WorldWideScience

Sample records for advanced synfuel production

  1. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  2. Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1979-01-01

    The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given

  3. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen

  4. Reagan proposes cuts in synfuel aid, transfer to Synfuels Corp. from DOE

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-02

    It is reported that U.S. president Ronald Reagan in his budget message for the financial year 1982, has proposed to cut the DOE's planned 1982 expenditure for the synfuels programme by $864 m. He also proposed that the government synfuels effort be transferred to the recently created Synthetic Fuels Corporation. The gasohol programme and biomass development have suffered by the termination of feasibility studies, co-operative agreements and loan guarantee, but the planned tax credits will continue in the case of gasohol, resulting in a subsidy in excess of $18/bbl.

  5. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  6. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.

    1979-01-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  7. Important roles of Fischer-Tropsch synfuels in the global energy future

    International Nuclear Information System (INIS)

    Takeshita, Takayuki; Yamaji, Kenji

    2008-01-01

    This paper examines the potential roles of Fischer-Tropsch (FT) synfuels in the 21st century with a global energy model treating the entire fuel supply chain in detail. The major conclusions are the following. First, FT synfuels become a major alternative fuel regardless of CO 2 policy due to their low transportation costs and compatibility with existing petroleum infrastructure and vehicles. Secondly, the FT process brings stranded gas to world markets until around 2050. In a 550 ppm CO 2 stabilization case thereafter, producing FT synfuels from biomass, whose competitiveness is robust against its capital costs, and their interregional trade enable a worldwide diffusion of carbon-neutral fuels. This provides a significant source of income for developing regions, such as Latin America and Sub-Saharan Africa. Thirdly, FT synfuels play a crucial role in meeting the growing transportation energy demand and assuring diversified supplies of transportation fuels. Increasing portions of FT liquids are refined to FT-kerosene to be provided for the rapidly growing aviation sector in the second half of the century. Furthermore, upgrading FT-naphtha into FT-gasoline proves to be critically important. FT synfuels' participation could help the development in Africa through technological contributions of the South African leading companies in the world synfuel industry

  8. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  9. Screening of synfuel processes for HTGR application

    International Nuclear Information System (INIS)

    1981-02-01

    The aim of this study is to select for further study, the several synfuel processes which are the most attractive for application of HTGR heat and energy. In pursuing this objective, the Working Group identified 34 candidate synfuel processes, cut the number of processes to 16 in an initial screening, established 11 prime criteria with weighting factors for use in screening the remaining processes, developed a screening methodology and assumptions, collected process energy requirement information, and performed a comparative rating of the processes. As a result of this, three oil shale retorting processes, two coal liquefaction processes and one coal gasification process were selected as those of most interest for further study at this time

  10. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  11. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-01-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  12. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  13. Proceedings of the opportunities in the synfuels industry

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    World interest in coal-based synthetic fuels technology is like a roller coaster ride. Interest soars when energy prices are high or world oil supplies are threatened. When energy is inexpensive and oil is plentiful, interest plummets. However, some people remain undaunted by the ups and downs of the synfuels industry. They cling tenaciously to the idea that coal-based synthetic fuels are the world`s energy future. They are the select group attending the SynOps `92 symposium in Bismarck, North Dakota. SynOps `92 participants represent an extraordinary combination of visionaries and practical thinkers. They believe the ``coal refinery`` concept will eventually provide the most efficient and productive use of our coal resources. They know that coal is a valuable resource which can be used to produce a huge variety of valuable nonfuel products. They also recognize that until technology can make alternative fuels economically feasible, the world will continue to rely heavily on fossil fuels--especially coal, the world`s most abundant energy resource. Individual papers have been entered.

  14. Proceedings of the opportunities in the synfuels industry

    International Nuclear Information System (INIS)

    1992-01-01

    World interest in coal-based synthetic fuels technology is like a roller coaster ride. Interest soars when energy prices are high or world oil supplies are threatened. When energy is inexpensive and oil is plentiful, interest plummets. However, some people remain undaunted by the ups and downs of the synfuels industry. They cling tenaciously to the idea that coal-based synthetic fuels are the world's energy future. They are the select group attending the SynOps '92 symposium in Bismarck, North Dakota. SynOps '92 participants represent an extraordinary combination of visionaries and practical thinkers. They believe the ''coal refinery'' concept will eventually provide the most efficient and productive use of our coal resources. They know that coal is a valuable resource which can be used to produce a huge variety of valuable nonfuel products. They also recognize that until technology can make alternative fuels economically feasible, the world will continue to rely heavily on fossil fuels--especially coal, the world's most abundant energy resource. Individual papers have been entered

  15. Determination of total solutes in synfuel wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.R.; Bonomo, F.S.

    1984-03-01

    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  16. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  17. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  18. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  19. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  20. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  1. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  2. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  3. High-pressure turbine deposition in land-based gas turbines from various synfuels

    Energy Technology Data Exchange (ETDEWEB)

    Bons, J.P.; Crosby, J.; Wammack, J.E.; Bentley, B.I.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    2007-01-15

    Ash deposits from four candidate power turbine synfuels were studied in an accelerated deposition test facility. The facility matches the gas temperature and velocity of modern first-stage high-pressure turbine vanes. A natural gas combustor was seeded with finely ground fuel ash particulate from four different fuels: straw, sawdust, coal, and petroleum coke. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.31 before impinging on a thermal barrier coating (TBC) target coupon at 1150{sup o}C. Postexposure analyses included surface topography, scanning electron microscopy and x-ray spectroscopy. Due to significant differences in the chemical composition of the various fuel ash samples, deposit thickness and structure vary considerably for fuel. Biomass products (e.g., sawdust and straw) are significantly less prone to deposition than coal and petcoke for the same particle loading conditions. In a test simulating one turbine operating year at a moderate particulate loading of 0.02 parts per million by weight, deposit thickness from coal and petcoke ash exceeded 1 and 2 mm, respectively. These large deposits from coal and petcoke were found to detach readily from the turbine material with thermal cycling and handling. The smaller biomass deposit samples showed greater tenacity, in adhering to the TBC surface. In all cases, corrosive elements (e.g., Na, K, V, Cl, S) were found to penetrate the TBC layer during the accelerated deposition test. Implications for the power generation goal of fuel flexibility are discussed.

  4. An economic parametric analysis of the synthetic fuel produced by a fusion-fission complex

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1980-01-01

    A simple analytic model is used to examine economic constraints of a fusion-fission complex in which a portion of a thermal energy is used for producing synthetic fuel (synfuel). Since the values of many quantities are not well-known, a parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technological quantities (investment costs of hybrid and synfuel plants, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission-fusion-synfuel complex brings about a higher economic benefit than does the fusion-fission hybrid entirely devoted to fissile-fuel and electricity generation. This paper describes the energy flow diagram of fusion-fission synfuel concept, express the revenue-to-cost formulation and the breakeven synfuel selling price. The synfuel production cost given by the model is evaluated within a range of values of crucial parameters. Assuming an electric cost of 2.7 cents/kWh, an annual investment cost per energy unit of 4.2 to 6 $/FJ for the fusion-fission complex and 1.5 to 3 $/GJ for the synfuel plant, the synfuel production cost lies between 6.5 and 8.5 $/GJ. These production costs can compete with those evaluated for other processes. The study points out a potential use of the fusion-fission hybrid reactor for other than fissile-fuel and electricity generation. (orig.) [de

  5. Production of Liquid Synthetic Fuels from Carbon, Water and Nuclear Power on Ships and at Shore Bases for Military and Potential Commercial Applications

    International Nuclear Information System (INIS)

    Locke Bogart, S.; Schultz, Ken; Brown, Lloyd; Russ, Ben

    2006-01-01

    It is demonstrable that synthetic fuels (jet/diesel/gasoline ≅ (CH 2 ) n ) can be produced from carbon, water, and nuclear energy. What remains to be shown is that all system processes are scalable, integrable, and economical. Sources of carbon include but are not limited to CO 2 from the atmosphere or seawater, CO 2 from fossil-fired power plants, and elemental carbon from coal or biomass. For mobile defense (Navy) applications, the ubiquitous atmosphere is our chosen carbon source. For larger-scale sites such as Naval Advance Bases, the atmosphere may still be the choice should other sources not be readily available. However, at many locations suitable for defense and, potentially, commercial syn-fuel production, far higher concentrations of carbon may be available. The rationale for this study was manifold: fuel system security from terrorism and possible oil embargoes; rising demand and, eventually, peaking supply of conventional petroleum; and escalating costs and prices of fuels. For these reasons, the initial parts of the study were directed at Syn-fuel production for mobile Naval platforms and shore sites such as Rokkasho, Japan (as an exemplar). Nuclear reactors would provide the energy for H 2 from water-splitting, Membrane Gas Absorption (MGA) would extract CO 2 from the atmosphere, the Reverse Water-Gas Reaction (RWGR) would convert the CO 2 to CO, and the resultant H 2 and CO feeds would be converted to (CH 2 )n by the Fischer-Tropsch reaction. Many of these processes exist at commercial scale. Some, particularly MGA and RWGR, have been demonstrated at the bench-scale, requiring up-scaling. Likewise, the demonstration of an integrated system at some scale is yet to be done. For ship-based production, it has been shown that the system should be viable and, under reasonable assumptions, both scalable and economical for defense fuels. For the assumptions in the study, fuel cost estimates range from ∼ $2.55 to $4.75 per gallon with a nominal cost of

  6. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    International Nuclear Information System (INIS)

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers

  7. Animal Production Research Advances

    African Journals Online (AJOL)

    Animal Production Research Advances is a peer-review journal established expressly to promote the production of all animal species utilized as food. The journal has an international scope and is intended for professionals in animal production and related sciences. We solicit contributions from animal production and ...

  8. Natural gas to liquid transportation fuels and chemicals via the Sasol synthol process

    International Nuclear Information System (INIS)

    Fourie, J.H.

    1992-01-01

    This paper deals with the recent developments in Synfuels technology at Sasol. The specific areas covered are synthesis plants and the development of modern high technology reactors to reduce capital and maintenance costs of future Synfuel plants. Emphasis is further placed on the co-production of chemicals in Synfuel plants to increase profitability. An important aspect namely that the fuels from the Sasol Synthol process can meet the new specifications for reformulated gasoline are also dealt with in the paper

  9. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  10. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  11. Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

  12. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  13. Mirror Advanced Reactor Study (MARS): executive summary and overview

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes ( 2 ), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li 17 Pb 83 ) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000 0 C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter

  14. Animal Production Research Advances: Submissions

    African Journals Online (AJOL)

    Where this is not possible, authors should submit two copies of original article not yet published anywhere and accompanied with a 3.5” diskette containing the article labeled appropriately in MS Word version to: Editor–in–Chief, Animal Production Research Advances Tropical Animal Health and Production Research Lab

  15. Animal Production Research Advances: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Animal production research advances is a peer-review journal established expressly to promote the production of all animal species utilized as food. The journal has an international scope and is intended for professionals in animal production and related sciences. We solicit contributions from animal ...

  16. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  17. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  18. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  19. Phonological Advance Planning in Sentence Production

    Science.gov (United States)

    Oppermann, Frank; Jescheniak, Jorg D.; Schriefers, Herbert

    2010-01-01

    Our study addresses the scope of phonological advance planning during sentence production using a novel experimental procedure. The production of German sentences in various syntactic formats (SVO, SOV, and VSO) was cued by presenting pictures of the agents of previously memorized agent-action-patient scenes. To tap the phonological activation of…

  20. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Science.gov (United States)

    2010-07-27

    ... Advanced Lithography Techniques and Products Containing Same; Notice of Investigation AGENCY: U.S... violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain semiconductor products made by advanced...

  1. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  2. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  3. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  4. Major advances in fresh milk and milk products: fluid milk products and frozen desserts.

    Science.gov (United States)

    Goff, H D; Griffiths, M W

    2006-04-01

    Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period.

  5. 25 CFR 163.23 - Advance payment for timber products.

    Science.gov (United States)

    2010-04-01

    ... contracts. However, no advance payment will be required that would make the sum of such payment and of... required, advance payments will operate the same as provided for in § 163.23(a) of this part. ... 25 Indians 1 2010-04-01 2010-04-01 false Advance payment for timber products. 163.23 Section 163...

  6. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  7. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  8. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  9. Production of Inulinases: Recent Advances

    Directory of Open Access Journals (Sweden)

    Prabhjot Kaur Gill

    2006-01-01

    Full Text Available Inulinases constitute an important class of enzymes for production of fructose and fructooligosaccharides, which are extensively used in pharmaceutical and food industry. The production of inulinases has been reported from various fungal, yeast and bacterial strains. The inulinases characterized until now show considerable variability with respect to biophysical and biochemical characteristics. High temperature optimum and thermostability are two important criteria which determine the suitability of these enzymes for industrial applications. Inulinases with high thermostability from strains of Aspergillus spp. and thermophilic bacteria have been reported. Molecular cloning of inulinase genes from different sources has revealed that beside conserved domains, the endo- and exo-acting inulinases show motifs which are distinct for the two classes of enzymes. The present article reviews some of the recent advances in the production and characterization of inulinases from different microbes and their possible applications.

  10. Regulation of Clinical Trials with Advanced Therapy Medicinal Products in Germany.

    Science.gov (United States)

    Renner, Matthias; Anliker, Brigitte; Sanzenbacher, Ralf; Schuele, Silke

    2015-01-01

    In the European Union, clinical trials for Advanced Therapy Medicinal Products are regulated at the national level, in contrast to the situation for a Marketing Authorisation Application, in which a centralised procedure is foreseen for these medicinal products. Although based on a common understanding regarding the regulatory requirement to be fulfilled before conduct of a clinical trial with an Advanced Therapy Investigational Medicinal Product, the procedures and partly the scientific requirements for approval of a clinical trial application differ between the European Union Member States. This chapter will thus give an overview about the path to be followed for a clinical trial application and the subsequent approval process for an Advanced Therapy Investigational Medicinal Product in Germany and will describe the role of the stakeholders that are involved. In addition, important aspects of manufacturing, quality control and non-clinical testing of Advanced Therapy Medicinal Products in the clinical development phase are discussed. Finally, current and future approaches for harmonisation of clinical trial authorisation between European Union Member States are summarised.

  11. ESO Advanced Data Products for the Virtual Observatory

    Science.gov (United States)

    Retzlaff, J.; Delmotte, N.; Rite, C.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    Advanced Data Products, that is, completely reduced, fully characterized science-ready data sets, play a crucial role for the success of the Virtual Observatory as a whole. We report on on-going work at ESO towards the creation and publication of Advanced Data Products in compliance with present VO standards on resource metadata. The new deep NIR multi-color mosaic of the GOODS/CDF-S region is used to showcase different aspects of the entire process: data reduction employing our MVM-based reduction pipeline, calibration and data characterization procedures, standardization of metadata content, and, finally, a prospect of the scientific potential illustrated by new results on deep galaxy number counts.

  12. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  13. Natural product-based nanomedicine: recent advances and issues

    Science.gov (United States)

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  14. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  15. Biocatalyzed processes for production of commodity chemicals: Assessment of future research advances for N-butanol production

    Science.gov (United States)

    Ingham, J. D.

    1984-01-01

    This report is a summary of assessments by Chem Systems Inc. and a further evaluation of the impacts of research advances on energy efficiency and the potential for future industrial production of acetone-butanol-ethanol (ABE) solvents and other products by biocatalyzed processes. Brief discussions of each of the assessments made by CSI, followed by estimates of minimum projected energy consumption and costs for production of solvents by ABE biocatalyzed processes are included. These assessments and further advances discussed in this report show that substantial decreases in energy consumption and costs are possible on the basis of specific research advances; therefore, it appears that a biocatalyzed process for ABE can be developed that will be competitive with conventional petrochemical processes for production of n-butanol and acetone. (In this work, the ABE process was selected and utilized only as an example for methodology development; other possible bioprocesses for production of commodity chemicals are not intended to be excluded.) It has been estimated that process energy consumption can be decreased by 50%, with a corresponding cost reduction of 15-30% (in comparison with a conventional petrochemical process) by increasing microorganism tolerance to n-butanol and efficient recovery of product solvents from the vapor phase.

  16. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  17. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  18. Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4.

    Science.gov (United States)

    Bikbova, Guzel; Oshitari, Toshiyuki; Yamamoto, Shuichi

    2013-10-09

    The purpose of this study was to determine the effect of low concentrations of advanced glycation end-products on neurite regeneration in isolated rat retinas, and to determine the effects of neurotrophin-4 on regeneration in advanced glycation end-products exposed retinas. Retinal explants of 4 adult Sprague-Dawley rats were cultured on collagen gel and were incubated in; (1) serum-free control culture media, (2) glucose-advanced glycation end-products-bovine serum albumin media, (3) glycolaldehyde-advanced glycation end-products-bovine serum albumin media, (4) glyceraldehyde-advanced glycation end-products-bovine serum albumin media, (5) glucose-advanced glycation end-products+neurotrophin-4 media, (6) glycolaldehyde-advanced glycation end-products+neurotrophin-4 media, or (7) glyceraldehyde-advanced glycation end-products+neurotrophin-4 supplemented culture media. After 7 days, the number of regenerating neurites from the explants was counted. Then, explants were fixed, cryosectioned, and stained for TUNEL. The ratio of TUNEL-positive cells to all cells in the ganglion cell layer was determined. Immunohistochemical examinations for the active-form of caspase-9 and apoptosis-inducing factor were performed. In retinas incubated with advanced glycation end-products containing media, the number of regenerating neurites were fewer than in retinas without advanced glycation end-products, and the number of TUNEL-positive cells and caspase-9- and apoptosis-inducing factor-immunopositive cells was significantly higher than in control media. Neurotrophin-4 supplementation increased the numbers of regenerating neuritis, and the number of TUNEL-positives, caspase-9-, and apoptosis-inducing factor-immunopositive cells were significantly fewer than that in advanced glycation end-products without neurotrophin-4 media. Low doses of advanced glycation end-products impede neurite regeneration in the rat retinas. Neurotrophin-4 significantly enhances neurite regeneration in

  19. High temperature reactor: Driving force to convert CO2 to fuel - HTR2008-58132

    International Nuclear Information System (INIS)

    McCormick, J. L.

    2008-01-01

    The rapidly increasing cost of petroleum products and uncertainty of long-term supply have prompted the U.S. military to aggressively pursue production of alternative fuels (synfuels) such as coal-to-liquids (CTL). U.S. Air Force is particularly active in this effort while the entire military is involved in simultaneously developing fuel specifications for alternative fuels that enable a single fuel for the entire battle space; all ground vehicles, aircraft and fuel cells. By limiting its focus on coal, tar sands and oil shale resources, the military risks violating federal law which requires the use of synfuels that have life cycle greenhouse gas emissions less than or equal to emissions from conventional petroleum fuels. A climate-friendly option would use a high temperature nuclear reactor to split water. The hydrogen (H 2 ) would be used in the reverse water gas shift (RWGS) to react with carbon dioxide (CO 2 ) to produce carbon monoxide (CO) and water. The oxygen (O 2 ) would be fed into a supercritical (SC) coal furnace. The flue gas CO 2 emissions would be stripped of impurities before reacting with H 2 in a RWGS process. Resultant carbon monoxide (CO) is fed, with additional H2, (extra H 2 needed to adjust the stoichiometry: 2 moles H 2 to one mole CO) into a conventional Fischer-Tropsch synthesis (FTS) to produce a heavy wax which is cracked and isomerized and refined to Jet Propulsion 8 (JP-8) and Jet Propulsion 5 (JP-5) fuels. The entire process offers valuable carbon-offsets and multiple products that contribute to lower syn-fuel costs and to comply with the federal limitation imposed on syn-fuel purchases. While the entire process is not commercially available, component parts are being researched; their physical and chemical properties understood and some are state-of-the-art technologies. An international consortium should complete physical, chemical and economic flow sheets to determine the feasibility of this concept that, if pursued, has broad

  20. Selection and development of advanced nuclear fuel products

    International Nuclear Information System (INIS)

    Stucker, David L.; Miller, Richard S.; Arnsberger, Peter L.

    2004-01-01

    The highly competitive international marketplace requires a continuing product development commitment, short development cycle times and timely, on-target product development to assure customer satisfaction and continuing business. Westinghouse has maintained its leadership position within the nuclear fuel industry with continuous developments and improvements to fuel assembly materials and design. This paper presents a discussion of the processes used by Westinghouse in the selection and refinement of advanced concepts for deployment in the highly competitive US and international nuclear fuel fabrication marketplace. (author)

  1. Predicting Production Costs for Advanced Aerospace Vehicles

    Science.gov (United States)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  2. Natural product-based nanomedicine: recent advances and issues

    Directory of Open Access Journals (Sweden)

    Watkins R

    2015-09-01

    Full Text Available Rebekah Watkins,1,2,* Ling Wu,1,* Chenming Zhang,3–5 Richey M Davis,3,5,6 Bin Xu1,3 1Department of Biochemistry, 2Program in Nanoscience, 3Center for Drug Discovery, 4Department of Biological Systems Engineering, 5Institute for Critical Technology and Applied Science, 6Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA *These authors contributed equally to this work Abstract: Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. Keywords: natural products, nanomedicine, drug delivery, bioavailability, targeting, controlled release

  3. Maize synfuel for E. German market

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-31

    Bijenkorf Starch Company (ZBB) in the Netherlands plans to produce 30 million litre/year of alcohol gasoline additive for the East German market. Start up is scheduled for 1983 with costs around $33 million. Production costs are estimated at 95 Dutch cents/litre.

  4. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  5. Advances in the production of freeform optical surfaces

    Science.gov (United States)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  6. Advancing Product Quality: a Summary of the Inaugural FDA/PQRI Conference.

    Science.gov (United States)

    Yu, Lawrence X; Baker, Jeffrey; Berlam, Susan C; Boam, Ashley; Brandreth, E J; Buhse, Lucinda; Cosgrove, Thomas; Doleski, David; Ensor, Lynne; Famulare, Joseph; Ganapathy, Mohan; Grampp, Gustavo; Hussong, David; Iser, Robert; Johnston, Gordon; Kesisoglou, Filippos; Khan, Mansoor; Kozlowski, Steven; Lacana, Emanuela; Lee, Sau L; Miller, Stephen; Miksinski, Sarah Pope; Moore, Christine M V; Mullin, Theresa; Raju, G K; Raw, Andre; Rosencrance, Susan; Rosolowsky, Mark; Stinavage, Paul; Thomas, Hayden; Wesdyk, Russell; Windisch, Joerg; Vaithiyalingam, Sivakumar

    2015-07-01

    On September 16 and 17, 2014, the Food and Drug Administration (FDA) and Product Quality Research Institute (PQRI) inaugurated their Conference on Evolving Product Quality. The Conference is conceived as an annual forum in which scientists from regulatory agencies, industry, and academia may exchange viewpoints and work together to advance pharmaceutical quality. This Conference Summary Report highlights key topics of this conference, including (1) risk-based approaches to pharmaceutical development, manufacturing, regulatory assessment, and post-approval changes; (2) FDA-proposed quality metrics for products, facilities, and quality management systems; (3) performance-based quality assessment and clinically relevant specifications; (4) recent developments and implementation of continuous manufacturing processes, question-based review, and European Medicines Agency (EMA)-FDA pilot for Quality-by-Design (QbD) applications; and (5) breakthrough therapies, biosimilars, and international harmonization, focusing on ICH M7 and Q3D guidelines. The second FDA/PQRI conference on advancing product quality is planned for October 5-7, 2015.

  7. Synthetic fuels summary. [1850 to 1979

    Energy Technology Data Exchange (ETDEWEB)

    Conta, Lewis D.; Fiedler, Harry H.; Hill, Richard F.; Ksander, Yuri; Parker, Harry W.; Reilly, Matthew J.; Roger, Kenneth A.; Cooke, Charles E.; Novak, Robert; Booker, John D.; Gouse, S. William; Joyce, Thomas J.; Knudsen, Christian W.; Yancik, Joseph J.

    1981-03-01

    This report examines the federal government's experience in synfuels, the market potential of synfuels, the US energy resources base, and the numerous technologies available. Technologies and energy resources are reviewed and compared to provide the facts needed to understand existing energy-related problems. This introductory manual is an overview of synfuel technologies, and markets. It is not meant to be the sole source of information on which multi-billion dollar investment decisions for specific synfuel plants would be based. The report, published originally in August 1980, has been revised to incorporate appropriate corrections and clarifications. The intent behind these revisions is to present the best technical and programmatic information available as of the original publication date, August 1980. The original report included certain information about the relative costs of selected synfuels technologies. Economics are especially sensitive to recent events and updated information, and it would possibly be misleading to restate the original cost data in this report. It was felt that the original cost data needed major updating and reconciliation due to differences in project scope, basic assumptions, and costing methodologies. ESCOE believes that reliable economic comparisons require timely data and a recognition of any major differences in scope or methodology. Therefore, ESCOE, in a separate task, is undertaking an updated commercial scale economic comparison of selected synfuel processes, on a normalized basis. The results of this task will be published as a separate ESCOE report.

  8. European regulatory tools for advanced therapy medicinal products.

    Science.gov (United States)

    Flory, Egbert; Reinhardt, Jens

    2013-12-01

    Increasing scientific knowledge and technical innovations in the areas of cell biology, biotechnology and medicine resulted in the development of promising therapeutic approaches for the prevention and treatment of human diseases. Advanced therapy medicinal products (ATMPs) reflect a complex and innovative class of biopharmaceuticals as these products are highly research-driven, characterised by innovative manufacturing processes and heterogeneous with regard to their origin, type and complexity. This class of ATMP integrates gene therapy medicinal products, somatic cell therapy medicinal products and tissue engineering products and are often individualized and patient-specific products. Multiple challenges arise from the nature of ATMPs, which are often developed by micro, small and medium sized enterprises, university and academia, for whom regulatory experiences are limited and regulatory requirements are challenging. Regulatory guidance such as the reflection paper on classification of ATMPs and guidelines highlighting product-specific issues support academic research groups and pharmaceutical companies to foster the development of safe and effective ATMPs. This review provides an overview on the European regulatory aspects of ATMPs and highlights specific regulatory tools such as the ATMP classification procedure, a discussion on the hospital exemption for selected ATMPs as well as borderline issues towards transplants/transfusion products.

  9. Inhibition of protein glycation and advanced glycation end products ...

    African Journals Online (AJOL)

    Advanced glycation end products (AGEs) formation is increased in diabetes mellitus, leading to microvascular and macrovascular complications. Recently, much attention has been focused on natural and synthetic inhibitors to delay the onset or progression of diabetes and its comorbidities. Ascorbic acid (AA) can react with ...

  10. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Natural Products as Adjunctive Treatment for Pancreatic Cancer: Recent Trends and Advancements

    Directory of Open Access Journals (Sweden)

    Qingxi Yue

    2017-01-01

    Full Text Available Pancreatic cancer is a type of common malignant tumors with high occurrence in the world. Most patients presented in clinic had pancreatic cancer at advanced stages. Furthermore, chemotherapy or radiotherapy had very limited success in treating pancreatic cancer. Complementary and alternative medicines, such as natural products/herbal medicines, represent exciting adjunctive therapies. In this review, we summarize the recent advances of using natural products/herbal medicines, such as Chinese herbal medicine, in combination with conventional chemotherapeutic agents to treat pancreatic cancer in preclinical and clinical trials.

  12. Advances in cyanobacterial polyhydroxyalkanoates production.

    Science.gov (United States)

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Encountering Challenges with the EU Regulation on Advance Therapy Medical Products.

    Science.gov (United States)

    Mansnérus, Juli

    2015-12-01

    This article aims at analysing how well the Advanced Therapy Medical Product Regulation (EC) No. 1394/2007 (ATMP Regulation) meets the needs of small and medium-sized enterprises (SMES), academia and public tissue establishments developing advanced therapy medical products (ATMPS). Benefits and shortcomings of the ATMP Regulation are identified, and possible amendments are proposed to accelerate the translation of research into advanced therapies and to facilitate the commercialisation of ATMPS whilst ensuring safety. It was set up as a lex specialis to ensure the free movement of ATMPS within the EU in order to facilitate their access to the internal market and to foster the competitiveness of European pharmaceutical companies, while guaranteeing the highest level protection of public health. Since the adoption of the ATMP Regulation in late 2008, only 5 ATMPS have been granted marketing authorisations thus far. Hence, there is a need to analyse whether the ATMP Regulation meets its objectives.

  14. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ulrika Wendel

    Full Text Available Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.

  15. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  16. [Report from the Committee for Advanced Therapies (CAT). Pitfalls on the way from concept to medical treatment with advanced therapy medicinal products].

    Science.gov (United States)

    Reiss, M; Büttel, I C; Schneider, C K

    2011-07-01

    Advanced therapy medicinal products (ATMP) are highly innovative and complex medicines. They comprise gene therapy medicinal products, somatic cell therapy medicinal products, and tissue-engineered products (TEP). With the European Regulation on ATMP that came into force in 2008, a consolidated regulatory framework was created, where the Committee for Advanced Therapies (CAT) at the European Medicines Agency (EMA) plays a central role. This article discusses pitfalls and challenges that the CAT has experienced in its discussions of various procedures. Often ATMPs are developed by small and medium-sized enterprises (SME) which also face nonscientific challenges. The CAT wishes to meet these challenges on a scientific and regulatory level during its 2010-2015 work program.

  17. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  18. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Advanced system for separation of rare-earth fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1982-01-01

    A microprocessor-controlled radiochemical separation system has been further advanced to separate individual rare-earth elements from mixed fission products in times of a few minutes. The system was composed of an automated chemistry system fed by two approximately 300 μg 252 Cf sources coupled directly by a He-jet to transport the fission products. Chemical separations were performed using two high performance liquid chromatography columns coupled in series. The first column separated the rare-earth group by extraction chromatography using dihexyldiethylcarbamoylmethylphosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolated the individual rare-earth elements by cation exchange chromatography using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. Significant results, which have been obtained to date with this advanced system, are the identification of several new neutron-rich rare-earth isotopes including 155 Pm (T=48+-4 s) and 163 Gd (T=68+-3 s). In addition, a half-life of 41+-4 s is reported for 160 Eu. (author)

  20. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  1. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  2. Base Stock Policy in a Join-Type Production Line with Advanced Demand Information

    Science.gov (United States)

    Hiraiwa, Mikihiko; Tsubouchi, Satoshi; Nakade, Koichi

    Production control such as the base stock policy, the kanban policy and the constant work-in-process policy in a serial production line has been studied by many researchers. Production lines, however, usually have fork-type, join-type or network-type figures. In addition, in most previous studies on production control, a finished product is required at the same time as arrival of demand at the system. Demand information is, however, informed before due date in practice. In this paper a join-type (assembly) production line under base stock control with advanced demand information in discrete time is analyzed. The recursive equations for the work-in-process are derived. The heuristic algorithm for finding appropriate base stock levels of all machines at short time is proposed and the effect of advanced demand information is examined by simulation with the proposed algorithm. It is shown that the inventory cost can decreases with little backlogs by using the appropriate amount of demand information and setting appropriate base stock levels.

  3. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  4. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  5. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  6. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    Science.gov (United States)

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  7. New generation of monitors for PAH's from synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R B; Vo-Dinh, T; Hawthorne, A R; Thorngate, J H; Parkinson, W W

    1977-01-01

    A gap exists between the crude techniques available for measuring polynuclear aromatic (PNA) compounds in the workplace, and the sophisticated analytical tools used in the laboratory for a much more complete characterization of pollutants from synfuel operations such as coal, tar sand, and oil shale processing. Real-time or near-real instruments suitable for use by industrial hygienists are urgently needed to measure fugitive emissions. Several new instruments and instrumental techniques are described that could satisfy some of these needs. They include second derivative UV-absorption, synchronous luminescence, room-temperature phosphorescence, photoacoustic spectrometers, a portable mass spectrometer, differential sublimation, and thermoluminescence. Already, studies to evaluate the practicality of these approaches have indicated a suitability for monitoring naphthalene and its alkyl derivatives at parts-per-billion (ppB) concentrations either in the vapor or the solution phase, trace amounts of phenolic compounds, and thiocyanate in by-product water, and suitability for the rapid analysis of samples filtered or spotted on paper adsorbents.

  8. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2001-01-01

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H 2 ) may become a significant application. The technology to produce H 2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  9. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  10. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  11. Inter- and Intralingual Lexical Influences in Advanced Learners' French L3 Oral Production

    Science.gov (United States)

    Lindqvist, Christina

    2010-01-01

    The present study investigates lexical inter- and intralingual influences in the oral production of 14 very advanced learners of French L3. Lexical deviances are divided into two main categories: formal influence and meaning-based influence. The results show that, as predicted with respect to advanced learners, meaning-based influence is the most…

  12. Advances in solid-catalytic and non-catalytic technologies for biodiesel production

    International Nuclear Information System (INIS)

    Islam, Aminul; Taufiq-Yap, Yun Hin; Chan, Eng-Seng; Moniruzzaman, M.; Islam, Saiful; Nabi, Md. Nurun

    2014-01-01

    Highlights: • The recent technologies for promoting biodiesel synthesis were elucidated. • The design of catalyst consideration of biodiesel production was proposed. • The recent advances and remaining difficulties in biodiesel synthesis were outlined. • The future research trend in biodiesel synthesis was highlighted. - Abstract: The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future

  13. Skin advanced glycation end products in HIV infection are increased and predictive of development of cardiovascular events

    NARCIS (Netherlands)

    Sprenger, Herman G.; Bierman, Wouter F.; Martes, Melanie I.; Graaff, Reindert; van der Werf, Tjip S.; Smit, Andries J.

    2017-01-01

    Objective: HIV-1 infection is associated with an increased cardiovascular disease (CVD) risk. Advanced glycation end products are formed as stable markers of glycaemic and oxidative stress. Skin autofluorescence (SAF) as marker of accumulated advanced glycation end products is increased and

  14. Advanced Product Water Removal and Management (APWR) Fuel Cell System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a passive, self-regulating, gravity-independent Advanced Product Water Removal (APWR) system for Polymer Electrolyte Membrane (PEM)...

  15. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  16. Advanced Product Water Removal and Management (APWR) Fuel Cell System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a passive, self-regulating, gravity-independent Advanced Product Water Removal and management (APWR) system for incorporation into Polymer...

  17. Advances in energy technology; Proceedings of the Eighth Annual UMR-DNR Conference on Energy, University of Missouri-Rolla, Rolla, MO, November 4-7, 1981

    Science.gov (United States)

    Sauer, H. J., Jr.; Hegler, B. E.

    1982-11-01

    Papers on various topics of energy conservation, new passive solar heating and storage devices, governmental particiaption in developing energy technologies, and the development of diverse energy sources and safety features are presented. Attention is given to recent shifts in the federal and state goverenment roles in energy research, development and economic incentives. The applications of passive solar walls, flat plate collectors and trombe walls as retorfits for houses, institutions, and industries were examined. Attention was given to the implementation of wind power by a zoo and the use of spoilers as speed control devices in a Darrieus wind turbine. Aspects of gasohol, coal, synfuel, and laser-pyrolyzed coal products use are investigated. Finally, the economic, social, and political factors influencing energy system selection are explored, togeter with conservation practices in housing, government, and industry, and new simulators for enhancing nuclear power plant safety.

  18. Advanced glycation end products in the skin are enhanced in COPD

    NARCIS (Netherlands)

    Hoonhorst, Susan J. M.; Loi, Adele T. Lo Tam; Hartman, Jorine E.; Telenga, Eef D.; van den Berge, Maarten; Koenderman, Leo; Lammers, Jan Willem J.; Boezen, H. Marike; Postma, Dirkje S.; ten Hacken, Nick H. T.

    Background. Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) inducing oxidative stress and local tissue injury, resulting in pulmonary inflammation. Advanced glycation end products (AGEs) are produced by glycation and oxidation processes and their formation is

  19. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  20. Advance Planning of Form Properties in the Written Production of Single and Multiple Words

    Science.gov (United States)

    Damian, Markus F.; Stadthagen-Gonzalez, Hans

    2009-01-01

    Three experiments investigated the scope of advance planning in written production. Experiment 1 manipulated phonological factors in single word written production, and Experiments 2 and 3 did the same in the production of adjective-noun utterances. In all three experiments, effects on latencies were found which mirrored those previously…

  1. Synfuel program analysis. Volume 2: VENVAL users manual

    Science.gov (United States)

    Muddiman, J. B.; Whelan, J. W.

    1980-07-01

    This volume is intended for program analysts and is a users manual for the VENVAL model. It contains specific explanations as to input data requirements and programming procedures for the use of this model. VENVAL is a generalized computer program to aid in evaluation of prospective private sector production ventures. The program can project interrelated values of installed capacity, production, sales revenue, operating costs, depreciation, investment, dent, earnings, taxes, return on investment, depletion, and cash flow measures. It can also compute related public sector and other external costs and revenues if unit costs are furnished.

  2. Alternative motor fuels today and tomorrow

    International Nuclear Information System (INIS)

    Bensaid, B.

    2004-01-01

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  3. Short-term effects of dietary advanced glycation end products in rats

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Andersen, Jeanette Marker; Hedegaard, Rikke Susanne Vingborg

    2016-01-01

    Dietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW)...

  4. Multivariate data analysis as a tool in advanced quality monitoring in the food production chain

    DEFF Research Database (Denmark)

    Bro, R.; van den Berg, F.; Thybo, A.

    2002-01-01

    This paper summarizes some recent advances in mathematical modeling of relevance in advanced quality monitoring in the food production chain. Using chemometrics-multivariate data analysis - it is illustrated how to tackle problems in food science more efficiently and, moreover, solve problems...

  5. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  6. From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU.

    Science.gov (United States)

    Pellegrini, Graziella; Lambiase, Alessandro; Macaluso, Claudio; Pocobelli, Augusto; Deng, Sophie; Cavallini, Gian Maria; Esteki, Roza; Rama, Paolo

    2016-06-01

    In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell-based corneal therapy.

  7. Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.

    Science.gov (United States)

    Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong

    2016-06-01

    Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.

  8. Titanium alloys. Advances in alloys, processes, products and applications

    International Nuclear Information System (INIS)

    Blenkinsop, P.A.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in 'older' alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments are underway aimed at specific engineering and process requirements, both in the aerospace and non-aerospace sectors. Both the advanced high temperature and conventional alloy developments are considered, before the paper goes on to assess the potential of new processes and products, like spray-forming, metal matrix composites and shaped-plate rolling. (orig.)

  9. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  10. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower

    National Research Council Canada - National Science Library

    Resh, Howard M

    2013-01-01

    Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower details advances that have taken place in this field since the publication of the previous edition in 2001...

  11. Advances in utilization of renewable substrates for biosurfactant production

    Science.gov (United States)

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  12. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.

    Science.gov (United States)

    Su, HaiFeng; Lin, JiaFu; Wang, YuanHong; Chen, Qiao; Wang, GuangWei; Tan, FuRong

    2017-09-01

    Biosynthesis of advanced biofuels by engineered non-natural microorganisms has been proposed to be the most promising approach for the replacement of dwindling fossil fuel resources. Brevibacterium flavum (Bf) is a model brevibacterium aerobe which lacks basic and applied research that could enable this species to produce biofuels. There are no reports regarding engineering this microorganism to produce advanced alcohols before. Here, for the first time, we developed the bacterium as a novel biosynthetic platform for advanced alcohols production via the mutagenesis and engineering to produce 2-ketoacids derived alcohols. In order to enhance the strain's capability of producing advanced alcohols, we preferentially improved intrinsic metabolism ability of the strain to obtain improved expression host (IEH) via generating mutagenesis libraries by whole cell mutagenesis (WCM). The IEH was determined via screening out the mutant strain with the highest production of branched-chain organic acids (BCOA) using high throughput screening method.. Subsequently, a novel vector system for Bf was established, and the corresponding biosynthetic pathway of directing carbon flux into the target advanced alcohols was recruited to make the bacterium possess the capability of producing advanced alcohols and further enhance the production using the IEH. Specifically, we generated bioengineered strains that were able to synthesize up to the highest 5362 and 4976 mg/L isobutanol, 1945 and 1747 mg/L 2-methyl-1-butanol (2 MB), and 785.34 and 781 mg/L 3-methyl-1-butanol (3 MB) from pure glucose and duckweed substrates, respectively. Our findings confirmed the feasibility and potential of using Bf as a novel biosynthetic platform to generate advanced biofuels with glucose and inexpensive renewable feedstock-duckweed as a fermentation substrate. Biotechnol. Bioeng. 2017;114: 1946-1958. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. 15 CFR 714.3 - Advance declaration requirements for additionally planned production of Schedule 3 chemicals.

    Science.gov (United States)

    2010-01-01

    ... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 3 CHEMICALS § 714.3 Advance... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Advance declaration requirements for additionally planned production of Schedule 3 chemicals. 714.3 Section 714.3 Commerce and Foreign Trade...

  14. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    Science.gov (United States)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  15. Effect of collagen turnover on the accumulation of advanced glycation end products

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Thorpe, S. R.; Bank, R. A.; Shaw, J. N.; Lyons, T. J.; Bijlsma, J. W.; Lafeber, F. P.; Baynes, J. W.; TeKoppele, J. M.

    2000-01-01

    Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE

  16. Soluble Receptor for Advanced Glycation End Product: A Biomarker for Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Louise J. N. Jensen

    2015-01-01

    Full Text Available The receptor of advanced glycation end products (RAGE and its ligands are linked to the pathogenesis of coronary artery disease (CAD, and circulating soluble receptor of advanced glycation end products (sRAGE, reflecting the RAGE activity, is suggested as a potential biomarker. Elevated sRAGE levels are reported in relation to acute ischemia and this review focuses on the role of sRAGE as a biomarker for the acute coronary syndrome (ACS. The current studies demonstrated that sRAGE levels are elevated in relation to ACS, however during a very narrow time period, indicating that the time of sampling needs attention. Interestingly, activation of RAGE may influence the pathogenesis and reflection in sRAGE levels in acute and stable CAD differently.

  17. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Science.gov (United States)

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  18. Advanced sorting technologies for optimal wood products and woody biomass utilization

    Science.gov (United States)

    Xiping Wang

    2012-01-01

    Forest materials represent great potential for advancing our goals in the 21st century for sustainable building, energy independence, and carbon sequestration. A critical component of an improved system for producing bioproducts and bioenergr from forest materials is the ability to sort trees, stems, and logs into end-product categories that represent their highest...

  19. LC-NMR coupling technology: recent advancements and applications in natural products analysis

    NARCIS (Netherlands)

    Exarchou, V.; Krucker, M.; Beek, van T.A.; Vervoort, J.J.M.; Gerothanassis, I.P.; Albert, K.

    2005-01-01

    An overview of recent advances in nuclear magnetic resonance (NMR) coupled with separation technologies and their application in natural product analysis is given and discussed. The different modes of LC-NMR operation are described, as well as how technical improvements assist in establishing LC-NMR

  20. Advanced glycation end-products (AGES) and heart failure : Pathophysiology and clinical implications

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; Voors, Adriaan A.; Bakker, Stephan J. L.; Smit, Andries J.; van Veldhuisen, Dirk J.

    2007-01-01

    Advanced glycation end-products (AGEs) are molecules formed during a non-enzymatic reaction between proteins and sugar residues, called the Maillard reaction. AGEs accumulate in the human body with age, and accumulation is accelerated in the presence of diabetes mellitus. In patients with diabetes,

  1. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  2. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  3. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  4. Role of the HTGR in the U.S. industrial energy market

    International Nuclear Information System (INIS)

    Leeth, G.G.

    1981-01-01

    The HTGR is considered for a variety of applications to the U.S. industrial energy markets. These include a number of synfuel processes, shale oil conversion, methanol production, ammonia production, and both open and closed-loop pipeline systems. Potential market size appears to be approximately 300-400 GW (t) in the 2000 to 2020 time period. In addition to potential cost advantages, the closed-loop nuclear system has several significant advantages over alternative fossil systems. 5 refs

  5. Cellulose factories: advancing bioenergy production from forest trees.

    Science.gov (United States)

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  6. Analysis of the influence of advanced materials for aerospace products R and D and manufacturing cost

    International Nuclear Information System (INIS)

    Shen, A W; Guo, J L; Wang, Z J

    2015-01-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research and Development (R and D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R and D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable. (paper)

  7. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  8. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    Stetter, R; Witczak, P; Spindler, C; Hertel, J; Staiger, B

    2014-01-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  9. The Receptor for Advanced Glycation End Products Impairs Host Defense in Pneumococcal Pneumonia

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Schouten, Marcel; de Vos, Alex F.; Florquin, Sandrine; Meijers, Joost C. M.; Nawroth, Peter P.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that is expressed ubiquitously in the lungs. Engagement of RAGE leads to activation of multiple intracellular signaling pathways,

  10. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity

    OpenAIRE

    Turner, David P.

    2015-01-01

    Low income, poor diet, obesity and a lack of exercise are inter-related lifestyle factors that can profoundly alter our biological make-up to increase cancer risk, growth and development. We recently reported a potential mechanistic link between carbohydrate derived metabolites and cancer which may provide a biological consequence of lifestyle that can directly impact tumor biology. Advanced glycation end-products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism. F...

  11. Reference values for the Chinese population of skin autofluorescence as a marker of advanced glycation end products accumulated in tissue

    NARCIS (Netherlands)

    Yue, X.; Hu, H.; Koetsier, M.; Graaff, R.; Han, C.

    Aim Advanced glycation end products play an important role in the pathophysiology of several chronic and age-related diseases, especially diabetes mellitus. Skin autofluorescence is a non-invasive method for assessing levels of tissue advanced glycation end products. This study aims to establish the

  12. Advanced Shape Memory Technology to Reshape Product Design, Manufacturing and Recycling

    Directory of Open Access Journals (Sweden)

    Wen Guang Yang

    2014-08-01

    Full Text Available This paper provides a brief review on the advanced shape memory technology (ASMT with a focus on polymeric materials. In addition to introducing the concept and fundamentals of the ASMT, the potential applications of the ASMT either alone or integrated with an existing mature technique (such as, 3D printing, quick response (QR code, lenticular lens and phenomena (e.g., wrinkling and stress-enhanced swelling effect in product design, manufacturing, and recycling are demonstrated. It is concluded that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.

  13. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.

    Science.gov (United States)

    Ramasamy, Ravichandran; Vannucci, Susan J; Yan, Shirley Shi Du; Herold, Kevan; Yan, Shi Fang; Schmidt, Ann Marie

    2005-07-01

    The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.

  14. Design properties of coal liquids: edited workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Reilly, M.J. (eds.)

    1981-08-01

    The advent of synfuels will require a large measurement and modeling effort of new thermodynamic and physical properties. These data are required for the economic design and operation of proposed synfuel plants. The areas of data need are well defined. The pace of measurement will be restricted by laboratory availability. The cost for the required data and for their correlation and modeling will be substantial. And finally, the cost of doing all this work will be substantial. The plants we are talking about are energy plants and synfuel plants. They are energy intensive plants, and as such, they offer the prospects for a great deal of energy saving. To do so requires good data. In those critical areas where we start hunting the energy hogs, we will find that with +-20% data those hogs are pretty well hidden.

  15. Lambdastation: a forwarding and admission control service to interface production network facilities with advanced research network paths

    Energy Technology Data Exchange (ETDEWEB)

    DeMar, Philip; Petravick, Don; /Fermilab

    2004-12-01

    Over the past several years, there has been a great deal of research effort and funding put into the deployment of optical-based, advanced technology wide-area networks. Fermilab and CalTech have initiated a project to enable our production network facilities to exploit these advanced research network facilities. Our objective is to forward designated data transfers across these advanced wide area networks on a per-flow basis, making use our capacious production-use storage systems connected to the local campus network. To accomplish this, we intend to develop a dynamically provisioned forwarding service that would provide alternate path forwarding onto available wide area advanced research networks. The service would dynamically reconfigure forwarding of specific flows within our local production-use network facilities, as well as provide an interface to enable applications to utilize the service. We call this service LambdaStation. If one envisions wide area optical network paths as high bandwidth data railways, then LambdaStation would functionally be the railroad terminal that regulates which flows at the local site get directed onto the high bandwidth data railways. LambdaStation is a DOE-funded SciDac research project in its very early stage of development.

  16. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Multi-Phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    Science.gov (United States)

    2014-01-01

    waveguide. Alcohol fuels (ethanol and methonal) as well as aviation fuel replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied...replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied here. During acoustic excitation, the flame surrounding the droplet was...Wegener is approved. Chris R. Anderson Jeff D. Eldredge Ivett A. Leyva Owen I. Smith Ann R. Karagozian, Committee Chair University of California, Los

  18. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.

    Science.gov (United States)

    Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A

    2017-01-20

    Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.

  19. Some Nutritional, Technological and Environmental Advances in the Use of Enzymes in Meat Products

    Directory of Open Access Journals (Sweden)

    Anne y Castro Marques

    2010-01-01

    Full Text Available The growing consumer demand for healthier products has stimulated the development of nutritionally enhanced meat products. However, this can result in undesirable sensory consequences to the product, such as texture alterations in low-salt and low-phosphate meat foods. Additionally, in the meat industry, economical aspects have stimulated researchers to use all the animal parts to maximize yields of marketable products. This paper aimed to show some advances in the use of enzymes in meat processing, particularly the application of the proteolytic enzymes transglutaminase and phytases, associated with nutritional, technological, and environmental improvements.

  20. Advances in production technology

    CERN Document Server

    2015-01-01

    This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”,  held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

  1. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    Science.gov (United States)

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects

  2. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.......Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  3. Marketing Regulatory Oversight of Advanced Therapy Medicinal Products (ATMPs) in Europe: The EMA/CAT Perspective.

    Science.gov (United States)

    Salmikangas, Paula; Schuessler-Lenz, Martina; Ruiz, Sol; Celis, Patrick; Reischl, Ilona; Menezes-Ferreira, Margarida; Flory, Egbert; Renner, Matthias; Ferry, Nicolas

    2015-01-01

    With the release of Regulation 1394/2007, a new framework for gene and cell therapy medicinal products and tissue-engineered products was established in the European Union. For all three product classes, called advanced therapy medicinal products, a centralised marketing authorisation became mandatory. The European Medicines Agency (EMA) together with its Committee for Advanced Therapies, Committee for Human Medicinal Products and the network of national agencies is responsible for scientific evaluation of the marketing authorisation applications. For a new application, data and information relating to manufacturing processes and quality control of the active substance and the final product have to be submitted for evaluation together with data from non-clinical and clinical safety and efficacy studies. Technical requirements for ATMPs are defined in the legislation, and guidance for different products is available through several EMA/CAT guidelines. Due to the diversity of ATMPs, a tailored approach for regulating these products is considered necessary. Thus, a risk-based approach has been introduced for ATMPs allowing flexibility for the regulatory requirements. Since the regulatory framework for ATMPs was established, five products have been licenced in the European Union. However, the pipeline of new ATMPs is much bigger, as seen from the significant numbers of different products discussed by the CAT in scientific advice and classification procedures. In 2013, a public consultation on the ATMP Regulation was conducted by the European Commission, and the results were published in 2014. The report proposes several improvements for the current framework and established procedures for the regulation of ATMPs.

  4. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    Science.gov (United States)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  5. Two agricultural production data libraries for risk assessment models

    International Nuclear Information System (INIS)

    Baes, C.F. III; Shor, R.W.; Sharp, R.D.; Sjoreen, A.L.

    1985-01-01

    Two data libraries based on the 1974 US Census of Agriculture are described. The data packages (AGDATC and AGDATG) are available from the Radiation Shielding Information Center (RSIC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831. Agricultural production and land-use information by county (AGDATC) or by 1/2 by 1/2 degree longitude-latitude grid cell (AGDATG) provide geographical resolution of the data. The libraries were designed for use in risk assessment models that simulate the transport of radionuclides from sources of airborne release through food chains to man. However, they are also suitable for use in the assessment of other airborne pollutants that can affect man from a food ingestion pathway such as effluents from synfuels or coal-fired power plants. The principal significance of the data libraries is that they provide default location-specific food-chain transport parameters when site-specific information are unavailable. Plant food categories in the data libraries include leafy vegetables, vegetables and fruits exposed to direct deposition of airborne pollutants, vegetables and fruits protected from direct deposition, and grains. Livestock feeds are also tabulated in four categories: pasture, grain, hay, and silage. Pasture was estimated by a material balance of cattle and sheep inventories, forage feed requirements, and reported harvested forage. Cattle (Bos spp.), sheep (Ovis aries), goat (Capra hircus), hog (Sus scrofa), chicken (Gallus domesticus), and turkey (Meleagris gallopavo) inventories or sales are also tabulated in the data libraries and can be used to provide estimates of meat, eggs, and milk production. Honey production also is given. Population, irrigation, and meteorological information are also listed

  6. Gas reactor international cooperative program. HTR-synfuel application assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H/sub 2/ +CO/sub 2/) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000/sup 0/F steam is generated at the industrial user sites. The products of methanation (CH/sub 4/ + H/sub 2/O) are piped back to the reformer at the central station HTR.

  7. Gas reactor international cooperative program. HTR-synfuel application assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H 2 +CO 2 ) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000 0 F steam is generated at the industrial user sites. The products of methanation (CH 4 + H 2 O) are piped back to the reformer at the central station HTR

  8. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    Science.gov (United States)

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Advanced glycation end products in clinical nephrology.

    Science.gov (United States)

    Kalousová, M; Zima, T; Tesar, V; Stípek, S; Sulková, S

    2004-01-01

    As a result of oxidative and carbonyl stress, advanced glycation end products (AGEs) are involved in the pathogenesis of severe and frequent diseases and their fatal vascular/cardiovascular complications, i.e. diabetes mellitus and its complications (nephropathy, angiopathy, neuropathy and retinopathy, renal failure and uremic and dialysis-associated complications), atherosclerosis and dialysis-related amyloidosis, neurodegenerative diseases, and rheumatoid arthritis. They are formed via non-enzymatic glycation which is specifically enhanced through the presence of oxidative and carbonyl stress, and their ability to form glycoxidation products in peptide and protein structures finally modulating or inducing biological reactivity. Food can be another source of AGEs; however, high serum AGEs in hemodialysis patients might reflect nutritional status better. Several methods of renal replacement therapy have been studied in connection with the AGE removal, but unfortunately the possibilities are still unsatisfactory even if high flux dialysis, hemofiltration, or hemodiafiltration give better results than conventional low flux dialysis. AGEs are currently being studied in the patients on peritoneal dialysis as their precursors can be formed in the dialysis fluid. AGEs can cause damage to the peritoneum and so a loss of ultrafiltration capacity. Many compounds give promising results in AGE inhibition (inhibition of formation of AGEs, inhibition of their action or degradation of AGEs), are tested for these properties, and eventually undergo clinical studies (e.g. aminoguanidine, OPB-9195, pyridoxamine, antioxidants, N-phenacylthiazolium bromide, antihypertensive drugs, angiotensin-converting enzyme inhibitors and angiotensin II receptor-1 antagonists). Copyright 2004 S. Karger AG, Basel

  10. Receptor for advanced glycation end product polymorphisms and type 2 diabetes: the CODAM study

    NARCIS (Netherlands)

    Gaens, K.H.; Kallen, C.J.; Greevenboek, van M.M.; Feskens, E.J.M.; Stehouwer, C.D.; Schalkwijk, C.G.

    2008-01-01

    Genetic variation in the receptor for advanced glycation end products (RAGE) gene may alter the expression and function of RAGE and affect disease development and outcome. We investigated whether single nucleotide polymorphisms (SNPs) in RAGE were associated with diabetes and parameters of glucose

  11. Modular helium reactor for non-electric applications

    International Nuclear Information System (INIS)

    Shenoy, A.

    1997-01-01

    The high temperature gas-cooled Modular Helium Reactor (MHR) is an advanced, high efficiency reactor system which can play a vital role in meeting the future energy needs of the world by contributing not only to the generation of electric power, but also the non-electric energy traditionally served by fossil fuels. This paper summarizes work done over 20 years, by several people at General Atomics, how the Modular Helium Reactor can be integrated to provide different non-electric applications during Process Steam/Cogeneration for industrial application, Process Heat for transportation fuel development and Hydrogen Production for various energy applications. The MHR integrates favorably into present petrochemical and primary metal process industries, heavy oil recovery, and future shale oil recovery and synfuel processes. The technical fit of the Process Steam/Cogeneration Modular Helium Reactor (PS/C-MHR) into these processes is excellent, since it can supply the required quantity and high quality of steam without fossil superheating. 12 refs, 25 figs, 2 tabs

  12. Advanced Therapy Medicinal Products: How to Bring Cell-Based Medicinal Products Successfully to the Market - Report from the CAT-DGTI-GSCN Workshop at the DGTI Annual Meeting 2014.

    Science.gov (United States)

    Celis, Patrick; Ferry, Nicolas; Hystad, Marit; Schüßler-Lenz, Martina; Doevendans, Pieter A; Flory, Egbert; Beuneu, Claire; Reischl, Ilona; Salmikangas, Paula

    2015-05-01

    On September 11, 2014, a workshop entitled 'Advanced Therapy Medicinal Products: How to Bring Cell-Based Medicinal Product Successfully to the Market' was held at the 47th annual meeting of the German Society for Transfusion Medicine and Immunohematology (DGTI), co-organised by the European Medicines Agency (EMA) and the DGTI in collaboration with the German Stem Cell Network (GSCN). The workshop brought together over 160 participants from academia, hospitals, small- or medium-sized enterprise developers and regulators. At the workshop, speakers from EMA, the Committee for Advanced Therapies (CAT), industry and academia addressed the regulatory aspects of development and authorisation of advanced therapy medicinal products (ATMPs), classification of ATMPs and considerations on cell-based therapies for cardiac repair. The open forum discussion session allowed for a direct interaction between ATMP developers and the speakers from EMA and CAT.

  13. Development of an advanced continuous mild gasification process for the production of coproducts

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W.; Jha, M.C.

    1991-11-01

    This report is a final brief summary of development of a mild-gasification and char conversion process. Morgantown Energy Technology Center developed a concept called mild gasification. In this concept, devolatilization of coal under nonoxidizing and relatively mild temperature and pressure conditions can yield three marketable products: (1) a high-heating-value gas, (2) a high-aromatic coal liquid, and (3) a high-carbon char. The objective of this program is to develop an advanced, continuous, mild-gasification process to produce products that will make the concept economically and environmentally viable. (VC)

  14. Advanced therapy medicinal products: current and future perspectives.

    Science.gov (United States)

    Hanna, Eve; Rémuzat, Cécile; Auquier, Pascal; Toumi, Mondher

    2016-01-01

    Advanced therapy medicinal products (ATMPs) are innovative therapies that encompass gene therapy, somatic cell therapy, and tissue-engineered products. These therapies are expected to bring important health benefits, but also to substantially impact the pharmaceuticals budget. The aim of this study was to characterise the ATMPs in development and discuss future implications in terms of market access. Clinical trials were searched in the following databases: EudraCT (EU Drug Regulating Authorities Clinical Trials), ClinicalTrials.gov, and ICTRP (International Clinical Trials Registry Platform of the World Health Organization). Trials were classified by category of ATMP as defined by European regulation EC No. 1394/2007, as well as by development phase and disease area. The database search identified 939 clinical trials investigating ATMPs (85% ongoing, 15% completed). The majority of trials were in the early stages (Phase I, I/II: 64.3%, Phase II, II/III: 27.9%, Phase 3: 6.9%). Per category of ATMP, we identified 53.6% of trials for somatic cell therapies, 22.8% for tissue-engineered products, 22.4% for gene therapies, and 1.2% for combined products (incorporating a medical device). Disease areas included cancer (24.8%), cardiovascular diseases (19.4%), musculoskeletal (10.5%), immune system and inflammation (11.5%), neurology (9.1%), and others. Of the trials, 47.2% enrolled fewer than 25 patients. Due to the complexity and specificity of ATMPs, new clinical trial methodologies are being considered (e.g., small sample size, non-randomised trials, single-arm trials, surrogate endpoints, integrated protocols, and adaptive designs). Evidence generation post-launch will become unavoidable to address payers' expectations. ATMPs represent a fast-growing field of interest. Although most of the products are in an early development phase, the combined trial phase and the potential to cure severe chronic conditions suggest that ATMPs may reach the market earlier than

  15. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  16. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  17. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads.

    Science.gov (United States)

    Henning, D R; Baer, R J; Hassan, A N; Dave, R

    2006-04-01

    Advances in dairy foods and dairy foods processing since 1981 have influenced consumers and processors of dairy products. Consumer benefits include dairy products with enhanced nutrition and product functionality for specific applications. Processors convert raw milk to finished product with improved efficiencies and have developed processing technologies to improve traditional products and to introduce new products for expanding the dairy foods market. Membrane processing evolved from a laboratory technique to a major industrial process for milk and whey processing. Ultra-filtration and reverse osmosis have been used extensively in fractionation of milk and whey components. Advances in cheese manufacturing methods have included mechanization of the making process. Membrane processing has allowed uniform composition of the cheese milk and starter cultures have become more predictable. Cheese vats have become larger and enclosed as well as computer controlled. Researchers have learned to control many of the functional properties of cheese by understanding the role of fat and calcium distribution, as bound or unbound, in the cheese matrix. Processed cheese (cheese, foods, spreads, and products) maintain their importance in the industry as many product types can be produced to meet market needs and provide stable products for an extended shelf life. Cheese delivers concentrated nutrients of milk and bio-active peptides to consumers. The technologies for the production of concentrated and dried milk and whey products have not changed greatly in the last 25 yr. The size and efficiencies of the equipment have increased. Use of reverse osmosis in place of vacuum condensing has been proposed. Modifying the fatty acid composition of milkfat to alter the nutritional and functional properties of dairy spread has been a focus of research in the last 2 decades. Conjugated linoleic acid, which can be increased in milkfat by alteration of the cow's diet, has been reported to have

  18. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    De Miguel Mercader, F.; de Miguel Mercader, F.; Groeneveld, M.J.; Hogendoorn, Kees; Kersten, Sascha R.A.; Way, N.W.J.; Schaverien, C.J.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end

  19. Temperature effect on formation of advanced glycation end products in infant formula milk powder

    DEFF Research Database (Denmark)

    Zhu, Ru-Gang; Cheng, Hong; Li, Li

    2018-01-01

    For a standard infant formula milk powder, browning reactions were shown to become limiting for shelflife for storage at higher temperature rather than lipid oxidation. Advanced glycation end (AGE) products were found in the temperature range 65e115 C to have an energy of activation...

  20. 78 FR 67401 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Advanced Media...

    Science.gov (United States)

    2013-11-12

    ... Production Act of 1993--Advanced Media Workflow Association, Inc. Notice is hereby given that, on September 24, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993..., AudioVisual Preservation Solutions, New York, NY; Chellomedia Direct Programming, B.V., Amsterdam...

  1. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  2. Advanced Therapy Medicinal Products: How to Bring Cell-Based Medicinal Products Successfully to the Market – Report from the CAT-DGTI-GSCN Workshop at the DGTI Annual Meeting 2014

    Science.gov (United States)

    Celis, Patrick; Ferry, Nicolas; Hystad, Marit; Schüßler-Lenz, Martina; Doevendans, Pieter A.; Flory, Egbert; Beuneu, Claire; Reischl, Ilona; Salmikangas, Paula

    2015-01-01

    On September 11, 2014, a workshop entitled ‘Advanced Therapy Medicinal Products: How to Bring Cell-Based Medicinal Product Successfully to the Market’ was held at the 47th annual meeting of the German Society for Transfusion Medicine and Immunohematology (DGTI), co-organised by the European Medicines Agency (EMA) and the DGTI in collaboration with the German Stem Cell Network (GSCN). The workshop brought together over 160 participants from academia, hospitals, small- or medium-sized enterprise developers and regulators. At the workshop, speakers from EMA, the Committee for Advanced Therapies (CAT), industry and academia addressed the regulatory aspects of development and authorisation of advanced therapy medicinal products (ATMPs), classification of ATMPs and considerations on cell-based therapies for cardiac repair. The open forum discussion session allowed for a direct interaction between ATMP developers and the speakers from EMA and CAT. PMID:26195933

  3. Advances in biohydrogen production processes: An approach towards commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal (India)

    2009-09-15

    Biological H{sub 2} production has an edge over its chemical counterpart mainly because it is environmentally benign. Despite having simpler technology, higher evolution rate of H{sub 2} and the wide spectrum of substrate utilization, the major deterrent of anaerobic dark fermentation process stems from its lower achievable yields. Theoretically, the maximum H{sub 2} yield is 4 mol H{sub 2}/mol glucose when glucose is completely metabolized to acetate or acetone in the anaerobic process. But it is somewhat difficult to achieve the complete degradation of glucose to carbon dioxide and H{sub 2} through anaerobic dark fermentation. Moreover, this yield appears too low to be economically viable as an alternative to the existing chemical or electrochemical processes of hydrogen generation. Intensive research studies have already been carried out on the advancement of these processes, such as the development of genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, development of two-stage processes, and higher H{sub 2} production rates. Maximum H{sub 2} yield is found to be 5.1 mol H{sub 2}/mol glucose. However, major bottlenecks for the commercialization of these processes are lower H{sub 2} yield and rate of H{sub 2} production. Competent microbial cultures are required to handle waste materials efficiently, which are usually complex in nature. This will serve dual purposes: clean energy generation and bioremediation. Scale-up studies on fermentative H{sub 2} production processes have been done successfully. Pilot plant trials of the photo-fermentation processes require more attention. Use of cheaper raw materials and efficient biological H{sub 2} production processes will surely make them more competitive with the conventional H{sub 2} generation processes in near future. (author)

  4. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources.

    Science.gov (United States)

    Qiu, Yibin; Lei, Peng; Zhang, Yatao; Sha, Yuanyuan; Zhan, Yijing; Xu, Zongqi; Li, Sha; Xu, Hong; Ouyang, Pingkai

    2018-01-01

    The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

  5. A Two Stage Solution Procedure for Production Planning System with Advance Demand Information

    Science.gov (United States)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Hasuike, Takashi; Okuhara, Koji

    We model for ‘Naiji System’ which is a unique corporation technique between a manufacturer and suppliers in Japan. We propose a two stage solution procedure for a production planning problem with advance demand information, which is called ‘Naiji’. Under demand uncertainty, this model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to a probabilistic constraint and some linear production constraints. By the convexity and the special structure of correlation matrix in the problem where inventory for different periods is not independent, we propose a solution procedure with two stages which are named Mass Customization Production Planning & Management System (MCPS) and Variable Mesh Neighborhood Search (VMNS) based on meta-heuristics. It is shown that the proposed solution procedure is available to get a near optimal solution efficiently and practical for making a good master production schedule in the suppliers.

  6. Advanced glycation End-products (AGEs): an emerging concern for processed food industries.

    Science.gov (United States)

    Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta

    2015-12-01

    The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

  7. Compound light ion fuel cycles: An approach to optimization

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heindler, M.

    1985-01-01

    Together with the relatively high complexity and the low power density anticipated for fusion reactors have produced different attitude towards the long term perspective of fusion as a commercial energy source. The favourite pathway is to trust in optimization aiming at low tritium inventory, the availability of low-activation structure materials, the increase of redundancy, etc. In contrast, a respectable minority suggests turning away from d-t fusion or to envisage fusion as powerful neutron rather than energy source (fusion as fissile fuel or synfuel factory). We here intend to investigate the potentiality of fusion based on alternatives to d-t fuel. Such so called ''advanced fuels'' require higher burn temperatures and advanced reactor concepts (high-beta confinement schemes to compensate for their inherently lower reactivities. The experience that has been gained in fusion oriented plasma research admittedly justifies optimism for advanced fuels to a still lesser extent than for d-t. It can however be argued that it may pay off to choose a developmental direction with higher risk for failure but aiming at a more desirable end product. In order to explore this eventual desirability of advanced fuel fusion, we assume, as has been done in the case of d-t, that the first category of problems can be successfully handled. Our goal is thus to examine the potentiality of advanced fuels with respect to the second category of problems which largely determines the attractivity of utilization in fusion reactors

  8. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing

    DEFF Research Database (Denmark)

    Weber, Jakob; Valiante, Vito; Nødvig, Christina Spuur

    2017-01-01

    is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool...... for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus....

  9. Clinical Value of High Mobility Group Box 1 and the Receptor for Advanced Glycation End-products in Head and Neck Cancer: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nguyen, Austin

    2016-04-01

    Full Text Available Introduction High mobility group box 1 is a versatile protein involved in gene transcription, extracellular signaling, and response to inflammation. Extracellularly, high mobility group box 1 binds to several receptors, notably the receptor for advanced glycation end-products. Expression of high mobility group box 1 and the receptor for advanced glycation end-products has been described in many cancers. Objectives To systematically review the available literature using PubMed and Web of Science to evaluate the clinical value of high mobility group box 1 and the receptor for advanced glycation end-products in head and neck squamous cell carcinomas. Data synthesis A total of eleven studies were included in this review. High mobility group box 1 overexpression is associated with poor prognosis and many clinical and pathological characteristics of head and neck squamous cell carcinomas patients. Additionally, the receptor for advanced glycation end-products demonstrates potential value as a clinical indicator of tumor angiogenesis and advanced staging. In diagnosis, high mobility group box 1 demonstrates low sensitivity. Conclusion High mobility group box 1 and the receptor for advanced glycation end-products are associated with clinical and pathological characteristics of head and neck squamous cell carcinomas. Further investigation of the prognostic and diagnostic value of these molecules is warranted.

  10. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  11. Recent advances in analytical determination of cisplatin and its hydrolysis products

    International Nuclear Information System (INIS)

    Ramos Rodriguez, Yalexmiy; Hernandez Castro, Carlos

    2009-01-01

    Cisplatin (cis-diaminedichloroplatinum [II] is a coordination compound, used in the treatment of several solid tumors. Cisplatin and its hydrolysis products exhibit a great pharmacological effect but are very toxic and probably carcinogenic. The present review summarizes the most important advances in the last years in the techniques employed for the detection and quantification of cisplatin and its hydrolysis products and in the different matrixes studied. The new emerging techniques and their modifications recently developed, fundamentally the combined use of detection and separation techniques for the analysis of platinum species and their impact on the speed, sensitivity and specificity of the analytical determination, with regard to the techniques used in the last century are discussed. High-Performance Liquid Chromatography and Capillary Electrophoresis, coupled with detection methods such as Mass Spectrometry, Inductively Coupled Plasma-Mass Spectrometry, Atomic Absorption Spectrometry and more recently, High-Field Asymmetric Waveform Ion Mobility Spectrometry are the methods more employed. The analysis of cisplatin and its hydrolysis products in new and more complex matrixes is also presented

  12. Study of Advanced Reactor Mixed Oxide Fuel Production of (U,Th)O2

    International Nuclear Information System (INIS)

    Busron-Masduki; Damunir; Pristi-Hartati; R-Sukarsono; Bangun-Wasito

    2000-01-01

    The high price and starting scarcity of reserved of oil drive the people to drill the alternative nuclear energy. Accelerator-driven Transmutation Waste (ATW) is a prospective technology to solve the problem of used fuel waste, to reduce the anxiety of long term disposal waste, to increase the public acceptance of nuclear energy enter into the third millennium. The future of large nuclear energy appears in many-branched industry will depend on the capability to generate relatively low priced fuel on the basis of commercial nuclear energy. Utilization of uranium-233 -thorium cycle insures long-term fuel supply, makes the nuclear energy production more flexible and enables the self-provision regime to be realized in future. Flowsheet of mixed oxide fuel production for advanced reactor of (U,Th)O 2 is a combination of existing manufacturing equipment and quality assurance program from commercial LWR and HTR. The front-end of flowsheet using sol-gel process. The external sol-gel process is chosen due to simple equipment can anticipate refabrication of U-233 which always contains a few hundred ppm of U-232 and its gamma-emitting daughters, besides yielding smaller waste. The decision to choose external sol-gel process encourages to develop External Gelation Thorium (EGT). In order to get higher density and relatively low compaction pressures (i.e. for advanced LWR) adopted flowsheet EGT is developed to be Sol-Gel Microsphere Pelletization (SGMP). Using the optimal parameters, SGMP become established flowsheet for producing mixed oxide fuel of (U,Th)O 2 for advanced reactor. (author)

  13. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe

    Directory of Open Access Journals (Sweden)

    Andreas M. Farkas

    2017-05-01

    Full Text Available In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs. We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP, or gene therapy medicinal product (GTMP] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA and other Committees [Committee for Advanced Therapies (CAT and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%. ATMPs ODDs were primarily GTMPs (48.7% and SCTMPs (43.3%. TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP. Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three have received a marketing authorization (MAA and a 10-year market exclusivity. Strimvelis also completed their

  14. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe.

    Science.gov (United States)

    Farkas, Andreas M; Mariz, Segundo; Stoyanova-Beninska, Violeta; Celis, Patrick; Vamvakas, Spiros; Larsson, Kristina; Sepodes, Bruno

    2017-01-01

    In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs). We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP), or gene therapy medicinal product (GTMP)] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA) and other Committees [Committee for Advanced Therapies (CAT) and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%). ATMPs ODDs were primarily GTMPs (48.7%) and SCTMPs (43.3%). TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD) ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP). Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three) have received a marketing authorization (MAA) and a 10-year market exclusivity. Strimvelis also completed their PIP

  15. Advances in chemical product design

    DEFF Research Database (Denmark)

    Zhang, Lei; Fung, Ka Yip; Wibowo, Christianto

    2018-01-01

    The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products. This arti......The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products....... This article provides an overview of chemical product design with a multidisciplinary hierarchical framework including all the design issues and tasks. Each of the design issues and tasks are introduced and discussed, methods and tools are summarized and compared, challenges and perspectives are presented...... to help the chemical product design researchers on finding more novel, innovative and sustainable products, by the combined effort from academia and industry to develop a systematic generic framework, and tools including product simulator, process simulator, database manager, modeling tool, and templates...

  16. Scholarly productivity and professional advancement of junior researchers receiving KL2, K23, or K08 awards at a large public research institution.

    Science.gov (United States)

    Amory, John K; Louden, Diana K N; McKinney, Christy; Rich, Joanne; Long-Genovese, Stacy; Disis, Mary L

    2017-04-01

    How the productivity and careers of KL2 scholars compare with scholars receiving individual K-awards is unknown. The productivity of KL2 scholars (n=21) at our institution was compared with that of K08 (n=34) and K23 (n=26) scholars. KL2 and K23 scholars had greater productivity than K08 scholars ( p =0.01). Professional advancement was similar among groups. At our institution, scholarly productivity and professional advancement did not differ by type of K-award.

  17. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  18. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  19. Marketing technologically advanced products

    NARCIS (Netherlands)

    Bender, Horst

    1989-01-01

    This paper calls for a merger of technology and marketing under a customer value perspective; for an enhancement of the traditional technological innovation orientation of the technology-based firm with a market thrust. It establishes technology-based products as product-service offerings that are

  20. Advanced Manufacturing Technologies and Strategically Flexible Production. A Review and Outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    ) led to only partial results, and were often abandoned or scaled down. At the same time, a number of soft organizational and managerial approaches and improvement programs, mostly derived from Japan, began to spread in response to the dramatic changes in the competitive environment that seemed...... to require new rationales to organize and manage production systems. However, the compatibility and coherence between changing organizational paradigms and CIM approaches were not extensively explored nor understood. This paper aims to investigate the interactions between the implementation and integration...... of Advanced Manufacturing Technologies (AMT) and the adoption of new managerial and organizational principles....

  1. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    International Nuclear Information System (INIS)

    Cherry, Robert S.; Boardman, Richard D.; Aumeier, Steven

    2012-01-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  2. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gao-Yi Tan

    2016-02-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  3. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tan Gao-Yi

    2015-12-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  4. Correlation of advanced glycation end products to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Zong-yan MA

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a common retrograde neurodegenerative disease of the central nervous system, as well as the most common type of dementia in the aged, the main manifestations of AD are progressive decline of cognitive function and daily life ability. AD seriously affects the quality of life and physical and mental health of the aged, and increased the burden of family and society. The etiology and pathogenesis of AD remain unclear nowadays, and there is no objective and specific biological marker to help the early diagnosis and effective treatment. Advanced glycation end products (AGEs are stable end products formed by non enzymatic reaction between the free amino groups of proteins, lipids, nucleic acids macromolecules and the carbonyls of glucose or other reduced sugars. Recent years, more and more studies have focused on the correlation between AGEs and its receptors (RAGE in patients with cognitive impairment, however, the role played by AGEs in the pathogenesis of AD remains unclear. The present paper will give an overview from three aspects: the structure and characteristics of AGEs, the relationship between the occurrence and development of AD and AGEs and the relationship between AGEs and prognosis of cognitive impairment which we've known so far. DOI: 10.11855/j.issn.0577-7402.2018.01.16

  5. Advances in the industrial production of halal and kosher red meat.

    Science.gov (United States)

    Farouk, Mustafa M

    2013-12-01

    The worldwide volume and value of trade in halal and kosher meat and co-products are huge. Muslim countries alone consumed meat estimated to be worth USD 57.2 billion in 2008. The halal and kosher principles that govern the production of red meat have many similarities, as well as some fundamental differences. Perhaps the most significant difference is that at the time of slaughter, the animal needs only to be alive to meet the minimum halal requirement, but must be both alive and conscious for kosher. It is for this reason that reversible pre-slaughter stunning is acceptable only for halal meat, although a compromise form of post-slaughter stunning is now considered kosher in some countries. Extensive research on animal physiology and welfare has characterised and optimised the methods for stunning livestock, and enabled advancement in associated technologies. This forms the basis for harmonising the religious and secular requirements for the protection of animal welfare at slaughter. These technologies and the associated processing practices for the industrial production of halal and kosher meat are reviewed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  8. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    Directory of Open Access Journals (Sweden)

    Vito Verardo

    2017-01-01

    Full Text Available Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  9. Hardware design for the production of NTD silicon in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Schell, M.J.

    1984-01-01

    The Advanced Test Reactor (ATR) is a 250-MW(t) materials testing and nuclear research facility operated for EG and G Idaho, Inc. The unique capabilities of the ATR can be readily adapted via hardware to produce large quantitities of large-diameter (20 cm plus) doped silicon crystals. Conservative estimates place the production capability in excess of 15 metric tons per year. The proposed hardware is based upon a closed-loop, hydraulic-shuttle tube system

  10. Advanced wind turbine near-term product development. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-01

    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  11. The distribution of advanced glycation end products and their receptor in the gastrointestinal tract in the rats

    DEFF Research Database (Denmark)

    Chen, Pengmin; Zhao, Jingbo; Gregersen, Hans

    2012-01-01

    To investigate the distribution of advanced glycation end products (AGEs) and their receptor (RAGE) in the gastrointestinal (GI) tract to provide a basis for further study of the association between AGE/RAGE and diabetic GI dysfunction. METHODS: The distribution of AGEs [N epsilon-(carboxymethyl)......To investigate the distribution of advanced glycation end products (AGEs) and their receptor (RAGE) in the gastrointestinal (GI) tract to provide a basis for further study of the association between AGE/RAGE and diabetic GI dysfunction. METHODS: The distribution of AGEs [N epsilon......-(carboxymethyl) lysine and N epsilon-(carboxyethyl) lysine] and RAGE were detected in the esopha-geal, gastric, duodenal, jejunal, ileal, colonic and rectal tissues of normal adult Wistar rats using immunohistochemistry. RESULTS: In the esophagus, AGEs and RAGE were mainly distributed in striated muscle cells...

  12. [The certification of advanced therapy medicinal products. A quality label for product development in small and medium-sized enterprises].

    Science.gov (United States)

    Berger, A; Schüle, S; Flory, E

    2011-07-01

    Advanced therapy medicinal products (ATMPs) are gene therapy, cell therapy, and tissue engineered products. To gain access to the market within the European Union, ATMPs must be authorized by the European Commission (EC). Especially for small and medium-sized enterprises (SMEs), the European centralized procedure of marketing authorization that is conducted by the European Medicines Agency (EMA) constitutes a major challenge, because SMEs often have little experience with regulatory procedures and many have limited financial possibilities. To tackle these challenges, a certification procedure exclusively for SMEs and their ATMP development was introduced by the EC. Independently from a marketing authorization application, development and/or production processes can be certified. An issued certificate demonstrates that the respective process meets the current regulatory and scientific requirements of the EMA, representing a valuable milestone for putative investors and licensees. This article highlights the background, the detailed procedure, the minimum requirements, as well as the costs of certification, while giving further noteworthy guidance for interested parties.

  13. Complexity of Advanced Glycation End Products in Foods: Where Are We Now?

    Science.gov (United States)

    Zhu, Yingdong; Snooks, Hunter; Sang, Shengmin

    2018-02-14

    Recent clinical trials indicate that consumption of dietary advanced glycation end products (AGEs) may promote the development of major chronic diseases. However, the outcomes of human studies have proven inconclusive as a result of estimates of the total AGE intake being taken with a single AGE in most of the studies. In this perspective, we summarized the major types of AGEs derived from proteins, nucleic acids, and phospholipids during food processing and suggested a panel of AGEs as markers to better measure the intake of total dietary AGEs in human studies.

  14. Dietary Advanced Glycation End Products and Aging

    Directory of Open Access Journals (Sweden)

    Karen Chapman-Novakofski

    2010-12-01

    Full Text Available Advanced glycation end products (AGEs are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food and endogenously (in humans with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.

  15. Development of an advanced continuous mild gasification process for the production of coproducts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W.; Jha, M.C.

    1991-11-01

    This report is a final brief summary of development of a mild-gasification and char conversion process. Morgantown Energy Technology Center developed a concept called mild gasification. In this concept, devolatilization of coal under nonoxidizing and relatively mild temperature and pressure conditions can yield three marketable products: (1) a high-heating-value gas, (2) a high-aromatic coal liquid, and (3) a high-carbon char. The objective of this program is to develop an advanced, continuous, mild-gasification process to produce products that will make the concept economically and environmentally viable. (VC)

  16. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder

    Science.gov (United States)

    Haun, Robert E.

    2017-12-01

    A historical look at the melt processing of gamma titanium aluminides is presented first, followed by recent advances in melting equipment design by Retech to produce 50-mm and 100-mm-diameter ingots up to 1000 mm long. Equipment design for the economical production of gamma titanium aluminide powder is then discussed. The focus in industry has shifted away from basic research to cost-effective production of these titanium alloys for aerospace and automotive engine applications.

  17. Determination of advanced glycation endproducts in cooked meat products.

    Science.gov (United States)

    Chen, Gengjun; Smith, J Scott

    2015-02-01

    Advanced glycation endproducts (AGEs), a pathogenic factor implicated in diabetes and other chronic diseases, are produced in cooked meat products. The objective of this study was to determine the AGE content, as measured by Nε-carboxymethyllysine (CML) levels, in cooked chicken, pork, beef and fish (salmon and tilapia) prepared by three common cooking methods used by U.S. consumers: frying, baking, and broiling. The CML was detected in all the cooked samples, but the levels were dependent on types of meat, cooking conditions, and the final internal temperature. Broiling and frying at higher cooking temperature produced higher levels of CML, and broiled beef contained the highest CML content (21.8μg/g). Baked salmon (8.6μg/g) and baked tilapia (9.7μg/g) contained less CML as compared to the other muscle food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  19. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines

    Directory of Open Access Journals (Sweden)

    Norman Ratcliffe

    2014-01-01

    Full Text Available Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.

  20. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  1. Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes.

    Science.gov (United States)

    Malloy, Timothy; Zaunbrecher, Virginia; Beryt, Elizabeth; Judson, Richard; Tice, Raymond; Allard, Patrick; Blake, Ann; Cote, Ila; Godwin, Hilary; Heine, Lauren; Kerzic, Patrick; Kostal, Jakub; Marchant, Gary; McPartland, Jennifer; Moran, Kelly; Nel, Andre; Ogunseitan, Oladele; Rossi, Mark; Thayer, Kristina; Tickner, Joel; Whittaker, Margaret; Zarker, Ken

    2017-09-01

    Alternatives analysis (AA) is a method used in regulation and product design to identify, assess, and evaluate the safety and viability of potential substitutes for hazardous chemicals. It requires toxicological data for the existing chemical and potential alternatives. Predictive toxicology uses in silico and in vitro approaches, computational models, and other tools to expedite toxicological data generation in a more cost-effective manner than traditional approaches. The present article briefly reviews the challenges associated with using predictive toxicology in regulatory AA, then presents 4 recommendations for its advancement. It recommends using case studies to advance the integration of predictive toxicology into AA, adopting a stepwise process to employing predictive toxicology in AA beginning with prioritization of chemicals of concern, leveraging existing resources to advance the integration of predictive toxicology into the practice of AA, and supporting transdisciplinary efforts. The further incorporation of predictive toxicology into AA would advance the ability of companies and regulators to select alternatives to harmful ingredients, and potentially increase the use of predictive toxicology in regulation more broadly. Integr Environ Assess Manag 2017;13:915-925. © 2017 SETAC. © 2017 SETAC.

  2. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  3. Advances in mixed-integer programming methods for chemical production scheduling.

    Science.gov (United States)

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  4. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  5. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere

    Science.gov (United States)

    Wu, Wei; Cheng, Xuequn; Hou, Huaxing; Liu, Bo; Li, Xiaogang

    2018-04-01

    The product film formed on Ni-advanced weathering steel in a tropical marine environment was investigated in detail through outdoor exposure by using diverse surface analysis techniques combined with electrochemical impedance spectroscopy and scanning kelvin probe measurements. The results showed that the product film was mainly composed of nanophasic goethite in the inner layer and maghemite, akaganeite, and hematite in the outer layer. Moreover, the resistance to atmospheric corrosion gradually increased from the outermost product film to the innermost film. Ni was significantly enriched in the inner layer in the form of the spinel phase NiFe2O4, which transformed lepidocrocite to fine-grained goethite, withstood the invasion of chloridion, and improved the corrosion potential of the product film in a tropical marine atmosphere.

  6. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  7. Hydrolysis of Hemicellulose and Derivatives-A Review of Recent Advances in the Production of Furfural.

    Science.gov (United States)

    Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe

    2018-01-01

    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.

  8. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  9. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.

    Science.gov (United States)

    Ko, Ja Kyong; Lee, Sun-Mi

    2018-04-01

    Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Receptor for Advanced Glycation End Products Facilitates Host Defense during Escherichia coli-Induced Abdominal Sepsis in Mice

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Schmidt, Ann-Marie; Florquin, Sandrine; Meijers, Joost C.; de Beer, Regina; de Vos, Alex F.; Nawroth, Peter P.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Background. The receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses. Methods. To determine the role of RAGE in the innate immune response to abdominal sepsis caused by Escherichia coli, RAGE-deficient (RAGE(-/-)) and normal wild-type mice were

  11. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    Science.gov (United States)

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  12. Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Ma, Jiangfeng; Xin, Fengxue; Liu, Junli; Wu, Hao; Jiang, Min

    2018-02-26

    Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.

  13. Lights, Camera, Action: Advancing Learning, Research, and Program Evaluation through Video Production in Educational Leadership Preparation

    Science.gov (United States)

    Friend, Jennifer; Militello, Matthew

    2015-01-01

    This article analyzes specific uses of digital video production in the field of educational leadership preparation, advancing a three-part framework that includes the use of video in (a) teaching and learning, (b) research methods, and (c) program evaluation and service to the profession. The first category within the framework examines videos…

  14. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  15. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  16. Learning in Advance Selling with Heterogeneous Consumers

    OpenAIRE

    Oksana Loginova; X. Henry Wang; Chenhang Zeng

    2012-01-01

    The advance selling strategy is implemented when a firm offers consumers the opportunity to order its product in advance of the regular selling season. Advance selling reduces uncertainty for both the firm and the buyer and enables the firm to update its forecast of future demand. The distinctive feature of the present study of advance selling is that we divide consumers into two groups, experienced and inexperienced. Experienced consumers know their valuations of the product in advance, whil...

  17. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  18. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

  19. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  20. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  1. Effects of photobleaching on selected advanced glycation end products in the human lens

    DEFF Research Database (Denmark)

    Holm, Thomas; Raghavan, Cibin T; Nahomi, Rooban

    2015-01-01

    at examining the optical and biochemical effects of the proposed treatment.MethodsHuman donor lenses were photobleaced using a 445 nm cw laser. Lens optical quality was assessed before and after photobleaching by light transmission and scattering. The concentration of the advanced glycation end products (AGEs...... of the photobleaching treatment on lens optical parameters but we could not associate the optical findings to a change in the concentration of the AGEs we measured. This finding suggests that other AGEs were responsible for the observed photobleaching of the human lens after laser treatment. The biochemical nature...

  2. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  4. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  5. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  6. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  7. Methanex cuts its methanol costs with Fletcher purchase

    International Nuclear Information System (INIS)

    Plishner, E.S.

    1993-01-01

    Methanex (Vancouver, BC) will 'significantly reduce' its unit cost of methanol production with the acquisition of all of Fletcher Challenge's (Auckland, NZ) methanol assets. These include the 800,000-m.t./year Cape Horn plant in Chile, one of the world's largest single train facilities. That plant is 'by far' the lowest-cost supplier of delivered methanol to the U.S., says analyst Sam Kanes of Scotia McLeod (Toronto), with gas costs below $1/1,000 cu.ft. Also included in the deal are two New Zealand plants: Petralgas, with capacity for 520,000 m.t./year, and Synfuel. Synfuel has the capacity to produce the equivalent of 1.8 million m.t./year of chemical-grade methanol, or 70,000 m.t./year of gasoline, or a combination. Currently rated at 450,000 m.t./year of methanol, that could double in 1994 with the addition of distillation capacity. After the transaction, Methanex will have a total of 2.4 million m.t./year of methanol capacity, plus marketing agreements for 1.0 million m.t./year. The company has plans to add 1.2 million m.t. of production (in Trinidad and the U.S.) and 0.6 million m.t. of further marketing arrangements over the next year and a half, bringing the total to over 5.0 million m.t./year. Methanex could have 'about twice as much capacity as the Saudis,' according to one consultant

  8. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    Science.gov (United States)

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...... production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological...

  10. One- and two-dimensional heating analyses of fusion synfuel blankets

    International Nuclear Information System (INIS)

    Tsang, J.S.K.; Lazareth, O.W.; Powell, J.R.

    1979-01-01

    Comparisons between one- and two-dimensional neutronics and heating analyses were performed on a Brookhaven designed fusion reactor blanket featuring synthetic fuel production. In this two temperature region blanket design, the structural shell is stainless steel. The interior of the module is a packed ball of high temperature ceramic material. The low temperature shell and the high temperature ceramic interior are separately cooled. Process steam (approx. 1500 0 C) is then produced in the ceramic core for the producion of H 2 and H 2 -based synthetic fuels by a high temperature electrolysis (HTE) process

  11. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  12. Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural

    Science.gov (United States)

    Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe

    2018-01-01

    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production. PMID:29868554

  13. Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural

    Directory of Open Access Journals (Sweden)

    Frederic Delbecq

    2018-05-01

    Full Text Available Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i non-catalytic routes like use of critical solvents or hot water pretreatment, (ii use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii feedstock dehydration making use of various solid acid catalysts; (iv feedstock dehydration making use of supported catalysts, (v other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.

  14. The influence of body mass index on the accumulation of advanced glycation end products in hemodialysis patients

    NARCIS (Netherlands)

    Arsov, S.; Trajceska, L.; van Oeveren, W.; Smit, A. J.; Dzekova, P.; Stegmayr, B.; Sikole, A.; Rakhorst, G.; Graaff, R.

    BACKGROUND/OBJECTIVES: The level of skin autofluorescence (AF) at a given moment is an independent predictor of mortality in hemodialysis (HD) patients. Skin AF is a measure of the accumulation of advanced glycation end products (AGEs). The aim of the study was to estimate the influence of nutrition

  15. Biodistribution of the 18F-labelled advanced glycation end products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL)

    International Nuclear Information System (INIS)

    Bergmann, R.; Helling, R.; Henle, T.; Heichert, C.; Scheunemann, M.; Maeding, P.; Wittrisch, H.; Johannsen, B.

    2002-01-01

    After synthesis of fluorine-18 labelled analogues [ 18 F]fluorobenzoylation at the α-amino group, biodistribution and elimination of individual advanced glycation end products, namely N ε -carboxymethyllysine and N ε -carboxyethyllysine, was studied in comparison to lysine in rats after intravenous injection using positron emission tomography. (orig.)

  16. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization.

    Science.gov (United States)

    Yang, Yan-Pu

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes.

  17. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  18. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  19. The in vitro effects of advanced glycation end products on basophil functions.

    Science.gov (United States)

    Han, Kaiyu; Suzukawa, Maho; Yamaguchi, Masao; Sugimoto, Naoya; Nakase, Yuko; Toda, Takako; Nagase, Hiroyuki; Ohta, Ken

    2011-01-01

    Basophils are thought to play pivotal roles in the pathogenesis of allergic reactions, but their roles in inflammation associated with systemic abnormalities such as metabolic disorders remain largely unknown. Advanced glycation end products (AGEs) are potentially important substances produced in high-glucose disease conditions. In this in vitro study, we investigated whether the biological functions of human basophils can be influenced by AGEs. We analyzed the effects of AGEs on various functions and markers of human basophils, including CD11b expression, apoptosis, degranulation, and cytokine production. Flow cytometric analysis indicated that the level of the receptor for AGEs (RAGE) on the surface of freshly isolated basophils was very low but was clearly upregulated by IL-3. Apoptosis of basophils was induced by high concentrations of glycated albumin. Although glycated albumin failed to affect the level of surface CD11b expression or to trigger degranulation or production of IL-4 and IL-13 in basophils, it dose-dependently induced IL-6 and IL-8 secretion. AGEs seem to act on human basophils; they suppress the cells' longevity but elicit secretion of inflammatory cytokines. Through these biological changes, basophils might play some roles in inflammatory conditions associated with metabolic disorders presenting elevated levels of AGEs. Copyright © 2011 S. Karger AG, Basel.

  20. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    International Nuclear Information System (INIS)

    Hegele, Joerg; Buetler, Timo; Delatour, Thierry

    2008-01-01

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N ε -fructoselysine (FL), N ε -carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 ± 3.81 nmol CML per μmol of free Lys (Lys free ) and 81.5 ± 87.8 nmol Pyr μmol -1 Lys free -1 vs. 3.72 ± 1.29 nmol FL μmol -1 Lys free -1 . In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 ± 0.08 nmol FL μmol -1 of protein-bound Lys (Lys p-b ), 0.04 ± 0.03 nmol CML μmol -1 Lys p-b -1 and 0.06 ± 0.02 nmol Pyr μmol -1 Lys p-b -1 . It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products

  1. On-product overlay enhancement using advanced litho-cluster control based on integrated metrology, ultra-small DBO targets and novel corrections

    Science.gov (United States)

    Bhattacharyya, Kaustuve; Ke, Chih-Ming; Huang, Guo-Tsai; Chen, Kai-Hsiung; Smilde, Henk-Jan H.; Fuchs, Andreas; Jak, Martin; van Schijndel, Mark; Bozkurt, Murat; van der Schaar, Maurits; Meyer, Steffen; Un, Miranda; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Liang, Frida; den Boef, Arie; ten Berge, Peter; Kubis, Michael; Wang, Cathy; Fouquet, Christophe; Terng, L. G.; Hwang, David; Cheng, Kevin; Gau, TS; Ku, Y. C.

    2013-04-01

    Aggressive on-product overlay requirements in advanced nodes are setting a superior challenge for the semiconductor industry. This forces the industry to look beyond the traditional way-of-working and invest in several new technologies. Integrated metrology2, in-chip overlay control, advanced sampling and process correction-mechanism (using the highest order of correction possible with scanner interface today), are a few of such technologies considered in this publication.

  2. On the Flexibility of Grammatical Advance Planning During Sentence Production: Effects of Cognitive Load on Multiple Lexical Access

    NARCIS (Netherlands)

    Wagner, V.; Jescheniak, J.D.; Schriefers, H.J.

    2010-01-01

    Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers

  3. Advanced glycation end-products inhibition improves endothelial dysfunction in rheumatoid arthritis.

    Science.gov (United States)

    Syngle, Ashit; Vohra, Kanchan; Garg, Nidhi; Kaur, Ladbans; Chand, Prem

    2012-02-01

    Chronic inflammation in rheumatoid arthritis is associated with vascular endothelial dysfunction. The objective was to study the efficacy and safety of advanced glycation end products (AGEs) inhibitor (benfotiamine 50 mg + pyridoxamine 50 mg + methylcobalamin 500 μg, Vonder(®) (ACME Lifescience, Baddi, Himachal Pradesh, India)) on endothelial function in rheumatoid arthritis (RA). Twenty-four patients with established active RA with high disease activity (Disease Activity Score of 28 joints [DAS28 score] > 5.1) despite treatment with stable doses of conventional disease-modifying antirheumatic drugs were investigated. Inflammatory disease activity (DAS28 and Health Assessment Questionnaire-Disability Index [HAQ-DI] scores, erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP]), markers of endothelial dysfunction, serum nitrite concentration and endothelium-dependent and -independent vasodilation of the brachial artery were measured before and after 12 weeks therapy with twice a day oral AGEs inhibitor. After treatment, flow-mediated vasodilation improved from 9.64 ± 0.65% to 15.82 ± 1.02% (P < 0.01), whereas there was no significant change in endothelium-independent vasodilation with nitroglycerin and baseline diameter; serum nitrite concentration significantly reduced from 5.6 ± 0.13 to 5.1 ± 0.14 μmol/L (P = 0.004), ESR from 63.00 ± 3.5 to 28.08 ± 1.5 mm in the first h (P < 0.01) and CRP levels from 16.7 ± 4.1 to 10.74 ± 2.9 mg/dL (P < 0.01). DAS28 and HAQ-DI scores were significantly reduced, from 5.9 ± 0.17 to 3.9 ± 0.17 (P < 0.01) and 4.6 ± 0.17 to 1.7 ± 0.22 (P < 0.01), respectively. Advanced glycation end products inhibitor improves endothelial dysfunction and inflammatory disease activity in RA. In RA, endothelial dysfunction is part of the disease process and is mediated by AGEs-induced inflammation. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and

  4. Access to advanced therapy medicinal products in the EU: where do we stand?

    Science.gov (United States)

    Mahalatchimy, A

    2011-05-01

    The European Union has a public health strategy and will generally ensure in all its policies and activities a "high level of human health protection". The new Regulation (EC) n 1394/2007 on advanced therapy medicinal products (ATMP), stems from this global policy and aims to harmonise access to the ATMP market. A real will for the harmonisation is clearly expressed in legal texts and enforced in the implementable procedures and requirements. However, several barriers remain. On the one hand, the scope of the ATMP Regulation is limited. On the other hand, Member States benefit from a wide margin of action.

  5. Age-related accumulation of advanced glycation end-products-albumin, S100β, and the expressions of advanced glycation end product receptor differ in visceral and subcutaneous fat

    Energy Technology Data Exchange (ETDEWEB)

    Son, Kuk Hui [Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon (Korea, Republic of); Son, Myeongjoo [Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon (Korea, Republic of); Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon (Korea, Republic of); Ahn, Hyosang; Oh, Seyeon; Yum, Yoonji [Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon (Korea, Republic of); Choi, Chang Hu [Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon (Korea, Republic of); Park, Kook Yang, E-mail: kkyypark@ghil.com [Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon (Korea, Republic of); Byun, Kyunghee, E-mail: khbyun1@gachon.ac.kr [Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon (Korea, Republic of); Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon (Korea, Republic of)

    2016-08-19

    Visceral fat induces more inflammation by activating macrophages than subcutaneous fat, and inflammation is an underlying feature of the pathogeneses of various diseases, including cardiovascular disease and diabetes. Advanced glycation end products (AGEs), S100β, and their receptors, the receptor for advanced glycation end products (RAGE), lead to macrophage activation. However, little information is available regarding the differential accumulations of AGE-albumin (serum albumin modified by AGEs), S100β, or expressions of RAGE in different adipocyte types in fat tissues. In this study, the authors investigated whether age-related AGE-albumin accumulations S100β level, and RAGE expressions differ in subcutaneous and visceral fat tissues. Subcutaneous and visceral fat were harvested from 3- and 28-week-old rats. Macrophage activation was confirmed by Iba1 staining, and AGE-albumin accumulations and RAGE expressions were assessed by confocal microscopy. S100β were analyzed by immunoblotting. It was found that activated macrophage infiltration, AGE-albumin accumulation, and S100β in visceral fat was significantly greater in 28-week-old rats than in 3-week-old rats, but similar in subcutaneous fat. The expression of RAGE in visceral fat was much greater in 28-week-old rats, but its expression in subcutaneous fat was similar in 3- and 28-week-old rats. Furthermore, inflammatory signal pathways (NFκB, TNF-α) and proliferation pathways (FAK) in visceral fat were more activated in 28-week-old rats. These results imply that age-related AGE-albumin accumulation, S100β, and RAGE expression are more prominent in visceral than in subcutaneous fat, suggesting that visceral fat is involved in the pathogenesis of inflammation-induced diseases in the elderly. - Highlights: • The age-related AGE-albumin accumulation and S100β were more prominent in visceral than subcutaneous fat. • The age-related RAGE expression were more prominent in visceral than subcutaneous fat.

  6. Age-related accumulation of advanced glycation end-products-albumin, S100β, and the expressions of advanced glycation end product receptor differ in visceral and subcutaneous fat

    International Nuclear Information System (INIS)

    Son, Kuk Hui; Son, Myeongjoo; Ahn, Hyosang; Oh, Seyeon; Yum, Yoonji; Choi, Chang Hu; Park, Kook Yang; Byun, Kyunghee

    2016-01-01

    Visceral fat induces more inflammation by activating macrophages than subcutaneous fat, and inflammation is an underlying feature of the pathogeneses of various diseases, including cardiovascular disease and diabetes. Advanced glycation end products (AGEs), S100β, and their receptors, the receptor for advanced glycation end products (RAGE), lead to macrophage activation. However, little information is available regarding the differential accumulations of AGE-albumin (serum albumin modified by AGEs), S100β, or expressions of RAGE in different adipocyte types in fat tissues. In this study, the authors investigated whether age-related AGE-albumin accumulations S100β level, and RAGE expressions differ in subcutaneous and visceral fat tissues. Subcutaneous and visceral fat were harvested from 3- and 28-week-old rats. Macrophage activation was confirmed by Iba1 staining, and AGE-albumin accumulations and RAGE expressions were assessed by confocal microscopy. S100β were analyzed by immunoblotting. It was found that activated macrophage infiltration, AGE-albumin accumulation, and S100β in visceral fat was significantly greater in 28-week-old rats than in 3-week-old rats, but similar in subcutaneous fat. The expression of RAGE in visceral fat was much greater in 28-week-old rats, but its expression in subcutaneous fat was similar in 3- and 28-week-old rats. Furthermore, inflammatory signal pathways (NFκB, TNF-α) and proliferation pathways (FAK) in visceral fat were more activated in 28-week-old rats. These results imply that age-related AGE-albumin accumulation, S100β, and RAGE expression are more prominent in visceral than in subcutaneous fat, suggesting that visceral fat is involved in the pathogenesis of inflammation-induced diseases in the elderly. - Highlights: • The age-related AGE-albumin accumulation and S100β were more prominent in visceral than subcutaneous fat. • The age-related RAGE expression were more prominent in visceral than subcutaneous fat.

  7. Accumulation of Advanced Glycation End Products as a Molecular Mechanism for Aging as a Risk Factor in Osteoarthritis

    NARCIS (Netherlands)

    Groot, J. de; Verzijl, N.; Wenting-Wijk, M.J.G. van; Jacobs, K.M.G.; El, B. van; Roermund, P.M. van; Bank, R.A.; Bijlsma, J.W.J.; TeKoppele, J.M.; Lafeber, F.P.J.G.

    2004-01-01

    Objective. Osteoarthritis (OA) is one of the most prevalent and disabling chronic conditions affecting the elderly. Its etiology is largely unknown, but age is the most prominent risk factor. The current study was designed to test whether accumulation of advanced glycation end products (AGEs), which

  8. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  9. Translational research on advanced therapies

    Directory of Open Access Journals (Sweden)

    Filippo Belardelli

    2011-01-01

    Full Text Available Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  10. Translational research on advanced therapies.

    Science.gov (United States)

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  11. On the flexibility of grammatical advance planning during sentence production: Effects of cognitive load on multiple lexical access.

    Science.gov (United States)

    Wagner, Valentin; Jescheniak, Jörg D; Schriefers, Herbert

    2010-03-01

    Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple sentences of the form "the frog is next to the mug," the 2 nouns were found to be lexically-semantically activated to similar degrees at speech onset, as indexed by similarly sized interference effects from semantic distractors related to either the first or the second noun. When speakers used more complex sentences (including prenominal color adjectives; e.g., "the blue frog is next to the blue mug") much larger interference effects were observed for the first than the second noun, suggesting that the second noun was lexically-semantically activated before speech onset on only a subset of trials. With increased cognitive load, introduced by an additional conceptual decision task and variable utterance formats, the interference effect for the first noun was increased and the interference effect for second noun disappeared, suggesting that the scope of advance planning had been narrowed. By contrast, if cognitive load was induced by a secondary working memory task to be performed during speech planning, the interference effect for both nouns was increased, suggesting that the scope of advance planning had not been affected. In all, the data suggest that the scope of advance planning during grammatical encoding in sentence production is flexible, rather than structurally fixed.

  12. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation

    NARCIS (Netherlands)

    van Waateringe, Robert P.; Mook-Kanamori, Marjonneke J.; Slagter, Sandra N.; van der Klauw, Melanie M.; van Vliet-Ostaptchouk, Jana V.; Graaff, Reindert; Lutgers, Helen L.; Suhre, Karsten; Selim, Mohammed M. El-Din; Mook-Kanamori, Dennis O.; Wolffenbuttel, Bruce H. R.

    2017-01-01

    BACKGROUND: Skin autofluorescence, a biomarker for advanced glycation end products (AGEs) accumulation, has been shown to predict diabetes-related cardiovascular complications and is associated with several environmental and lifestyle factors. In the present study, we examined the association

  14. Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs.

    Science.gov (United States)

    Comazzi, S; Bertazzolo, W; Bonfanti, U; Spagnolo, V; Sartorelli, P

    2008-06-01

    Canine diabetes mellitus (DM) is a common metabolic disorder with long term complications, most of which are caused by glycosylation of structural proteins, decreases in antioxidant concentrations, altered osmotic balance and hypoxia due to impaired oxygen transport. Previous studies have demonstrated that under hyperglycemic conditions canine erythrocytes undergo swelling, probably due to activation of the polyol pathway. The present work aimed to assess the plasma concentration of advanced glycation end (AGE) products, stable Amadori-products generated by non-enzymatic glycosylation of proteins and the intracellular concentration of sorbitol, produced by the activation of polyol pathway in 34 blood samples from diabetic dogs and in 14 controls. AGE products were significantly higher (pdogs compared with control animals. The sorbitol concentration in erythrocytes was also significantly higher in diabetic dogs and, in particular, in poorly compensated animals and in dogs with ketonuria. In five cases that were analysed before and after clinical improvement, sorbitol concentration was found to correlate with improvement. These results suggest that non-specific glycosylation is increased and that the polyol pathway is activated in diabetic dogs in a manner that is proportionate to the severity of disease. Moreover, the concentration of AGE products and sorbitol may be useful for monitoring the onset of diabetic complications and assessing the most appropriate therapeutic approaches for management of canine DM.

  15. On the Flexibility of Grammatical Advance Planning during Sentence Production: Effects of Cognitive Load on Multiple Lexical Access

    Science.gov (United States)

    Wagner, Valentin; Jescheniak, Jorg D.; Schriefers, Herbert

    2010-01-01

    Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple…

  16. Dietary Advanced Glycation End Products and Cardiometabolic Risk.

    Science.gov (United States)

    Luévano-Contreras, Claudia; Gómez-Ojeda, Armando; Macías-Cervantes, Maciste Habacuc; Garay-Sevilla, Ma Eugenia

    2017-08-01

    This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake. Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.

  17. Synthetic fuels development in Kentucky: Four scenarios for an energy future as constructed from lessons of the past

    Science.gov (United States)

    Musulin, Mike, II

    The continued failure of synthetic fuels development in the United States to achieve commercialization has been documented through the sporadic periods of mounting corporate and government enthusiasm and high levels of research and development efforts. Four periods of enthusiasm at the national level were followed by waning intervals of shrinking financial support and sagging R&D work. The continuing cycle of mobilization and stagnation has had a corresponding history in Kentucky. To better understand the potential and the pitfalls of this type of technological development the history of synthetic fuels development in the United States is presented as background, with a more detailed analysis of synfuels development in Kentucky. The first two periods of interest in synthetic fuels immediately after the Second World War and in the 1950s did not result in any proposed plants for Kentucky, but the third and fourth periods of interest created a great deal of activity. A theoretically grounded case study is utilized in this research project to create four different scenarios for the future of synthetic fuels development. The Kentucky experience is utilized in this case study because a fifth incarnation of synthetic fuels development has been proposed for the state in the form of an integrated gasification combined cycle power plant (IGCC) to utilize coal and refuse derived fuel (RDF). The project has been awarded a grant from the U.S. Department of Energy Clean Coal Technology program. From an examination and analysis of these periods of interest and the subsequent dwindling of interest and participation, four alternative scenarios are constructed. A synfuels breakthrough scenario is described whereby IGCC becomes a viable part of the country's energy future. A multiplex scenario describes how IGCC becomes a particular niche in energy production. The status quo scenario describes how the old patterns of project failure repeat themselves. The fourth scenario describes

  18. Building research capacity and productivity among advanced practice nurses: an evaluation of the Community of Practice model.

    Science.gov (United States)

    Gullick, Janice G; West, Sandra H

    2016-03-01

    The aim of this study was to evaluate Wenger's Community of Practice as a framework for building research capacity and productivity. While research productivity is an expected domain in influential models of advanced nursing practice, internationally it remains largely unmet. Establishment of nursing research capacity precedes productivity and consequently, there is a strong imperative to identify successful capacity-building models for nursing-focussed research in busy clinical environments. Prospective, longitudinal, qualitative descriptive design was used in this study. Bruyn's participant observation framed evaluation of a Community of Practice comprising 25 advanced practice nurses. Data from focus groups, education evaluations, blog/email transcripts and field observations, collected between 2007 and 2014, were analysed using a qualitative descriptive method. The Community of Practice model invited differing levels of participation, allowed for evolution of the research community and created a rhythm of research-related interactions and enduring research relationships. Participants described the value of research for their patients and families and the significance of the developing research culture in providing richness to their practice and visibility of their work to multidisciplinary colleagues. Extensive examples of research dissemination and enrolment in doctoral programmes further confirmed this value. A Community of Practice framework is a powerful model enabling research capacity and productivity evidenced by publication. In developing a solid foundation for a nursing research culture, it should be recognized that research skills, confidence and growth develop over an extended period of time and success depends on skilled coordination and leadership. © 2015 John Wiley & Sons Ltd.

  19. Advanced glycation end products, measured in skin, vs. HbA1c in children with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Banser, Alena; Naafs, Jolanda C.; Hoorweg-Nijman, Jantine J. G.; van de Garde, Ewoudt M. W.; van der Vorst, Marja M. J.

    2016-01-01

    Background and objectiveAdvanced glycation end products (AGEs) are considered major contributors to microvascular and macrovascular complications in adult patients with diabetes mellitus. AGEs can be measured non-invasively with skin autofluorescence (sAF). The primary aim was to determine sAF

  20. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients

    NARCIS (Netherlands)

    Willemsen, Suzan; Hartog, Jasper W. L.; Hummel, Yoran M.; van Ruijven, Marieke H. I.; van der Horst, Iwan C. C.; van Veldhuisen, Dirk J.; Voors, Adriaan A.

    Aims Advanced glycation end products (AGEs) are increased in patients with diabetes and are associated with diastolic dysfunction through the formation of collagen crosslinks in the heart. The association among AGEs, diastolic function, and aerobic capacity in heart failure (HF) patients with and

  1. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Hegele, Joerg [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)], E-mail: joerg.hegele@rdls.nestle.com; Buetler, Timo; Delatour, Thierry [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2008-06-09

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N{sup {epsilon}}-fructoselysine (FL), N{sup {epsilon}}-carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 {+-} 3.81 nmol CML per {mu}mol of free Lys (Lys{sub free}) and 81.5 {+-} 87.8 nmol Pyr {mu}mol{sup -1} Lys{sub free}{sup -1} vs. 3.72 {+-} 1.29 nmol FL {mu}mol{sup -1} Lys{sub free}{sup -1}. In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 {+-} 0.08 nmol FL {mu}mol{sup -1} of protein-bound Lys (Lys{sub p-b}), 0.04 {+-} 0.03 nmol CML {mu}mol{sup -1} Lys{sub p-b}{sup -1} and 0.06 {+-} 0.02 nmol Pyr {mu}mol{sup -1} Lys{sub p-b}{sup -1}. It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products.

  2. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  3. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  4. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer.

    Science.gov (United States)

    Rojas, Armando; Añazco, Carolina; González, Ileana; Araya, Paulina

    2018-04-05

    A growing body of epidemiologic evidence suggests that people with diabetes are at a significantly higher risk of many forms of cancer. However, the molecular mechanisms underlying this association are not fully understood. Cancer cells are surrounded by a complex milieu, also known as tumor microenvironment, which contributes to the development and metastasis of tumors. Of note, one of the major components of this niche is the extracellular matrix (ECM), which becomes highly disorganized during neoplastic progression, thereby stimulating cancer cell transformation, growth and spread. One of the consequences of chronic hyperglycemia, the most frequently observed sign of diabetes and the etiological source of diabetes complications, is the irreversible glycation and oxidation of proteins and lipids leading to the formation of the advanced glycation end-products (AGEs). These compounds may covalently crosslink and biochemically modify structure and functions of many proteins, and AGEs accumulation is particularly high in long-living proteins with low biological turnover, features that are shared by most, if not all, ECM proteins. AGEs-modified proteins are recognized by AGE-binding proteins, and thus glycated ECM components have the potential to trigger Receptor for advanced glycation end-products-dependent mechanisms. The biological consequence of receptor for advanced glycation end-products activation mechanisms seems to be connected, in different ways, to drive some hallmarks of cancer onset and tumor growth. The present review intends to highlight the potential impact of ECM glycation on tumor progression by triggering receptor for advanced glycation end-products-mediated mechanisms.

  5. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    Science.gov (United States)

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.

  6. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  7. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  8. Advance Selling in the Presence of Experienced Consumers

    OpenAIRE

    Oksana Loginova; X. Hnery Wang; Chenhang Zeng

    2011-01-01

    The advance selling strategy is implemented when a firm offers consumers the opportunity to order its product in advance of the regular selling season. Advance selling reduces uncertainty for both the firm and the buyer and enables the firm to update its forecast of future demand. The distinctive feature of the present theoretical study of advance selling is that we divide consumers into two groups, experienced and inexperienced. Experienced consumers know their valuations of the product in a...

  9. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  10. Diffraction based overlay and image based overlay on production flow for advanced technology node

    Science.gov (United States)

    Blancquaert, Yoann; Dezauzier, Christophe

    2013-04-01

    One of the main challenges for lithography step is the overlay control. For the advanced technology node like 28nm and 14nm, the overlay budget becomes very tight. Two overlay techniques compete in our advanced semiconductor manufacturing: the Diffraction based Overlay (DBO) with the YieldStar S200 (ASML) and the Image Based Overlay (IBO) with ARCHER (KLA). In this paper we will compare these two methods through 3 critical production layers: Poly Gate, Contact and first metal layer. We will show the overlay results of the 2 techniques, explore the accuracy and compare the total measurement uncertainty (TMU) for the standard overlay targets of both techniques. We will see also the response and impact for the Image Based Overlay and Diffraction Based Overlay techniques through a process change like an additional Hardmask TEOS layer on the front-end stack. The importance of the target design is approached; we will propose more adapted design for image based targets. Finally we will present embedded targets in the 14 FDSOI with first results.

  11. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  12. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions.

    Science.gov (United States)

    Neviere, Remi; Yu, Yichi; Wang, Lei; Tessier, Frederic; Boulanger, Eric

    2016-08-01

    Advanced glycation end products (AGEs) play an important role for the development and/or progression of cardiovascular diseases, mainly through induction of oxidative stress and inflammation. AGEs are a heterogeneous group of molecules formed by non-enzymatic reaction of reducing sugars with amino acids of proteins, lipids and nucleic acids. AGEs are mainly formed endogenously, while recent studies suggest that diet constitutes an important exogenous source of AGEs. The presence and accumulation of AGEs in various cardiac cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes up regulation of the transcription factor nuclear factor-κB and its target genes. of the RAGE engagement stimulates oxidative stress, evokes inflammatory and fibrotic reactions, which all contribute to the development and progression of devastating cardiovascular disorders. This review discusses potential targets of glycation in cardiac cells, and underlying mechanisms that lead to heart failure with special interest on AGE-induced mitochondrial dysfunction in the myocardium.

  13. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  14. Advanced oxidation protein products — biological marker of oxidative stress = Zaawansowane produkty utleniania białek – biologiczne markery stresu oksydacyjnego

    Directory of Open Access Journals (Sweden)

    Anna Cwynar

    2016-09-01

      ABSTRACT Advanced oxidation protein products (AOPPs are mostly derivatives of oxidatively modified albumin. The results of many experimental studies confirm intensification of oxidative modifications of proteins and an increase in concentration of advanced oxidation protein products (AOPPs in different pathological conditions, particularly those with well documented involvement of oxidative stress in their etiopathogenesis, but also those where its role is not yet well understood. Currently intensive research is carried out on the possibility of using AOPPs as useful indicators for diagnosing, prognosis and monitoring of diseases.   Keywords: advanced oxidation protein products, autoimmune disease, oxidative stress   STRESZCZENIE Zaawansowane produkty utleniania białek (AOPPs, to najczęściej pochodne zmodyfikowanej oksydacyjnie albuminy. Wyniki licznych badań doświadczalnych potwierdzają nasilenie oksydacyjnych modyfikacji białek i wzrost stężenia zaawansowanych produktów utleniania białek (AOPPs w różnych stanach patologicznych, szczególnie tych o dobrze udokumentowanym udziale stresu oksydacyjnego w ich etiopatogenezie, ale także takich, w których jego rola nie jest jeszcze dobrze poznana.. Obecnie trwają intensywne badania nad możliwością wykorzystania AOPPs, jako użytecznych wskaźników do diagnozowania, prognozowania oraz monitorowania chorób.   Słowa kluczowe: zaawansowane produkty utleniania białek, choroby autoimmunologiczne, stres oksydacyjny

  15. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Advanced glycation endproducts in 35 types of seafood products consumed in eastern China

    Science.gov (United States)

    Wang, Jing; Li, Zhenxing; Pavase, Ramesh Tushar; Lin, Hong; Zou, Long; Wen, Jie; Lv, Liangtao

    2016-08-01

    Advanced glycation endproducts (AGEs) have been recognized as hazards in processed foods that can induce chronic diseases such as cardiovascular disease, diabetes, and diabetic nephropathy. In this study, we investigated the AGEs contents of 35 types of industrial seafood products that are consumed frequently in eastern China. Total fluorescent AGEs level and Nɛ-carboxymethyl-lysine (CML) content were evaluated by fluorescence spectrophotometry and gas chromatography-mass spectrometry (GC-MS), respectively. The level of total fluorescent AGEs in seafood samples ranged from 39.37 to 1178.3 AU, and was higher in canned and packaged instant aquatic products that were processed at high temperatures. The CML content in seafood samples ranged from 44.8 to 439.1 mg per kg dried sample, and was higher in roasted seafood samples. The total fluorescent AGEs and CML content increased when seafood underwent high-temperature processing, but did not show an obvious correlation. The present study suggested that commonly consumed seafood contains different levels of AGEs, and the seafood processed at high temperatures always displays a high level of either AGEs or CML.

  17. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.

    Science.gov (United States)

    Anjum, Anbreen; Zuber, Mohammad; Zia, Khalid Mahmood; Noreen, Aqdas; Anjum, Muhammad Naveed; Tabasum, Shazia

    2016-08-01

    Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  19. Association of peripheral neuropathy with circulating advanced glycation end products, soluble receptor for advanced glycation end products and other risk factors in patients with type 2 diabetes.

    Science.gov (United States)

    Aubert, C E; Michel, P-L; Gillery, P; Jaisson, S; Fonfrede, M; Morel, F; Hartemann, A; Bourron, O

    2014-11-01

    The pathogenesis of diabetic peripheral neuropathy remains uncertain and nonenzymatic glycoxidation is one of the contributing mechanisms. The aim of this study was to assess the respective relationship of diabetic peripheral neuropathy with glycoxidation, compared with other identified risk factors, in patients with type 2 diabetes. We included 198 patients with type 2 diabetes and high risk for vascular complications. Circulating concentrations of three advanced glycation end products (carboxymethyllysine, methyl-glyoxal-hydroimidazolone-1, pentosidine) and of their soluble receptor (sRAGE) were measured. Peripheral neuropathy was assessed by the neuropathy disability score and by the monofilament test and defined as either an abnormal monofilament test and/or a neuropathy disability score ≥6. Multivariate regression analyses were performed adjusting for potential confounding factors for neuropathy: age, gender, diabetes duration, current smoking, systolic blood pressure, waist circumference, height, peripheral arterial occlusive disease, glycated haemoglobin, estimated glomerular filtration rate and lipid profile. Prevalence of peripheral neuropathy was 20.7%. sRAGE and carboxymethyllysine were independently and positively associated with the presence of peripheral neuropathy. No significant association was found between peripheral neuropathy and methyl-glyoxal-hydroimidazolone-1 or pentosidine. Waist circumference, height and peripheral arterial occlusive disease were independently associated with peripheral neuropathy. Carboxymethyllysine and sRAGE were independently associated with peripheral neuropathy in patients with type 2 diabetes. Although the conclusions are limited by the absence of a healthy control population, this study confirms the relationship between advanced glycoxidation and diabetic peripheral neuropathy, independently of other risk factors. Copyright © 2014 John Wiley & Sons, Ltd.

  20. South Africa: poised for economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Zuma, J. (African National Congress (South Africa))

    1993-01-01

    South Africa is now emerging from the period of Apartheid. Elections will be held soon, but the economic damage caused by Apartheid has to be rectified. Partly this will be through an industrial strategy, and the minerals industry will play its part. The coal mining industry provides a large proportion of South Africa's exports and 90% of electricity. It is also the basis of a synfuels industry. The coal industry will continue to be an important source of exports, either directly, or as the provider of power to energy intensive industries such as aluminium production.

  1. Value analysis for advanced technology products

    Science.gov (United States)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  2. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  3. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  4. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Berg, T J; Snorgaard, O; Faber, J

    1999-01-01

    Impairment of left ventricular diastolic function, possibly caused by increased collagen cross-linking of the cardiac muscle, is common in patients with type 1 diabetes even without coronary artery disease. Advanced glycation end products (AGEs) cross-link tissue collagen and are found within...

  5. The effect of an insulin releasing agent, BTS 67582, on advanced glycation end product formation in vitro.

    Science.gov (United States)

    Simpson, A E; Jones, R B

    1999-01-01

    BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl) guanidine fumarate) is an insulin-releasing agent currently in phase II clinical trials. Its effect on advanced glycation end product (AGE) formation was measured in the BSA/D-glucose and L-lysine/glucose-6-phosphate assay systems and Amadori product formation was measured in the BSA/D-glucose assay system, following a 3 week incubation period. In the BSA/D-glucose assay system, 200 mM BTS 67582 caused an approximate 70% inhibition in AGE formation (pBTS 67582 and 200 mM aminoguanidine-HCl retarded Amadori product formation by 88% (pBTS 67582 at 20 mM and 2 mM was shown to inhibit Amadori product formation by 67% and 57%, respectively, (pBTS 67582 and 200 mM aminoguanidine-HCl were shown to inhibit AGE formation by about 70% and 96% (p<0.001), respectively. Tolbutamide (200 microM) and glibenclamide (100 microM) had no significant effect on AGE formation.

  6. The receptor for advanced glycation end products (RAGE) and the lung.

    LENUS (Irish Health Repository)

    Buckley, Stephen T

    2010-01-01

    The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

  7. Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Ran, Jingrun; Zhu, Bicheng; Qiao, Shi-Zhang

    2017-08-21

    Transitional metals are widely used as co-catalysts boosting photocatalytic H 2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells

    OpenAIRE

    Yang, Ke; Wang, Xiao Qun; He, Yu Song; Lu, Lin; Chen, Qiu Jing; Liu, Jing; Shen, Wei Feng

    2010-01-01

    Abstract Background Advanced glycation products (AGEs), as endogenous inflammatory mediator, compromise the physiological function of mesenchymal stem cells (MSCs). MSCs have a potential role in cell replacement therapy in acute myocardial infarction and ischemic cardiomyopathy. However, mechanisms of AGEs on MSCs are still not unveiled. Methods Reactive oxygen species (ROS), genes regulation, cell proliferation and migration have been detected by AGE-BSA stimulated MSCs. Results We found tha...

  9. Advancing Consumer Product Composition and Chemical ...

    Science.gov (United States)

    This presentation describes EPA efforts to collect, model, and measure publically available consumer product data for use in exposure assessment. The development of the ORD Chemicals and Products database will be described, as will machine-learning based models for predicting chemical function. Finally, the talk describes new mass spectrometry-based methods for measuring chemicals in formulation and articles. This presentation is an invited talk to the ICCA-LRI workshop "Fit-For-Purpose Exposure Assessments For Risk-Based Decision Making". The talk will share EPA efforts to characterize the components of consumer products for use in exposure assessment with the international exposure science community.

  10. Improvement of health-related quality of life and work productivity in chronic hepatitis C patients with early and advanced fibrosis treated with ledipasvir and sofosbuvir.

    Science.gov (United States)

    Younossi, Zobair M; Stepanova, Maria; Afdhal, Nezam; Kowdley, Kris V; Zeuzem, Stefan; Henry, Linda; Hunt, Sharon L; Marcellin, Patrick

    2015-08-01

    New interferon-free anti-HCV regimens are highly efficacious with a favorable safety profile. We assessed health-related quality of life (HRQL) and work productivity in patients with different stages of hepatic fibrosis treated with sofosbuvir+ledipasvir. Four questionnaires [Chronic Liver Disease Questionnaire-HCV (CLDQ-HCV), Short Form-36 (SF-36), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), Work Productivity and Activity Index:Specific Health Problem (WPAI:SHP)] were administered at baseline, during, and after treatment with sofosbuvir+ledipasvir+ribavirin or sofosbuvir+ledipasvir (ION-1,2,3 clinical trials). Metavir fibrosis stage was determined from pre-treatment liver biopsies. There were 1005 patients included (stage F0: n=94; F1: n=311; F2: n=301; F3: n=197; F4: n=102). At baseline, patients with more advanced fibrosis had more HRQL impairments, predominantly related to physical functioning (stage 0 vs. stage 4 by up to 0.126 on a normalized 0-1 scale p0.05 across fibrosis stages). In multivariate analysis, advanced fibrosis was independently associated with impairment of HRQL and work productivity (beta up to -0.056 in comparison with none-to-mild fibrosis, pwork productivity after viral clearance was not related to the stage of fibrosis (all p>0.05). Although advanced hepatic fibrosis is associated with HRQL and work productivity impairment, viral eradication with sofosbuvir+ledipasvir leads to HRQL improvement regardless of fibrosis stage. HCV patients with early fibrosis experience similar improvement of patient reported outcomes as those with advanced fibrosis. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  12. Regulation of advanced therapy medicinal products in Europe and the role of academia.

    Science.gov (United States)

    Pearce, Kim F; Hildebrandt, Martin; Greinix, Hildegard; Scheding, Stefan; Koehl, Ulrike; Worel, Nina; Apperley, Jane; Edinger, Matthius; Hauser, Andrea; Mischak-Weissinger, Eva; Dickinson, Anne M; Lowdell, Mark W

    2014-03-01

    Advanced therapy medicinal products (ATMP) are gene therapy, somatic cell therapy or tissue-engineered products regulated under (EC) No. 1394/2007 to ensure their free movement within the European Union while guaranteeing the highest level of health protection for patients. Academic good manufacturing practice (GMP) centers are major contributors in the development of ATMPs and this study assessed the impact of regulations on them. European academic and non-industrial facilities (n = 747) were contacted, and a representative sample of 50 replied to a detailed questionnaire. Experienced centres were further selected in every Member State (MS) for semi-structured interviews. Indicators of ATMP production and development success were statistically assessed, and opinions about directive implementation were documented. Facilities experienced in manufacturing cell therapy transplant products are the most successful in developing ATMPs. New centres lacking this background struggle to enter the field, and there remains a shortage of facilities in academia participating in translational research. This is compounded by heterogeneous implementation of the regulations across MS. GMP facilities successfully developing ATMPs are present in all MS. However, the implementation of regulations is heterogeneous between MS, with substantial differences in the definition of ATMPs and in the approved manufacturing environment. The cost of GMP compliance is underestimated by research funding bodies. This is detrimental to development of new ATMPs and commercialization of any that are successful in early clinical trials. Academic GMP practitioners should strengthen their political visibility and contribute to the development of functional and effective European Union legislation in this field. Copyright © 2014 International Society for Cellular Therapy. All rights reserved.

  13. Advanced Therapy Medicinal Products in type I diabetes mellitus: technological and regulatory challenges

    Directory of Open Access Journals (Sweden)

    Camila Leal-Lopes

    2018-02-01

    Full Text Available Introduction: Type 1 Diabetes mellitus (T1DM is an autoimmune disorder which arises from the destruction of insulin-producing pancreatic β-cells. Currently, Brazil’s advanced therapy medicinal products (ATMP, developed for clinical research and therapeutic purposes, take place in the so-called Cellular Technology Centers (CTC, according to the Resolution nº. 9/2011 of the Collegiate Board of Directors (RDC, enacted by the National Health Surveillance Agency (Anvisa. Objective: This study was conducted with the main objective of describing and discussing the development of ATMP for T1DM treatment. Method: A qualitative research, narrative review and critical discussion of the literature were under taken. Results: ATMP promote new therapeutic approaches for Diabetes, holding great potential to restore the patients’ endogenous insulin secretion, improving their life quality, overcoming the chronic complications of Diabetes and reducing the socioeconomic burden. Nowadays, ATMP in T1DM comprise: a cell therapy; b gene therapy products; c tissue engineering and d ATMPassociated to biopharmaceutical products. Conclusions: Further research should contribute to stimulate public and private organizations to effectively act towards reducing the impact of Diabetes on individuals and the society as a whole. It is essential that Brazilian legislation closely follows the biotechnological developments, supporting the scientific progress and benefiting T1DM patients with modern and cutting-edge therapies.

  14. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  15. Oncology Advanced Practitioners Bring Advanced Community Oncology Care.

    Science.gov (United States)

    Vogel, Wendy H

    2016-01-01

    Oncology care is becoming increasingly complex. The interprofessional team concept of care is necessary to meet projected oncology professional shortages, as well as to provide superior oncology care. The oncology advanced practitioner (AP) is a licensed health care professional who has completed advanced training in nursing or pharmacy or has completed training as a physician assistant. Oncology APs increase practice productivity and efficiency. Proven to be cost effective, APs may perform varied roles in an oncology practice. Integrating an AP into an oncology practice requires forethought given to the type of collaborative model desired, role expectations, scheduling, training, and mentoring.

  16. Advanced Therapy Medicinal Products (ATMPand exemptions to the Regulation 1394/2007: how confident can we be? An exploratory analysis.

    Directory of Open Access Journals (Sweden)

    Philippe eVan Wilder

    2012-02-01

    Full Text Available The market authorisation procedure for medicinal products for human use is relying on their demonstrated efficacy, safety and pharmaceutical quality. This applies to all medicinal products whether of chemical or biological origin. Since October 2009, the first advanced therapy medicinal product (ATMP has been authorised through the centralized procedure. ATMPs are gene therapy medicinal products, somatic cell therapy medicinal products or tissue-engineered products.An appropriate ATMP- Regulation is dealing with ATMP requirements.Two exemptions are foreseen to the ATMP-Regulation: a. Products, which were legally on the Community market when the Regulation became applicable, should comply to the Regulation by 30 December 2012. b.the hospital exemption rule for non routine products for an individual patient. In this work we explored whether the actual application of the Regulation on ATMPs is in line with the aim of the Regulation in terms of guaranteeing the highest level of health protection for patients. Based on the analysis of the relative efficacy of the only EC authorized ATMP and its exempted alternatives, there is evidence against this Regulation 1394/2007 assumption.

  17. Advanced Therapy Medicinal Products and Exemptions to the Regulation 1394/2007: How Confident Can We be? An Exploratory Analysis.

    Science.gov (United States)

    Van Wilder, Philippe

    2012-01-01

    The market authorization procedure for medicinal products for human use is relying on their demonstrated efficacy, safety, and pharmaceutical quality. This applies to all medicinal products whether of chemical or biological origin. Since October 2009, the first advanced therapy medicinal product (ATMP) has been authorized through the centralized procedure. ATMPs are gene therapy medicinal products, somatic cell therapy medicinal products or tissue-engineered products. An appropriate ATMP - Regulation is dealing with ATMP requirements. Two exemptions are foreseen to the ATMP Regulation: (a) Products, which were legally on the Community market when the Regulation became applicable, should comply to the Regulation by December 30, 2012. (b) The hospital exemption rule for non-routine products for an individual patient. In this work we explored whether the actual application of the Regulation on ATMPs is in line with the aim of the Regulation in terms of guaranteeing the highest level of health protection for patients. Based on the analysis of the relative efficacy of the only EC authorized ATMP and its exempted alternatives, there is evidence against this Regulation 1394/2007 assumption.

  18. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Directory of Open Access Journals (Sweden)

    Klaudia Borysiuk

    2018-05-01

    Full Text Available Nitrate (NO3– and ammonium (NH4+ are prevalent nitrogen (N sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG, which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins in the contribution to NH4+ toxicity symptoms in Arabidopsis.

  19. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Science.gov (United States)

    Borysiuk, Klaudia; Ostaszewska-Bugajska, Monika; Vaultier, Marie-Noëlle; Hasenfratz-Sauder, Marie-Paule; Szal, Bożena

    2018-01-01

    Nitrate (NO3–) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis. PMID:29881392

  20. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity.

    Science.gov (United States)

    Turner, David P

    2015-05-15

    Low income, poor diet, obesity, and a lack of exercise are interrelated lifestyle factors that can profoundly alter our biologic make up to increase cancer risk, growth, and development. We recently reported a potential mechanistic link between carbohydrate-derived metabolites and cancer, which may provide a biologic consequence of lifestyle that can directly affect tumor biology. Advanced glycation end-products (AGE) are reactive metabolites produced as a by-product of sugar metabolism. Failure to remove these highly reactive metabolites can lead to protein damage, aberrant cell signaling, increased stress responses, and decreased genetic fidelity. Critically, AGE accumulation is also directly affected by our lifestyle choices and shows a race-specific, tumor-dependent pattern of accumulation in cancer patients. This review will discuss the contribution of AGEs to the cancer phenotype, with a particular emphasis on their biologic links with the socioeconomic and environmental risk factors that drive cancer disparity. Given the potential benefits of lifestyle changes and the potential biologic role of AGEs in promoting cancer, opportunities exist for collaborations affecting basic, translational, epidemiologic, and cancer prevention initiatives. ©2015 American Association for Cancer Research.

  1. Higher plasma soluble Receptor for Advanced Glycation End Products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes

    DEFF Research Database (Denmark)

    Nin, Johanna W M; Jorsal, Anders; Ferreira, Isabel

    2010-01-01

    To investigate the associations of plasma levels of soluble receptor for advanced glycation end products (sRAGE) with incident cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes and the extent to which any such associations could be explained by endothelial and renal dysfunct......To investigate the associations of plasma levels of soluble receptor for advanced glycation end products (sRAGE) with incident cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes and the extent to which any such associations could be explained by endothelial and renal...

  2. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  3. FRM: ADVANCED FOREST PRODUCTS MARKETING

    African Journals Online (AJOL)

    user

    techniques and high cost of transportation are some of the problems encountered in the production and marketing of prosopis condiment in Makurdi metropolis. Key words: ... this, forest managers should no longer be concerned solely with ...

  4. New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO_3

    International Nuclear Information System (INIS)

    El Naggar, Ahmed M.A.; Gobara, Heba M.; El Sayed, Hussien A.; Soliman, Fathi S.

    2015-01-01

    Graphical abstract: Feedstock-to-gases & hydrogen conversion using the Mo-SBA15 catalyst compared to commercial catalysts. - Highlights: • Synthesis of meso-porous molybdenum oxide catalyst in SBA framework. • Confirming the structural characteristics of this catalyst by different analyses. • New trend for the H_2 & CH_4, production is revealed in this work. • Nano-carbon species of well-ordered structure was produced. • In-situ non-pressurized-low temperature wax isomerization was imposed. - Abstract: The alternative energy sources in general and hydrogen based energy in particular have been currently grabbing great attention. Hydrogen is an efficient green source for power generation owing to its huge energy content. The operational costs and the hydrogen output are the key factors in the selection of a certain technique for the hydrogen production industrially. This study summarizes a new route for hydrogen production starting from a bit complicated hydrogen-containing molecules. Particular attention is given during this work towards a direct pyrrolysis catalytic conversion of long chains n-paraffin into hydrogen with in-situ production of nano-structured carbon particles. The simultaneous isomerization of the n-paraffin contented in the feedstock is also discussed during this process. This research study had provided new advances in the hydrogen production based on carrying out the production process at non-severe conditions namely; low operational temperatures and no pressure was applied. The introduction of a meso-porous molybdenum oxide catalyst for the catalytic hydrogen production is also a point of novelty for the presented work. Promising results have been disclosed at the end of this investigation; approximately 60 wt.% of the feedstock was converted to fuel gases while nearly 30 wt.% of the feed had turned as nano-carbon species. The hydrogen productivity had been detected as high as 42 wt.% of the original feedstock. This in fact might

  5. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production.

    Science.gov (United States)

    Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N

    2017-07-01

    Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.

  6. Inter-subject variability modulates phonological advance planning in the production of adjective-noun phrases.

    Science.gov (United States)

    Michel Lange, Violaine; Laganaro, Marina

    2014-01-01

    The literature on advance phonological planning in adjective-noun phrases (NPs) presents diverging results: while many experimental studies suggest that the entire NP is encoded before articulation, other results favor a span of encoding limited to the first word. Although cross-linguistic differences in the structure of adjective-NPs may account for some of these contrasting results, divergences have been reported even among similar languages and syntactic structures. Here we examined whether inter-individual differences account for variability in the span of phonological planning in the production of French NPs, where previous results indicated encoding limited to the first word. The span of phonological encoding is tested with the picture-word interference (PWI) paradigm using phonological distractors related to the noun or to the adjective of the NPs. In Experiment 1, phonological priming effects were limited to the first word in adjective NPs whichever the position of the adjective (pre-nominal or post-nominal). Crucially, phonological priming effects on the second word interacted with speakers' production speed suggesting different encoding strategies for participants. In Experiment 2, we tested this hypothesis further with a larger group of participants. Results clearly showed that slow and fast initializing participants presented different phonological priming patterns on the last element of adjective-NPs: while the first word was primed by a distractor for all speakers, only the slow speaker group presented a priming effect on the second element of the NP. These results show that the span of phonological encoding is modulated by inter-individual strategies: in experimental paradigms some speakers plan word by word whereas others encode beyond the initial word. We suggest that the diverging results reported in the literature on advance phonological planning may partly be reconciled in light of the present results.

  7. Recent advances in P/M-tantalum products

    International Nuclear Information System (INIS)

    Kumar, P.; Uhlenhut, H.

    2001-01-01

    The metallurgical grade tantalum powder is used for producing parts and mill products. Some of the key requirements include purity, physical characteristics (flow, fill density and compressibility) and interstitial contents. A process to produce 99.99 % pure tantalum powder with less than 150 ppm oxygen has been developed. This powder was consolidated into metallurgical products via conventional P/M processing; resulting products had high purity and low oxygen. It also retained fine grain-size and uniform properties inherent in P/M-derived products. In addition, the desired crystallographic texture was obtained by controlled thermo-mechanical processing (TMP) of the consolidated powder. Fully dense products of this powder were tested for various applications, such as deep drawing, sputtering, ballistics and capacitors. Critical functional requirements in these applications along with the results of evaluations are discussed. (author)

  8. Advanced worker protection system

    International Nuclear Information System (INIS)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-01-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D ampersand D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D ampersand D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D ampersand D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration

  9. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  10. Risk of discontinuation of Advanced Therapy Medicinal Products clinical trials.

    Science.gov (United States)

    Hanna, Eve; Rémuzat, Cecile; Auquier, Pascal; Toumi, Mondher

    2016-01-01

    Advanced therapy medicinal products (ATMPs) constitute a class of innovative products that encompasses gene therapy, somatic cell therapy, and tissue-engineered products (TEP). There is an increased investment of commercial and non-commercial sponsors in this field and a growing number of ATMPs randomized clinical trials (RCT) and patients enrolled in such trials. RCT generate data to prove the efficacy of a new therapy, but the discontinuation of RCTs wastes scarce resources. Our objective is to identify the number and characteristics of discontinued ATMPs trials in order to evaluate the rate of discontinuation. We searched for ATMPs trials conducted between 1999 to June 2015 using three databases, which are Clinicaltrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the EU Drug Regulating Authorities Clinical Trials (EudraCT). We selected the ATMPs trials after elimination of the duplicates. We identified the disease areas and the sponsors as commercial or non-commercial organizations. We classified ATMPs by type and trial status, that is, ongoing, completed, terminated, discontinued, and prematurely ended. Then, we calculated the rate of discontinuation. Between 1999 and June 2015, 143 withdrawn, terminated, or prematurely ended ATMPs clinical trials were identified. Between 1999 and June 2013, 474 ongoing and completed clinical trials were identified. Therefore, the rate of discontinuation of ATMPs trials is 23.18%, similar to that for non-ATMPs drugs in development. The probability of discontinuation is, respectively, 27.35, 16.28, and 16.34% for cell therapies, gene therapies, and TEP. The highest discontinuation rate is for oncology (43%), followed by cardiology (19.2%). It is almost the same for commercial and non-commercial sponsors; therefore, the discontinuation reason may not be financially driven. No failure risk rate per development phase is available for ATMPs. The discontinuation rate may prove helpful when assessing the

  11. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    Directory of Open Access Journals (Sweden)

    Sylvestre Uwizeyemungu

    2015-10-01

    Full Text Available Manufacturing small and medium-sized enterprises (SMEs are more and more adopting advanced manufacturing technologies (AMT aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types of AMT grouped into 5 categories, we derived three AMT assimilation patterns through a cluster analysis procedure combining hierarchical and non-hierarchical clustering algorithms. The analysis of the relationship between AMT assimilation patterns and product innovation performance shows a rather unexpected picture: in spite of the existence of clearly distinct patterns of AMT assimilation, we find no significant relationship between any pattern and product innovation performance. Instead, we find the organizational and environmental context of SMEs to be more determinant for product innovation performance than any of the AMT assimilation patterns. From a practical point of view, this study indicates that manufacturing SMEs managers interested in fostering their innovation capabilities through AMT assimilation need to be aware of the contingency effects of their organizational size, age, and sector of activity.

  12. Recent Advances in Ruminant Nutrition

    Directory of Open Access Journals (Sweden)

    Hasan Rüştü Kutlu

    2014-01-01

    Full Text Available One of the most industrialized animal production branches of ruminant production successfully requires a blending of theoretical knowledge of nutritional principles with practical stockmanship, maintaining health and dealing with numbers. It is well known that high yielding, dairy cows, require balanced diet with adequate nutrients for yielding. This is not provided with only a few feedstuffs. Milk production in dairy cows is related to the improvements in genetic merit of farm animals and also developments in feed science, feed technology and animal nutrition. In particular, feeds and feed technology studies associated with sustainability, economical perspectives and product quality in the last decade have been in advance. In the present work, recent advances in feed sources and feed technology, minerals (macro and trace minerals , vitamins and amino acids, feed additives (antibiotics alternative growth stimulants, rumen modulator, organic acids, antioxidants, enzymes, plant extracts, nutrition-products (meat-milk-progeny quality and functional food production (milk, meat nutrition-reproduction, nutrition-animal health, nutrition-environmental temperature, nutrition-global warming were evaluated.

  13. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL

    International Nuclear Information System (INIS)

    Albrecht H. Mayer

    2000-01-01

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions

  14. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  15. Production of potato minitubers using advanced environmental control technologies developed for growing plants in space

    Science.gov (United States)

    Britt, Robert G.

    1998-01-01

    Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions, rather than by the thousands which are currently produced in advanced seed potato systems, a new-dimension in seed potato development, breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system, higher quality potato production, and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

  16. Advancing the science of Forest Hydrology

    Science.gov (United States)

    Devendra M. Amatya; R. Wayne Skaggs; Carl C. Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has...

  17. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  18. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  19. Advanced TCA Backplane Tester

    CERN Document Server

    Oltean, Alexandra Dana

    2004-01-01

    At the beginning of 2003, the PICMG group adopted the AdvancedTCA (Advanced Telecom Computing Architecture) standard. The 10Gb/s backplane of the AdvancedTCA chassis is well specified in the standard but it remains however a high end product, which can be itself subject to printed circuit board manufacturing control problems that could greatly affect its quality control. In order to study the practical aspects of high speed Ethernet switching at 10Gb/s and to validate the signal integrity of the AdvancedTCA backplane, we developed a Backplane Tester. The tester system is able of running monitored PRBS traffic at 3.125Gb/s over every link on the AdvancedTCA backplane simultaneously and to monitor any possible connectivity failure immediately in terms of link and slot position inside the chassis. The present report presents the architectural hardware design, the control structure and software aspects of the AdvancedTCA Backplane Tester design.

  20. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; van der Heide, Jaap J. Homan; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    Background. Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal

  1. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; Homan van der Heide, Jaap J.; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    2006-01-01

    Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal transplant

  2. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  3. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  4. Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

  5. Overview of alternate-fuel fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1980-01-01

    Alternate fuels (AFs) such as Cat-D, D- 3 He and p- 11 B offer the potential advantages of elimination of tritium breeding and reduced energy release in neutrons. An adequate energy balance appears exceedingly difficult to achieve with proton-based fuels such as p- 11 B. Thus Cat-D, which can ignite at temperatures in the range of 30 to 40 keV, represents the logical near-term candidate. An attractive variation which adds flexibility would be to develop semi-catalyzed-D plants for synfuel production with simultaneous generation of 3 He for use in D- 3 He satellite electrical power plants. These approaches and problems are discussed

  6. Advanced Analytics service to enhance workflow control at the ATLAS Production System

    CERN Document Server

    Titov, Mikhail; The ATLAS collaboration

    2018-01-01

    Modern workload management systems that are responsible for central data production and processing in High Energy and Nuclear Physics experiments have highly complicated architectures and require a specialized control service for resource and processing components balancing. Such a service represents a comprehensive set of analytical tools, management utilities and monitoring views aimed at providing a deep understanding of internal processes, and is considered as an extension for situational awareness analytic service. Its key points are analysis of task processing, e.g., selection and regulation of key task features that affect its processing the most; modeling of processed data lifecycles for further analysis, e.g., generate guidelines for particular stage of data processing; and forecasting processes with focus on data and tasks states as well as on the management system itself, e.g., to detect the source of any potential malfunction. The prototype of the advanced analytics service will be an essential pa...

  7. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129 in Food and Beverages Products

    Directory of Open Access Journals (Sweden)

    Shafiquzzaman eSiddiquee

    2016-05-01

    Full Text Available Allura Red AC (E129 is an azo dye that widely used in drinks, juices, bakery, meat and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder (ADHD, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R' = aromatic. Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake (ADI, toxicology and extraction methods.

  8. Design and simulation of an automation system of a production process and fractionation of 131I, using strategies of advanced control

    International Nuclear Information System (INIS)

    Paez, Jose; Arias, Pablo; Miranda, Jesus

    2013-01-01

    In this report, the results are obtained in the design and simulation of a control system using advanced strategies in a production cell in the Plant Production of Radioisotopes of IPEN. The results demonstrate that the temperature of the coalition oven is stabilized after 30 minutes, being constituted in an advantage to obtain the maximum yield of the cell production of 131 I; also, an integral good controller has been designed that allows to obtain a mathematical model that reproduces with enough accuracy the behavior of the process. With the final simulation it has been to demonstrate that the System Control of Temperature of the Cell Production of 131 I is a controllable system and allows to carry out the respective sequence with other variables of control of the production cell. (author)

  9. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    Science.gov (United States)

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  10. [Requirements for long-term follow-up on efficacy and safety of advanced therapy medicinal products. Risk management and traceability].

    Science.gov (United States)

    Klug, B; Reinhardt, J; Schröder, C

    2010-01-01

    Advanced therapy medicinal products (ATMPs) are an innovative treatment option. To promote timely access of the innovative medicinal product and to safeguard public health, new elements have been introduced into legislation. A key element of the ATMP regulation is the requirement for long-term follow-up on safety and efficacy of patients enrolled in clinical trials with ATMPs, which is beyond the routine requirements on pharmacovigilance. For gene therapy medicinal products, a guideline on long-term follow-up, which lays down the technical requirements, is available. A further key element of the ATMP regulation is the traceability of the starting materials used to manufacture the ATMP. A common European coding system is imperative to ensure the traceability of starting materials, especially across the borders of European Member States.

  11. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  12. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  13. Polymorphism screening of four genes encoding advanced glycation end-product putative receptors. Association study with nephropathy in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Poirier, Odette; Nicaud, Viviane; Vionnet, N

    2001-01-01

    Advanced glycation end-products (AGEs) may play an important role in the pathogenesis and progression of cardiovascular and renal complications of diabetes. Four putative AGE receptors (RAGEs), AGE-R1, AGE-R2, and AGE-R3 have been described. In this study, we scanned the sequence of the genes enc...

  14. Recent advances in Phytosterol Oxidation Products.

    Science.gov (United States)

    O'Callaghan, Yvonne; McCarthy, Florence O; O'Brien, Nora M

    2014-04-11

    Phytosterols and their oxidation products have become increasingly investigated in recent years with respect to their roles in diet and nutrition. We present a comprehensive review of recent literature on Phytosterol Oxidation Products (POP) identifying critical areas for future investigation. It is evident that POP are formed on food storage/preparation; are absorbed and found in human serum; do not directly affect cholesterol absorption; have evidence of atherogenicity and inflammation; have distinct levels of cytotoxicity; are implicated with high levels of oxidative stress, glutathione depletion, mitochondrial dysfunction and elevated caspase activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Gholamreza Salehi Jouzani

    2015-03-01

    Full Text Available Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

  16. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  17. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  18. Role of innovative technologies under the global zero emissions scenarios

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Konishi, Satoshi; Ishihara, Keiichi; Tezuka, Tetsuo; Yasuoka, Rieko; Nishio, Masahiro

    2016-01-01

    Highlights: • We modeled a zero emissions scenario based on the A1T scenario of IPCC-SRES. • We conducted global modeling by minimizing costs of energy, biomass, and materials. • A variety of advanced technology innovations were considered and incorporated. • Results suggest that zero emissions scenario may be possible in this century. • We revealed energy supply structure under the zero emissions scenarios. - Abstract: This study investigated zero emissions scenarios with following two originalities compared to various existing studies. One is that we based on A1T society of SRES (Special Report on Emissions Scenario) of IPCC (Intergovernmental Panel on Climate Change) compared to existing studies on those of B1 or B2. The second one is that various innovative technologies were considered and incorporated, such as biomass energy with carbon capture and storage (BECCS), and advanced nuclear technologies including hydrogen or synfuel production. We conducted global modeling over the period 2010–2150 in which energy, materials, and biomass and foods supply costs were minimized by linear programming. We found following features of energy supply structure in A1T scenario. Since the electric demand in A1T scenario in 2100 is two times larger than the others, (1) renewable energy which solely produce electricity, nuclear, and fossil energy with CCS (FECCS) especially coal are main sources of electricity, (2) renewable which can supply heat, namely BECCS and geothermal, satisfies the sector, and (3) hydrogen from coal is introduced in transport sector. It can be concluded that the zero emission energy systems with global economic growth will be possible, by development and deployment of ambitious advanced energy technologies.

  19. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  20. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  1. Advancing Student Productivity: An Introduction to Evernote

    Science.gov (United States)

    Korzaan, Melinda; Lawrence, Cameron

    2016-01-01

    This lab exercise exposes students to Evernote, which is a powerful productivity application that has gained significant purchase in professional work environments. In many academic settings the introductory computer applications course has a specific focus on standard productivity applications such as MS Word and MS Excel. While ensuring fluency…

  2. Modelling of nitric acid production in the Advanced Cold Process Canister due to irradiation of moist air

    International Nuclear Information System (INIS)

    Henshaw, J.

    1994-01-01

    This report summarises the work performed for SKB of Sweden on the modelling of nitric acid production in the gaseous environment of the Advanced Cold Process Canister (ACPC). The model solves the simultaneous chemical rate equations describing the radiation chemistry of He/Ar/N 2 /O 2 /H 2 O gas mixture, involving over 200 chemical reactions. The amount of nitric acid produced as a function of time for typical ACPC conditions has been calculated using the model and the results reported. 11 refs, 11 figs, 1 tab

  3. Clinical Development and Commercialization of Advanced Therapy Medicinal Products in the European Union: How Are the Product Pipeline and Regulatory Framework Evolving?

    Science.gov (United States)

    Boráň, Tomáš; Menezes-Ferreira, Margarida; Reischl, Ilona; Celis, Patrick; Ferry, Nicolas; Gänsbacher, Bernd; Krafft, Hartmut; Lipucci di Paola, Michele; Sladowski, Dariusz; Salmikangas, Paula

    2017-09-01

    The research and development of advanced therapy medicinal products (ATMPs) has been active in Europe and worldwide during recent years. Yet, the number of licensed products remains low. The main expected legal change in the near future in the European Union (EU) concerns the regulation on clinical trials (536/2014), which will come into force in 2018. With this new framework, a more harmonized and swift process for approval of clinical trials is anticipated, which is expected to support the entry of new innovations into the EU market. A survey on ATMPs in clinical trials during 2010-2015 in the EU was conducted in order to study the trends of ATMP development since the earlier survey published in 2012. According to the results, the number of clinical trials using ATMPs is slowly increasing in the EU. Yet, the focus is still in early development, and the projects are mainly carried out by small and medium-sized enterprises, academia, and hospitals. Oncology is the main area of clinical development. Yet, the balance between cell-based products and gene therapy medicinal products in this area may be changing in the future due to the new T-cell technologies. Many limitations and challenges are identified for ATMP development, requiring proportionate regulatory requirements. On the other hand, for such a novel field, the developers should be active in considering possible constraints and actively engage with authorities to look for solutions. This article provides up to-date information on forthcoming regulatory improvements and discusses the main challenges hampering the commercialization of ATMPs in the EU.

  4. EU decision-making for marketing authorization of advanced therapy medicinal products: a case study.

    Science.gov (United States)

    de Wilde, Sofieke; Coppens, Delphi G M; Hoekman, Jarno; de Bruin, Marie L; Leufkens, Hubert G M; Guchelaar, Henk-Jan; Meij, Pauline

    2018-03-21

    A comparative analysis of assessment procedures for authorization of all European Union (EU) applications for advanced therapy medicinal products (ATMPs) shows that negative opinions were associated with a lack of clinical efficacy and identified severe safety risks. Unmet medical need was often considered in positive opinions and outweighed scientific uncertainties. Numerous quality issues illustrate the difficulties in this domain for ATMP development. Altogether, it suggests that setting appropriate standards for ATMP authorization in Europe, similar to elsewhere, is a learning experience. The experimental characteristics of authorized ATMPs urge regulators, industry, and clinical practice to pay accurate attention to post-marketing risk management to limit patient risk. Methodologies for ATMP development and regulatory evaluations need to be continuously evaluated for the field to flourish. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Advanced display object selection methods for enhancing user-computer productivity

    Science.gov (United States)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  6. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS.

    Science.gov (United States)

    Garg, Deepika; Merhi, Zaher

    2016-10-21

    Women with PCOS have elevated levels of the harmful Advanced Glycation End Products (AGEs), which are highly reactive molecules formed after glycation of lipids and proteins. Additionally, AGEs accumulate in the ovaries of women with PCOS potentially contributing to the well-documented abnormal steroidogenesis and folliculogenesis. A systematic review of articles and abstracts available in PubMed was conducted and presented in a systemic manner. This article reports changes in steroidogenic enzyme activity in granulosa and theca cells in PCOS and PCOS-models. It also described the changes in AGEs and their receptors in the ovaries of women with PCOS and presents the underlying mechanism(s) whereby AGEs could be responsible for the PCOS-related changes in granulosa and theca cell function thus adversely impacting steroidogenesis and follicular development. AGEs are associated with hyperandrogenism in PCOS possibly by altering the activity of various enzymes such as cholesterol side-chain cleavage enzyme cytochrome P450, steroidogenic acute regulatory protein, 17α-hydroxylase, and 3β-hydroxysteroid dehydrogenase. AGEs also affect luteinizing hormone receptor and anti-Mullerian hormone receptor expression as well as their signaling pathways in granulosa cells. A better understanding of how AGEs alter granulosa and theca cell function is likely to contribute meaningfully to a conceptual framework whereby new interventions to prevent and/or treat ovarian dysfunction in PCOS can ultimately be developed.

  7. Tritium management in fusion synfuel designs

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1980-01-01

    Two blanket types are being studied: a lithium-sodium pool boiler and a lithium-oxide- or lithium-sodium pool boiler and a lithium-oxide- or aluminate-microsphere moving bed. For each, a wide variety of current technology was considered in handling the tritium. Here, we show the pool boiler with the sulfur-iodine thermochemical cycle first developed and now being piloted by the General Atomic Company. The tritium (T 2 ) will be generated in the lithium-sodium mixture where the concentration is approx. 10 ppM and held constant by a scavenging system consisting mainly of permeators. An intermediate sodium loop carries the blanket heat to the thermochemical cycle, and the T 2 in this loop is held to 1 ppM by a similar scavenging system. With this design, we have maintained blanket inventory at 1 kg of tritium, kept thermochemical cycle losses to 5 Ci/d and environmental loss to 10 Ci/d, and held total plant risk inventory at 7 kg tritium

  8. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  9. Interview. The story of Advanced BioHealing: commercializing bioengineered tissue products. Mr Tozer speaks to Emily Culme-Seymour, Assistant Commissioning Editor.

    Science.gov (United States)

    Tozer, Dean

    2011-03-01

    Dean Tozer is Senior Vice President at Advanced BioHealing, Inc. (ABH), overseeing marketing, corporate development, government affairs, product development, various regulatory functions and international expansion. After completing his Bachelor of Commerce from Saint Mary's University in Halifax, Canada, Mr Tozer spent 10 years in the global pharmaceutical industry, primarily with G.D. Searle (a division of Monsanto) where he had a wide variety of roles in Global Marketing, Sales, Business Redesign, and Accounting and Finance. Mr Tozer then worked as a consultant to the biopharmaceutical industry, assisting start-up organizations in developing commercial strategies for both pharmaceutical products and biomedical devices, prior to joining ABH in March 2006 as Vice President of Marketing & Corporate Development. In addition to his leadership role at ABH, Mr Tozer currently serves as an officer and board member for the Alliance for Regenerative Medicine, a Washington DC-based organization formed to advance regenerative medicine by representing and supporting the community of companies, academic research institutions, patient advocacy groups, foundations, and other organizations before the Congress, federal agencies and the general public.

  10. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  11. The specific localization of advanced glycation end-products (AGEs) in rat pancreatic islets.

    Science.gov (United States)

    Morioka, Yuta; Teshigawara, Kiyoshi; Tomono, Yasuko; Wang, Dengli; Izushi, Yasuhisa; Wake, Hidenori; Liu, Keyue; Takahashi, Hideo Kohka; Mori, Shuji; Nishibori, Masahiro

    2017-08-01

    Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and β cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and β cells. Remarkably, the MGO-AGEs in pancreatic β cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  13. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  14. 25 CFR 213.19 - Crediting advance annual payments.

    Science.gov (United States)

    2010-04-01

    ... been made. No refund of such advance payments made under any lease will be allowed in the event the royalty on production is not sufficient to equal such advance payment; nor will any part of the moneys so... 25 Indians 1 2010-04-01 2010-04-01 false Crediting advance annual payments. 213.19 Section 213.19...

  15. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  16. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  17. Production and Utilization of Hemicelluloses from Renewable Resources for Sustainable Advanced Products

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa

    Vast amounts of by-products are generated every year from agricultural crop production and hence great quantities of polysaccharides remain underutilized. The polysaccharides from agricultural by-products can be separated and used in the form of new materials. This thesis is devoted...... to the possibility of using hemicelluloses for special polysaccharide film applications in the packaging sector, starting from hemicellulose isolations from a side product of agricultural processes, hemicellulose characterization and assessing material properties and the potential use of hemicellulose films in later.......35, while the waterextracted material had an Ara/Xyl ratio of 0.54. In order to analyse the monosaccharide composition of the isolated hemicelluloses, a method based on gas chromatography-mass spectrometry analysis of acetylated methyl glycosides was developed. The derivatives of the monosaccharides...

  18. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  19. The effect of an advanced glycation end-product crosslink breaker and exercise training on vascular function in older individuals: a randomized factorial design trial.

    NARCIS (Netherlands)

    Oudegeest-Sander, M.H.; Olde Rikkert, M.G.M.; Smits, P.; Thijssen, D.H.J.; Dijk, A.P.J. van; Levine, B.D.; Hopman, M.T.E.

    2013-01-01

    Aging leads to accumulation of irreversible advanced glycation end-products (AGEs), contributing to vascular stiffening and endothelial dysfunction. When combined with the AGE-crosslink breaker Alagebrium, exercise training reverses cardiovascular aging in experimental animals. This study is the

  20. Modernization of the Radioisotopes Production Laboratory of the La Reina Nuclear Center in Chile: Incorporating advanced concepts of safety and good manufacturing practices

    International Nuclear Information System (INIS)

    Lagos Espinoza, Silvia

    2014-01-01

    A radioisotopes and radiopharmaceuticals production laboratory was established in Chile in the 1960s for research activities. From 1967 until January 2012, it was dedicated to the manufacturing of radioisotopes and radiopharmaceuticals for medical diagnosis and treatment purposes. In 2012, modernization of the facility’s design and technology began as part of the IAEA technical cooperation project, Modernizing the Radioisotopes Production Laboratory of La Reina Nuclear Centre by Incorporating Advanced Concepts of Safety and Good Manufacturing Practices, (CHI4022)

  1. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  2. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases.

    Science.gov (United States)

    Byun, Kyunghee; Yoo, YongCheol; Son, Myeongjoo; Lee, Jaesuk; Jeong, Goo-Bo; Park, Young Mok; Salekdeh, Ghasem Hosseini; Lee, Bonghee

    2017-09-01

    Advanced glycation end products (AGEs) and their receptor have been implicated in the progressions of many intractable diseases, such as diabetes and atherosclerosis, and are also critical for pathologic changes in chronic degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and alcoholic brain damage. Recently activated macrophages were found to be a source of AGEs, and the most abundant form of AGEs, AGE-albumin excreted by macrophages has been implicated in these diseases and to act through common pathways. AGEs inhibition has been shown to prevent the pathogenesis of AGEs-related diseases in human, and therapeutic advances have resulted in several agents that prevent their adverse effects. Recently, anti-inflammatory molecules that inhibit AGEs have been shown to be good candidates for ameliorating diabetic complications as well as degenerative diseases. This review was undertaken to present, discuss, and clarify current understanding regarding AGEs formation in association with macrophages, different diseases, therapeutic and diagnostic strategy and links with RAGE inhibition. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop

    2013-01-01

    , are being evolved to a higher state of intelligent functionality. These surfaces became more efficient by using combinations of available materials, along with unique physical and chemical strategies. Noteworthy physical strategies include features such as texturing and structure, and chemical strategies...... such as sensing and actuation. These strategies collectively enable functional surfaces to deliver extraordinary adhesion, hydrophobicity, multispectral response, energy scavenging, thermal regulation, antibiofouling, and other advanced functions. Production industries have been intrigued with such biological...... surface strategies in order to learn clever surface architectures and implement those architectures to impart advanced functionalities into manufactured consumer products. This keynote paper delivers a critical review of such inspiring biological surfaces and their nonbiological product analogs, where...

  4. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  5. Cell line development for biomanufacturing processes: recent advances and an outlook.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  6. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  7. Research overview: Advanced Manufacturing in Switzerland

    OpenAIRE

    Schärer, Claudia

    2016-01-01

    SATW is convinced that industrial production methods will see fundamental changes over the coming years. Mastering new production technologies (advanced manufacturing) such as additive manufacturing and industry 4.0 will be vital to keep Swiss production at a competitive level. New additive manufacturing processes such as 3D printing offer revolutionary opportunities and have the potential to replace traditional production methods. Industry 4.0 has seen the definition of a new concept for...

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  9. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  10. Systemic stiffening of mouse tail tendon is related to dietary advanced glycation end products but not high-fat diet or cholesterol

    DEFF Research Database (Denmark)

    Eriksen, Christian; Svensson, R B; Scheijen, J

    2014-01-01

    Tendon pathology is related to metabolic disease and mechanical overloading, but the effect of metabolic disease on tendon mechanics is unknown. This study investigated the effect of diet and apolipoprotein E deficiency (ApoE(-/-)) on mechanical properties and advanced glycation end product (AGE...... cross-links in tendons and for tissue compliance. The results demonstrate how systemic metabolic factors may influence tendon health....

  11. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  12. Bio-optic signatures for advanced glycation end products in the skin in streptozotocin (STZ) Induced Diabetes (Conference Presentation)

    Science.gov (United States)

    Saidian, Mayer; Ponticorvo, Adrien; Rowland, Rebecca A.; Balbado, Melisa L.; Lentsch, Griffin; Balu, Mihaela; Alexander, Micheal; Shiri, Li; Lakey, Jonathan R. T.; Durkin, Anthony J.; Kohen, Roni; Tromberg, Bruce J.

    2017-02-01

    Type 1diabetes (T1D) is an autoimmune disorder that occurs due to the rapid destruction of insulin-producing beta cells, leading to insulin deficiency and the inability to regulate blood glucose levels and leads to destructive secondary complications. Advanced glycation end (AGEs) products, the result of the cross-linking of reducing sugars and proteins within the tissues, are one of the key causes of major complications associated with diabetes such as renal failure, blindness, nerve damage and vascular changes. Non-invasive techniques to detect AGEs are important for preventing the harmful effects of AGEs during diabetes mellitus. In this study, we utilized multiphoton microscopy to image biopsies taken from control rats and compared them to biopsies taken from streptozotocin (STZ) induced adult male diabetic rats. This was done at two and four weeks after the induction of hyperglycemia (>400 mg/dL) specifically to evaluate the effects of glycation on collagen. We chose to use an in-situ multiphoton microscopy method that combines multiphoton auto-florescence (AF) and second harmonic generation (SHG) to detect the microscopic influence of glycation. Initial results show high auto-florescence levels were present on the collagen, as a result of the accumulation of AGEs only two weeks after the STZ injection and considerably higher levels were present four weeks after the STZ injection. Future projects could involve evaluating advanced glycation end products in a clinical trial of diabetic patients.

  13. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  14. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  15. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  16. Elevated fluoride products enhance remineralization of advanced enamel lesions

    NARCIS (Netherlands)

    ten Cate, J.M.; Buijs, M.J.; Chaussain Miller, C.; Exterkate, R.A.M.

    2008-01-01

    Caries prevention might benefit from the use of toothpastes containing over 1500 ppm F. With few clinical studies available, the aim of this pH-cycling study was to investigate the dose response between 0 and 5000 ppm F of de- and remineralization of advanced (> 150 µm) enamel lesions. Treatments

  17. Recent advances on prebiotic lactulose production.

    Science.gov (United States)

    Sitanggang, Azis Boing; Drews, Anja; Kraume, Matthias

    2016-09-01

    Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic. The production of lactulose is important in the dairy industry, as it is regarded as a high value-added derivative of whey or lactose. The industrial production of lactulose is still mainly done by chemical isomerization. Due to concerns on the environmental and tedious separation processes, the enzymatic-based lactulose synthesis has been regarded as an interesting alternative. This work aims at comparing chemical and enzyme-catalyzed lactulose synthesis. With an emphasis on the latter one, this review discusses the influences of the critical operating conditions and the suited operation mode on the transgalactosylation of lactulose using microbial enzymes. As an update and supplement to other previous reviews, this work also summarizes the recent reports that highlighted the enzymatic isomerization of lactose using cellobiose 2-epimerase to produce lactulose at elevated yields.

  18. Complex program of advance in science and technology

    International Nuclear Information System (INIS)

    Sychev, V.V.

    1986-01-01

    A draft of the complex program of advance in science and technology of the CMEA member-countries is described in brief. The basis of the program includes five priority trends electronics development complex automatization, advanced development of nuclear energy, production of new materials and tecnologies of their production and processing, advanced developmen of biotechnologies. Development of nuclear energy will be based on WWER-440 and WWER-1000 type NPPs. Heat-only nuclear stations and power and heat nuclear stations will receive a large development effort, as well as sodium-cooled fast reactors of the BN type having 800 and 1600 MW capacity, high-temperature gas-cooled breeders of the BGR-300 type, gas-cooled reactors of the VG-400 type for high-temperature heat supply (500-1000 deg C). It is contemplated to design the TOKAMAK-15 research thermonuclear facility and a pilot thermonuclear reactor for power generation and plutonium production. The program also comprises works aimed at improving reliability and safety of the nuclear installations

  19. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    Science.gov (United States)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  20. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  1. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  2. Interfacial aspects in the production of advanced viscoelastic composites

    International Nuclear Information System (INIS)

    Khan, M.B.

    1997-01-01

    The integrity and morphology of the interfacial junction often dictate the mechanical and thermal response of multiphase engineering materials. The production of materials with synergistic properties requires the effective generation and consolidation of material interfaces. The paper examines this theme in viscoelastic systems, comprising polymer alloys, reactive composites, electrical insulation and reinforced commodity polymers. Processing protocol is identified through TEM/SEM for the nylon/ABS composite material that alloys optimum utilization of reactive comptabilizers. Comparative results show that both reactive and miscibility are crucial for a compatibilizer to provide sufficient dispersion and adequate interfacial adhesion between the two phases. In discrete system, interfacial coupling is normally accomplished by bonding agents which form chemical bridges across the particle-matrix interface. A recent technique, however, utilizer a lateral modulus gradient across the material interface to increase fracture energy (Mechanical approach), Micro morphology of a convectional composite sans bonding agent is compared with the latter modified via the mechanical approach, Cryo-fracture surfaces of these composites reveal good particle-matrix adhesion in the modified composite, as opposed to visible particle pull-out observed in the other composite. A third approach toward interfacial coupling relies on the suitable modification of the particle surface to promote interaction between the particle and the polymer chains. This strategy is examined with particular reference to electoral cable sheathing and synthetic window profile, by using composite particles produced in the author's processing facility. ESCA spectrum of these particles is discussed, along with impact and TGA/DTA data for the modified PVC/EPDM composites. The impact strength of rigid PVC improved over a range of temperature, including the important region of zero degree centigrade and below. TGGA

  3. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  4. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  5. Effects of advanced glycation end products on ezrin-dependent functions in LLC-PK1 proximal tubule cells.

    Science.gov (United States)

    Bach, Leon A; Gallicchio, Marisa A; McRobert, E Anne; Tikoo, Anjali; Cooper, Mark E

    2005-06-01

    We have recently shown that advanced glycation products (AGEs) bind to the ERM (ezrin, radixin, moesin) family of proteins. ERM proteins act as cross-linkers between cell membrane proteins and the actin cytoskeleton. They are also involved in signal transduction pathways. They therefore have a critical role in normal cell processes, including modulation of cell shape, adhesion, and motility. We postulate that AGEs may contribute to diabetic complications by disrupting ERM function. In support of this hypothesis, AGEs inhibit ezrin-dependent tubulogenesis of proximal tubule cells. Phosphorylation is an important activating mechanism for ERM proteins, and AGEs inhibit ezrin phosphorylation mediated by the epidermal growth factor receptor.

  6. Advances in steam generator service technology

    International Nuclear Information System (INIS)

    Perez, Ric

    1998-01-01

    The most recent advances in pressurized water reactor steam generator service technology are discussed in this article. Focus is on new developments in robotics, including the Remotely Operated Service Arm (ROSA III); repair and maintenance services on the SG secondary side; and the newest advances in SG inspection. These products and services save utility costs, shorten outage durations, enhance plant performance and safety, and reduce radiation exposure. (author)

  7. Soft-tissue wound healing by anti-advanced glycation end-products agents.

    Science.gov (United States)

    Chang, P-C; Tsai, S-C; Jheng, Y-H; Lin, Y-F; Chen, C-C

    2014-04-01

    The blocking of advanced glycation end-products (AGE) has been shown to reduce diabetic complications and control periodontitis. This study investigated the pattern of palatal wound-healing after graft harvesting under the administration of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), a glycated cross-link breaker. Full-thickness palatal excisional wounds (5.0 x 1.5 mm(2)) were created in 72 Sprague-Dawley rats. The rats received daily intraperitoneal injections of normal saline (control), AG, or PTB and were euthanized after 4 to 28 days. The wound-healing pattern was assessed by histology, histochemistry for collagen matrix deposition, immunohistochemistry for AGE and the AGE receptor (RAGE), and the expression of RAGE, as well as inflammation- and recovery-associated genes. In the first 14 days following AG or PTB treatments, wound closure, re-epithelialization, and collagen matrix deposition were accelerated, whereas AGE deposition, RAGE-positive cells, and inflammation were reduced. RAGE and tumor necrosis factor-alpha were significantly down-regulated at day 7, and heme oxygenase-1 was persistently down-regulated until day 14. The levels of vascular endothelial growth factor, periostin, type I collagen, and fibronectin were all increased at day 14. In conclusion, anti-AGE agents appeared to facilitate palatal wound-healing by reducing AGE-associated inflammation and promoting the recovery process.

  8. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  10. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  12. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling

    Science.gov (United States)

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre D.; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt-Olabisi, Laura; Singer, Alison; Sterling, Eleanor J.; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human–environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  13. Purpose, Processes, Partnerships, and Products: 4Ps to advance Participatory Socio-Environmental Modeling

    Science.gov (United States)

    Gray, S. G.; Voinov, A. A.; Jordan, R.; Paolisso, M.

    2016-12-01

    Model-based reasoning is a basic part of human understanding, decision-making, and communication. Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding environmental change since stakeholders often hold valuable knowledge about socio-environmental dynamics and since collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four dimensional framework that includes reporting on dimensions of: (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of environmental changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of environmental policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  14. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling.

    Science.gov (United States)

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt Olabisi, Laura; Singer, Alison; Sterling, Eleanor; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM. © 2017 by the Ecological Society of America.

  15. Advanced glycation end products overload might explain intracellular cobalamin deficiency in renal dysfunction, diabetes and aging.

    Science.gov (United States)

    Obeid, Rima; Shannan, Batool; Herrmann, Wolfgang

    2011-11-01

    Advanced glycation end products (AGEs) contribute to aging. Cobalamin (Cbl) is required for cell growth and functions, and its deficiency causes serious complications. Diabetics and renal patients show high concentrations of Cbl, but metabolic evidence of Cbl deficiency that is reversible after Cbl treatment. Cbl might be sequestered in blood and cannot be delivered to the cell. Megalin mediates the uptake of transcobalamin-Cbl complex into the proximal tubule cells. Megalin is involved in the uptake and degradation of AGEs. In aging, diabetes or renal dysfunction, AGEs might overload megalin thus lowering Cbl uptake. Transcobalamin-Cbl might retain in blood. Shedding of megalin and transcobalamin receptor under glycation conditions is also a possible mechanism of this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Wood products research in the USA

    Science.gov (United States)

    Theodore Wegner

    2010-01-01

    Forest biomass conversion to biofuels and other value-added co-products; hyper-performance advanced composites custom tailored to end use requirements; advanced high performance wood-based structures; and nanomaterials and nano-enable high performance products from wood represent important research and development investment areas for the successful transformation of...

  17. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  18. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  19. A bibliometric analysis of the Journal of Advanced Nursing, 1976-2015.

    Science.gov (United States)

    Železnik, Danica; Blažun Vošner, Helena; Kokol, Peter

    2017-10-01

    The aim of this study was to examine the publication characteristics and development of Journal of Advanced Nursing during its 40-year history. Bibliometric studies of single journals have been performed, but to the best of our knowledge, bibliometric analysis and bibliometric mapping have not yet been used to analyse the literature production of the Journal of Advanced Nursing. Using descriptive bibliometrics, we studied the dynamics and trend patterns of literature production and identified document types and the most prolific authors, papers, institutions and countries. Bibliometric mapping was used to visualize the content of published articles and determine the most prolific research terms and themes published in Journal of Advanced Nursing and their evolution through time. We were also interested in determining whether there were any 'Sleeping Beauties' among the articles published in the journal. The study revealed a positive trend in literature production, although recently, the number of articles published in Journal of Advanced Nursing has slightly decreased. The most productive institutions are from the United Kingdom, which ranks in the highest place in terms of successful publishing in the journal. Thematic analysis showed that the most prolific themes corresponded to the basic aims and scope of the journal. Journal of Advanced Nursing contributes to advances in nursing research, practice and education as well as the quality of health care, teamwork and family care, with an emphasis on knowledge transfer and partnership between various healthcare professionals. © 2017 John Wiley & Sons Ltd.

  20. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  1. Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products.

    Directory of Open Access Journals (Sweden)

    Pavle S Milutinovic

    Full Text Available Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE. Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.

  2. Recent advances in oxygen production for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-07-01

    This paper described the Ionic Transport Membrane (ITM) technology that reduces the overall cost of the gasification process by 7 per cent. Gasification is a proven, but expensive technology for producing hydrogen and synthesis gas from low cost hydrocarbon feedstock. Gasification is also an alternative to conventional steam methane reforming based on natural gas. A key cost element in gasification is the production of oxygen. For that reason, Air Products Canada Limited developed a ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates very well with the gasification process and an integrated gasification combined cycle (IGCC) option for production of electrical power from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed how the superior economics of ITM can allow gasification to compete with steam methane reforming and thereby reduce dependency of oil sands development on increasingly scarce and costly natural gas.

  3. Advanced lighting guidelines: 1993. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

  4. Novel trends in engineered milk products.

    Science.gov (United States)

    Chandrapala, Jayani; Zisu, Bogdan

    2016-08-01

    Food engineering within the dairy sector is an ever developing field of study purely based on the application of engineering principles and concepts to any aspect of dairy product manufacturing and operations. The last 25 years of science and technology devoted to milk and milk products have led to major advances. The purpose of this paper is to review the history and current status of some engineered milk products and to speculate regarding future trends. Much of the advancement has been directed towards production capacity, mechanisation, automation, hygiene within the processing plant, safety, extensions in shelf life, and new product introductions that bring variety and convenience for the consumer. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. In addition, further improvements focused on energy efficiency and environmental sustainability have been made and will be needed in the future.

  5. Current advances in mechanical design and production VII: proceedings of the Seventh Cairo University International MDP Conference ; Cairo-Egypt, February 15-17, 2000

    National Research Council Canada - National Science Library

    Megahed, Säıd M; Hassan, Mohamed F

    2000-01-01

    ... with keynote papers to enrich the sessions and to highlight the recent advances on the various fields of mechanical design and production. A total of 160 papers were submitted to MDP-7 conference from more than 21 countries from the 6 continents. All papers were thoroughly refereed by the conference scientific committee. Following the reviewing proces...

  6. Higher plasma soluble Receptor for Advanced Glycation End Products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study

    DEFF Research Database (Denmark)

    Nin, Johanna W M; Jorsal, Anders; Merces Ferreira, Isabel Maria

    2010-01-01

    To investigate the associations of plasma levels of soluble receptor for advanced glycation end products (sRAGE) with incident cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes and the extent to which any such associations could be explained by endothelial and renal dysfunct......To investigate the associations of plasma levels of soluble receptor for advanced glycation end products (sRAGE) with incident cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes and the extent to which any such associations could be explained by endothelial and renal...

  7. Dental, Dental Hygiene, and Advanced Dental Students' Use, Knowledge, and Beliefs Regarding Tobacco Products.

    Science.gov (United States)

    Shearston, Jenni A; Shah, Krina; Cheng, Eric; Moosvi, Rizvan; Park, Su Hyun; Patel, Naiya; Spielman, Andrew I; Weitzman, Michael L

    2017-11-01

    Using cigarettes and alternative tobacco products (ATPs) is associated with negative oral health outcomes, and dental health professionals are poised to help patients quit. The aim of this study was to determine dental, dental hygiene, and advanced dental students' use, knowledge, and beliefs about cigarettes and ATPs, including perceptions about their education in tobacco dependence treatment and counseling experience. All 1,783 students enrolled in the dental, dental hygiene, and postdoctoral dental programs at the New York University College of Dentistry were invited to participate in the survey in 2016. A total of 708 students at least partially completed the survey, for a response rate of 39.7%. In the results, 146 of the students (20.1%) reported ever using cigarettes, while 253 (35.7%) reported ever using any ATP. Regarding tobacco use intervention, the students reported they had not received enough training on ATPs, were neutral about cigarettes, and were somewhat confident and not so confident counseling a cigarette smoker or ATP user, respectively. By their fourth year, 77.8% of the dental students reported they had counseled someone to stop smoking cigarettes, but only 40.7% had counseled someone to stop using ATPs. Overall, all groups of students reported feeling more confident and had received more education on interventions for cigarettes than for ATPs (ptobacco and did not perceive they had received enough training on intervening with patients on use of cigarettes and ATPs. These findings call for a revised tobacco education curriculum for dental, dental hygiene, and advanced dental students, focused on building knowledge and confidence for promoting tobacco dependence treatment.

  8. The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins.

    Science.gov (United States)

    Smith, Peter K; Masilamani, Madhan; Li, Xiu-Min; Sampson, Hugh A

    2017-02-01

    The incidence of food allergy has increased dramatically in the last few decades in westernized developed countries. We propose that the Western lifestyle and diet promote innate danger signals and immune responses through production of "alarmins." Alarmins are endogenous molecules secreted from cells undergoing nonprogrammed cell death that signal tissue and cell damage. High molecular group S (HMGB1) is a major alarmin that binds to the receptor for advanced glycation end-products (RAGE). Advanced glycation end-products (AGEs) are also present in foods. We propose the "false alarm" hypothesis, in which AGEs that are present in or formed from the food in our diet are predisposing to food allergy. The Western diet is high in AGEs, which are derived from cooked meat, oils, and cheese. AGEs are also formed in the presence of a high concentration of sugars. We propose that a diet high in AGEs and AGE-forming sugars results in misinterpretation of a threat from dietary allergens, promoting the development of food allergy. AGEs and other alarmins inadvertently prime innate signaling through multiple mechanisms, resulting in the development of allergic phenotypes. Current hypotheses and models of food allergy do not adequately explain the dramatic increase in food allergy in Western countries. Dietary AGEs and AGE-forming sugars might be the missing link, a hypothesis supported by a number of convincing epidemiologic and experimental observations, as discussed in this article. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Considering context in academic medicine: differences in demographic and professional characteristics and in research productivity and advancement metrics across seven clinical departments.

    Science.gov (United States)

    Warner, Erica T; Carapinha, René; Weber, Griffin M; Hill, Emorcia V; Reede, Joan Y

    2015-08-01

    To understand the disciplinary contexts in which faculty work, the authors examined demographics, professional characteristics, research productivity, and advancement across seven clinical departments at Harvard Medical School (HMS) and nationally. HMS analyses included faculty from seven clinical departments-anesthesiology, medicine, neurology, pediatrics, psychiatry, radiology, and surgery-in May 2011 (N = 7,304). National analyses included faculty at 141 U.S. medical schools in the same seven departments as of December 31, 2011 (N = 91,414). The authors used chi-square and Wilcoxon Mann-Whitney tests to compare departmental characteristics. Heterogeneity in demographics, professional characteristics, and advancement across departments was observed in HMS and national data. At HMS, psychiatry had the highest percentage of underrepresented minority faculty at 6.6% (75/1,139). In anesthesiology, 24.2% (128/530) of faculty were Asian, whereas in psychiatry only 7.9% (90/1,139) were (P advancement across clinical departments at HMS and nationally. The context in which faculty work, of which department is a proxy, should be accounted for in research on faculty career outcomes and diversity inclusion in academic medicine.

  10. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP

    2013-01-01

    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  11. Advanced calculus a transition to analysis

    CERN Document Server

    Dence, Thomas P

    2010-01-01

    Designed for a one-semester advanced calculus course, Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http://www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructor

  12. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  13. Effect of dietary advanced glycation end products on mouse liver.

    Directory of Open Access Journals (Sweden)

    Raza Patel

    Full Text Available UNLABELLED: The exact pathophysiology of non-alcoholic steatohepatitis (NASH is not known. Previous studies suggest that dietary advanced glycation end products (AGEs can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034, compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01 and aspartate aminotransferase (P = 0.02 than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.

  14. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  15. Advanced glycation end-product expression is upregulated in the gastrointestinal tract of type 2 diabetic rats

    DEFF Research Database (Denmark)

    Chen, Peng-Min; Gregersen, Hans; Zhao, Jingbo

    2015-01-01

    AIM: To investigate changes in advanced glycation end products (AGEs) and their receptor (RAGE) expression in the gastrointestinal (GI) tract in type 2 diabetic rats. METHODS: Eight inherited type 2 diabetic rats Goto-Kakizak (GK) and ten age-matched normal rats were used in the study. From 18 wk...... and five micron sections were cut. The layer thickness was measured in Hematoxylin and Eosin-stained slides. AGE [N epsilon-(carboxymethyl) lysine and N epsilon-(carboxyethyl)lysine] and RAGE were detected by immunohistochemistry staining and image analysis was done using Sigmascan Pro 4.0 image analysis...... strongest in the diabetes group. Significant difference for AGE was found in the epithelial cells of villi and crypt in duodenum (immuno-positive area/total measuring area %: 13.37 ± 3.51 vs 37.48 ± 8.43, P

  16. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  17. Engineering product storage under the advanced fuel cycle initiative. Part I: An iterative thermal transport modeling scheme for high-heat-generating radioactive storage forms

    International Nuclear Information System (INIS)

    Kaminski, Michael D.

    2005-01-01

    The US Department of Energy is developing an integrated nuclear fuel cycle technology under its Advanced Fuel Cycle Initiative (AFCI). Under the AFCI, waste minimization is stressed. Engineered product storage materials will be required to store concentrated radioactive cesium, strontium, americium, and curium for periods of tens to hundreds of years. The fabrication of such engineered products has some precedence but the concept is largely novel. We thus present a theoretical model used to calculate the maximum radial dimensions of right cylinder storage forms under several scenarios. Maximum dimensions are small, comparable to nuclear fuel pins in some cases, to avoid centerline melting temperatures; this highlights the need for a careful strategy for engineered product storage fabrication and storage

  18. Advanced ceramics in Brazil: actual stage and perspectives

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1986-11-01

    The development of advanced ceramics in Brazil, the perspectives of the world and Brazilian markets, the raw materials, the equipments for industry and research, the human resources, and the disposable technology, are presented. The researches on advanced ceramics in Brazil initiated in the sixty decade, with the nuclear fuel development and production projets. (M.C.K.) [pt

  19. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  20. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  1. Production Systems and Supplier Selection

    DEFF Research Database (Denmark)

    Pedraza-Acosta, Isabel; Pilkington, Alan; Barnes, David

    2016-01-01

    strategic stamping suppliers. Findings: Our contribution is the multi-phased production and product innovation process. This is an advance from traditional supplier selection and also an extension of ideas of supplier-located product development as it includes production system development, and complements...

  2. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  3. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  4. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakuragi

    2011-01-01

    Full Text Available Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  5. PSEUDOAFFINITY CHROMATOGRAPHY ENRICHMENT OF GLYCATED PEPTIDES FOR MONITORING ADVANCED GLYCATION END PRODUCTS (AGES IN METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Rajasekar R. Prasanna

    2016-09-01

    Full Text Available Advanced Glycation End (AGE products are produced due to diabetic progression and they are responsible for many complications in the diabetic disorder. The diabetic progression is measured, particularly following glycated hemoglobin using specific antibodies. However, the most abundant protein in blood, human serum albumin, is also found to be glycated which has a much shorter half life and gives information on short term glycemic control. In addition, glycated albumins are considered as markers of diabetic complications such as nephropathy, peripheral vascular calcification and also in Alzheimer’s disease. The glycation proceeds from the interaction between aldehyde group of sugar and the free amino group of the protein, resulting in the formation of Schiff’s base, which undergoes a series of modifications leading to generation of imidazoyl derivatives of amino acids known as Amadori rearrangement products. The imidazoyl derivatives from arginine and lysine are the most prominent modifications observed in proteins in the presence of reducing sugar and these imidazoyl derivatives have an affinity towards certain transition metal ions. Based on our earlier exhaustive work on trapping the histidine peptides using transition metal ion, Cu(II linked to imino-diacetate complex, we explored Cu(II immobilized metal affinity chromatography (IMAC as a potential tool for specific detection of glycated peptides of human serum albumin. Our results clearly demonstrate that Cu(II IMAC is able to detect glycated peptides very efficiently while the non-glycated forms were not retained on the Cu (II column as confirmed by LC-MS/MS analysis. We further discuss the utility of IMAC technology to enrich the detection of AGE products in plasma. We anticipate that these studies may provide valuable information on understanding disease pathologies and the potential of AGE products as biomarkers of various diseases including neurodegenerative, renal and

  6. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  7. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  8. Advanced Turbine Technology Applications Project (ATTAP)

    Science.gov (United States)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  9. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  10. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  11. Advances in steam generator service technology

    International Nuclear Information System (INIS)

    Nair, B. R.; Bastin, J. J.

    1997-01-01

    This paper will discuss the most recent and innovative advances in the areas of pressurized water reactor (PWR) steam generator service technology. The paper will include detail of new products such as the Remotely Operated Service Arm (ROSA-III), laser welded sleeving, and laser welded Direct Tube Repair (DTR) - products and services that save utility costs, shorten outage durations, enhance plant performance and safety, and reduce radiation exposure. (author)

  12. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  13. The receptor for advanced glycation end products (RAGE contributes to the progression of emphysema in mice.

    Directory of Open Access Journals (Sweden)

    Nisha Sambamurthy

    Full Text Available Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE and its variants in chronic obstructive pulmonary disease (COPD. In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/- exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.

  14. Receptor for Advanced Glycation End Products (RAGE and Its Ligands: Focus on Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-07-01

    Full Text Available Spinal cord injury (SCI results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.

  15. Cloning and characterization of the canine receptor for advanced glycation end products.

    Science.gov (United States)

    Murua Escobar, Hugo; Soller, Jan T; Sterenczak, Katharina A; Sperveslage, Jan D; Schlueter, Claudia; Burchardt, Birgit; Eberle, Nina; Fork, Melanie; Nimzyk, Rolf; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2006-03-15

    Metastasis is one of the major problems when dealing with malignant neoplasias. Accordingly, the finding of molecular targets, which can be addressed to reduce tumour metastasising, will have significant impact on the development of new therapeutic approaches. Recently, the receptor for advanced glycation end products (RAGE)-high mobility group B1 (HMGB1) protein complex has been shown to have significant influence on invasiveness, growth and motility of tumour cells, which are essential characteristics required for metastatic behaviour. A set of in vitro and in vivo approaches showed that blocking of this complex resulted in drastic suppression of tumour cell growth. Due to the similarities of human and canine cancer the dog has joined the common rodent animal model for therapeutic and preclinical studies. However, complete characterisation of the protein complex is a precondition to a therapeutic approach based on the blocking of the RAGE-HMGB1 complex to spontaneously occurring tumours in dogs. We recently characterised the canine HMGB1 gene and protein completely. Here we present the complete characterisation of the canine RAGE gene including its 1384 bp mRNA, the 1215 bp protein coding sequence, the 2835 bp genomic structure, chromosomal localisation, gene expression pattern, and its 404 amino acid protein. Furthermore we compared the CDS of six different canine breeds and screened them for single nucleotide polymorphisms.

  16. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  17. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia; Katsikis, Ilias; Piperi, Christina; Kandaraki, Eleni; Piouka, Athanasia; Papavassiliou, Athanasios G; Panidis, Dimitrios

    2008-10-01

    Nonenzymatic advanced glycation and oxidation end-products, advanced glycation end-products (AGEs), impart a potent impact on vessels and other tissues in diabetic state and in euglycaemic conditions with increased oxidative stress. Insulin resistant (IR) polycystic ovary syndrome (PCOS) women, have elevated serum AGEs, increased receptor (RAGE) expression, and increased deposition with differential localization in the polycystic ovarian tissue (theca and granulosa) compared to normal. To determine whether the raised AGE levels in noninsulin resistant women with PCOS is a distinct finding compared with those presenting the isolated components of the syndrome and among PCOS subphenotypes. Noninsulin resistant women were selected in order to show that serum AGEs are elevated in PCOS independently of the presence of IR. Clinical trial. One hundred and ninety-three age- and BMI-matched young lean noninsulin resistant women were studied. Among them, 100 women were diagnosed with PCOS according to Rotterdam criteria, and divided to subphenotypes (hyperandrogenaemia with or without PCO morphology and with or without anovulation). Sixty-eight women with the isolated components of the PCOS phenotype were also studied along with 25 healthy women. Serum AGE levels, metabolic, hormonal profiles and intravaginal ultrasound were determined in all subjects. The studied population did not differ in BMI, fasting insulin concentration, waist : hip and glucose : insulin ratios. PCOS women exhibited statistically higher AGEs levels (7.96 +/- 1.87 U/ml, P PCOS, serum AGEs are distinctly elevated compared with women having the isolated characteristics of the syndrome. No difference was observed between PCOS subphenotypes. As chronic inflammation and increased oxidant stress have been incriminated in the pathophysiology of PCOS, the role of AGEs as inflammatory and oxidant mediators, may be linked with the metabolic and reproductive abnormalities of the syndrome.

  18. Hyperoside Downregulates the Receptor for Advanced Glycation End Products (RAGE and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyu Zhang

    2013-11-01

    Full Text Available Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes.

  19. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  20. 75 FR 56528 - EPA's Role in Advancing Sustainable Products

    Science.gov (United States)

    2010-09-16

    ... action if you manufacture, distribute, label, certify, verify, and purchase or use consumer, commercial... particular, how do you see EPA's role in: Assembling information and databases. Identifying sustainability ``hotspots'' and setting product sustainability priorities. Evaluating the multiple impacts of products...

  1. Silver nanoparticles: technological advances, societal impacts, and metrological challenges

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E.; Montoro Bustos, Antonio R.; Murphy, Karen E.; Winchester, Michael R.; Vega Baudrit, José R.

    2017-02-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  2. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges.

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Vega Baudrit, José R

    2017-01-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  3. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation

    NARCIS (Netherlands)

    Liu, Fahui; Teodorowicz, Gosia; Wichers, Harry J.; Boekel, van Tiny; Hettinga, Kasper A.

    2016-01-01

    Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE

  4. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. The conventional production flow control and pressure control of the facility was replaced by the advanced control software called OPIR. To assess the differences between conventional and advanced

  5. Advanced Neutron Source: The users' perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper

  6. Evaluation of In Vitro Inhibitory Activity of Rye-Buckwheat Ginger Cakes with Rutin on the Formation of Advanced Glycation End-Products (AGEs)

    OpenAIRE

    Przygodzka Małgorzata; Zieliński Henryk

    2015-01-01

    In this study, the relationship between the inhibitory effects of extracts from rye-buckwheat ginger cakes supplemented with low and high rutin dosage baked without or with dough fermentation step on the formation of fluorescent advanced glycation end-products (AGEs), and phenolic compounds, rutin, D-chiro-inositol and antioxidant capacity were addressed. The cakes were based on rye flour substituted by light buckwheat flour or flour from roasted buckwheat groats at 30% level, and were produc...

  7. A compilation of life cycle studies for six household detergent product categories in Europe: the basis for product-specific A.I.S.E. Charter Advanced Sustainability Profiles.

    Science.gov (United States)

    Golsteijn, Laura; Menkveld, Rimousky; King, Henry; Schneider, Christine; Schowanek, Diederik; Nissen, Sascha

    2015-01-01

    A.I.S.E., the International Association for Soaps, Detergents and Maintenance Products, launched the 'A.I.S.E. Charter for Sustainable Cleaning' in Europe in 2005 to promote sustainability in the cleaning and maintenance products industry. This Charter is a proactive programme for translating the concept of sustainable innovation into reality and actions. Per product category, life cycle assessments (LCA) are used to set sustainability criteria that are ambitious, but also achievable by all market players. This paper presents and discusses LCAs of six household detergent product categories conducted for the Charter, i.e.: manual dishwashing detergents, powder and tablet laundry detergents, window glass trigger spray cleaners, bathroom trigger spray cleaners, acid toilet cleaners, and bleach toilet cleaners. Relevant impact categories are identified, as well as the life cycle stages with the largest contribution to the environmental impact. It was concluded that the variables that mainly drive the results (i.e. the environmental hotspots) for manual dishwashing detergents and laundry detergents were the water temperature, water consumption (for manual dishwashing detergents), product dosage (for laundry detergents), and the choice and amount of surfactant. By contrast, for bathroom trigger sprays, acid and bleach toilet cleaners, the driving factors were plastic packaging, transportation to retailer, and specific ingredients. Additionally, the type of surfactant was important for bleach toilet cleaners. For window glass trigger sprays, the driving factors were the plastic packaging and the type of surfactant, and the other ingredients were of less importance. A.I.S.E. used the results of the studies to establish sustainability criteria, the so-called 'Charter Advanced Sustainability Profiles', which led to improvements in the marketplace.

  8. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    Science.gov (United States)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  9. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.

    Science.gov (United States)

    Kourmentza, Constantina; Plácido, Jersson; Venetsaneas, Nikolaos; Burniol-Figols, Anna; Varrone, Cristiano; Gavala, Hariklia N; Reis, Maria A M

    2017-06-11

    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.

  10. Distinct associations of HbA(1c) and the urinary excretion of pentosidine, an advanced glycosylation end-product, with markers of endothelial function in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    Smulders, R.A.; Stehouwer, C.D.A.; Schalkwijk, C.G.; Donker, A.J.M.; Hinsbergh, V.W.M. van; TeKoppele, J.M.

    1998-01-01

    Dysfunction of the vascular endothelium is considered an early step in the development of diabetic angiopathy. Hyperglycaemia results in endothelial dysfunction, both through direct effects of glucose and through formation of advanced glycosylation end-products (AGEs). We hypothesized that the

  11. Advances in natural language processing.

    Science.gov (United States)

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.

  12. Improving your real-time data infrastructure using advanced data validation and reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Campan, Julien; Vrielynck, Bruno; Anjos, Cristiano dos; Kalitventzeff, Pierre-Boris [Belsim S.A., Awans (Belgium)

    2008-07-01

    'Smart fields', 'e-fields', 'field of the future', 'digital oil fields' and 'field monitoring' are all names of real-time data infrastructures aimed at providing information for decision making. This paper discusses these new real-time data infrastructures that are being developed and deployed in oil and gas production and in particular the challenge of supplying these new systems with high quality data. In order for these infrastructures to be successful and provide efficient and successful performance management and optimization, they need to have access to high quality production data. Advanced Data Validation and Reconciliation is a technology that could meet this data quality challenge. It has been successfully deployed in many different industry sectors and more recently in oil and gas production. Advanced Data Validation and Reconciliation provides a coherent, accurate set of production data and basing these new infrastructures on validated and reconciled data brings a solution to the data quality challenge. There are numerous other benefits by applying advanced data validation and reconciliation in oil and gas production, such as uninterrupted well production, optimized valves opening and water or gas injection, backup values for traditional multiphase flow meters, and the avoidance of production upsets. (author)

  13. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  15. Effects of monascin on anti-inflammation mediated by Nrf2 activation in advanced glycation end product-treated THP-1 monocytes and methylglyoxal-treated wistar rats.

    Science.gov (United States)

    Lee, Bao-Hong; Hsu, Wei-Hsuan; Huang, Tao; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-02-13

    Hyperglycemia is associated with advanced glycation end products (AGEs). This study was designed to evaluate the inhibitory effects of monascin on receptor for advanced glycation end product (RAGE) signal and THP-1 monocyte inflammation after treatment with S100b, a specific ligand of RAGE. Monascin inhibited cytokine production by S100b-treated THP-1 monocytes via up-regulation of nuclear factor-erythroid 2-related factor-2 (Nrf2) and alleviated p47phox translocation to the membrane. Methylglyoxal (MG, 600 mg/kg bw) was used to induce diabetes in Wistar rats. Inhibitions of RAGE and p47phox by monascin were confirmed by peripheral blood mononuclear cells (PBMCs) of MG-induced rats. Silymarin (SM) was used as a positive control group. It was found that monascin promoted heme oxygenase-1 (HO-1) expression mediated by Nrf2. Suppressions of AGEs, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-β) in serum of MG-induced rats were attenuated in the monascin administration group treated with retinoic acid (RA). RA treatment resulted in Nrf2 inactivation by increasing RA receptor-α (RARα) activity, suggesting that RA acts as an inhibitor of Nrf2. The results showed that monascin exerted anti-inflammatory and antioxidative effects mediated by Nrf2 to prevent the development of diseases such as type 2 diabetes caused by inflammation.

  16. Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function

    Science.gov (United States)

    Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali

    2015-06-01

    Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.

  17. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  18. Advancing CANDU Technology Through R and D

    International Nuclear Information System (INIS)

    Torgerson, David F.

    1993-01-01

    CANDU reactors are evolving to meet future requirements using incremental changes as opposed to revolutionary design changes. The main elements for advancing the technology reducing capital and operating, increasing capacity factors, increasing passive safety, and enhancing fuel/fuel cycle flexibility. These elements are being addressed by carrying out research and development in the areas of safety, plant systems and components, heavy water production, information technology, fuel channels, and fuel/fuel cycle technology. In safety, the focus is on using the inherent features of CANDU to enhance passive or natural safety concepts, such as the use of the moderator as an effective heat sink, and the development of advanced fuels to improve critical heat flux and to reduce source terms. Plant systems and components work includes improvements to plant systems such as steam generators, heat exchangers, pump seals, and advanced control room technology. Heavy water processes are being developed that can be used with existing hydrogen production plants, or that can be used in a stand-alone mode. Information technology is being developed to cover all aspects of CANDU design, construction, and operation. Fuel channel improvements include elucidation and application of basic materials science for life extension, and the development of advanced non-destructive examination methods. Fuel and fuel cycle work is focusing on LWR/CANDU synergy, such as the use of recovered uranium and the direct use of spent PWR fuel in CANDU reactor, advanced fuels to improve burnup and economics (e. g., the joint AECB/KAERI Conflux program), and low void reactivity fuel to enhance passive safety. This paper gives an overview of some of the R and D supporting these activities, with particular emphasis on Alice's vision for advancing CANDU technology over the next 10 years

  19. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  20. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  1. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  2. Advances in nanotechnologies. How they are creating better foods

    NARCIS (Netherlands)

    Kampers, F.W.H.

    2010-01-01

    Advances in nanoscale science and technologies offer opportunities to help solve some of the food and nutrition related problems the world faces. It can help make food production more sustainable and provide new protein rich products to the ever increasing world population. It will help people stay

  3. Comparison of NF membrane fouling and cleaning by two pretreatment strategies for the advanced treatment of antibiotic production wastewater.

    Science.gov (United States)

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong; Chen, Meixue; Shan, Baoqing

    2016-01-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated and compared for treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK membrane. Results showed that the fouling of treating MBR effluent was more severe than that of treating MBR-GAC effluent. After filtering for 216 h, the difference of membrane flux decline was obvious between MBR effluent and MBR-GAC effluent, with 14.9% and 10.3% flux decline, respectively. Further study showed that organic fouling is the main NF membrane fouling in the advanced treatment of antibiotic production wastewater for both of the two different effluents. Soluble microbial by-product like and tyrosine-like substances were the dominant components in the foulants, whereas humic-like substances existing in the effluents had little contribution to the NF membrane fouling. A satisfactory efficiency of NF chemical cleaning could be obtained using combination of acid (HCl, pH 2.0-2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0-10.5). The favorable cleaning strategy is acid-alkali for treating the MBR-GAC effluent, while it is alkali-acid for treating the MBR effluent.

  4. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  5. Inventory management with advance capacity information

    NARCIS (Netherlands)

    Jaksic, M.; Fransoo, J.C.; Tan, T.; Kok, de A.G.; Rusjan, B.

    2011-01-01

    An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a

  6. Research Advances: Paper Batteries, Phototriggered Microcapsules, and Oil-Free Plastic Production

    Science.gov (United States)

    King, Angela G.

    2010-01-01

    Chemists continue to work at the forefront of materials science research. Recent advances include application of bioengineering to produce plastics from renewable biomass instead of petroleum, generation of paper-based batteries, and development of phototriggerable microcapsules for chemical delivery. In this article, the author provides summaries…

  7. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    Science.gov (United States)

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  8. Activation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2017-01-01

    Full Text Available Accumulation of advanced glycation end products (AGEs contributes to ageing and age-related diseases, especially type 2 diabetes. The NLRP3 inflammasome, as a vital component of the innate immune system, is implicated in the pathogenesis of type 2 diabetes. However, the role of the NLRP3 inflammasome in AGE-induced pancreatic islet damage remains largely unclear. Results showed that administration of AGEs (120 mg/kg for 6 weeks in C57BL/6J mice induced an abnormal response to glucose (as measured by glucose tolerance and insulin release, pancreatic β-cell ultrastructural lesion, and cell death. These effects were associated with an excessive superoxide anion level, significant increased protein expression levels for NADPH oxidase 2 (NOX2, thioredoxin-interacting protein (TXNIP, NLRP3, and cleaved IL-1β, enhanced caspase-1 activity, and a significant increase in the levels of TXNIP–NLRP3 protein interaction. Ablation of the NLRP3 inflammasome or treatment with antioxidant N-acetyl-cysteine (NAC clearly ameliorated these effects. In conclusion, our results reveal a possible mechanism for AGE-induced pancreatic islet damage upon NLRP3 inflammasome activation.

  9. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  10. Inventory management with advance capacity information

    NARCIS (Netherlands)

    Jaksic, M.; Fransoo, J.C.; Tan, T.; Kok, de A.G.; Rusjan, B.

    2008-01-01

    One of the important aspects of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced, if a company is able to obtain advance capacity information (ACI) on future supply/production capacity availability from its supplier. We address a

  11. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  12. Advanced methods in diagnosis and therapy

    International Nuclear Information System (INIS)

    1987-01-01

    This important meeting covers the following topics: use and optimization of monoclonal antibobies in oncology: - Tumor markers: Clinical follow-up of patients through tumor marker serum determinations. - Cancer and medical imaging: The use of monoclonal antibodies in immunoscintigraphy. - Immunoradiotherapy: Monoclonal antibodies as therapeutic vectors. Advanced methods in diagnosis: - Contribution of monoclonal antibodies in modern immunochemistry (RIA, EIA). - Interest of monoclonal antibody in immunohistochemical pathology diagnosis. - In vitro diagnosis future prospects: with receptors and oncogenes. - Immunofluoroassay: a new sensitive immunoanalytical procedure with broad applications. Recent advances in brachitherapy: - Interest of computer processing. Blood products irradiation: - Interest in transfusion and bone marrow transplantations [fr

  13. The advanced software development workstation project

    Science.gov (United States)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  14. Advances in solar silicon production

    International Nuclear Information System (INIS)

    Rustioni, M.; Pirazzi, R.; Tincani, M.; Margadonna, D.; Pizzini, S.

    1985-01-01

    The results of carbothermic reduction experiments carried out at a preindustrial scale with a 240 KVA submerged are furnace fed with pellets of carbon black and silica sand are reported and discussed. It was demonstrated that all powder agglomeration techniques used to fabricate the pellets (pellettizing, briquetting, extrusion) give rise to small or negligible contamination of the charge. The results of experiments support the view that furnace handling is a powerful source of impurity contamination. Contamination from furnace lining could be however controlled and rendered negligible by an improved furnace design and proper choice of refractory materials. Graphite or graphite coated tools could eventually improve also the furnace tapping and handling operations. The solution of these problems, which is in substantial progress in this case, presents however additional problems in the case of larger size furnace and presumibly will limit the size of furnaces for PMS production to 500-1000 KVA. As the authors demonstrated that the boron and phosphorous is not influenced by furnace operation, one can conclude that the use of the granulated lump quartz of higher purity quartz sands could reconduct our PMS within the specifications of a solar grade material

  15. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  16. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells.

    Science.gov (United States)

    Shirasawa, Madoka; Fujiwara, Naoyuki; Hirabayashi, Susumu; Ohno, Hideki; Iida, Junko; Makita, Koshi; Hata, Yutaka

    2004-02-01

    Lung alveolar epithelial cells are comprised of type I (ATI) and type II (ATII) cells. ATI cells are polarized, although they have very flat morphology. The identification of marker proteins for apical and basolateral membranes of ATI cells is important to investigate into the differentiation of ATI cells. In this paper, we characterized receptor for advanced glycation end-products (RAGE) as a marker for ATI cells. RAGE was localized on basolateral membranes of ATI cells in the immunoelectron microscopy and its expression was enhanced in a parallel manner to the differentiation of ATI cells in vivo and in primary cultures of ATII cells. RAGE and T1 alpha, a well-known ATI marker protein, were targeted to basolateral and apical membranes, respectively, when expressed in polarized Madine Darby canine kidney cells. Moreover, RAGE was expressed in ATI cells after T1 alpha in vivo and in ex in vivo organ cultures. In conclusion, RAGE is a marker for basolateral membranes of well-differentiated ATI cells. ATI cells require some signal provided by the in vivo environment to express RAGE.

  17. Association between Fluorescent Advanced Glycation End-Products and Vascular Complications in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Alexis Guerin-Dubourg

    2017-01-01

    Full Text Available Objectives. Diabetes is a major health problem associated with hyperglycemia and chronically increased oxidative stress and enhanced formation of advanced glycation end-products (AGEs. The aim of this study was to determine whether oxidative plasma biomarkers in diabetic patients could be evidenced and associated with vascular complications. Methods. Oxidative stress biomarkers such as thiols, ischemia-modified albumin (IMA, glycated albumin (GA, fructosamine, and AGEs were measured in 75 patients with poorly controlled type 2 diabetes (HbA1c > 7.5% with (44 or without (31 vascular disease and in 31 nondiabetic controls. Results. Most biomarkers of oxidation and glycation were significantly increased in diabetic patients in comparison with nondiabetics. Fructosamines, GA, IMA, and AGEs were positively correlated and levels of fluorescent AGEs were significantly increased in the plasma from patients presenting vascular complication. Conclusions. These results bring new evidence for the potential interest of glycated albumin, oxidative stress, and glycoxidation parameters in the monitoring of type 2 diabetic patients. Furthermore, it emphasizes fluorescent AGEs as a putative indicator for vascular event prediction in diabetic patients.

  18. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Frain, R.G.; Caudill, H.L.; Faulhaber, R.

    1987-01-01

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF 6 to UO 2 powder, and increased use of automated and computerized inspection techniques. (author)

  19. Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.

    Science.gov (United States)

    Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N

    2018-06-01

    Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi

  20. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    Science.gov (United States)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  2. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  3. ADVANCED APPROACH TO PRODUCTION WORKFLOW COMPOSITION ON ENGINEERING KNOWLEDGE PORTALS

    OpenAIRE

    Novogrudska, Rina; Kot, Tatyana; Globa, Larisa; Schill, Alexander

    2016-01-01

    Background. In the environment of engineering knowledge portals great amount of partial workflows is concentrated. Such workflows are composed into general workflow aiming to perform real complex production task. Characteristics of partial workflows and general workflow structure are not studied enough, that affects the impossibility of general production workflowdynamic composition.Objective. Creating an approach to the general production workflow dynamic composition based on the partial wor...

  4. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  5. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  6. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    Science.gov (United States)

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  7. Production and Recovery of Pyruvic Acid: Recent Advances

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  8. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  9. Measuring job satisfaction of advanced nurse practitioners and advanced midwife practitioners in the Republic of Ireland: a survey.

    Science.gov (United States)

    O'Keeffe, Anne Paula; Corry, Margarita; Moser, Debra K

    2015-01-01

    To describe the level of job satisfaction of advanced nurse practitioners (ANP) and advanced midwife practitioners in the Republic of Ireland (RoI). Job satisfaction is related to productivity, performance, turnover and health, and thus is a challenge for nursing and healthcare organisations. Job satisfaction data were collected from 47 ANPs using the Misener Nurse Practitioner Job Satisfaction Scale. High levels of global job satisfaction were reported. All ANPs reported satisfaction with autonomy, sense of accomplishment, challenge, social interaction and status in the organisation. Lower levels of job satisfaction were attributed to the amount of involvement in research (55%), opportunities to receive compensation for services provided outside normal working hours (55%), the amount (44%) and the quality of administrative support (51%), and the opportunity to negotiate bonuses and resources in return for productivity (36%). Advanced nurse practitioners in RoI have high levels of job satisfaction with areas relating to clinical practice but are dissatisfied with areas that lead to empowerment within organisations. Efforts to improve the negotiating and leadership skills of ANPs may improve job satisfaction. Enhancing inter-professional collegial relationships and improving managerial recognition of the role within nursing are key areas to be targeted to promote job satisfaction of ANPs. © 2013 John Wiley & Sons Ltd.

  10. Advanced heat pump for the recovery of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  11. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  12. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  13. Produtos da glicação avançada dietéticos e as complicações crônicas do diabetes Dietetics advanced glycation end-products and chronic complications of diabetes

    Directory of Open Access Journals (Sweden)

    Júnia Helena Porto Barbosa

    2009-02-01

    a conduta terapêutica, concorrendo para a melhoria da qualidade de vida dos portadores dessa enfermidade.The generation of advanced glycation end products is one of the principal mechanisms that lead to the pathologies associated with diabetes mellitus, which include cardiopathy, retinopathy, neuropathy and nephropathy. The objective of this revision is to analyse the role of the advanced glycation end products present in food as intermediaries of diabetic complications, presenting strategies to reduce their ingestion. For this purpose, research was carried out in databases of publications of the area, for the last 15 years, taking into account revision, experimental and clinical studies. Advanced glycation end products are a heterogenous group of molecules coming from non-enzymatic reactions between amino and carbonyl groups, examples being carboxymethyllisine and pentosidine found in food and in vivo. The advanced glycation end products ingested are absorbed and, along with endogenous advanced glycation end-products, promote the progression of the complications of diabetes. There is a direct correlation between advanced glycation end products consumption and blood concentration. Their restriction in food results in the suppression of serum levels of the markers of vascular disease and the intermediaries of inflammation directly involved in the development of diabetic degenerations. The current dietary orientations are concentrated on the proportion of nutrients and on energetic restriction. The risk of ingestion of advanced glycation end products formed during the processing of food should be taken in consideration. It is simply recommended that in the preparation of food, the use of low temperatures for short periods, in the presence of water, has important effects in the prevention of the complications of diabetes. The study of the mechanisms involved in the generation of advanced glycation end products and the antiglycation properties of compounds presented in

  14. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products.

    Directory of Open Access Journals (Sweden)

    Afshin Iram

    Full Text Available Conformational alterations of bovine hemoglobin (Hb upon sequential addition of glyoxal over a range of 0-90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT fluorescence and red shifted Congo Red (CR absorbance. On incubating Hb with 30% v/v glyoxal for 0-20 days, advanced glycation end products (AGEs were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.

  15. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  16. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system.

    Science.gov (United States)

    Toyoda, Sakae; Suzuki, Yuuri; Hattori, Shohei; Yamada, Keita; Fujii, Ayako; Yoshida, Naohiro; Kouno, Rina; Murayama, Kouki; Shiomi, Hiroshi

    2011-02-01

    Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.

  17. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  18. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  19. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  20. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    Science.gov (United States)

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.