi

    2009-01-01

    Before the introduction of advanced sensing technology in environmental fields, environmental issues were discussed as several categories, such as local environmental issues in the 1970s, global environmental issues in the 1980s, living environmental issues in the 2000s and environmental stress issues in near future, which are of increasing interest in Japan. Using advanced sensing technologies, such as electrochemical sensors, chemically-sensitive field-effect transistors (ChemFETs) based on micro-electro mechanical system (MEMS) micromachining technology and subsequently electrophoretic separation and microfluidic Lab-on-a-Chip using MEMS technology, we have steered several kinds of environmental monitoring projects timely in response to the environmental issues for over the last 25 years. Among the local environmental issues, the global environmental issues and the living environmental issues, some fruits of R&D project will be introduced. Finally, our latest concern of the environmental stress monitoring was discussed and preliminary results were also introduced.

  3. 75 FR 52472 - Spectrum Requirements for Advanced Medical Technologies

    Science.gov (United States)

    2010-08-26

    ... COMMISSION 47 CFR Part 95 Spectrum Requirements for Advanced Medical Technologies AGENCY: Federal... total of five megahertz of contiguous spectrum for advanced wireless medical radiocommunication devices... (1996). \\2\\ See Investigation of the Spectrum Requirements for Advanced Medical Technologies,...

  4. TECHcitement: Advances in Technological Education, 2004

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  5. Advanced Technological Education Survey 2010 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  6. Advanced Technological Education Survey 2012 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  7. Advanced Technological Education Survey 2011 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  8. Why Video? How Technology Advances Method

    Science.gov (United States)

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  9. TECHcitement: Advances in Technology Education, 2008

    Science.gov (United States)

    Patton, Madeline

    2008-01-01

    This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project…

  10. Flexible T/R Modules for Large-Aperture, Space-Based SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SI2 Technologies, Inc (SI2) proposes to develop membrane compatible transmit/receive (T/R) modules for flexible, space-deployable synthetic aperture radar (SAR)...

  11. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  12. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  13. Advanced technologies: Trends and implications for security

    International Nuclear Information System (INIS)

    As the world moves towards the close of the twentieth century, three technological trends will strongly influence security. In order of importance they are: first, the increasing globalization of the ability to develop and use high technology, much of which has both civilian and military applications; secondly, the broad dissemination of militarily-relevant technology world-wide; and thirdly, the continued development by the United States and the USSR (and a few other nations) of advanced technology for military applications. The military balance between the super-Powers and their allies has been strongly rooted in advancing military technology. Great changes in technology have resulted in adjustments -mostly in limited aspects such as the armour/ anti-armour balance - but have not caused it to change wildly. This seems likely to remain the case for the foreseeable future. There are arguments that Western technology has been a prime causative factor behind Soviet willingness to engage in negotiations to reduce forces. They claim that fear of the Strategic Defense Initiative is behind progress in the Strategic Arms Reduction Talks, and that perceived Western mastery of the technology for systems combining quick reaction, deep strike and high kill probabilities led the Soviet Union to reassess its potential for a successful land campaign in Europe. If current arms control negotiations are successful, the momentum is maintained, and other political changes take hold, the military balance could be taken to a point where ft would not be very sensitive to technological change. One should be aware that the arms control negotiations are very complex, primarily because of technological issues, and we should not yet bank on it all working out well. If it fails, the military technical competition will heat up again. Even under a strict arms control regime we can expect the competition to continue as each side seeks to develop counters to what ft sees as the other side

  14. Huawei Introduces Advanced relecom Technology to Uzbekistan

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    SINCE entering Uzbekistan in 1999, Huawei has grown into the country's biggest supplier of telecommunications equipment. Not only has Huawei introduced 3G technology to Uzbekistan, in cooperation with a local tele- tom operator, it has also deployed the eountry's first LTE (Long Term Evo- lution) network. After moving its Central Asian headquarters to Uzbekistan, Huawei expanded its business and brought advanced telecom technology to the host coun- try, which has improved Uzbekistan's overall technological level and local economic development.

  15. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  16. Recent advances in imaging technologies in dentistry

    Institute of Scientific and Technical Information of China (English)

    Naseem; Shah; Nikhil; Bansal; Ajay; Logani

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools,specially imaging methods, have become mandatory.From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation(brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  17. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  18. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  19. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  20. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    Science.gov (United States)

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy. PMID:27250373

  1. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    Science.gov (United States)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  2. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    Science.gov (United States)

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  3. Sustainability assessment of advanced wastewater treatment technologies.

    Science.gov (United States)

    Høibye, L; Clauson-Kaas, J; Wenzel, H; Larsen, H F; Jacobsen, B N; Dalgaard, O

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals.

  4. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    Science.gov (United States)

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years.

  5. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    Science.gov (United States)

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. PMID:27113634

  6. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  7. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  8. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  9. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  10. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  11. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  12. Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas

    Science.gov (United States)

    Zhang, He; Zhang, Hongsheng

    2015-01-01

    Field observations of the atmospheric boundary layer were made over urban and suburban areas in the Yangtze River Delta, China. Sensible heat fluxes were obtained by eddy-covariance (EC) systems and large-aperture scintillometers (LASs). The results indicated that (1) the sensible heat flux obtained by LAS was less noisy and slightly larger than that obtained by EC over both urban and suburban surfaces; (2) the values of were higher when the correlation coefficient of vertical wind speed and temperature () was smaller. Lower values of were due to low-frequency trends. The urban values of were smaller than suburban values at low values; (3) the sensible heat flux determined by LAS was improved by use of the Monin-Obukhov similarity theory of the temperature structure parameter over urban and suburban areas, and the improvement is more significant over urban surface areas.

  13. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: Performance and results from the 2012 Antarctic flight

    CERN Document Server

    Galitzki, N; Angilé, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Soler, J D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 microns. The instrumental performance was an improvement over the 2010 BLASTPol flight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes.

  14. Sensitivity of Large-Aperture Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew A; Hartogensis, Oscar K

    2013-01-01

    Scintillometers measure $C_n^2$ over large areas of turbulence in the atmospheric surface layer. Turbulent fluxes of heat and momentum are inferred through coupled sets of equations derived from the Monin-Obukhov similarity hypothesis. One-dimensional sensitivity functions have been produced which relate the sensitivity of heat fluxes to uncertainties in single values of beam height over homogeneous and flat terrain. Real field sites include variable topography and heterogeneous surface properties such as roughness length. We develop here the first analysis of the sensitivity of scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. For large-aperture scintillometers and independent $u_\\star$ measurements, sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be greatly reduced by focusing precise topographic measurements in these areas. The new two...

  15. Design, development and performance characteristics of a large aperture disc amplifier for high power Nd: Glass laser chain

    Indian Academy of Sciences (India)

    M P Kamath; P K Tripathi; A P Kulkarni; R Chandra; A S Joshi; C P Navathe; P D Gupta

    2008-08-01

    A large aperture disc amplifier has been designed, set-up and characterized for its performance on small signal gain, spatial variation of gain, and thermal recovery time. This amplifier, consisting of three elliptical Nd: phosphate glass discs of size 214 × 114 × 20 mm mounted at Brewster angle and pumped by ten xenon filled flash lamps of 600 mm arc length, provided a small signal gain of 6 at electrical pump energy of 36 kJ (in a pulse of 450 s) using an in-house developed dual-polarity capacitor bank based power supply. It was coupled to a high power Nd: phosphate glass laser chain and a maximum output pulse energy exceeding 100 J in a 1·5 ns (FWHM) pulse has been measured. A dry nitrogen gas based cooling system was developed for cooling the glass discs with a thermal recovery time of ∼ 20 minutes.

  16. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  17. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  18. Advances and trends in computational structures technology

    Science.gov (United States)

    Noor, A. K.; Venneri, S. L.

    1990-01-01

    The major goals of computational structures technology (CST) are outlined, and recent advances in CST are examined. These include computational material modeling, stochastic-based modeling, computational methods for articulated structural dynamics, strategies and numerical algorithms for new computing systems, multidisciplinary analysis and optimization. The role of CST in the future development of structures technology and the multidisciplinary design of future flight vehicles is addressed, and the future directions of CST research in the prediction of failures of structural components, the solution of large-scale structural problems, and quality assessment and control of numerical simulations are discussed.

  19. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  1. Advanced manufacturing: Technology and international competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  2. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  3. Recent technological advancements in breast ultrasound.

    Science.gov (United States)

    Eisenbrey, John R; Dave, Jaydev K; Forsberg, Flemming

    2016-08-01

    Ultrasound is becoming increasingly common as an imaging tool for the detection and characterization of breast tumors. This paper provides an overview of recent technological advancements, especially those that may have an impact in clinical applications in the field of breast ultrasound in the near future. These advancements include close to 100% fractional bandwidth high frequency (5-18MHz) 2D and 3D arrays, automated breast imaging systems to minimize the operator dependence and advanced processing techniques, such as those used for detection of microcalcifications. In addition, elastography and contrast-enhanced ultrasound examinations that are expected to further enhance the clinical importance of ultrasound based breast tumor screening are briefly reviewed. These techniques have shown initial promise in clinical trials and may translate to more comprehensive clinical adoption in the future. PMID:27179143

  4. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2008-01-01

    with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances......As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand...

  5. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  6. Technological advances in radiotherapy for esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Milan; Vosmik; Jiri; Petera; Igor; Sirak; Miroslav; Hodek; Petr; Paluska; Jiri; Dolezal; Marcela; Kopacova

    2010-01-01

    Radiotherapy with concurrent chemotherapy and surgery represent the main treatment modalities in esophageal cancer.The goal of modern radiotherapy approaches,based on recent technological advances,is to minimize post-treatment complications by improving the gross tumor volume definition (positron emission tomography-based planning),reducing interfraction motion (image-guided radiotherapy) and intrafraction motion (respiratory-gated radiotherapy),and by better dose delivery to the precisely defined planning ...

  7. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  8. RUBIN Microsatellites for Advanced Space Technology Demonstration

    Science.gov (United States)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  9. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  10. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  11. National Advanced Drilling and Excavation Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  12. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  13. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  14. Advances in Information Technology and Industry Applications

    CERN Document Server

    2012-01-01

    With success of ICEEE 2010 in Wuhan, China, and December 4 to 5, 2010, the second International Conference of Electrical and Electronics Engineering (ICEEE 2011) will be held in Macau, China, and December 1 to 2, 2011. ICEEE is an annual conference to call together researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electrical and Electronics Engineering along with Computer Science and Technology, Communication Technology, Artificial Intelligence, Information Technology, etc.   This year ICEEE is sponsored by International Industrial Electronics Center, Hong Kong. And based on the deserved reputation, more than 750 papers have been submitted to ICEEE 2011, from which about 94 high quality original papers have been selected for the conference presentation and inclusion in the “Advanced Computer, Communication, and Control” book based on the referees’ comments from peer-refereed. All the papers wi...

  15. Advanced DNA assembly technologies in drug discovery.

    Science.gov (United States)

    Tsvetanova, Billyana; Peng, Lansha; Liang, Xiquan; Li, Ke; Hammond, Linda; Peterson, Todd C; Katzen, Federico

    2012-05-01

    Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.

  16. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  17. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  18. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    Science.gov (United States)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  19. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  20. Advanced Education and Technology Business Plan, 2010-13

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  1. 10 CFR 611.3 - Advanced technology vehicle.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  2. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  3. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  4. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  5. Advances in very lightweight composite mirror technology

    Science.gov (United States)

    Chen, Peter C.; Bowers, Charles W.; Content, David A.; Marzouk, Marzouk; Romeo, Robert C.

    2000-09-01

    We report progress in the development of very lightweight (roll off and several waves (rms optical) of astigmatism, coma, and third-order spherical aberration. These are indications of thermal contraction in an inhomogeneous medium. This inhomogeneity is due to a systematic radial variation in density and fiber/resin ratio induced in composite plies when draped around a small and highly curved mandrel. The figure accuracy is expected to improve with larger size optics and in mirrors with longer radii of curvature. Nevertheless, the present accuracy figure is sufficient for using postfiguring techniques such as ion milling to achieve diffraction-limited performances at optical and UV wavelengths. We demonstrate active figure control using a simple apparatus of low-mass, low-force actuators to correct astigmatism. The optimized replication technique is applied to the fabrication of a 0.6-m-diam mirror with an areal density of 3.2 kg/m2. Our result demonstrates that the very lightweight, large-aperture construction used in radio telescopes can now be applied to optical telescopes.

  6. Advanced Technology System Scheduling Governance Model

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoang, Thuc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vigil, Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  7. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  8. Recent advances in magnetostrictive particulate composite technology

    Science.gov (United States)

    Pulliam, Wade J.; McKnight, Geoffrey P.; Carman, Gregory P.

    2002-07-01

    Recently, there have been significant advances in using magnetostrictive particles in a polymer matrix; finding uses in many applications, both as an active transducer and a passive damper. Termed magnetostrictive particulate composites (MPC), the material provides capabilities identical or superior to the monolithic material. Fortis Technologies has been pursuing improvements in the application and fabrication of this innovative material. The MPC technology provides a passive, broadband, large temperature range, high stiffness, dampling material to be used where current technologies fall short. Damping applications of this technology include sporting goods, power/hand tools, space launch and satellite design, noise abatement and vibration isolation. Energy absorption of the composites has been measured and is approaching that of the monolithic material. The material can also be actively controlled by a magnetic field, producing a transducer that can be used for sonar applications. The advantage of this technology over those currently in use is the large power density at relatively low frequencies and the ease of fabrication, allowing less expensive and more effective conformal arrays. Effective strain output and piezomagnetic coefficients have been measured, as have its dynamic properties. The results show significant improvement of the strain output and piezomagnetic coefficients, approaching the monolithic material.

  9. Advanced Technology Development for Stirling Convertors

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  10. Physics and Advanced Technologies 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  11. Physics and Advanced Technologies 2001 Annual Report

    International Nuclear Information System (INIS)

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  12. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  13. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  14. Technologies Advance UAVs for Science, Military

    Science.gov (United States)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  15. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  16. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  17. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non-fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out-pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in-pile tested, successfully. A high temperature irradiation technology up to 1000degC is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation. (author)

  18. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  19. Advanced technologies for power and fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U.; Mann, A.N. [US Department of Energy/National Energy Technology Lab., Pittsburgh, PA (United States)

    2001-07-01

    The Clean Coal Technology Program (CCT) being conducted by the United States Department of Energy (DOE) is a government and industry co-funded effort. The program's purpose is to demonstrate new generation of innovative, environmentally friendly processes that enhance the utilization of coal to meet increasing demand for electric power and fuels. Program demonstration areas include environmental control, advanced power generation, fuels production, and industrial applications. The CCT Program has now grown to maturity, with over 50% of the projects selected having successfully completed their demonstration goals and objectives. Under the CCT Program, nine advanced electric power generation projects and five coal processing for clean fuels projects were selected for full scale commercial demonstration. This paper provides the status, accomplishments and results of the most widely accepted technologies currently being commercialized under these two categories. The projects are (1) Atmospheric Fluidized-Bed Combustion (AFBC) at Jacksonville Electric Authority; (2) Integrated Gasification Combined-cycle (IGCC) at Wabash River, Tampa Electric and Kentucky Pioneer; and (3) Eastman Chemical's production of methanol via coal gasification using the LPMEOH{trademark} process. 7 figs., 7 tabs.

  20. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  1. Advancement in Textile Technology for Defence Application

    Directory of Open Access Journals (Sweden)

    Ramdayal

    2013-05-01

    Full Text Available The early development of textiles involved use of natural materials like cotton, wool and flax. The advent of the new technology revolutionized textiles which enables to develop synthetic fibers like lycra®, a segmented polyurethane-urea, which has exceptional elastic properties, Kevlar®, which has ultra high strength properties and is used as bulletproof vest. For the improvement of personal mobility, health care and rehabilitation, it requires to integrate novel sensing and actuating functions to textiles. Fundamental challenge in the development of smart textile is that drapability and manufacturability of smart textiles should not be affected. Textile fabrics embedded with sensors, piezoelectric materials, flame retardant materials, super hydrophobic materials, controlled drug release systems and temperature adaptable materials can play major role in the development of advanced and high-tech military clothes. Advancement in the textile materials has the capacity of improving comfort, mobility and protection in diverse hostile environment. In this study, the advancement in energy harvesting textiles, controlled release textiles and engineering textiles are presented.

  2. Advancement in Textile Technology for Defence Application

    Directory of Open Access Journals (Sweden)

    Balasubramanian Kandasubramanian

    2013-05-01

    Full Text Available The early development of textiles involved use of natural materials like cotton, wool and flax. The advent of the new technology revolutionized textiles which enables to develop synthetic fibers like lycra®, a segmented polyurethane-urea, which has exceptional elastic properties, Kevlar®, which has ultra high strength properties and is used as bulletproof vest. For the improvement of personal mobility, health care and rehabilitation, it requires to integrate novel sensing and actuating functions to textiles. Fundamental challenge in the development of smart textile is that drapability and manufacturability of smart textiles should not be affected. Textile fabrics embedded with sensors, piezoelectric materials, flame retardant materials, super hydrophobic materials, controlled drug release systems and temperature adaptable materials can play major role in the development of advanced and high-tech military clothes. Advancement in the textile materials has the capacity of improving comfort, mobility and protection in diverse hostile environment. In this study, the advancement in energy harvesting textiles, controlled release textiles and engineering textiles are presented.Defence Science Journal, 2013, 63(3, pp.331-339, DOI:http://dx.doi.org/10.14429/dsj.63.2756

  3. Advanced fuel technology - A UK perspective

    International Nuclear Information System (INIS)

    The nuclear power industry in the United Kingdom is perhaps more diverse than in any other country. The diversity in design of stations is matched by a diversity in operating responsibility. The SGHWR and PFR are operated by the United Kingdom Atomic Energy Authority (UKAEA), 2 of the Magnox stations are owned and run by BNFL, 2 of the AGR stations and 1 Magnox station are controlled by the South of Scotland Electricity Board (SSEB), and the remaining reactors (including the Sizewell 'B' PWR) currently come under the responsibility of the Central Electricity Generating Board (CEGB) but will pass into the control of a new state-run company when the rest of the CEGB is privatized in 1990. Against this background of a variety of designs and operational responsibilities, there is clearly a great deal of scope for advances in fuel and fuel component technology. It should be noted, however, that the nuclear energy policy within the United Kingdom, particularly with regard to PWR plants, has been to adopt well proven designs wherever possible. Emphasis is therefore directed towards achieving the successful operation of conservative systems, with research and development work on advanced options for future implementation. The following sections give an overview of the areas where advanced designs are either in production or under development for each of the UK reactor systems in turn, together with an indication of possible future developments

  4. Advanced Electric Traction System Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  5. New large aperture, hybrid photo-detector and photo multiplier tube for a gigantic water Cherenkov ring imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Seiko, E-mail: s_hirota@scphys.kyoto-u.ac.jp [Kyoto University, Department of Physics (Japan); Nishimura, Yasuhiro [University of Tokyo, ICRR (Japan); Suda, Yusuke [University of Tokyo, Department of Physics (Japan); Okajima, Yuji [Tokyo Institute of Technology, Department of Physics (Japan); Shiozawa, Masato; Nakayama, Shoei; Tanaka, Hidekazu; Hayato, Yoshinari; Ikeda, Motoyasu; Nakahata, Masayuki [University of Tokyo, ICRR (Japan); Yokoyama, Masashi; Aihara, Hiroaki [University of Tokyo, Department of Physics (Japan); Ichikawa, Atsuko; Minamino, Akihiro; Huang, Kunxian; Nakaya, Tsuyoshi [Kyoto University, Department of Physics (Japan); Kawai, Yoshihiko; Suzuki, Masatoshi; Ohmura, Takayuki [Hamamatsu Photonics K.K. (Japan)

    2014-12-01

    We are developing a 20-in. aperture high quantum efficiency photo-multiplier tube (PMT) and a hybrid photo-detector (HPD) for Hyper-Kamiokande which is a next generation underground large water Cherenkov detector. We have measured prototypes of 20-in. PMT with a high quantum efficiency photocathode, 30% at 400 nm, and 8-in. HPDs with a normal quantum efficiency photocathode, 22% at 400 nm, in a 200-ton water tank and checked their performance. The PMTs have a 2.7 ns (sigma) timing resolution and 43% (sigma) charge resolution for single photo-electron. Compared to PMTs, HPDs show a better performance with a 1.7 ns timing resolution and 32. - Highlights: • For Hyper-Kamiokande, a large aperture hybrid photo-detector (HPD) has been developed. • The application of high quantum efficiency photo-cathode has been also studied. • The 8-in. HPDs and 20-in. HQE PMTs have been tested in a 200-ton water tank from summer in 2013. • The HPDs show better charge and timing resolution, and lower dark rate than PMTs. • The HQE PMTs have not been stabilized yet and show higher dark rate than normal PMTs.

  6. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  7. Sensitivity of large-aperture scintillometer measurements of area-average heat fluxes to uncertainties in topographic heights

    Directory of Open Access Journals (Sweden)

    M. A. Gruber

    2014-01-01

    Full Text Available Scintillometer measurements allow for estimations of the refractive index structure parameter Cn2 over large areas in the atmospheric surface layer. Turbulent fluxes of heat and momentum are inferred through coupled sets of equations derived from the Monin–Obukhov similarity hypothesis. One-dimensional sensitivity functions have been produced that relate the sensitivity of heat fluxes to uncertainties in single values of beam height over homogeneous and flat terrain. However, real field sites include variable topography and heterogeneous surfaces. We develop here the first analysis of the sensitivity of scintillometer derived sensible heat fluxes to uncertainties in spatially distributed topographic measurements. For large-aperture scintillometers and independent friction velocity u* measurements, sensitivity is shown to be concentrated in areas near the center of the beam path and where the underlying topography is closest to the beam height. Uncertainty may be greatly reduced by focusing precise topographic measurements in these areas. A new two-dimensional variable terrain sensitivity function is developed for quantitative error analysis. This function is compared with the previous one-dimensional sensitivity function for the same measurement strategy over flat and homogeneous terrain. Additionally, a new method of solution to the set of coupled equations is produced that eliminates computational error. The results are produced using a new methodology for error analysis involving distributed parameters that may be applied in other disciplines.

  8. Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment

    Directory of Open Access Journals (Sweden)

    B. Samain

    2012-07-01

    Full Text Available The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates – up till present – cannot be continuously observed at the catchment scale.

    The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms.

    One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and converting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn and ground heat flux (G upscaled to catchment average through the use of TOPLATS, a physically based land surface model.

    The resulting LE-values are then compared to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, the performance of ETLook for the energy balance terms has been assessed at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown.

  9. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  10. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    Science.gov (United States)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  11. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  12. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    CERN Document Server

    Matthews, Tristan G; Angilè, Francesco E; Benton, Steven J; Chapin, Edward L; Chapman, Nicholas L; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Klein, Jeffrey; Korotkov, Andrei L; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, Calvin B; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2013-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 {\\mu}m. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry (The optical data were published in 1998 by J. Rizzo and collaborators.). The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I,...

  13. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    Science.gov (United States)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  14. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  15. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    International Nuclear Information System (INIS)

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be Mx2=1.2 0 and My2=1.1 5. (letter)

  16. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  17. Advances in riser and pipeline technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Wan C.; Mortazavi, Mehrdad; Weir, Michael S. [ExxonMobil Development Company, Dallas, TX (United States)

    2009-12-19

    As oil and gas production continues to move into new frontier areas, novel applications of the existing riser and pipeline technologies need to be developed to meet the often more stringent requirements encountered in these environments. The challenges include ultra deep water, harsh environments, aggressive fluid conditions, and local content objectives, etc. They will require industry to constantly extend, expand, and enhance the broad range of solution options. Also, the existing design criteria in industry may need to be revised or new criteria may need to be developed to satisfy these needs. Exxon Mobil (Em) employs, and works with others in industry to promote robust design and operating practices. This approach requires in-depth understanding, sound engineering principles, advanced analysis, uncertainty management, and supportive qualification test data. It enables confident selection, extrapolation, and innovation of technologies to address new riser system and pipeline challenges. Focus on fundamental is imperative to ensure integrity of the selected systems during fabrication, installation, and operation phases. Recent and past project experience in deep water Gulf of Mexico and West Africa provides many successful examples of this approach. This paper reviews several examples of the key riser system and pipeline technology enhancements recently achieved by EM to provide confidence in addressing technical and project application challenges. Riser system technology enhancements addressed in this paper include steel catenary riser (SCR) application on turret-moored FPSO with severe motions, pipe-in-pipe (PIP) hybrid production riser to effectively manage gas lift and flow assurance requirements, irregular wave analysis methodology for flexible risers and umbilicals to reduce conservatism, and qualification of riser and pipeline VIV prediction and mitigation methods. Pipeline technology enhancements detailed in this paper include lateral buckling prediction

  18. Advances in space technology: the NSBRI Technology Development Team

    Science.gov (United States)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  20. Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences?

    NARCIS (Netherlands)

    Hoedjes, J.C.B.; Chehbouni, A.; Ezzahar, J.; Escadafal, R.; Bruin, de H.A.R.

    2007-01-01

    Eddy covariance (EC) and large aperture scintillometer (LAS) measurements were collected over an irrigated olive orchard near Marrakech, Morocco. The tall, sparse vegetation in the experimental site was relatively homogeneous, but during irrigation events spatial variability in soil humidity was lar

  1. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  2. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  3. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  4. 75 FR 40857 - Webinar About Advanced Defense Technologies RFP

    Science.gov (United States)

    2010-07-14

    ... ADMINISTRATION Webinar About Advanced Defense Technologies RFP AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of open webinar meeting to discuss Advanced Defense Technologies (ADT) Request for... webinar it is hosting to answer questions from potential Offerors about the Advanced Defense...

  5. Advanced Education and Technology Business Plan, 2010-13. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  6. Technological advances in electrospinning of nanofibers

    Directory of Open Access Journals (Sweden)

    Wee-Eong Teo, Ryuji Inai and Seeram Ramakrishna

    2011-01-01

    Full Text Available Progress in the electrospinning techniques has brought new methods for the production and construction of various nanofibrous assemblies. The parameters affecting electrospinning include electrical charges on the emerging jet, charge density and removal, as well as effects of external perturbations. The solvent and the method of fiber collection also affect the construction of the final nanofibrous architecture. Various techniques of yarn spinning using solid and liquid surfaces as well as surface-free collection are described and compared in this review. Recent advances allow production of 3D nanofibrous scaffolds with a desired microstructure. In the area of tissue regeneration and bioengineering, 3D scaffolds should bring nanofibrous technology closer to clinical applications. There is sufficient understanding of the electrospinning process and experimental results to suggest that precision electrospinning is a real possibility.

  7. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  8. Advanced information technology: Building stronger databases

    Energy Technology Data Exchange (ETDEWEB)

    Price, D. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    This paper discusses the attributes of the Advanced Information Technology (AIT) tool set, a database application builder designed at the Lawrence Livermore National Laboratory. AIT consists of a C library and several utilities that provide referential integrity across a database, interactive menu and field level help, and a code generator for building tightly controlled data entry support. AIT also provides for dynamic menu trees, report generation support, and creation of user groups. Composition of the library and utilities is discussed, along with relative strengths and weaknesses. In addition, an instantiation of the AIT tool set is presented using a specific application. Conclusions about the future and value of the tool set are then drawn based on the use of the tool set with that specific application.

  9. Advanced monolithic pixel sensors using SOI technology

    Science.gov (United States)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  10. Genome engineering in cattle: recent technological advancements.

    Science.gov (United States)

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  11. A conceptual design for a Cassegrain-mounted high-resolution optical spectrograph for large-aperture telescopes

    Science.gov (United States)

    Froning, Cynthia S.; Osterman, Steven; Burgh, Eric; Beasley, Matthew; Scowen, Paul; Veach, Todd; Jordan, Steven; Ebbets, Dennis; Lieber, Michael; deCino, James; Castilho, Bruno Vaz; Gneiding, Clemens; César de Oliveira, Antonio

    2013-09-01

    We present a conceptual design for a high-resolution optical spectrograph appropriate for mounting at Cassegrain on a large aperture telescope. The design is based on our work for the Gemini High Resolution Optical Spectrograph (CUGHOS) project. Our design places the spectrograph at Cassegrain focus to maximize throughput and blue wavelength coverage, delivering R=40,000 resolving power over a continuous 320-1050 nm waveband with throughputs twice those of current instruments. The optical design uses a two-arm, cross-dispersed echelle format with each arm optimized to maximize efficiency. A fixed image slicer is used to minimize optics sizes. The principal challenge for the instrument design is to minimize flexure and degradation of the optical image. To ensure image stability, our opto-mechanical design combines a cost-effective, passively stable bench employing a honeycomb aluminum structure with active flexure control. The active flexure compensation consists of hexapod mounts for each focal plane with full 6-axis range of motion capability to correct for focus and beam displacement. We verified instrument performance using an integrated model that couples the optical and mechanical design to image performance. The full end-to-end modeling of the system under gravitational, thermal, and vibrational perturbations shows that deflections of the optical beam at the focal plane are <29 μm per exposure under the worst case scenario (<10 μm for most orientations), with final correction to 5 μm or better using open-loop active control to meet the stability requirement. The design elements and high fidelity modeling process are generally applicable to instruments requiring high stability under a varying gravity vector.

  12. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem

    Directory of Open Access Journals (Sweden)

    S. M. Liu

    2011-04-01

    Full Text Available We analyzed the seasonal variations of energy balance components over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy balance components were measured using eddy covariance (EC systems and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site and discussed the differences between the sensible heat fluxes measured with EC and LAS at AR. The results show that the main EC source areas were within a radius of 250 m at all of the sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed with the season at each site, and there were characteristic seasonal variations in the energy balance components at all of the sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the so-called energy imbalance phenomenon, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  13. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars

    Science.gov (United States)

    Janches, Diego; Heinselman, Craig J.; Chau, Jorge L.; Chandran, Amal; Woodman, Ronald

    2006-07-01

    We report initial results of an effort to model the diurnal and seasonal variability of the meteor rate detected by high power and large aperture (HPLA) radars. The model uses Monte Carlo simulation techniques and at present assumes that most of the detected particles originate from three radiant distributions with the most dominant concentrated around the Earth's apex. The other two sources are centered 80° in ecliptic longitude to each side of the apex and are commonly known as helion and antihelion. To reproduce the measurements, the apex source flux was set to provide ˜70% of the total number of particles while the other ˜30% is provided by the combined contribution of the two remaining sources. The results of the model are in excellent agreement with observed diurnal curves obtained at different seasons and locations using the 430 MHz Arecibo radar in Puerto Rico, the 50 MHz Jicamarca radar in Perú, and the 1.29 GHz Sondrestrom radar in Greenland. To obtain agreement with the observed diurnal and seasonal variability of the meteor rate, an empirical atmospheric filtering effect was introduced in the simulation which prevents meteors with low-elevation radiants (≤20°) from being detected by the radars at mesospheric altitudes. The filtering effect is probably produced by a combination of factors related to the interaction of the meteor with the air molecules such as electron production and/or the ablation at higher altitudes. On the basis of these results we calculate the micrometeor global, diurnal, and seasonal input in the upper atmosphere.

  14. Advanced Life Support Technologies and Scenarios

    Science.gov (United States)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  15. Advancing colloidal quantum dot photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Cheng Yan

    2016-06-01

    Full Text Available Colloidal quantum dots (CQDs are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  16. CCSDS - Advancing Spaceflight Technology for International Collaboration

    Science.gov (United States)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  17. Advancing colloidal quantum dot photovoltaic technology

    Science.gov (United States)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  18. Advanced Technology for Isolating Payloads in Microgravity

    Science.gov (United States)

    Alhorn, Dean C.

    1997-01-01

    advances in isolation technology for that particular component. The final section presents some concluding thoughts and a summary of anticipated advances in research and development for isolating microgravity experiments.

  19. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  20. Advanced Technology MEMS-based Acoustic Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  1. Technological advances in the hemostasis laboratory.

    Science.gov (United States)

    Lippi, Giuseppe; Plebani, Mario; Favaloro, Emmanuel J

    2014-03-01

    Automation is conventionally defined as the use of machines, control systems, and information technologies to optimize productivity. Although automation is now commonplace in several areas of diagnostic testing, especially in clinical chemistry and immunochemistry, the concept of extending this process to hemostasis testing has only recently been advanced. The leading drawbacks are still represented by the almost unique biological matrix because citrated plasma can only be used for clotting assays and few other notable exceptions, and by the highly specific pretreatment of samples, which is particularly distinct to other test systems. Despite these important limitations, a certain degree of automation is also now embracing hemostasis testing. The more relevant developments include the growing integration of routine hemostasis analyzers with track line systems and workcells, the development of specific instrumentation tools to enhance reliability of testing (i.e., signal detection with different technologies to increase test panels, plasma indices for preanalytical check of interfering substances, failure patterns sensors for identifying insufficient volume, clots or bubbles, cap-piercing for enhancing operator safety, automatic reflex testing, automatic redilution of samples, and laser barcode readers), preanalytical features (e.g., positive identification, automatic systems for tube(s) labeling, transillumination devices), and postphlebotomy tools (pneumatic tube systems for reducing turnaround time, sample transport boxes for ensuring stability of specimens, monitoring systems for identifying unsuitable conditions of transport). Regardless of these important innovations, coagulation/hemostasis testing still requires specific technical and clinical expertise, not only in terms of measurement procedures but also for interpreting and then appropriately utilizing the derived information. Thus, additional and special caution has to be used when designing projects of

  2. Recent advances in airborne radiometric technology

    International Nuclear Information System (INIS)

    Since its inception, the DOE Remote Sensing Laboratory has made dramatic innovations in airborne radiometric technology. In the past few years there have been at least four major changes in operational philosophy. (1) The helicopter is now the prime radiation survey vehicle. Surveys are conducted at low speed and low altitude, with lines spaced only a few hundred feet apart. Radiation anomalies and subtle changes in background can be readily identified. (2) Much greater emphasis is now placed on accurate, detailed analysis and interpretation of radiation data. Dramatic improvements in survey hardware and software provide much more data of considerably better quality. (3) Recent Laboratory research has been concentrated on error-free, positive identification of point radiation sources. In the past, the extent and magnitude of dispersed sources were the major concerns. (4) Integrated remote sensing has been strongly emphasized at the Laboratory in recent years. This involves the simultaneous use of radiation detectors, aerial cameras, and the multispectral scanner imagery. The synergistic effects of such data correlation are of significantly greater value in analyzing the terrestrial environment. Many of the changes in operational philosophy are directly traceable to new or dramatically improved hardware and software employed at the Laboratory. Six items have been instrumental in the above technological advances: (1) the UHF Transponder System and its predecessor, the Microwave Ranging System; (2) Model IC of the REDAR data acquisition system; (3) the development of the search algorithm; (4) continued improvements in the REDACA data analysis system; (5) deployment of polyscin sodium iodide radiation detectors; and (6) development of the Graphic Overview System

  3. Physics and Advanced Technologies 2003 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004

  4. Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment

    Directory of Open Access Journals (Sweden)

    B. Samain

    2011-12-01

    Full Text Available The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates can – up till present – not be continuously observed at the catchment scale.

    The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms.

    One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H across large distances (in the order of kilometers using a Large Aperture Scintillometer (LAS, and inverting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes (H measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn and ground heat flux (G upscaled to catchment average through the use of TOPLATS, a physically based land surface model.

    The resulting LE-values are then validated by comparing them to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, it is demonstrated that ETLook is able to estimate the energy balance terms for daily time steps at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown.

    As such, ETLook provides the opportunity to estimate continuous series of the energy balance terms of a large area for daily time steps and can thus e.g. be used as a validation tool for LAS-measurements, whereas LAS is able to estimate the latent heat fluxes (evapotranspiration rates for a large and heterogeneous catchment at an hourly time step which can be used for the forcing or validation of hydrologic

  5. The technology behind Colgate Total Advanced Fresh.

    Science.gov (United States)

    Williams, Malcolm I; Cummins, Diane

    2003-09-01

    In the early 1990s, a breakthrough toothpaste, Colgate Total, was launched with documented long-lasting activity against plaque, gingivitis, calculus, tooth decay, and bad breath. The technology behind this toothpaste is the combination of triclosan, a polyvinylmethylether/maleic acid copolymer, and sodium fluoride. The copolymer ensures maximal oral retention and subsequent release of the antibacterial triclosan. Effective levels of triclosan have been observed in the oral cavity 12 hours after brushing the teeth, allowing prolonged control of oral bacteria that may cause the most common dental problems, including bad breath. Similarly, the enhanced retention of triclosan to oral surfaces after using this revolutionary toothpaste for up to 2 years has led to significantly reduced incremental coronal caries compared to an American Dental Association-Approved anticavity fluoride toothpaste. Furthermore, significantly less calcium remained in dental plaque after brushing the teeth with the triclosan/copolymer toothpaste, resulting in the formation of less tartar. In keeping with the multiple oral health benefits provided by Colgate Total, consumers are now offered a new dentifrice, Colgate Total Advanced Fresh, which provides the numerous therapeutic and esthetic benefits that are the hallmark of Colgate Total. The new dentifrice, which contains an impactful breath-freshening flavor, has been documented to provide sustained control of bad breath over 12 hours.

  6. Advanced Lost Foam Casting Technology - Phase V

    Energy Technology Data Exchange (ETDEWEB)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  7. Advanced ignition and propulsion technology program

    Energy Technology Data Exchange (ETDEWEB)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  8. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  9. Advanced Education and Technology Business Plan, 2009-12

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  10. Advanced Education and Technology Business Plan, 2008-11

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The Ministry of Advanced Education and Technology's 2008-11 business plan identifies how it plans to work over the next three years to enhance advanced learning opportunities and innovation for all Albertans. Alberta's advanced learning system is composed of public board-governed institutions, the apprenticeship and industry training system,…

  11. Advanced technology's impact on compressor design and development - A perspective

    Science.gov (United States)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  12. Advanced technologies impact on compressor design and development: A perspective

    Science.gov (United States)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  13. Recent advancements in prosthetic hand technology.

    Science.gov (United States)

    Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar

    2016-07-01

    Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future. PMID:27098838

  14. Plan for advanced microelectronics processing technology application

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  15. TECHNOLOGICAL ADVANCES IN AGRICULTURAL ECONOMICS CURRICULA

    OpenAIRE

    Schurle, Bryan W.; Comer, Dorothy A.

    1995-01-01

    The potential use of computers and electronic technology have created considerable interest among educators in agricultural economics. This paper provides an overview of the use of electronic technology within agricultural economics curricula; examines areas in which technological development offers promise and examines issues associated with adoption of the technology.

  16. Technological advances in self-insurance and self-protection

    OpenAIRE

    Chang-Ming Lee

    2015-01-01

    This study investigates how technological advances in self-insurance (or self-protection) affect the optimal level of self-insurance (or self-protection) and that of insurance, if insurance is also taken into account. Conditions are derived for determining the signs of changes in the optimal levels of decision variables due to improved technology. Two cross-derivatives are found to be the key factors. Classification of technological advances is suggested based on the two cross-derivatives. Th...

  17. The State Prize for 1991 Science and Technology Advance

    Institute of Scientific and Technical Information of China (English)

    LINantion; FENGYilun

    1992-01-01

    According to the report in Science and Technology Daily on 10 July 1991, prize winners for the State Prize for 1991 Science and Technology Advance in China have been selected by the Evaluation Committee of the State Prize for 1991 Science and Technology Advance. Among the prizes, eight programs were concerned with rice research: Pathogenetic Types of Rice Bacterial Leaf Blight in China and the Application in Disease-resistant Breeding, by FANG Zhongda,

  18. 75 FR 106 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2010-01-04

    ...Pursuant to the Federal Advisory Committee Act (5 U.S.C., App.), notice is hereby given that the Visiting Committee on Advanced Technology (VCAT), National Institute of Standards and Technology (NIST), will meet Tuesday, February 2, 2010, from 8:30 a.m. to 5 p.m. and Wednesday, February 3, 2010, from 8:30 a.m. to 11:30 a.m. The Visiting Committee on Advanced Technology is composed of fifteen......

  19. LDR system concepts and technology

    Science.gov (United States)

    Pittman, B.

    1985-01-01

    The Large Deployable Reflector is a 20 meter diameter infrared/submillimeter telescope planned for the late 1990's. The Astronomy Survey Committee of the National Academy of Sciences (Field Committee) recommended LDR as one of the two space based observatories that should start development in the 80's. LDR's large aperture will give it unequaled resolution in the wavelength range from 30 to 1000 microns. To meet LDR performance goals will call for advances in several technology disciplines including: optics, controls, thermal control, detectors, cryogenic cooling, and large space structures.

  20. Technological Advances in Nursing Care Delivery.

    Science.gov (United States)

    Sullivan, Debra Henline

    2015-12-01

    Technology is rapidly changing the way nurses deliver patient care. The Health Information Technology for Economic and Clinical Health Act of 2009 encourages health care providers to implement electronic health records for meaningful use of patient information. This development has opened the door to many technologies that use this information to streamline patient care. This article explores current and new technologies that nurses will be working with either now or in the near future.

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of

  2. Production of Construction Materials Using Advanced Recycling Technologies

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Waste reduction, material reuse, and use of recycle-content products can be focused on the management system somewhat. In contrast, material recycling is the technical issue how to create new materials using wastes. Thus, three advanced recycling technologies; 1) Synthetic Lightweight Aggregate technology (SLA), 2) Clean Coal Technology (CCT), and 3) RP-1 Polymer Identification System are introduced.

  3. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  4. Advanced Technology Training Program for the Apparel Industry. Final Report.

    Science.gov (United States)

    El Paso Community Coll., TX.

    A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…

  5. 2004 Physics and Advanced Technologies In the News

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  6. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Managing the Perception of Advanced Technology Risks in Mission Proposals

    Science.gov (United States)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  8. Development of essential system technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  9. Advancement in Engineering Technology: A Novel Perspective

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas but to...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected......In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...

  10. Schedule Risks Due to Delays in Advanced Technology Development

    Science.gov (United States)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  11. A review of advanced manufacturing technology

    Science.gov (United States)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. ICONE-4: Proceedings. Volume 1 -- Part B: Basic technological advances

    International Nuclear Information System (INIS)

    The proceedings of this conference are divided into 5 volumes. Volume one is divided into Parts A and B. Here in Part B, the following subjects are covered: advances in thermal hydraulic computer codes for reactor analysis; human health effects of low level radiation; advances in liquid metal reactor technology; computational and experimental developments; two-phase flow and heat transfer fundamentals; advances in flow field analysis and testing; advanced reactor thermal hydraulic safety; thermal hydraulics of nuclear safety and reliability; advances in numerical simulation of steam explosions; and computational and experimental two-phase flow developments. Separate abstracts were prepared for most papers in this volume

  14. Advanced manufacturing technologies on color plasma displays

    Science.gov (United States)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  15. A study of advanced vitrification technology

    International Nuclear Information System (INIS)

    JNFL have developed the vitrification technology of a high level liquid waste with a modification in discharge performance of the noble metal by changing the bottom structure and adding heating means. Cold test was conducted by using a full scale mock-up melter which introduced the new vitrification technology. In the cold test, we confirmed the discharge performance of the noble metal. (author)

  16. Value analysis for advanced technology products

    Science.gov (United States)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  17. Recent Advances in Solar Cell Technology

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  18. JTEL Winter School for Advanced Technologically Enhanced Learning

    NARCIS (Netherlands)

    Glahn, Christian; Gruber, Marion

    2010-01-01

    Glahn, C., & Gruber, M. (2010). JTEL Winter School for Advanced Technologically Enhanced Learning. In ~mail. Das Magazin des Tiroler Bildungsinstituts, 01/10, März (p. 3-4). Innsbruck: Grillhof, Medienzentrum.

  19. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  20. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-07-01

    The Liquid Phase{trademark} Technology builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980's with the financial support of the US department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (US) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company's coal gasification facility in Kingsport, Tennessee under the DOE's Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. This paper reviews the: Commercial Application for the LPMEOH{trademark} process technology; Operational Plans to demonstrate the commercial advantages of the plant; LPMEOH{trademark} Plant-Status, highlighting the integration of the LPMEOH{trademark} plant at Kingsport, and the accomplishments during the initial operating period; and Highlights of other Liquid Phase{trademark} Technology Developments.

  1. Technology advances for Space Shuttle processing

    Science.gov (United States)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  2. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  3. Advanced electric powertrain technology: ADEPT platform overview

    NARCIS (Netherlands)

    Stipetic, S.; Miebach, W.; Wilkins, S.; Lomonova, E.A.; Paulides, J.J.H.; Tegenbosch, J.

    2016-01-01

    Design of high performance, low cost and clean propulsion systems requires multiple disciplines such as physics, mathematics, electrical engineering, mechanical engineering and specialisms like control engineering and safety. This paper details the program of EU FP7 Multi-ITN project ADvanced Electr

  4. Advanced Education and Technology Business Plan, 2011-14

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. Its core businesses are to: (1) provide strategic leadership for Campus Alberta and Alberta Innovates; and (2) engage learners, industry and the community in learning…

  5. Advances in induction-heated plasma torch technology

    Science.gov (United States)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  6. An evaluation of depth sizing ability of ultrasonic testing by the large aperture transducer for axial crack in cast stainless steel pipe weld

    International Nuclear Information System (INIS)

    Ultrasonic testing is difficult for cast stainless steel which is used as the material of main coolant pipes in pressurized water reactors, because of the large attenuation and scattering of ultrasonic waves caused by its macro structure. Ultrasonic testing for the axial fatigue crack on welding area in the test piece of the cast stainless pipe was performed, using the double large aperture ultrasonic probes. In this study, depth sizing of defects was performed under the positive result of the detection of defects in former study. As a result, sizing of defects with over 20mm target depth for the specimen thickness 69mm is highly possible. (author)

  7. Advancement of Multifunctional support structure technologies (AMFSST)

    CERN Document Server

    John, R; Frerker, H J; Newerla, A

    2008-01-01

    The multifunctional support structure (MFSS) technology is promising a reduction of overall mass and packing volume for spacecraft (S/C) electronic components. This technology eliminates the electronic box chassis and the cabling between the boxes by integrating the electronics, thermal control and the structural support into one single element. The ultimate goal of the MFSS technology is to reduce size, weight, power consumption, cost and production time for future spacecraft components. The paper focus on the main challenges and solutions related to the thermal management within the MFSS technology based on the selected charge regulator (CR) application. Starting with the main set of thermal requirements for the CR the paper will include, conceptual and detailed design based on highconductivity carbon fibre CFRP, description and results of the thermal material sample test program ; parameter and results for the performed first thermal simulation

  8. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  9. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-04-01

    The {open_quotes}Liquid Phase{trademark} Technology{close_quotes} builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980`s with the financial support of the U.S. Department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (U.S.) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee under the DOE`s Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. Air Products and Eastman formed the {open_quotes}Air Products Liquid Phase Conversion Co., L.P.{close_quotes} partnership to execute the commercial-scale demonstration project. Most of the product methanol is refined to chemical-grade quality (99.85 wt% purity via distillation) and used by Eastman as chemical feedstock in the commercial facility. A portion of the product methanol will be withdrawn prior to purification (about 98 wt% purity) and used in off-site product-use tests.

  10. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  11. 9 Waste Rubber Technologies Passed the Review on Advanced Applicable Technologies by MIIT

    Institute of Scientific and Technical Information of China (English)

    Qiart Bozhang

    2012-01-01

    To promote the development of integrative utilization technologies of industrial solid wastes and to enhance the level of integrative utilization, the Ministry of Industry and Information Technology (MIIT) held Reviewing Meeting of Advanced Applicable Technologies for the Integrative Utilization of Industrial Solid Wastes on April 27. 9 integrative utilization technologies of waste rubber passed this review.

  12. Advances in software science and technology

    CERN Document Server

    Kamimura, Tsutomu

    1994-01-01

    This serial is a translation of the original works within the Japan Society of Software Science and Technology. A key source of information for computer scientists in the U.S., the serial explores the major areas of research in software and technology in Japan. These volumes are intended to promote worldwide exchange of ideas among professionals.This volume includes original research contributions in such areas as Augmented Language Logic (ALL), distributed C language, Smalltalk 80, and TAMPOPO-an evolutionary learning machine based on the principles of Realtime Minimum Skyline Detection.

  13. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  14. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  15. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  16. [Technological advances and hospital-at-home care].

    Science.gov (United States)

    Tibaldi, Vittoria; Aimonino Ricauda, Nicoletta; Rocco, Maurizio; Bertone, Paola; Fanton, Giordano; Isaia, Giancarlo

    2013-05-01

    Advances in the miniaturization and portability of diagnostic technologies, information technologies, remote monitoring, and long-distance care have increased the viability of home-based care, even for patients with serious conditions. Telemedicine and teleradiology projects are active at the Hospital at Home Service of Torino.

  17. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  18. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  19. They watch and wonder. Public attitudes toward advanced technology

    Science.gov (United States)

    Laporte, T.; Metlay, D.

    1975-01-01

    The relationship of technological development to individual and community response was investigated to provide a general conceptual, as well as empirical basis, for an understanding of the impact of advanced technologies on social life. Results of the surveys are presented in tables and graphs.

  20. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  1. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  2. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  3. IMPACT OF TECHNOLOGICAL ADVANCEMENT ON PEDAGOGY

    Directory of Open Access Journals (Sweden)

    Mounia ABIK

    2012-01-01

    Full Text Available To improve the quality of learning, pedagogues have prescribed different pedagogical approaches (constructivist, cognitivist…. However, the effective implementation of the majority of these approaches has not been possible only after the advent of new forms of learning (E_learning, M-learning.... These forms are closely related to technological development. Later with the emergence of technology (pervasive computing, Artificial Intelligent ... a new form of learning is established. It is called Pervasive Learning "P-Learning”. P-Learning is a social process that connects learners to communities of devices, people, and situations in a transparent and independent manner. This learning form goes far beyond the predictions suggested by pedagogue. Learning can then take part outside the learner via technology, which will be an extension of his brain by unloading the cognitive practices he performs. The aim of this paper is to answer the following questions: What alliance is there between pedagogy and technology? Are we in need of a new pedagogical approach in the new learning environment "P-Learning"? What are the new pedagogical challenges to resolve?

  4. Technological advances in radiotherapy of rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L; Sebag-Montefiore, David

    2016-01-01

    , selective sparing of specific organs to enable chemotherapy escalation, and nonsurgical management. SUMMARY: Few prospective studies of IMRT and VMAT exist, which causes uncertainty not just in regards to the clinical benefit of these technologies but also in the optimal use. The priority for future...

  5. CNPC's Diversification Business Boosted by Advanced Technology

    Institute of Scientific and Technical Information of China (English)

    Yao Xuemin

    1996-01-01

    @@ The Eighth Five-Year Plan period witnessed rapid the development in the diversification business of China's onshore petroleum industry for five consecutive years mainly as a result of intensified efforts to develop new products and foreign- exchange- earning products by making full use of science and technology. In particular, great achievements were recorded in the following aspects.

  6. Advanced core monitoring technology for WWER reactors

    International Nuclear Information System (INIS)

    The Westinghouse BEACON online monitoring system has been developed to provide continuous core monitoring and operational support for pressurized water reactor using movable detectors (fission chamber) and core thermocouples. The basic BEACON core monitoring methodology is described. Traditional WWER reactors use rhodium fixed in-core detectors as the means to provide detailed core power distribution for surveillance purposes. An adapted version of the BEACON advanced core monitoring and support system is described which seems to be, due to the different demand/response requirements, the optimal solution (for routine surveillance and anomaly detection) for WWER reactors with existing fixed in-core detectors. (Z.S.) 4 refs

  7. Technological advances in extracorporeal membrane oxygenation for respiratory failure.

    Science.gov (United States)

    Rehder, Kyle J; Turner, David A; Bonadonna, Desiree; Walczak, Richard J; Rudder, Robert J; Cheifetz, Ira M

    2012-08-01

    Extracorporeal membrane oxygenation (ECMO) for neonatal and pediatric cardiac and/or respiratory failure is well established, and its use for adult respiratory failure is rapidly increasing. Management strategies developed over the past 30 years coupled with significant recent technological advances have led to improved ECMO survival. These new technologies are expanding the potential applications for ECMO in exciting ways, including new patient populations and the ability to make ECMO mobile for both intra- and inter-hospital transport. In this article, we highlight some of the recent technological advances and their impact on the utilization of ECMO in increasingly diverse patient populations.

  8. 9th International Conference on Advanced Computing & Communication Technologies

    CERN Document Server

    Mandal, Jyotsna; Auluck, Nitin; Nagarajaram, H

    2016-01-01

    This book highlights a collection of high-quality peer-reviewed research papers presented at the Ninth International Conference on Advanced Computing & Communication Technologies (ICACCT-2015) held at Asia Pacific Institute of Information Technology, Panipat, India during 27–29 November 2015. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry present their original work and exchange ideas, information, techniques and applications in the field of Advanced Computing and Communication Technology.

  9. "ATLAS" Advanced Technology Life-cycle Analysis System

    Science.gov (United States)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  10. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Zhang Jianzhong(Charlie

    2009-01-01

    Full Text Available Abstract 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  11. Prospect of advanced generation technologies in a competitive market place

    Energy Technology Data Exchange (ETDEWEB)

    Guha, M.; Singh, A.

    1999-07-01

    The US Electric utility industry is undergoing tremendous changes for meeting the challenge of deregulation and customer demands for a free competitive market. Two major forces are driving this market: the deregulation of the industry and customer demands for achieving the lowest cost for electricity, forcing utility companies to position themselves as the low-cost producers. This paper will briefly discuss the status of various advanced generation technologies with respect to their costs, applicability and limitations, where these technologies are expected to be cost-effective and how they compare with the combined cycle plants. Advanced generation technologies may benefit as the environment regulations are tightened. This paper will examine how, when and where the advanced generation technologies would play a role in penetrating the market on their own merits.

  12. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  13. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  14. Recent advances in magnetic heat pump technology

    Science.gov (United States)

    Uherka, Kenneth L.; Hull, John R.; Scheihing, Paul E.

    Magnetic heat pump (MHP)/refrigeration systems, incorporating state-of-the-art superconducting magnet technology, were assessed for industrial applications ranging from the liquefaction of gases (20 K to 100 K range) to cold storage refrigeration for food preservation (250 K to 320 K range). Initial market penetration of MHP technology is anticipated to occur in the gas liquefaction sector, since the performance advantages of magnetic refrigeration cycles relative to gas compression cycles and other conventional systems are more pronounced in the lower temperature ranges. Design options for rotary MHP devices include alternative regeneration schemes to obtain the temperature spans necessary for industrial applications. The results of preliminary design assessment studies indicate that active magnetic regenerator concepts, in which the magnetic working material also serves as the regenerative medium, offer advantages over alternative MHP designs for industrial applications.

  15. Advances in technology for integrated route analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carey, N.T.; George, P.J.; Khamhawi, K. [SAGE Engineering Ltd., Bath (United Kingdom)

    1998-12-31

    Pipeline and cable routes are becoming ever complex with routes being chosen in increasingly remote and technically demanding areas. Clients now demand greater information and analysis from the surveys and interpretations. By utilising a range of leading edge equipment, greater information can be obtained, visualised and analysed than ever before. Three case studies are presented, indicating how such technology has been employed to provide the client with a greater understanding of complex engineering projects, and what additional technology could have been utilised to further enhance the project. Examples of data, systems and project management used on two major pipe routes and one major cable route are presented. Swath Bathymetry (ISIS), 3D visualisation (Fledermaus), cone penetrometer testing (SAGE Miniature CPT), GIS databases (INfoXProfessional), and the use of pipeline stress analysis, upheaval buckling and rock dump optimisation software (SAFE Profile) are all examined. (author)

  16. Advanced Optical Technologies for Space Exploration

    Science.gov (United States)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  17. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  18. Recent advances in PIM technology I

    OpenAIRE

    Zlatkov B.S.; Griesmayer E.; Loibl H.; Aleksić O.S.; Danninger H.; Gierl C.; Lukić L.S.

    2008-01-01

    In this article the state of art of the PIM (Powder Injection Moulding) technology is given in brief. The main process flow diagram consisting of four steps: feedstock preparation, injection moulding (green samples forming), the debinding (binder removing) procedure and the sintering process was described. After that the materials for binders and additives for the surface active agents were mentioned in brief. The metal injection moulding (MIM) process was analysed in more detail: MIM- stainl...

  19. Advanced technologies in web application design

    OpenAIRE

    Peruš, Blaž

    2016-01-01

    The main goal of this diploma thesis is a presentation of Autocommerce web project development. All used technologies are described. On the basis of the project we also present agile methodologies for software development which helps us to efficiently build the whole information system from the idea to the first version. Such methodologies are mostly used by startups, because they are perfect for building and testing products in a very short time & for adapting with the provided feedback from...

  20. Ethical aspects of advanced reproductive technologies.

    Science.gov (United States)

    Schenker, Joseph G

    2003-11-01

    The progress achieved during the last 25 years in the assisted reproductive technology field has been phenomenal. Many countries currently practice genetic material donation, human embryo cryopreservation, selective embryo reduction, preimplantation genetic diagnosis, and surrogacy. While embryo research and therapeutic cloning are carried out only in a few centers, thus far human cloning has been universally condemned. Nonetheless, the rapid evolution and progress of these various techniques of assisted reproduction has opened a Pandora's box of ethical issues that must be urgently addressed.

  1. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  2. Commercialization of Australian advanced infrared technology

    Science.gov (United States)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  3. Ethical aspects of advanced reproductive technologies.

    Science.gov (United States)

    Schenker, Joseph G

    2003-11-01

    The progress achieved during the last 25 years in the assisted reproductive technology field has been phenomenal. Many countries currently practice genetic material donation, human embryo cryopreservation, selective embryo reduction, preimplantation genetic diagnosis, and surrogacy. While embryo research and therapeutic cloning are carried out only in a few centers, thus far human cloning has been universally condemned. Nonetheless, the rapid evolution and progress of these various techniques of assisted reproduction has opened a Pandora's box of ethical issues that must be urgently addressed. PMID:14644805

  4. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  5. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    Science.gov (United States)

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  6. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  7. Advanced metal-membrane technology-commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, D.J.

    1995-06-01

    The gasification of coal offers a potentially significant source of hydrogen for use in clean power generation and as a primary chemical feedstock. However, hydrogen derived from coal continues to be more expensive than hydrogen derived from natural gas or petroleum, due in large part to the expense of separating hydrogen from the mixture of gases produced during gasification. At Bend Research, we have been developing a novel hydrogen-permeable metal membrane that promises to be economical for hydrogen separation and purification, including the purification of hydrogen derived from gasifying coal. Furthermore, the membrane is ideally suited for use at high temperatures (200{degrees} to 500{degrees}C), making it feasible to produce pure hydrogen directly from hot gas streams. Through a partnership with Teledyne Wah Chang, we are proceeding with scale-up of prototype membrane modules and field tests to demonstrate the technology to potential users. Additionally, we are working with potential customers to estimate capital savings and operating costs for integrated systems. In this paper, we present some of the operating characteristics of the metal membrane, including its use to drive equilibrium-limited reactions toward complete conversion (e.g., the water-gas-shift reaction). We also describe our activities for commercializing this technology for a variety of applications.

  8. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  9. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  10. Brazil advances subsea technology in Marlim pilot

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  11. On-wall locomotion technology for advanced robot technology research

    International Nuclear Information System (INIS)

    The robots for extremely severe operation are those doing works in place of men in the environment to which men are unaccessible, for example the high radiation area in nuclear power plants, deep sea where diving is difficult and the high temperature sites due to fires. Agency of Industrial Science and Technology of Ministry of International Trade and Industry has carried out the technical development research on them for eight years from 1983, and the results were published. Wall surface moving technology was studied and developed as one of the elementary technologies for the robots for practical workings in nuclear power facilities. The target of development was the speed of moving on a wall surface of 2 km/h carrying 40 kg load. The development of the elementary technology, the research on the total system and the performance verification test were carried out. The dynamic examination of running adhesion, vacuum seals, the maintenance of stable vacuum, running suckers, the function of the joint trunk, the mechanism of moving on wall surfaces, the handling of the control system for moving on wall surfaces and the control of the transfer from floor to wall, the maintenance of negative pressure and the prevention of fall and the concept of a wall surface robot are reported. (K.I.)

  12. Major technological advances and trends in cheese.

    Science.gov (United States)

    Johnson, M E; Lucey, J A

    2006-04-01

    Over the last 25 yr, cheese production in the United States has more than doubled with most of the increase due to production in the western states. Processing large volumes of milk into cheese has necessitated changes in vat size and design, reliance on computer software, and milk standardization, including use of membrane concentration of milk either at the cheese plant or on the farm. There has been increased interest in specialty cheeses including cheese made from sheep, goat, and organic milks. In addition, membrane processing of whey into various value-added components has become routine. Changes in cheese manufacturing protocols have resulted in a reduction of the manufacturing time and the necessity for consistent and reliable starter activity. Major advances in the genetics of microorganisms have not only resulted in widespread use of fermentation-produced chymosin but also in starter bacteria with improved resistance to bacteriophage infection. Genomics and proteomics have increased the likelihood of the development of nonstarter adjuncts with specific enzymatic activity. Indeed, the use of adjunct microorganisms to produce cheese with a unique flavor profile or to produce cheese with more consistent or better quality flavor has gained almost universal acceptance.

  13. Progress in diagnosis of breast cancer: Advances in radiology technology

    Directory of Open Access Journals (Sweden)

    J Mari Beth Linder

    2015-01-01

    Full Text Available Breast cancer is the leading cause of cancer in females between the ages of 15 and 54, and the second leading cause of cancer death in women in the United States. Diagnosis begins with detection by breast examination (clinical breast exam or breast self-exam or by radiologic studies, like mammography. Many advances in the diagnosis of breast cancer have taken place in recent years. This article will review the history of radiologic advances in the diagnosis of breast cancer. Use of technological advancements in digital breast tomosynthesis, magnetic resonance imaging, and ultrasound in breast cancer diagnosis will be presented. Advantages and disadvantages of these diagnostic interventions when compared to older, traditional X-ray films will be discussed. It is important for all nurses, including radiology and oncology nurses, to be well informed about these varied diagnostic modalities, and appreciate the fact that advances in radiologic imaging technologies can yield improved outcomes for breast cancer patients.

  14. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  15. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation. PMID:17855217

  16. Advances in lightweight nickel electrode technology

    Science.gov (United States)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  17. Advanced technologies in the meat industry.

    Science.gov (United States)

    Longdell, G R

    1994-01-01

    New Zealand has invested heavily in the development of slaughter dressing and deboning equipment and machinery for sheep and lamb. In total some thirteen machines have been developed to date and all are now commercially available and many examples are working within New Zealand and overseas. Significant economic savings have been derived from the introduction of these machines. The Australian meat industry is funding a major programme in beef slaughter technology development. Eleven modules have been developed and at present they are being incorporated into a commercial plant at Kilcoy in Queensland, Australia. The Netherlands have a programme named Slaughterline 2000 which includes a number of pork slaughtering and processing initiations. Stunning, sticking and an automatic carcass opener are developments within this programme.

  18. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    A UO2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO2-Gd2O3 is in the core and UO2-Er2O3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO2 and additives. The open porosity of UO2 pellet was reduced by only mixing AUC-UO2 powder with ADU-UO2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO2-U3O8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U3O8 single crystals were added to UO2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO2-Gd2O3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  19. Advanced CO2 Removal Technology Development

    Science.gov (United States)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  20. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  1. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  2. Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Shephard, Mark S

    2010-02-05

    Efforts during the past year have contributed to the continued development of the ITAPS interfaces and services as well as specific efforts to support ITAPS applications. The ITAPS interface efforts have two components. The first is working with the ITAPS team on improving the ITAPS software infrastructure and level of compliance of our implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is being involved with the discussions on the design of the iField fields interface. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. The development of parallel unstructured mesh methods has considered the need to scale unstructured mesh solves to massively parallel computers. These efforts, summarized in section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count machine available. The ITAPS developments that have contributed to the scaling and performance of PHASTA include an iterative migration algorithm to improve the combined region and vertex balance of the mesh partition, which increases scalability, and mesh data reordering, which improves computational performance. The other developments are associated with the further development of the ITAPS parallel unstructured mesh

  3. Recent advances in PIM technology I

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2008-01-01

    Full Text Available In this article the state of art of the PIM (Powder Injection Moulding technology is given in brief. The main process flow diagram consisting of four steps: feedstock preparation, injection moulding (green samples forming, the debinding (binder removing procedure and the sintering process was described. After that the materials for binders and additives for the surface active agents were mentioned in brief. The metal injection moulding (MIM process was analysed in more detail: MIM- stainless steels, MIM-copper and MIM-aluminium as the most metals common in MIM metal parts production. After that our results of MIM stainless steel 316 L and MIM copper are given. The main powder characteristics, the shrinkage and density of the sintered samples were compared for isostatically pressed PM (powder metallurgy samples and MIM formed samples. The SEM fractographs of MIM and PM samples are given for MIM green parts, debinded (brown parts and sintered parts, and PM green parts and sintered parts. The results obtained were compared with literature data before they were applied in metal parts production.

  4. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  5. Image transfer technology in health care advancing

    International Nuclear Information System (INIS)

    Instead of recording images used in medicine, such as x-ray images, on film, it is now increasingly often possible to record them digitally in a computer. Using open and integrated information systems, digital images and the related data can in future be processed simultaneously, for instance, at x-ray units, in laboratories and at hospital wards. The data are fed into an open and integrated information system only once. Users may search for and combine data easily and any way they wish. Images are stored in the computer system at the location where they are generated, and transferred in the network only when they are needed elsewhere. In future, it will be possible to obtain information from a database using, for instance, sound as a means of communication. Data may be stored in the network as graphs, as sound or even as films. Despite all this , the introduction of new information technology still requires much consideration, resources and time. An open information system also needs standardised concepts and services so that different pieces of equipment and programmes are able to work together. (orig.)

  6. ICONE-4: Proceedings. Volume 1 -- Part A: Basic technological advances

    International Nuclear Information System (INIS)

    The proceedings of this conference are divided into 5 volumes. Volume one is subdivided into Parts A and B. Here in Part A, the following subjects are covered: fundamental thermal hydraulics; structural analysis and design of nuclear facilities; numerical and experimental two-phase flow developments; advances in reactor pressure vessel technology; advances in computational thermal hydraulics; thermal hydraulics of nuclear safety and reliability; advanced reactors thermal hydraulic safety--natural circulation; advances in numerical simulation of steam explosions; computational and experimental two-phase flow developments; two-phase flow and heat transfer fundamentals; advances in stability analysis; and material issues in nuclear applications. Separate abstracts were prepared for most papers in this volume

  7. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  8. Weather Prediction Improvement Using Advanced Satellite Technology

    Science.gov (United States)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common

  9. Cycle update : advanced fuels and technologies for emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, G. [National Research Council of Canada, Ottawa, ON (Canada)

    2009-07-01

    This paper provided a summary of key achievements of the Program of Energy Research and Development advanced fuels and technologies for emissions reduction (AFTER) program over the funding cycle from fiscal year 2005/2006 to 2008/2009. The purpose of the paper was to inform interested parties of recent advances in knowledge and in science and technology capacities in a concise manner. The paper discussed the high level research and development themes of the AFTER program through the following 4 overarching questions: how could advanced fuels and internal combustion engine designs influence emissions; how could emissions be reduced through the use of engine hardware including aftertreatment devices; how do real-world duty cycles and advanced technology vehicles operating on Canadian fuels compare with existing technologies, models and estimates; and what are the health risks associated with transportation-related emissions. It was concluded that the main issues regarding the use of biodiesel blends in current technology diesel engines are the lack of consistency in product quality; shorter shelf life of biodiesel due to poorer oxidative stability; and a need to develop characterization methods for the final oxygenated product because most standard methods are developed for hydrocarbons and are therefore inadequate. 2 tabs., 13 figs.

  10. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2009-01-01

    Full Text Available 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item “LTE-Advanced” to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  11. Advanced information technology for training and emergency management

    International Nuclear Information System (INIS)

    Modern information technology provides many possibilities for improving both the safety and the availability of nuclear installations. A Nordic research programme was started in 1977, in which several organizations in Denmark, Finland, Norway and Sweden has been participating. The work has on a general level been addressing control rooms, human reliability and information technology for nuclear power plants. The research has had impact on the development of the control room solutions and the training simulators in Finland and also in the other Nordic countries. The present phase of the Nordic cooperation is investigating the use of advanced information technology in emergency management. The paper gives a brief introduction to the use of advance information technology for training and emergency management, which is based on the experience from the Nordic projects and other similar application projects in Finland. The paper includes also references to results from several of the projects. (author)

  12. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    Science.gov (United States)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  13. Applications and Advances in Electronic-Nose Technologies

    OpenAIRE

    Manuela Baietto; Wilson, Alphus D.

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arr...

  14. Recent technological advances in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  15. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  16. Tall Buildings and Elevators: A Review of Recent Technological Advances

    OpenAIRE

    Kheir Al-Kodmany

    2015-01-01

    Efficient vertical mobility is a critical component of tall building development and construction. This paper investigates recent advances in elevator technology and examines their impact on tall building development. It maps out, organizes, and collates complex and scattered information on multiple aspects of elevator design, and presents them in an accessible and non-technical discourse. Importantly, the paper contextualizes recent technological innovations by examining their implementation...

  17. 78 FR 29704 - Visiting Committee on Advanced Technology

    Science.gov (United States)

    2013-05-21

    ...The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards and Technology (NIST), will meet in open session on Tuesday, June 11, 2013, from 8:00 a.m. to 5:00 p.m. Eastern Time and Wednesday, June 12, 2013, from 8:30 a.m. to 11:45 a.m. Eastern Time. The VCAT is composed of fifteen members appointed by the Under Secretary of Commerce for Standards and......

  18. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  19. Advanced technology for space communications, tracking, and robotic sensors

    Science.gov (United States)

    Krishen, Kumar

    1989-01-01

    Technological advancements in tracking, communications, and robotic vision sensors are reviewed. The development of communications systems for multiple access, broadband, high data rate, and efficient operation is discussed. Consideration is given to the Tracking and Data Relay Satellite systems, GPS, and communications and tracking systems for the Space Shuttle and the Space Station. The use of television, laser, and microwave sensors for robotics and technology for autonomous rendezvous and docking operations are examined.

  20. Development of advanced technologies for biomass pyrolysis

    Science.gov (United States)

    Xu, Ran

    the entering vapors and gases to spin, providing good heat transfer and driving the condensed droplets to the wall through cyclonic action. This condenser design has been successfully demonstrated for the application on the pilot fluidized bed pyrolysis unit. After condensation, a stable aerosol is also typically formed which is difficult to be efficiently captured with conventional technologies. A pilot scale helicoidal rotary demister, a novel technology for removing persistent fine bio-oil droplets from gases using dynamic centrifugal forces, has been developed. The demister uses a helicoidal element, which consists of a metal sheet wound as a spiral, designed to rotate at high speeds within a cyclone body. Larger droplets are separated as they enter the cyclone housing, while the smaller droplets are carried by the gas into the helicoidal path of the rotating element, where they are centrifuged towards the outer collecting walls and, as a result of a specially designed baffle, may flow counter-currently to the gas and are drained out from the bottom of the rotating element. The mist-free gas leaves through a channel located at the center of the spiral. This unique demister design has demonstrated a high separation efficiency when tested offline with artificial submicron mist and tested online for demisting bio-oil aerosol on the pyrolysis unit. Bio-oil Upgrading: Very often, phase separation of bio-oil occurs naturally upon condensation of the bio-oil vapors, typically through the use of cyclonic condensers. The bio-oil is separated into an organic phase and an aqueous phase. Research has been conducted on the possibility to enhance the fuel properties and energy performance of the organic phase by reducing its water content, enhancing its heating value and improving its stability. Through the use of drying agents, a remarkable reduction of water content and an increase of heating value can be achieved. Moreover, the volumetric energy density can be greatly

  1. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  2. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  3. Cardiovascular genetics : Technological advancements and applicability for dilated cardiomyopathy

    NARCIS (Netherlands)

    Kummeling, G. J M; Baas, A. F.; Harakalova, M.; van der Smagt, J. J.; Asselbergs, F. W.

    2015-01-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained

  4. Computer-Assisted Foreign Language Teaching and Learning: Technological Advances

    Science.gov (United States)

    Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.

    2013-01-01

    Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…

  5. Technological Advances and Information Education 1982-2007: Some Perspectives

    Science.gov (United States)

    Guy, Fred

    2007-01-01

    The paper considers technological advances in relation to information education over the 25 years of existence of the journal, "Education for Information." Some key developments before 1980 such as the appearance of MARC and library co-operatives are mentioned along with key post-1980 developments including networking, the World Wide Web, and…

  6. Exploring the evolution of investment pattern on advanced manufacturing technology

    DEFF Research Database (Denmark)

    Yang, Cheng; Matthiesen, Rikke Vestergaard; Johansen, John

    2014-01-01

    This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution...

  7. Advances in Games Technology: Software, Models, and Intelligence

    Science.gov (United States)

    Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai

    2009-01-01

    Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…

  8. Blending Technology and Face-to-Face: Advanced Students' Choices

    Science.gov (United States)

    Trinder, Ruth

    2016-01-01

    It has been suggested that current research in computer-assisted language learning (CALL) should seek to understand the conditions and circumstances that govern students' use of technology (Steel & Levy, 2013). This paper attempts to identify critical factors accounting for student choices, first, by investigating advanced learners' reported…

  9. Data Protection Issues in Higher Education with Technological Advancements

    Science.gov (United States)

    McKelvey, Nigel

    2014-01-01

    Adhering to laws whilst working or studying in an educational establishment is often fraught with challenges. The Irish Data Protection Act 1988 (Amendment 2003) strives to protect the individual where their personal data is potentially being abused. The advancements in technologies have facilitated educational establishments by improving…

  10. Advanced Education and Technology Business Plan, 2009-12. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    Advanced Education and Technology provides strategic leadership for the development of the next generation economy in Alberta through the provision of accessible, affordable and quality learning opportunities for all Albertans and support for a dynamic and integrated innovation system. This paper provides the highlights of the business plan of the…

  11. Impact of advanced technologies on rural trauma care

    Science.gov (United States)

    McGrane, Michael J.; Gainor, Dia; Buttrey, Jan M.; Taska, John D.; Pierce, Gregg E.; Wolff, Barack

    1994-03-01

    The high incidence of traumatic injury and death is significant among the western, rural United States. A number of characteristics and factors contribute to this concern, among them extremes in population, distance, terrain, and resources. Opportunity exists to apply current and future advanced technology to impact trauma prevention, communication, emergency response, trauma system support and monitor trauma outcome.

  12. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  13. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  14. Advanced laser sensing receiver concepts based on FPA technology.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. L. (Phillip L.); Petrin, R. R. (Roger R.); Jolin, J. L. (John L.); Foy, B. R. (Bernard R.); Lowrance, J. L.; Renda, G. (George)

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  15. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  16. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  17. Advances in Computing and Information Technology : Proceedings of the Second International Conference on Advances in Computing and Information Technology

    CERN Document Server

    Nagamalai, Dhinaharan; Chaki, Nabendu

    2013-01-01

    The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, ...

  18. 2005 Physics and Advanced Technologies in the News

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2006-12-19

    Several outstanding research activities in the Physics and Advanced Technologies Directorate in 2005 were featured in ''Science and Technology Review'', the monthly publication of Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2005. As part of the World Year of Physics commemorating the 100th anniversary of Einstein's ''miraculous year'', we also highlight ongoing physics research that would not be possible without Einstein's pioneering accomplishments.

  19. Current Advanced Power Generation Technologies and Options for China (1)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs and environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.

  20. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future UV/Optical telescopes will require increasingly large apertures to answer the questions raised by HST, JWST, Planck and Hershel, and to complement the = 30-m...

  1. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  2. Advanced fuel technology and performance: Current status and trends

    International Nuclear Information System (INIS)

    During the last years the Nuclear Fuel Cycle and Waste Management Division of the IAEA has been giving great attention to the collection, analysis and exchange of information in the field of reactor fuel technology. Most of these activities are being conducted in the framework of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT). The purpose of this Advisory Group Meeting on Advanced Fuel Technology and Performance was to update and to continue the previous work, and to review the experience of advanced fuel technology, its performance with regard to all types of reactors and to outline the future trends on the basis of national experience and discussions during the meeting. As a result of the meeting a Summary Report was prepared which reflected the status of the advanced nuclear fuel technology up to 1990. The 10 papers presented by participants of this meeting are also published here. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  4. ADVANCED TECHNOLOGIES THRUST AREA, OFFICE OF SCIENCE AND TECHNOLOGY AND INTERNATIONAL: ANNUAL REPORT 2005

    International Nuclear Information System (INIS)

    The purpose of the Advanced Technologies Thrust (ATT) is to: (1) identify/develop technologies and processes; (2) reduce the cost of proposed repository development, construction, and operation with the application of these new technologies and processes; and (3) provide the data necessary to demonstrate feasibility of new technologies and processes. Fiscal Year 2005 was the inaugural year for this thrust. Several of the projects were already under way when this thrust team was formed; however, it was not until this year that a focused approach to managing these projects was established. The nine projects supporting the initiatives listed below are described: (1) The Evaluation of Improved Waste Package Materials and Fabrication Processes; (2) Advanced Approaches for Improved Waste Package Closure Welds; (3) Advanced Tunneling Technology; and (4) Improved Understanding of Extreme Ground Motions Predicted Using Probabilistic Seismic Hazard Analysis

  5. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  6. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  7. Advances in poultry litter disposal technology--a review.

    Science.gov (United States)

    Kelleher, B P; Leahy, J J; Henihan, A M; O'Dwyer, T F; Sutton, D; Leahy, M J

    2002-05-01

    The land disposal of waste from the poultry industry and subsequent environmental implications has stimulated interest into cleaner and more useful disposal options. The review presented here details advances in the three main alternative disposal routes for poultry litter, specifically in the last decade. Results of experimental investigations into the optimisation of composting, anaerobic digestion and direct combustion are summarised. These technologies open up increased opportunities to market the energy and nutrients in poultry litter to agricultural and non-agricultural uses. Common problems experienced by the current technologies are the existence and fate of nitrogen as ammonia, pH and temperature levels, moisture content and the economics of alternative disposal methods. Further advancement of these technologies is currently receiving increased interest, both academically and commercially. However, significant financial incentives are required to attract the agricultural industry.

  8. The Post-implementation Assessment of Advanced Technology Utilization

    Directory of Open Access Journals (Sweden)

    Hynek Josef

    2012-09-01

    Full Text Available Efficient utilization of advanced manufacturing technology is usually seen as one of the crucial factors in achieving competitiveness on global markets. On the other hand, there are many problems associated with the advanced technology utilization. These problems could be related to the individual phases of the relevant project life cycle - starting from the early stages of AMT projects preparation and evaluation, through various problems related to the project implementation, its integration within the company environment, up to the issues related to the efficient utilization of the already deployed system. This paper focuses on the final stage of this processwhen the post-implementation assessment should be carried out in order to determine whether all initial expectations and objectives were met and whether all the originally promised benefits were delivered. Typical problems of technology benefits evaluation together with various methods, concepts as well as metrics used in the process of the assessment will be discussed here in particular.

  9. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    Science.gov (United States)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  10. Condition Monitoring Through Advanced Sensor and Computational Technology

    International Nuclear Information System (INIS)

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties

  11. Recent advances in antitank missile systems and technologies

    Science.gov (United States)

    Iyer, Narayana R.

    1999-11-01

    This paper focuses on the recent advances in tactical Anti- tank (ATGM) systems and related technologies. The growth profile of ATGM systems and related technologies has been discussed with special emphasis on technologies pertaining to guidance systems. 'Fire and forget' and 'Top attach' capabilities are the most important operational requirements of the third generation ATGM systems. Realization of 'Fire and forget' capability for tactical ATGMs calls for use of a passive or active homing system. The need for such a system has been the main driving factor for mobilizing the advanced technologies relating to IR and Millimetric Wave seeker based guidance systems. Generic design considerations and system constraints as well as technological aspects of these two types of guidance systems are covered. The 'Top attack' requirement calls for optimization of suitable trajectory schemes and it also impose design constants, mainly on the homing seeker. Use of tandem shaped charge warhead is essential to defeat modern tanks equipped with Explosive Reactive Armor. The implications of using the tandem shaped charge warhead on the design of the seeker as well as at system level design are briefly analyzed. In the concluding part, the emerging technological trends relating to ATGM systems with focus on guidance systems are presented.

  12. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  13. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion.

  14. Key Enabling Physical Layer Technologies for LTE-Advanced

    Science.gov (United States)

    Jiang, Meilong; Prasad, Narayan; Xin, Yan; Yue, Guosen; Khojastepour, Amir; Liu, Le; Inoue, Takamichi; Koyanagi, Kenji; Kakura, Yoshikazu

    The 3GPP Long Term Evolution Advanced (LTE-A) system, as compared to the LTE system, is anticipated to include several new features and enhancements, such as the usage of channel bandwidth beyond 20MHz (up 100MHz), higher order multiple input multiple output (MIMO) for both downlink and uplink transmissions, larger capacity especially for cell edge user equipment, and voice over IP (VoIP) users, and wider coverage and etc. This paper presents some key enabling technologies including flexible uplink access schemes, advanced uplink MIMO receiver designs, cell search, adaptive hybrid ARQ, and multi-resolution MIMO precoding, for the LTE-A system.

  15. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  16. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    Science.gov (United States)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  17. Advanced Lost Foam Casting technology: 1997 summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  18. Current status and development tendency of image stabilization system of large aperture space telescope%空间大口径望远镜稳像系统发展现状及趋势

    Institute of Scientific and Technical Information of China (English)

    曹小涛; 孙天宇; 赵运隆; 王栋; 郭权锋

    2014-01-01

    介绍了目前国际上已发射及正在论证的大型空间望远镜的稳像控制系统,主要包括自由飞行模式的HUBBLE、JWST、ATLAST-8m和ATLAST-9.2m,载体搭载模式的SOFIA和OPTIIX。详细论述了这些空间望远镜稳像系统的组成、工作原理、主要元件、性能指标和控制算法,并对基于磁悬浮技术的无扰动载荷设计概念和机械臂直接驱动空间相机的设计思想进行了介绍。分析表明,基于机械臂和磁悬浮技术的精密稳像及主动振动抑制系统是未来的发展趋势。%In this paper , the image stabilization system of large aperture space telescope on orbit or being de-signed is introduced, including HUBBLE, JWST, ATLAST-8m and ATLAST-16m in free flying mode, and SOFIA, OPTIIX in space-borne mode .The composition , working principle , major component , performance requirements and control algorithm of image stabilization system are discussed in detail .Then, the disturb-ance-free payload design concept based on the magnetically suspend technology and design idea of space tele -scope directly driven by the manipulator are introduced .Analysis results indicate that the precise image stabi-lization and active vibration isolation system based on the magnetically suspend and manipulator technology is the future development tendency .

  19. Advanced Technologies to Improve Closure of Life Support Systems

    Science.gov (United States)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  20. Reliability modelling system for analysis of advanced battery technologies

    Science.gov (United States)

    Imhoff, C. H.; Hostick, C. J.; Nakaoka, R. K.

    1985-05-01

    Key considerations in evaluating the reliability of advanced battery technologies include the impact of cell failures on battery performance and cost. Pacific Northwest Laboratory developed interactive microcomputer based simulation models to help battery developers use cell reliability data to calculate the expected performance of new battery technologies. Key benefits of this model include its capability to estimate the effect of cell failures upon: (1) battery system discharge performance, (2) system cycle life, and (3) system economic performance (tradeoffs between capital investment and lifetime operating costs).

  1. Advancement in Sensing Technology New Developments and Practical Applications

    CERN Document Server

    Jayasundera, Krishanthi; Fuchs, Anton

    2013-01-01

    The book presents the recent advancements in the area of sensors and sensing technology, specifically in environmental monitoring, structural health monitoring, dielectric, magnetic, electrochemical, ultrasonic, microfluidic, flow, surface acoustic wave, gas, cloud computing and bio-medical.   This book will be useful to a variety of readers, namely, Master and PhD degree students, researchers, practitioners, working on sensors and sensing technology. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  2. Advances in energy systems and technology v.5

    CERN Document Server

    Auer, Peter L

    1986-01-01

    Advances in Energy Systems and Technology: Volume 5 present articles that provides a critical review of specific topics within the general field of energy. It discusses the fuel cells for electric utility power generation. It addresses the classification of fuel cell technologies. Some of the topics covered in the book are the major components of the fuel cell; the phosphoric acid fuel cells; molten carbonate fuel cells; solid oxide fuel cells; electric utility fuel cell systems; and the integration within fuel cell power plants. The analysis of the solar ponds is covered. The operational

  3. Advanced manufacturing technologies for the BeCOAT telescope

    Science.gov (United States)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  4. The Advancement in Intensified Smelting Technology of Baosteel Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LinChengcheng; ZhangLonglai

    2005-01-01

    Baosteel always aims at becoming one of the most profitable enterprises in the world, enjoying international competence,benchmarking with the world advanced level, pursuing innovation sustainable development. Recent years, Baosteel Iron-making Department has caught the opportunity of increasing steel demand; conquering disadvantages such as changeable up-stream market, fuel and raw material's fight supplies and lower quality, etc. In our department, Major technical problems have been overcome, blast furnace intensified smelting technology improved, the cost of molten iron under control, blast fttmace long-life span control technology made breakthrough, and Baosteel's ironmaking capacity improved further.

  5. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  6. Technological advances in bovine mastitis diagnosis: an overview.

    Science.gov (United States)

    Duarte, Carla M; Freitas, Paulo P; Bexiga, Ricardo

    2015-11-01

    Bovine mastitis is an economic burden for dairy farmers and preventive control measures are crucial for the sustainability of any dairy business. The identification of etiological agents is necessary in controlling the disease, reducing risk of chronic infections and targeting antimicrobial therapy. The suitability of a detection method for routine diagnosis depends on several factors, including specificity, sensitivity, cost, time in producing results, and suitability for large-scale sampling of milk. This article focuses on current methodologies for identification of mastitis pathogens and for detection of inflammation, as well as the advantages and disadvantages of different methods. Emerging technologies, such as transcriptome and proteome analyses and nano- and microfabrication of portable devices, offer promising, sensitive methods for advanced detection of mastitis pathogens and biomarkers of inflammation. The demand for alternative, fast, and reliable diagnostic procedures is rising as farms become bigger. Several examples of technological and scientific advances are summarized which have given rise to more sensitive, reliable and faster diagnostic results.

  7. 2nd International Conference on Recent Advances in Information Technology

    CERN Document Server

    Mukhopadhyay, Sushanta

    2014-01-01

    The book is based on the research papers presented in Second International Conference on Recent Advances in Information Technology (RAIT 2014), held at Indian School of Mines, Dhanbad, India. It provides the latest developments in the area of information technology and covers a variety of topics, including Advanced Algorithm Design and Analysis, Algorithmic Graph Theory, Artificial Intelligence, Bioinformatics, Circuit Design Automation, Computational Biology, Computational Mathematics, Cryptology, Data Compression, Database Management System, Data Mining, E-Applications, Embedded System, Information and Network Security, Information Retrieval, Internet Computing, etc. The objective is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods.

  8. Technological Advancement in Preparation and Application of Monolithic Refractories

    Institute of Scientific and Technical Information of China (English)

    LIZaigeng; ZHOUNingsheng

    2001-01-01

    This paper highlighted the advancement in preparation and application technologies of monolithic refactories in recent two decaes,in terms of raw materials,processing technology,particle size distrbution,binders,additives,workabiity,installation and applications,Facts and dicussions indicated that monolitihic refractoriesare advancing rapidly,from material point of view,towards higher grade and higher performance mateials and oxide-non-oxide composites;from installation point of view,towards higher efficiency,less man-power and time consuming terchinques;from drying-out point of view,towards quicker or even drying-out free,and from application point of view,towards the working linings of high temperature smelters and vessles under tougher serivce conditions ,and on the other hand,with more functions.

  9. Advancement of remote technology: past perspectives and future plans

    International Nuclear Information System (INIS)

    In the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Remotex concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 20 references, 10 figures, 1 table

  10. Advancement of remote systems technology: past perspectives and future plans

    International Nuclear Information System (INIS)

    In the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Remotex concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 9 references, 5 figures

  11. Advancement of remote systems technology: past perspectives and future plans

    International Nuclear Information System (INIS)

    In the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Remotex concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 20 references, 10 figures, 1 table

  12. Advancement of remote technology: past perspectives and future plans

    International Nuclear Information System (INIS)

    In the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Remotex concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 20 references, 9 figures, 1 table

  13. Advancement of remote systems technology: past perspectives and future plans

    International Nuclear Information System (INIS)

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program, at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Teletec concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 20 references, 9 figures, 1 table

  14. Establishment of the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  15. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  16. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  18. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  19. Technological advances in site-directed spin labeling of proteins

    OpenAIRE

    Hubbell, Wayne L.; López, Carlos J.; Altenbach, Christian; Yang, Zhongyu

    2013-01-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of pr...

  20. Fluid and structural measurements to advance gas turbine technology

    Science.gov (United States)

    Hartmann, M. J.

    1980-01-01

    In the present paper, the current status of fluid and structural measurements is reviewed, and some potential improvements in gas turbine machinery, directly associated with the new measuring capability are discussed. Some considerations concerning the impact of the new capability on the methods and approaches that will be used in the further development of advanced technology, in general, and to aeropropulsion gas turbine machinery, in particular, are presented.

  1. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  2. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  3. 6th Krakow-Winnipeg Conference on Advanced Bioimaging Technologies

    International Nuclear Information System (INIS)

    Starting from 1997 researchers have been meet in Krakow, Poland for the Krakow-Winnipeg conference on MRI. The scope of the conference includes the latest technical advances in biomedical imaging including molecular imaging and nanotechnology. Other topics for presentation include recent developments in whole body MRI, multi-transmit technology and gradient-free MRI. Book of Abstracts from the 6th Conference contains 29 abstracts of Oral Presentations and 11 abstracts of Posters.

  4. Technological advances in the surgical treatment of movement disorders.

    Science.gov (United States)

    Gross, Robert E; McDougal, Margaret E

    2013-08-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional

  5. Advanced technologies available for future solid propellant grains

    Science.gov (United States)

    Thépénier, Jean; Fonblanc, Gilles

    2001-03-01

    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: Computer-aided method for the preliminary grain design Advanced models for SRM operating and performance predictions

  6. Advanced Stirling Technology Development at NASA Glenn Research Center

    Science.gov (United States)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  7. Development of the advanced CANDU technology -Development of basic technology for HWR design

    International Nuclear Information System (INIS)

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR's that are now being operated or constructed in Korea. It is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 71 tabs., 147 figs., 143 refs. (Author)

  8. Development of the advanced CANDU technology -Development of basic technology for HWR design-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Lee, Sang Yong; Suk, Soo Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR`s that are now being operated or constructed in Korea, it is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, by performing in-depth studies especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 90 figs, 50 tabs, 38 refs. (Author).

  9. Technology advancement: a factor in increasing resource use

    Science.gov (United States)

    Wilburn, David R.; Goonan, Thomas G.; Bleiwas, Donald I.

    2001-01-01

    The specter of mineral resource scarcity has been repeatedly raised as a concern because ever-growing populations with seemingly insatiable appetites for minerals place claims against a finite resource endowment. This report analyzes how technology has helped to ease resource constraints, and uses case studies of aluminum, copper, potash, and sulfur minerals to identify the effects of technology on resource supply. In spite of heightened demand for and increased loss of resources to environmental policy and urbanization, mineral producers historically have been able to continually expand production and lower costs. Specific production increases for the years 1900-98 were: aluminum (3,250 percent), copper (2,465 percent), potash (3,770 percent), and sulfur (6,000 percent). For the same period, constant-dollar (1998) prices decreased: aluminum (90 percent), copper (75 percent), potash (94 percent), and sulfur (89 percent). The application of technology has made available mineral deposits that were previously overlooked or considered non-viable. Using technology, producers can meet the demand for stronger, energy-efficient, more environmentally safe products with less physical material. Technologies have been developed to increase the amount of materials recycled and remanufactured. Technology development can occur in breakthroughs, but most often advances incrementally. Technological development is driven by the profit motive.

  10. Advanced technologies: The key to coping with future uncertainty

    International Nuclear Information System (INIS)

    Uncertainty about the future of the electric power industry presents numerous business challenges and opportunities for utilities as they jockey for position in an increasingly competitive marketplace. To be successful during these turbulent times, utility managers must be able to recognize how best to take advantage of the wide array of new technologies that continually are being developed. By looking ahead at some of the new concepts, utility managers can develop their own best strategies for technology development and adoption. This paper identifies several scientific developments, advanced supply and delivery technologies and discusses their importance to the utility industry. We also provide a framework for discussing the new technologies and concepts in terms of research and development strategies by indicating alternatives roles for utilities to play in technology development and commercialization. By developing a strategy for exploiting the potential benefits of new technologies, individual utilities can position themselves for greater advantage in a competitive and highly uncertain marketplace. Utilities that are pro active in identifying winning energy technologies will be in a much better position to keep their customers and stockholders satisfied than those that are passive. 7 refs., 2 figs

  11. Managing the gap: balancing advances in technology with advances in management practice.

    Science.gov (United States)

    Ritchie, D

    1997-01-01

    Expenditure on information systems is widely anticipated to lead to improved management of health care resources. Despite large investments in hardware and software, these expectations are difficult to realise. Part of the difficulty lies in the manner in which information systems are applied to, rather than integrated within, organisations. This paper considers some of the the personal and organisational issues that need to be addressed to 'manage the gap' in balancing advances in information technology with advances in management practice. The issues identified are consistent with the concept of a learning organisation dealing with environmental change.

  12. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

    Science.gov (United States)

    Van Kesteren, B.; Beyrich, F.; Hartogensis, O. K.; Braam, M.

    2015-08-01

    We compare the structure parameter of the refractive index, , measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of of up to 35 % for temperatures 0 . Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces for crosswinds 2 (error 25 and 5 % respectively). Thirdly, the BLS900 increasingly underestimates (up to 10-15 %) with increasing signal saturation. We demonstrate that Scintec's data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of of up to 30 % for friction velocity 0.2 . Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

  13. Strategic research of advanced fuel cycle technologies in JNC

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, T.; Fukushima, M.; Nomura, S. [Japan Nuclear Cycle Development Institute, Tokai Works (Japan)

    2000-07-01

    Key technologies for the future nuclear fuel cycle have been proposed and are being reviewed in JNC as a part of the Feasibility Study for an Advanced Fuel Cycle, which is to achieve a more flexible energy choice to satisfy a sustainable energy security and global environmental protection. The candidate reprocessing technologies are: 1) aqueous simplified PUREX process, 2) oxide or metallic electrowinning, and 3) fluoride volatilization for oxide, metal, or nitride fuels. The fuel fabrication methods being investigated are: 1) simplified pellet process, 2) sphere/vibro-packed process for MOX/MN fuel, and 3) casting for metal fuel. These candidate technologies are currently being compared based on past experiences, technical issues to be solved, industrial applicability for future plants, feasible options for MA/LLFP separation, and nonproliferation aspects. Alter two years of the present reviewing process, selected key technologies will be developed over the next five years to evaluate industrial applicability of reprocessing and fuel manufacturing processes for the advanced fuel cycle. (authors)

  14. Strategic research of advanced fuel cycle technologies in JNC

    International Nuclear Information System (INIS)

    Key technologies for the future nuclear fuel cycle have been proposed and are being reviewed in JNC as a part of the Feasibility Study for an Advanced Fuel Cycle, which is to achieve a more flexible energy choice to satisfy a sustainable energy security and global environmental protection. The candidate reprocessing technologies are: 1) aqueous simplified PUREX process, 2) oxide or metallic electrowinning, and 3) fluoride volatilization for oxide, metal, or nitride fuels. The fuel fabrication methods being investigated are: 1) simplified pellet process, 2) sphere/vibro-packed process for MOX/MN fuel, and 3) casting for metal fuel. These candidate technologies are currently being compared based on past experiences, technical issues to be solved, industrial applicability for future plants, feasible options for MA/LLFP separation, and nonproliferation aspects. Alter two years of the present reviewing process, selected key technologies will be developed over the next five years to evaluate industrial applicability of reprocessing and fuel manufacturing processes for the advanced fuel cycle. (authors)

  15. Tall Buildings and Elevators: A Review of Recent Technological Advances

    Directory of Open Access Journals (Sweden)

    Kheir Al-Kodmany

    2015-09-01

    Full Text Available Efficient vertical mobility is a critical component of tall building development and construction. This paper investigates recent advances in elevator technology and examines their impact on tall building development. It maps out, organizes, and collates complex and scattered information on multiple aspects of elevator design, and presents them in an accessible and non-technical discourse. Importantly, the paper contextualizes recent technological innovations by examining their implementations in recent major projects including One World Trade Center in New York; Shanghai Tower in Shanghai; Burj Khalifa in Dubai; Kingdom Tower in Jeddah, Saudi Arabia; and the green retrofit project of the Empire State Building in New York. Further, the paper discusses future vertical transportation models including a vertical subway concept, a space lift, and electromagnetic levitation technology. As these new technological advancements in elevator design empower architects to create new forms and shapes of large-scale, mixed-use developments, this paper concludes by highlighting the need for interdisciplinary research in incorporating elevators in skyscrapers.

  16. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  17. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  18. Current Advanced Power Generation Technologies and Options for China (2)

    Institute of Scientific and Technical Information of China (English)

    Deng Nubo; Mohsen Assadi; Yang Cheng

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs arid environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.Here published is the second part of the paper.

  19. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    Science.gov (United States)

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  20. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.