WorldWideScience

Sample records for advanced sulfur control

  1. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  2. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  3. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-31

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  4. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  5. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  6. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  7. Sulfur Dioxide Emission Control, Blockade and Drainage

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents the present status of sulfur dioxide emission from thermal plants in China, tells the main problems existing in its emission control and finally gives out suggestions to the problems, that is, to constitute complete standards and regulations and enhancesupervision accordingly.

  8. 40 CFR 52.57 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52.57... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.57 Control strategy: Sulfur oxides... part of the revised sulfur oxide control strategy, is disapproved as it applies to the Widows...

  9. 40 CFR 52.2033 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52.2033 Section 52.2033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur oxides. (a) The revision to the control strategy resulting from the modification to...

  10. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  11. Sulfur oxide adsorbents and emissions control

    Science.gov (United States)

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  12. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.2575 Section 52.2575 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart,...

  13. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did...

  14. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design. For this...

  15. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design. For this...... reason, the book puts emphasis on the state-space approach. The main contents of the book includes state-space representation of dynamic systems, analysis of linear control systems, feedback control and observer design. Both continuous-time and discrete-time systems have been addressed in this book....

  16. A NOTE ON PREVENTION AND CONTROL OF SULFUR OXIDE POLLUTION

    Directory of Open Access Journals (Sweden)

    DEBOJYOTI MITRA,

    2010-08-01

    Full Text Available Traditionally, measures designed to reduce localized ground-level concentrations of sulfur oxides (SOx used highlevel dispersion. Although these measures reduced localized health impacts, it is now realized that sulfur compounds travel long distances in the upper atmosphere and can cause damage far from the original source. Therefore the objective must be to reduce total emissions. This paper addresses the necessary preventive measures and techniques of SOx pollution control.

  17. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... 40 CFR 52.1870: (i) Rules as effective in Ohio on December 28, 1979: OAC 3745-18-04(A), (B), (C), (D... citations affecting § 52.1881, see the List of CFR Sections Affected, which appears in the Finding Aids... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides...

  18. 40 CFR 52.1117 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maryland § 52.1117 Control strategy... not submit an adequate control strategy demonstration to show that the Maryland Regulation...

  19. Advanced CANDU control centre

    International Nuclear Information System (INIS)

    The CANDU 9 design is based upon the 900 MWe class Darlington station in Canada, which is among the world leading nuclear power stations for capacity factor with low operation, maintenance and administration costs. The CANDU 9 design provides an advanced control centre with enhanced operations features. The advanced AECL control centre design includes the proven functionality of existing CANDU control centres, those implementable characteristics identified by systematic design combined with a human factors analysis of operations requirements and features needed to improve station operability which are made possible by the application of current technology. The design strategy is to preserve the general main control room operations staff work area as unchanged as possible to facilitate the inclusion of past features and operational experience while incorporating operability improvements. The author will present those features of the advanced CANDU control centre which facilitates improved operability capabilities. As well, aspects of the design process utilized, application of simulation technology and conclusions regarding this design approach will be reviewed

  20. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  1. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  2. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTS

    Science.gov (United States)

    The objectives of this study were to determine the best available control technology (BACT) for control of sulfur emissions from oil shale processing facilities and then to develop a design for a mobile slipstream pilot plant that could be used to test and demonstrate that techno...

  3. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.724 Section 52.724 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy:...

  4. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.795 Section 52.795 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy:...

  5. 40 CFR 52.928 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52.928 Section 52.928 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.928 Control strategy:...

  6. 40 CFR 52.1030 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52.1030 Section 52.1030 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maine § 52.1030 Control...

  7. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  8. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  9. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO

  12. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub x) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub x

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  15. Advanced Torque Control

    OpenAIRE

    Fritzsche, C; Deunow, H.-P.

    2008-01-01

    In the chapter we discussed a control approach for torque control of gasoline engines. Because of several actuating variables and control requirements the process to be controlled is multivariable. The actuating variables are usually bounded and the effects on the engine torque are nonlinear. Hence direct use of the actuator variables for torque control generally produces plenty of problems. The two layer approach described in the chapter allows the application of standard control methods. Th...

  16. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  17. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  18. Redox control of sulfur degassing in silicic magmas

    OpenAIRE

    Scaillet, Bruno; Clémente, Béatrice; Evans, Bernard W.; Pichavant, Michel

    1998-01-01

    International audience Explosive eruptions involve mainly silicic magmas in which sulfur solubility and diffusivity are low. This inhibits sulfur exsolution during magma uprise as compared to more mafic magmas such as basalts. Silicic magmas can nevertheless liberate large quantities of sulfur as shown by the monitoring of SO2 in recent explosive silicic eruptions in arc settings, which invariably have displayed an excess of sulfur relative to that calculated from melt degassing. If this e...

  19. Advanced access control system

    International Nuclear Information System (INIS)

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identify to a central processor. The system installed at the Barnwell Nuclear Fuel Plant is described

  20. Advances in automotive control 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kiencke, U.; Gissinger, G.L. (eds.)

    2001-07-01

    The aim of the 3rd IFAC Workshop 'Advances in Automotive Control', held in Karlsruhe, Germany on 28-30 March 2001, was to discuss the latest advances in relation to motor vehicles. The increase in road traffic in the 20th century was a major problem, and one of the challenges of the 21st century will be to improve driving safety and comfort. The proceedings covers: driveline control; driveline modelling; vehicle dynamics; electronic architecture; intelligent components; engine control; diagnostics; subsystems; engine modelling; and modelling of combustion and turbo-charging. 28 of the papers are abstracted here.

  1. Advanced access control system

    International Nuclear Information System (INIS)

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identity to a central processor. The central processor associates that individual's authorization file with a card-key obtained at the access point. The system generates a record of personnel movement, provides a personnel inventory on a real-time basis, and it can retrieve a record of all prior events. The system installed at the Barnwell Nuclear Fuel Plant is described

  2. Advances in the study on endogenous sulfur dioxide in the cardiovascular system

    Institute of Scientific and Technical Information of China (English)

    Tian Hong

    2014-01-01

    Objective This review summarized the current advances in understanding the role of the novel gasotransmitter,sulfur dioxide (SO2),in the cardiovascular system.Data sources Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013,using keywords such as "endogenous sulfur dioxide" and "cardiovascular system".Study selection Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected.Results Recently,scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects,such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension,hypertension,coronary atherosclerosis,and cardiac ischemia-reperfusion (I/R) injury,in the cardiovascular system.Conclusions Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO),carbon monoxide (CO),and hydrogen sulfide (H2S).Studies indicated that it has a role in regulating the cardiovascular disease.

  3. 40 CFR 52.2231 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and... § 52.2231 Control strategy: Sulfur oxides and particulate matter. (a) Part D conditional approval. The... area are approved on condition that the State submit by December 31, 1987, a definition of the...

  4. Micro-nano structure composite cathode material with high sulfur loading for advanced lithium–sulfur batteries

    International Nuclear Information System (INIS)

    ABSTRACT: A micro-nano structure based on polydopamine-grafted hollow carbon nanofiber–sulfur composite (HCNF@PDA–S) is designed as a cathode material for effective trapping of sulfur and polysulfides for lithium–sulfur batteries. Hollow carbon nanofiber@polydopamine (HCNF@PDA) micro-nano structure hybrid is first prepared by an in-situ polymerization dopamine monomer decorating on the surface of HCNFs and then elemental sulfur is infiltrated into the HCNF@PDA hybrid nanostructure by thermal treatment. The obtained HCNF@PDA–S composite shows the micro-nano structure based on the micron-sized hollow carbon nanofiber in length and nano-sized polydopamine grafted on the outer surfaces of the HCNFs with homogeneously distribution of sulfur. Compared with the HCNF–S composite, HCNF@PDA–S composite with a high sulfur content of approximately 80 wt% exhibits better electrochemical performance, which delivers initial discharge capacity of 800 mAh g−1 and maintains 530 mAh g−1 after 200 cycles at 0.5 C rate. The enhancements of electrochemical performances may be attributed to the unique micro-nano hybrid structure based on HCNFs and PDA coating layer, in which the micro-sized HCNFs offer the electronic conductivity and provide a firm porous network of the cathode tolerating the volume expansion of sulfur cathode, and nano-sized PDA layers effectively prevent the dissolution of the polysulfides into the electrolyte

  5. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  6. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  7. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Sixth quarterly technical progress report, January - March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  8. Advanced Control of Electrochromic Windows

    OpenAIRE

    Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

    2013-01-01

    In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

  9. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  10. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  11. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  12. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  13. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  14. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  15. Advanced Emissions Control Development Program: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve

  16. Solidification process control for advanced superalloys

    Science.gov (United States)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  17. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries

    Science.gov (United States)

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2013-12-01

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide

  18. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  19. 40 CFR 52.62 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.62 Section 52.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Electric Cooperative—Lowman Steam Plant; Alabama Power Company-Gorgas Steam Plant, Gaston Steam...

  20. Study on Control Strategy of Sulfur Dioxide Concentration in the Urban Area of Shijiazhuang

    Institute of Scientific and Technical Information of China (English)

    李光军; 于立军; 范丽; 王宇新; 赵根喜

    2003-01-01

    Two Gaussian air quality dispersion models, the industrial source complex short-term model (ISCST3) with and without modification have been used to simulate the pollutant concentration distribution in urban areas based on the meteorological data and the emissions distribution of sulfur dioxide. The verified data show that the modified model is more accurate in the urban area of Shijiazhuang. Using the modified model predictions, the control strategies of sulfur dioxide in the urban area have been studied, and the result show that the second long-term (to 2010) strategy can mitigate air pollution significantly and maintain pollution levels within permissible limits.

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  2. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  3. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  4. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    Science.gov (United States)

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source. PMID:26587749

  5. Deposition of elemental sulfur in city gate Pressure Control Valves (PCVs)

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Thiago C. do; Veiga, Leandro S. da; Silva, Marcos J.M. da; Lemos, Marcelo C. de; Goncalves, Luciane T. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Deposition of elemental sulfur has been observed in city gate pressure control valves (PCV s), a phenomenon that causes operational problems in these facilities. This article discusses the problems caused by this deposition, especially in pilots of pressure control valves. While passing through PCV s, the flow of natural gas is subjected to a sharp drop in temperature due to the reduction of pressure (Joule-Thompson). When this happens, the elemental sulfur that is in balance with the flow of natural gas is deposited inside the PCV s and the obstacles ahead. Since PCV s are self-operated and use natural gas as the working fluid, the elemental sulfur is also deposited in the pilots as well. Elemental sulfur in powder form has very small particles - around 20 {mu}m - that prevent the perfect operation of the small moving parts of pilots. Because of this, the affected pilot cannot operate the PCV satisfactorily to regulate the pressure of the natural gas supplied to the customer. There are two possible consequences of this situation: when the customer increases consumption, the pressure will decline to less than below the limit established under the supply contract, which can lead to fines; and the pressure can rise above the limit tolerated by pipes, which can lead to dangerous ruptures. (author)

  6. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  7. Advanced Control of Wheeled Inverted Pendulum Systems

    CERN Document Server

    Li, Zhijun; Fan, Liping

    2013-01-01

    Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics,dynamics modeling, advanced control design techniques,and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by.   The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation met...

  8. Sulfur dioxide control. 1979-June, 1980 (citations from the NTIS data base). Report for 1979-Jun 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    Report citations cover air pollution control technology and equipment for sulfur dioxide. References are included on emissions reduction, involving fluidized bed combustion, combustion modification and additives, scrubbing, and other flue gas desulfurization processes. Fuel desulfurization and the use of low sulfur fuels are excluded. (This updated bibliography contains 160 abstracts, 111 of which are new entries to the previous edition.)

  9. Sulfur dioxide control. 1977-1978 (citations from the NTIS data base). Report for 1977-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    Report citations cover air pollution control technology and equipment for sulfur dioxide. References are included on emissions reduction, involving fluidized bed combustion, combustion modification and additives, scrubbing, and other flue gas desulfurization processes. Fuel desulfurization and the use of low sulfur fuels are excluded. (This updated bibliography contains 230 abstracts, none of which are new entries to the previous edition.)

  10. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  11. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  12. Advances in Monitoring of Global Sulfur Dioxide Sources with Aura/OMI

    Science.gov (United States)

    Krueger, Arlin; Krotkov, Nick; Yang, Kai; Carn, Simon

    Sulfur dioxide is produced by volcanoes, smelters, and from combustion of fossil fuels. It is rapidly oxidized to sulfate aerosols, which affect climate by reflecting sunlight. Volcanic eruption sulfur dioxide masses have been measured for nearly 30 years with Total Ozone Mapping Spectrometer (TOMS) instruments. Smaller sources were immeasurable because the TOMS selection of six discrete wavelengths was far from optimal for discriminating sulfur dioxide from ozone, thus limiting the observations to large column amounts (˜10 Dobson Units (DU)). With full UV spectrum data from GOME, SCIAMACHY, and OMI, the sulfur dioxide amounts are retrieved with twenty times greater precision. The daily global coverage and the high spatial resolution of OMI provides a wealth of new geophysical information. The OMI SO2 algorithm uses residuals generated by the GSFC total ozone algorithm at TOMS wavelengths, augmented by wavelengths in the SO2 bands near 310 nm. Effective cloud top pressures derived from UV rotational Raman scattering have further reduced errors in ozone retrievals due to clouds. Thus, the sulfur dioxide retrieval noise level is reduced to 0.2 - 1.5 DU depending on altitude. In addition to volcanic eruptions, we are now able to monitor passive degassing of volcanoes, which is diagnostic for magma movements. In addition, we have daily monitoring of sulfate ore smelters and the major sources of fossil fuel combustion. These emissions in the planetary boundary layer are the largest global source of sulfate but are difficult to detect because of the low altitude. Nevertheless, large air pollution sulfur dioxide clouds appear in OMI data nearly every day, particularly over China. Finally, volcanic ash is a hazard to aviation that is accompanied by sulfur dioxide in explosive magmatic eruption clouds. A near real-time OMI SO2 data production capability has been developed using KNMI/ GSFC facilities. NOAA/NESDIS distributes data products via Internet to decision support

  13. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model of the...

  14. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  15. An Advanced Fuzzy Logic Based Traffic Controller

    OpenAIRE

    Bilal Ahmed Khan; Nai Shyan Lai

    2014-01-01

    Traffic light plays an important role in the urban traffic management. Therefore, it is necessary to improve the traffic controller for effective traffic management and better traffic flow leading to greener environment. In this paper, an advanced and intelligent traffic light controller is proposed, utilising the fuzzy logic technology and image processing technique. A fuzzy logic control has been implemented to provide the attribute of intelligence to the system. For real-time image acquisi...

  16. Operational efficiency subpanel advanced mission control

    Science.gov (United States)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  17. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  18. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  19. The Advanced Photon Source main control room

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today's requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout

  20. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  1. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    Science.gov (United States)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  2. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  3. Nuplex 80+ - advanced instrumentation and control

    International Nuclear Information System (INIS)

    Nuplex 80+ is an advanced control complex designed by ABB Combustion Engineering (ABB C-E) to meet the demanding human factors, reliability, and licensing requirements of nuclear power generating stations. It is characterized by distributed digital processing, fiber-optic data communications, and touch-sensitive video displays. This advanced design was originally developed for System 80+ [ABB C-E's evolutionary advanced light water reactor (ALWR)], but its utilization of sound human factors principles and modern digital technology has also resulted in the selection of Nuplex 80+ for use in the US Department of Energy's New Production Reactor Program. This paper offers an overview of Nuplex 80+ and some insight into the Design Certification licensing process and key issues of the US Nuclear Regulatory Commission (NRC) review

  4. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  5. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  6. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  7. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    Science.gov (United States)

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  8. Controllable synthesis of α-sulfur spheres with hierarchical nanostructures for efficient visible-light-driven photocatalytic ability

    International Nuclear Information System (INIS)

    Highlights: • α-Sulfur spheres with hierarchical nanostructures are controllably produced. • Addition quantity of PVP affects photocatalytic ability of α-sulfur. • The enhanced photocatalytic ability of α-sulfur hierarchical sphere is found. - Abstract: Visible-light-active α-sulfur spheres with hierarchical nanostructures were fabricated by simple solution-phase synthesis with PVP as the template for enhanced photocatalytic ability. The α-sulfur hierarchical spheres with an ultrahigh specific surface area can controllable synthesized by changing the addition quantity of PVP. The obtained products are systematically studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis absorption spectroscopy (DRS), Fluorescence (FL) and Brunauer-Emmett-Teller (BET). The photocatalytic activity of the as-prepared samples is evaluated by photocatalytic degradation of Rhodamine B (RhB) aqueous solution under visible light illumination. The results indicate that the morphology, specific surface area, photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance can be controlled by varying the addition quantity of PVP. When 200 mg PVP is added, α-sulfur hierarchical spheres with uniform particle size about 1 μm and ultrahigh specific surface area of 67.1 m2/g is obtained, and its photocatalytic activity reaches a maximum value, which can be attributed to the combined effects of photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance

  9. Recent Advances in Iterative Learning Control

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin XU

    2005-01-01

    In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.

  10. Space Testing of the Advanced Instrument Controller

    OpenAIRE

    Goforth, Todd; Cannon, Scott; Lyke, James

    1999-01-01

    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communi...

  11. Environmental quality and energy conservation in coal conversion processes. [Overall minimization of energy required for sulfur pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.L.; Hill, A.H.; Fleming, D.K.

    1979-01-01

    In general, controlling emissions from a coal conversion process is an energy consuming process. In this paper, a parametric assessment of energy requirements for sulfur management in a coal gasification process to produce substitute natural gas is presented. The results of this assessment suggest that the least energy intensive sulfur management practice to utilize in coal gasification plants using low sulfur coal (< 3.5%) is an H/sub 2/S selective removal process providing a Claus plant feed-stream containing 10% or less H/sub 2/S with tail gas from the Claus plant being incinerated in the coal-fired boiler and the additional SO/sub 2/ removed in the flue gas desulfurization (FGD) system. For high sulfur coals (> 3.5%), energy consumptions for all combinations were similar for a given FGD SO/sub 2/ removal specification. As the SO/sub 2/ specification increases for the FGD system, the total energy required for sulfur management also increases. Finally, contrary to expectations, the total energy requirements for sulfur management decrease with increasing sulfur content of the feed coal indicating that the energy requiements of the H/sub 2/S removal process dominates. The total energy requirements for the two Claus plant tail gas treatment processes are similar. Incineration in the boiler is slightly more energy efficient. For low sulfur coals (< 3.5%) the total energy requirements decreased rapidly as the level of H/sub 2/S selective acid-gas removal process decreased from 30% to 10%. For high sulfur coals (> 3.5%) the total energy requirements were similar for all levels of H/sub 2/S in the Claus plant feed gas with a possible minimum in energy requirements for the 15% H/sub 2/S cases.

  12. Control definition study for advanced vehicles

    Science.gov (United States)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  13. State-of-the-art guideline manual for design, quality control, and construction of sulfur-extended-asphalt (SEA) pavements

    Energy Technology Data Exchange (ETDEWEB)

    McBee, W.C.; Sullivan, T.A.; Izatt, J.O.

    1980-01-01

    Interest in the use of sulfur in highway pavement construction has been stimulated by unpredictable increases in cost and the relative uncertainty as to the future availability of asphalt cement (A/C) along with the potential surplus of sulfur in the near future. These events have led to the development of a new binder: a sulfur-extended-asphalt (SEA) binder. This new binder replaces some of the asphalt with sulfur in conventional asphalt paving plants. The mix material can be transported, laid, and compacted with standard paving equipment. Studies of SEA pavements indicate that their properties are comparable and in some cases may prove to be superior to those of conventional asphalt pavements. The manual presents state-of-the-art guidelines for design, quality control, safety factors, and construction of these newly developed pavements. A nonproprietary, direct mixing method and four proprietary methods of producing the SEA mixtures are described.

  14. 78 FR 5346 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Science.gov (United States)

    2013-01-25

    ... Sulfur Emissions From Stationary Boilers AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed... 2.5 ) in the St. Louis nonattainment area by limiting sulfur dioxide (SO 2 ) emissions (a...

  15. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded

  16. AP1000's advanced control room

    International Nuclear Information System (INIS)

    AP1000 is a passive Advanced Light Water Reactor designed by Westinghouse Electric Company to comply with the Electric Power Research Institute's (EPRI) Advanced Light Water Reactor (ALWR) Utility Requirements Document (URD). AP600, the predecessor to AP1000, received Design Certification by the US Nuclear Regulatory Commission (USNRC) in 1999. The AP1000 received its Final Design Approval in the Fall of 2004 and Design Certification is expected in the fall of 2005. During both of these licensing efforts a control room and Human Machine Interface (HMI) design process was submitted and approved. Realizing that Instrumentation and Control (I and C) and HMI technology changes rapidly, Westinghouse chose to delay the detailed design of the control room and operator interfaces. This allows the latest technology to be used when a plant is actually going to be built. That time has now come. This paper describes the preliminary designs of the AP1000 main control room (MCR) and HMI planned for use in new plants both in the United States and abroad. The paper also addresses how the certified design process is being conducted to complete the detailed HMI designs. (authors)

  17. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Science.gov (United States)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  18. Advanced control design for hybrid turboelectric vehicle

    Science.gov (United States)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-08-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  19. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  20. Plant sulfur and Big Data.

    Science.gov (United States)

    Kopriva, Stanislav; Calderwood, Alexander; Weckopp, Silke C; Koprivova, Anna

    2015-12-01

    Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered. PMID:26706053

  1. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  2. Sulfur dioxide control. 1976-July, 1980 (citations from the American Petroleum Institute data base). Report for 1976-July 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    This bibliography contains citations on the different aspects of air pollution control of sulfur dioxide by industry. Covered are control processes, techniques, equipments, design, and performance. (This updated bibliography contains 260 citations, 50 of which are new entries to the previous edition.)

  3. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  4. Sulfur Mustard

    Science.gov (United States)

    ... Matters What's New A - Z Index Facts About Sulfur Mustard What sulfur mustard is Sulfur mustard is a type of ... it is in liquid or solid form. Where sulfur mustard is found and how it is used ...

  5. Advanced Wavefront Sensing and Control Testbed (AWCT)

    Science.gov (United States)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  6. Prototyping Advanced Control Systems on FPGA

    Directory of Open Access Journals (Sweden)

    Simard Stéphane

    2009-01-01

    Full Text Available In advanced digital control and mechatronics, FPGA-based systems on a chip (SoCs promise to supplant older technologies, such as microcontrollers and DSPs. However, the tackling of FPGA technology by control specialists is complicated by the need for skilled hardware/software partitioning and design in order to match the performance requirements of more and more complex algorithms while minimizing cost. Currently, without adequate software support to provide a straightforward design flow, the amount of time and efforts required is prohibitive. In this paper, we discuss our choice, adaptation, and use of a rapid prototyping platform and design flow suitable for the design of on-chip motion controllers and other SoCs with a need for analog interfacing. The platform consists of a customized FPGA design for the Amirix AP1000 PCI FPGA board coupled with a multichannel analog I/O daughter card. The design flow uses Xilinx System Generator in Matlab/Simulink for system design and test, and Xilinx Platform Studio for SoC integration. This approach has been applied to the analysis, design, and hardware implementation of a vector controller for 3-phase AC induction motors. It also has contributed to the development of CMC's MEMS prototyping platform, now used by several Canadian laboratories.

  7. Controlled exposure of volunteers with chronic obstructive pulmonary disease to sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Linn, W.S.; Fischer, D.A.; Shamoo, D.A.; Spier, C.E.; Valencia, L.M.; Anzar, U.T.; Hackney, J.D.

    1985-08-01

    Twenty-four volunteers with chronic obstructive pulmonary disease (COPD) were exposed to sulfur dioxide (SO/sub 2/) at 0, 0.4, and 0.8 ppm in an environmental control chamber. Exposures lasted 1 hr and included two 15-min exercise periods (mean exercise ventilation rate 18 liter/min). Pulmonary mechanical function was evaluated before exposures, after initial exercise, and at the end of exposure. Blood oxygenation was measured by ear oximetry before exposure and during the second exercise period. Symptoms were recorded throughout exposure periods and for 1 week afterward. No statistically significant changes in physiology or symptoms could be attributed to SO/sub 2/ exposure. Older adults with COPD seem less reactive to a given concentration of SO/sub 2/ than heavily exercising young adult asthmatics. This may be due to lower ventilation rates (i.e., lower SO/sub 2/ dose rates) and/or to lower airway reactivity in the COPD group.

  8. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  9. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  10. How to lose money with advanced controls

    International Nuclear Information System (INIS)

    This paper reports that advanced control is a well established technology in the oil and petrochemical industries, and it is tempting to believe that a large portion of its users have captured the greatest share of the available benefits. However, despite massive investments in hardware, few companies have fully exploited the opportunities made available by this investment. In the Western world probably about 85% of the total investment justified on existing plants has already been committed. The benefits captured, however, are probably less than 50% of those readily available. Assuming this investment was justified on a three year payback, the incremental cost to finish the job should pay back in about six months. So why isn't everyone doing it? The following gives guidance on how to maintain, or even worsen the status quo. Known as the Whitehouse Rules, violation of most of them could cause a significant improvement in process profitability

  11. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  12. SUMMARY REPORT: SULFUR OXIDES CONTROL TECHNOLOGY SERIES: FLUE GAS DESULFURIZATION - SPRAY DRYER PROCESS

    Science.gov (United States)

    Described spray dryer flue gas desulfurization (FGD), which is a throwaway process in which sulfur dioxide (SO2) is removed from flue gas by an atomized lime slurry [Ca(OH)2]. he hot flue gas dries the droplets to form a dry waste product, while the absorbent reacts with sulfur d...

  13. Identification of control parameters for the sulfur gas storability with bag sampling methods

    Science.gov (United States)

    Air samples containing sulfur compounds are often collected and stored in sample bags prior to analyses. The storage stability of six gaseous sulfur compounds (H2S, CH3SH, DMS, CS2, DMDS and SO2) was compared between two different bag materials (polyvinyl fluoride (PVF) and polyester aluminum (PEA))...

  14. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  15. Advanced Applications of Subsea Control Systems

    International Nuclear Information System (INIS)

    Technology transfer is one of the main arguments Norwegian companies have for getting involved in difficult markets like Angola. There is great need for sub sea technology in Angola, and Kvaerner Oilfield Products is one of the companies that have successfully fought for contracts in this lucrative market. Field operator TotalFinaElf Exploration and Production Angola has awarded Kvaerner Oilfield Products a USD 3.1 million contract for pre-engineering and qualification testing of the sub sea production systems for the Dalia field offshore Angola. Kvaerner Oilfield Products has already started pre-engineering and testing activity. The sub sea production system includes 42 Xmas trees for controlling the well stream, nine manifolds as well as related control equipment. As sub sea technology improves and advances, equipment that is more complex is being placed on the seabed and downhole environments. Factors such as the cost of the umbilical, increased noise immunity and speed requirements will almost certainly result in optical communications being widely adopted for future system designs. However; in the immediate future operators are likely to insist on backup electrical communications due to the immaturity of certain aspects such as Wetmate optical connectors, fibre handling and fibre degradation. Perhaps the single greatest advantage of open standard sub sea networking is derived from the exploitation of the growing range of third party intelligent instrumentation available on the market. This instrumentation when properly integrated into a sensor to boardroom data management system allows unparalleled control to be delivered to the user at a total cost of installation which can be radically less than conventional technology. It can provide a compelling case for adoption of true open standards. In order to deliver power over any significant distance it is necessary to consider the losses in the transmission medium. The major constraint in the sub sea industry is

  16. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  17. Control strategy for sulfur dioxide and acid rain pollution inChinaa

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several factors, namely, coal-dominated primary energy mix, extensive economic development mode, inefficient energy utilization, end the imperfect environmental regulations, result in the serious urban sulfur dioxide pollution end large-scale sulfatetype acid precipitation in China. In 1995, China's sulfur dioxide emissions reached 23.70 Mt, and the areas affected by acid rain accounted for 40% of the territory. Chinese government accords considerable importance to the sulfur dioxide end acid rain contamination. New sets of environmental friendly policies have been promulgated. But enforcement of laws and regulations on SO2 emissions need to be further improved and broadened, especially those respond to market conditions. This paper focuses particular attention on the analysis of strategy, policies, and national actions which had or should be taken against sulfur dioxide emissions nationwide to achieve the environmental targets, on the basis of which gives the technical options in future.

  18. Advanced Control Architectures for Intelligent MicroGrids, Part I

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chandorkar, Mukul; Lee, Tzung-Lin; Loh, Poh Chiang

    2013-01-01

    This paper presents a review of advanced control techniques for microgrids. The paper covers decentralized, distributed, and hierarchical control of grid connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the...... stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed....

  19. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  20. Understanding the Redox Obstacles in High Sulfur-Loading Li-S Batteries and Design of an Advanced Gel Cathode.

    Science.gov (United States)

    Zu, Chenxi; Li, Longjun; Guo, Jianhe; Wang, Shaofei; Fan, Donglei; Manthiram, Arumugam

    2016-04-01

    Lithium-sulfur batteries with a high energy density are being considered a promising candidate for next-generation energy storage. However, realization of Li-S batteries is plagued by poor sulfur utilization due to the shuttle of intermediate lithiation products between electrodes and its dynamic redistribution. To optimize the sulfur utilization, an understanding of its redox behavior is essential. Herein, we report a gel cathode consisting of a polysulfide-impregnated O- and N-doped porous carbon and an independent, continuous, and highly conducting 3-dimensional graphite film as the charge-transfer network. This design decouples the function of electron conduction and polysulfide absorption, which is beneficial for understanding the sulfur redox behavior and identifying the dominant factors leading to cell failure when the cells have high sulfur content and insufficient electrolyte. This design also opens up new prospects of tuning the properties of Li-S batteries via separately designing the material functions of electron conduction and polysulfide absorption. PMID:27014923

  1. Control and treatment of sulfur oxides emissions; Prevention et traitement des emissions d`oxydes de soufre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The conference on the control and treatment of sulfur oxides emissions has held in Le Havre the 4. and 5. december, 1997. The aim of this conference was to promote the information on the different treatment technologies and to contribute on the one hand to the supporting and revival of the environmental protection and on the other hand to the desulfurization programs. It has allowed to recall too the technical and financial support of the Ademe to the manufacturers. (O.M.)

  2. Factors controlling fluxes of volatile sulfur compounds in Sphagnum peatlands. Ph.D. Thesis

    Science.gov (United States)

    Demello, William Zamboni

    1992-01-01

    Exchange of DMS and OCS between the surface of Sphagnum peatlands and the atmosphere were measured with dynamic (S-free sweep air) and static enclosures. DMS emission rates determined by both methods were comparable. The dynamic method provided positive OCS flux rates (emission) for measurements performed at sites containing Sphagnum. Conversely, data from the static method indicated that OCS was consumed from the atmosphere. Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in a poor fen (Mire 239) at the Experimental Lakes Area, Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen in Barrington, NH, USA). At Mire 239, emissions of VSC's were monitored, before and after acidification, at control and experimental sections within two major physiographic areas of the mire (oligotrophic and minerotrophic). DMS was the predominant VSC released from Mire 239 and varied largely with time and space. Sulfur addition did not affect DMS emissions in a period of hours to a few days. DMS emissions in the experimental oligotrophic area of the mire was approximately 3-fold greater than in the control oligotrophic area, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were not significantly affected by sulfate amendments, while DMS and MSH concentrations increased greatly with time in the top 10 cm of the peat column. The major environmental factors controlling fluxes of DMS in a Sphagnum-dominated peatland were investigated in Sallie's Fen, NH. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Temperature seemed to be the major environmental factor controlling these variabilities. Concentrations of dissolved VSC's varied with time and space throughout the fen

  3. Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Ruchuan Peng; Linn, W.S.; Hackney, J.D. (Univ. of Southern California, Downey (United States))

    1992-06-01

    Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, the authors exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber to four test atmospheres: (1) clean air; (2) 0.5-{mu}m H{sub 2}SO{sub 4} aerosol at {approx}100 {mu}g/m{sup 3}, generated from water solution; (3) 0.5-{mu}m carbon aerosol at {approx}250 {mu}g/m{sup 3}, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (4) carbon as in (3) plus {approx}100 {mu}g/m{sup 3} of ultrafine H{sub 2}SO{sub 4} aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (4) became attached to carbon particle surfaces, and that most particles remained in the sub-{mu}m size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation {approx}50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H{sub 2}SO{sub 4} or carbon, separate or interactive, on health measures.

  4. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    OpenAIRE

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less than the installed critical threshold value, the system brakes the vehicle gradually. If the vehicle in front is no longer there, or the headway time is greater than the threshold value, the instal...

  5. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  6. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  7. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  8. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  9. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  10. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  12. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    Science.gov (United States)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 μg dm-2ṡday and briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

  13. Motion control in advanced driving simulators

    OpenAIRE

    Elloumi, Hatem

    2006-01-01

    Driving simulators are advanced devices composed of four components: a virtual scene projected on a wide screen to imitate the road and the traffic, an audio system to play the driving sounds (horn, squeal of brakes, etc.), a car cockpit (including a real dashboard, the pedals and the seat of the driver) to copy the body position and the interaction of the driver with a real vehicle and finally a robot carrying the car cockpit to provide its motion. While the first three components could be c...

  14. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  16. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    OpenAIRE

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the microscopic level and the resulting traffic flow characteristics at the macroscopic level. The results give new insights into impacts of ADAS on traffic flow characteristics.

  17. Advanced conduction angle control of permanent magnet brushless motor drives

    OpenAIRE

    Gan, J.; Chan, CC; Jiang, JZ; Chau, KT

    1998-01-01

    A novel advanced conduction angle control scheme for permanent magnet brushless motor drives is presented in this paper. The originality of this scheme is to employ the transformer EMF in stator windings to counteract the rotational EMF by controlling the advanced conduction angle when the motor drive operates above the base speed. Hence the constant-power operation region can be extended considerably, even though the current regulator is in saturation. The attractive feature of the proposed ...

  18. Advanced Control Strategies for Mobile Hydraulic Applications

    OpenAIRE

    Cristofori, Davide

    2013-01-01

    Mobile hydraulic machines are affected by numerous undesired dynamics, mainly discontinuous motion and vibrations. Over the years, many methods have been developed to limit the extent of those undesired dynamics and improve controllability and safety of operation of the machine. However, in most of the cases, today's methods do not significantly differ from those developed in a time when electronic controllers were slower and less reliable than they are today. This dissertation addresses t...

  19. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  20. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  1. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    Science.gov (United States)

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2016-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  2. Control of Smart Building Using Advanced SCADA

    Science.gov (United States)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  3. Advanced mobile networking, sensing, and controls.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  4. Saving Building Energy through Advanced Control Strategies

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2013-09-01

    Full Text Available This article presents an analysis of the relationship between building energy usage and building control system operation and performance. A method is presented for estimating the energy saving potential of improvements in building and control system operation, including the relative impact of recommssioning and hardware and software upgrades, based on a subjective assessment of the level of energy efficient design and the energy usage of the building relative to similar buildings as indicated by the Energy Utilization Index for the building. The method introduces a Building Design Index and a Building Operating Index to evaluate building energy performance versus similar buildings, and uses these indices to estimate potential savings and effectiveness of control system improvements.

  5. Advanced Stellar Compass, CHAMP, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Betto, Maurizio;

    1999-01-01

    The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, t...... mechanical interface and the TC/TM protocols for the communication between the Star Tracker and the OBDH.......The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, the...

  6. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I ampersand C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I ampersand C. Fifteen potential human factors problems were identified. They include: the need for an advanced I ampersand C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I ampersand C; and operator acceptance and trust. 11 refs., 1 tab

  7. Human factors survey of advanced instrumentation and controls

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  8. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.; Morris, A.; Friis-Madsen, E.; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...

  9. Simulation of advanced concepts for damage control

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.; Wolff, P.A.

    2003-01-01

    Damage control on board navy ships requires a lot of manpower. On a frigate-sized ship of the Royal Netherlands Navy, up to ninety people can be involved in tasks like fire fighting, battle damage repair and treatment of casualties. In present times this is no longer attainable or affordable. To red

  10. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/ display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation

  11. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  12. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  13. Advanced Discrete-Time Control Methods for Industrial Applications

    OpenAIRE

    Khatamianfar, Arash

    2015-01-01

    This thesis focuses on developing advanced control methods for two industrial systems in discrete-time aiming to enhance their performance in delivering the control objectives as well as considering the practical aspects. The first part addresses wind power dispatch into the electricity network using a battery energy storage system (BESS). To manage the amount of energy sold to the electricity market, a novel control scheme is developed based on discrete-time model predictive control (MPC) to...

  14. Advances in Future Computer and Control Systems v.2

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  15. Advances in Future Computer and Control Systems v.1

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  16. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  17. Advanced Attitude Control af Pico Sized Satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper A.; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    The AAU-Cubesat project started in 2001 and led to the launch of the rst AAU-Cubesat and followed up with the second Cubesat project, AAUSAT-II, which carries a combined gamma and X-Ray detector. Due to the precision pointing requirement in the X-Ray sensor it is necessary to realize a pointing...... accuracy of better than 5 degrees. Cost, size, weight and power requirements, on the other hand, impose selecting relative simple sensors and actuators which leads to an attitude control requirement of less than 1 degree. This precision is obtained by a combination of magnetorquers and momentum wheels. The...

  18. Sensors, controls, and man-machine interface for advanced teleoperation

    Science.gov (United States)

    Bejczy, A. K.

    1980-01-01

    Some advances are reviewed which have been made in teleoperator (i.e., mechanical activities performed by mechanical devices at a remote site under remote control) technology through introduction of sensors, computers, automation, and new man-machine interface devices and techniques for remote manipulator control. The state of the art is summarized and some basic problems and challenging developments are examined.

  19. Advanced instrumentation for next-generation aerospace propulsion control systems

    Science.gov (United States)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  20. Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.; Maskew, J.T.

    1994-12-01

    The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.

  1. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    Science.gov (United States)

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications. PMID:27225061

  2. Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry;

    2012-01-01

    the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor...... present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration...

  3. Advanced control room evaluation: General approach and rationale

    International Nuclear Information System (INIS)

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs

  4. [Effects of sulfur- and polymer-coated controlled release urea fertilizers on wheat yield and quality and fertilizer nitrogen use efficiency].

    Science.gov (United States)

    Ma, Fu-Liang; Song, Fu-Peng; Gao, Yang; Zou, Peng

    2012-01-01

    A field experiment was conducted to study the effects of sulfur- and polymer-coated controlled release urea fertilizers on wheat yield and its quality, plow layer soil inorganic nitrogen (N) contents, and fertilizer N use efficiency. Compared with traditional urea fertilizer, both sulfur- and polymer-coated controlled release urea fertilizers increased the grain yield by 10.4%-16.5%, and the grain protein and starch contents by 5.8%-18.9% and 0.3%-1.4%, respectively. The controlled release urea fertilizers could maintain the topsoil inorganic N contents to meet the N requirement for the wheat, especially during its late growth stage. In the meantime, the fertilizer N use efficiency was improved by 58.2%-101.2%. Polymer-coated urea produced better wheat yield and higher fertilizer N use efficiency, compared with sulfur-coated controlled release urea. PMID:22489481

  5. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  6. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  7. Advances in Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-01

    Pollutants, such as nitrogen oxides (nitrogen dioxide (NO2) and nitric oxide (NO)), sulphur dioxide (SO2), sulphur trioxide (SO3), carbon dioxide (CO2), mercury (Hg) and particulate matter (PM), are formed when coal is combusted in a power plant boiler. With the concern over the environmental and health consequences of these pollutants, legislation and regulations have been implemented limiting the amounts that can be emitted to the atmosphere. Emission control systems on conventional coal-fired power plants typically employ technologies designed to remove one specific pollutant.These are then combined, in series, to remove several pollutants in order to meet the emission regulations. This report discusses multi-pollutant systems which remove two or more of the principal regulated pollutants (SO2, NOx, mercury, particulate matter and CO2) in a single reactor or a single system designed for the purpose. The emphasis is on commercial or near commercial processes, and those that are under active development. Ways to improve the co-benefit removal of oxidised mercury in conventional limestone wet scrubbers, spray dry scrubbers and circulating dry scrubbers are also included. Multi-pollutant systems can have lower capital and operating costs than a series of traditional systems to remove the s ame number of pollutants. Nevertheless, many of the multi-pollutant technologies rely on by-product sales to be economically competitive. Their footprint is often smaller than conventional single pollutant counterparts treating a similar volume of flue gas, making them easier to install in retrofit applications. Some of the systems use modular designs that ensures easy scalability for larger boilers.

  8. Advanced control of piezoelectric micro-nano-positioning systems

    CERN Document Server

    Xu, Qingsong

    2016-01-01

    This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining positi...

  9. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a...... linearised CSTR. Advantages and disadvantages of these controllers will be discussed. All three controller types shows a set of common undesirable characteristics, which must be accounted for. At the end of the evaluation horizon the "optimal" solution has an unstable characteristics, which can be suppressed...

  10. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  11. Multivariable quadratic synthesis of an advanced turbofan engine controller

    Science.gov (United States)

    Dehoff, R. L.; Hall, W. E., Jr.

    1978-01-01

    A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines.

  12. Advanced Proportional Servo Valve Control with Customized Control Code using White Space

    OpenAIRE

    Lauer, Peter

    2016-01-01

    An industrial control valve has been designed by Eaton (AxisPro® valve). The servo performance valve has onboard electronics that features external and internal sensor interfaces, advanced control modes and network capability. Advanced control modes are implement in the valves firmware. With the help of the white space it is possilbe to execute custom code directly on the valve that interact with these controls. Small OEM applications, like rubber moulding machines, benefit from the cominatio...

  13. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  14. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  15. To control and to be controlled – understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family.

    Directory of Open Access Journals (Sweden)

    Anna eWawrzyńska

    2014-10-01

    Full Text Available SSLIM1, a member of the EIN3-like (EIL family of transcription factors in Arabidopsis, is the regulator of many sulfur-deficiency responsive genes. Among the five other proteins of the family, three regulate ethylene responses and two have unassigned functions. Contrary to the well-defined ethylene signaling, the pathway leading from sensing sulfate status to the activation of its acquisition via SLIM1 is completely unknown. SLIM1 binds to the 20 nt-long specific UPE-box sequence; however, it also recognizes the shorter TEIL sequence, unique for the whole EIL family. SLIM1 takes part in the upregulation and downregulation of various sulfur metabolism genes, but also it controls the degradation of glucosinolates under sulfur deficient conditions. Besides facilitating the increased flux through the sulfate assimilation pathway, SLIM1 induces microRNA395, specifically targeting ATP sulfurylases and a low-affinity sulfate transporter, SULTR2;1, thus affecting sulfate translocation to the shoot. Here, we briefly review the identification, structural characteristics and molecular function of SLIM1 from the perspective of the whole EIL protein family.

  16. Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes

    Science.gov (United States)

    Sulfur dioxide (SO2) fumigation controls postharvest decay of commercially stored table grapes. To develop an alternative to SO2, fumigation with up to 10,000 micro-l/l ozone (O3) for up to 2 h was applied to control postharvest gray mold caused by Botrytis cinerea. O3 was effective when grapes were...

  17. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pHettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. PMID:23465722

  18. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments

    DEFF Research Database (Denmark)

    Bruchert, V.; Knoblauch, C.; Jørgensen, BB

    2001-01-01

    -specific sulfate reduction rates, these greater isotopic differences cannot be accounted for by significantly lower in situ bacterial sulfate reduction rates. Therefore, the remaining isotopic difference between sulfate and sulfide must derive from additional isotope effects that exist in the oxidative part of the...... fractionations varied by less than 5.8 parts per thousand with respect to temperature and sulfate reduction rate, whereas the difference in sulfur isotopic fractionation between bacteria with different carbon oxidation pathways was as large as 17.4 parts per thousand. Incubation of sediment slurries from two...... parts per thousand and 8 parts per thousand above 25 degreesC, respectively. In absence of significant differences in sulfate reduction rates in the high and low temperature range, respectively, we infer that different genera of sulfate-reducing bacteria dominate the sulfate-reducing bacterial community...

  19. Comparison of Advanced Distillation Control Methods, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  20. Overview of the US program of controls for advanced reactors

    International Nuclear Information System (INIS)

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed

  1. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  2. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means of...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...

  3. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  4. Digital control application for the advanced boiling water reactor

    International Nuclear Information System (INIS)

    The Advanced Boiling Water Reactor (ABWR) is a 1300 MWe class Nuclear Power Plant whose design studies and demonstration tests are being performed by the three manufacturers, General Electric, Toshiba and Hitachi, under requirement specifications from the Tokyo Electric Power Company. The goals are to apply new technology to the BWR in order to achieve enhanced operational efficiencies, improved safety measures and cost reductions. In the plant instrumentation and control areas, traditional analog control equipment and wire cables will be replaced by distributed digital microprocessor based control units communicating with each other and the control room over fiber optic multiplexed data buses

  5. Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators

    OpenAIRE

    Liu, Pei-Hsin

    2015-01-01

    Advances in transistor-integration technology and multi-core technology of the latest microprocessors have driven transient requirements to become more and more stringent. Rather than relying on the bulky output capacitors as energy-storage devices, increasing the control bandwidth (BW) of the multiphase voltage regulator (VR) is a more cost-effective and space-saving approach. However, it is found that the stability margin of current-mode control in high-BW design is very sensitive to operat...

  6. Advanced Path Following Control of an Overactuated Robotic Vehicle

    OpenAIRE

    Ritzer, Peter; Winter, Christoph; Brembeck, Jonathan

    2015-01-01

    This work describes an advanced path following control strategy enabling overactuated robotic vehicles like the ROboMObil (ROMO) [1] to automatically follow predefined paths while all states of the vehicle's planar motion are controlled. This strategy is useful for autonomous vehicles which are guided along online generated paths including severe driving maneuvers caused by e.g. obstacle avoidance. The proposed approach combines path following, i.e. tracking a plane curve without a priori tim...

  7. Access control and interlock system at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  8. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  9. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    Science.gov (United States)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  10. Research and control of advanced schistosomiasis japonica in China.

    Science.gov (United States)

    Wu, Wei; Feng, Aicheng; Huang, Yixin

    2015-01-01

    Among the three main schistosomes (Schistosoma japonicum, Schistosoma mansoni, and Schistosoma haematobium) known to infect humans, S. japonicum causes the most serious pathological lesions. In China, only schistosomiasis japonica is transmitted. From the 1950s, massive epidemiological investigations and active control measures for schistosomiasis japonica have been carried out. At the early stage of schistosomiasis control program, there were about 12 million schistosomiasis patients, and about 5% of schistosomiasis patients belong to advanced patients, which was 600,000. After more than a half century of active schistosomiasis control work, the schistosomiasis situation has been reduced markedly. The nearest epidemiological investigation showed that, by the end of 2012, there were still 240,000 schistosomiasis patients with the descent rate of 98% and 30,000 advanced patients with the descent rate of 95%. This paper reviews the rich experiences of advanced schistosomiasis research and control in China, including that the epidemiology researches confirm there is a family aggregation of advanced schistosomiasis and advanced schistosomiasis patients have no significance to the schistosomiasis transmission in transmission-interrupted areas but still are an infection source in endemic areas; pathogenic mechanism researches verify that genetic factors and immunoregulation play important roles in the disease developing process; ultrasound image examinations are used not only in the diagnosis and differential diagnosis of advanced schistosomiasis but also in the guidance of treatment and evaluation of therapeutic effects and, furthermore, in the risk predictions of portal hypertension and upper gastrointestinal hemorrhage; clinical practices demonstrate that praziquantel can be used in most of advanced schistosomiasis patients, and the therapy not only can interrupt the schistosomiasis transmission somewhat but also is favorable for liver fibrosis improvement; the

  11. Combined nitrogen oxides/sulfur dioxide control in a spray-dryer/fabric-filter system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.A. (ed.); Huang, H.; Allen, J.W.; Livengood, C.D.

    1988-11-01

    A combination of modified process conditions and addition of caustic soda to a lime-based spray-dryer system (20-MW electric equivalent) was evaluated for its value in promoting combined NO{sub x}/SO{sub 2} removal from flue gas resulting from the combustion of high-sulfur coal. Two test series, each about one month in duration, were carried out at Argonne National Laboratory (ANL) in 1986 and 1988. Spray-dryer outlet temperature was identified as a key factor with NO{sub x} removal becoming significant above about 180{degree}F and gradually increasing up to the maximum temperature investigated (210{degree}F). No upper limit on removal with increasing temperature was observed. Removal of NO{sub x} was strongly proportional to baghouse filter-cake thickness; nearly all NO{sub x} removal occurred in the baghouse, with a small net production of NO{sub 2} (<15 ppM). The NO{sub x} removal was also proportional to the SO{sub 2}NO{sub x} ratio, with little NO{sub x} removal observed at SO{sub 2}/NO{sub x} ratios less than 2:1. Caustic soda addition improved NO{sub x} removal, at least partially through creation of a more porous and reactive filter cake. Steady-state removals of 70% for SO{sub 2} and 35% for NO{sub x} were easily attained. 10 refs., 14 figs., 4 tabs.

  12. Advanced actuators for the control of large space structures

    Science.gov (United States)

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  13. Planner-Based Control of Advanced Life Support Systems

    Science.gov (United States)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  14. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  15. Advanced control research at the Pennsylvania State University

    International Nuclear Information System (INIS)

    This paper summarizes several current control research projects at the Pennsylvania State University which have potential application for improving nuclear power plant operation. This research is grouped into 3 broad categories: (1) intelligent control including automated decision making, coordinating control, and reconfigurable control, (2) advanced algorithms using optimal, robust, fuzzy, and neural network control, and (3) distributed implementation with commercially available microprocessor-based controllers. These research activities encompass theoretical development coupled with experimental verification. Much of the early experimental verification and demonstration has been conducted using simulation experiments. However, current work is now beginning to include physical verification using the Penn State TRIGA nuclear research reactor and the Experimental Breeder Reactor (EBR-11) power plant operated by the Argonne National Laboratory at the Idaho National Engineering Laboratory

  16. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue......-regulator structure. It enables oset free control; it can be computed eciently on-line using several optimization algorithms; and accommodates soft constraint for the outputs and for shaping the set-point tracking penalty function. We report selected observations using this implementation and discuss their practical...... models and integration of the innovation errors. If the disturbances increases, oset-free control cannot be achieved without violation of process constraints. A target calculation function is used to calculate the optimal achievable target for the process. The use of soft constraints for process output...

  17. Advanced CO2 removal process control and monitor instrumentation development

    Science.gov (United States)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  18. Advanced control room design review guidelines: Merging old and new

    International Nuclear Information System (INIS)

    The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper

  19. Control and electronic subsystems for the advanced servomanipulator

    International Nuclear Information System (INIS)

    The advanced servomanipulator (ASM) represents a new generation of electrically driven force-reflecting manipulator systems designed to be remotely maintainable. This ASM is being developed to perform remote maintenance in a nuclear fuel reprocessing plant where human access is not allowed. The primary function of the manipulator control system is to maintain stable, accurate master/slave operation while providing sensitive force reflection to the operator. The control system is based upon tightly coupled distributed digital microprocessing methods. The architectural structure of the control system is outlined and is compared to the previously developed Model M-2 control system, and justification for the advances incorporated into the ASM structure are given. The various modes of operation and diagnostics are described, and throughput requirements associated with joint servo-control and counter-balancing are discussed. The fundamental elements of the control system are reviewed, including the processor selection (Motorola MC68000) and the language (FORTH). The purpose of this document is to review the design decisions and the resulting design selections to serve as a base for future improvements. Four main areas will be covered: (1) system overview, (2) hardware implementation, (3) software partitioning, and (4) remote electronics considerations. Each area will address the specifics of the selected equipment or the functional requirements of the control method. 9 references, 4 figures

  20. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  1. Recent advances in active control of aircraft cabin noise

    Science.gov (United States)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  2. Advanced interaction media in nuclear power plant control rooms.

    Science.gov (United States)

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  3. Rethinking the Ancient Sulfur Cycle

    Science.gov (United States)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  4. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films

    Science.gov (United States)

    Orofeo, Carlo M.; Suzuki, Satoru; Sekine, Yoshiaki; Hibino, Hiroki

    2014-08-01

    Transition metal dichalcogenides (TMDs) have emerged as exciting 2D materials beyond graphene due to their promising applications in the field of electronics and optoelectronics. Hence, the ability to produce controllable and uniformly thick TMD sheets over a large area is of utmost important for large-scale applications. Here, a facile method of synthesizing large-area, layer-controlled WS2, and MoS2 sheets by sulfurization of their corresponding thin metal films is reported. A metal film, which is deposited by magnetron sputtering method, can be adjusted to produce, with great control, the desired sheet thickness down to a monolayer. Various characterization techniques, such as Raman, photoluminescence, and transmission electron microscopy, were used to evaluate the grown films. The results confirmed some of the exotic properties of TMDs such as the thickness dependent band-gap transition (indirect to direct band gap) and Raman shift. Devices made directly on the as-grown film showed modest mobility, ranging from 0.005 to 0.01 cm2 V-1s-1. Our synthesis method is simple and could also be used to synthesize other TMDs.

  5. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  6. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  7. Monoclinic sulfur cathode utilizing carbon for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Jung, Sung Chul; Han, Young-Kyu

    2016-09-01

    Sulfur cathodes for lithium-sulfur batteries have been designed to be combined with conductive carbon because the insulating nature of sulfur causes low active material utilization and poor rate capability. This paper is the first to report that carbon can induce a phase transition in a sulfur cathode. The stable form of a sulfur crystal at ambient temperature is orthorhombic sulfur. We found that monoclinic sulfur becomes more stable than orthorhombic sulfur if carbon atoms penetrate into the sulfur at elevated temperatures and the carbon density exceeds a threshold of C0.3S8. The high stability of the carbon-containing monoclinic sulfur persists during lithiation and is attributed to locally formed linear SC3S chains with marked stability. This study provides a novel perspective on the role of carbon in the sulfur cathode and suggests control of the crystal phase of electrodes by composite elements as a new way of designing efficient electrode materials.

  8. Recent Advances in the Control of Piezoelectric Actuators

    OpenAIRE

    Ziqiang Chi; Qingsong Xu

    2014-01-01

    The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable eff...

  9. Recent advances in opinion modeling: control and social influence

    CERN Document Server

    Albi, Giacomo; Toscani, Giuseppe; Zanella, Mattia

    2016-01-01

    We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents' role in the opinion exchange process.

  10. Definition study for temperature control in advanced protein crystal growth

    Science.gov (United States)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  11. Combined nitrogen oxides/sulfur dioxide control in a spray- dryer/fabric-filter system

    Energy Technology Data Exchange (ETDEWEB)

    Farber, P.S. (Chemical Waste Management, Inc., Oakbrook, IL (USA)); Huang, H.S. (Argonne National Lab., IL (USA). Energy Systems Div.)

    1987-04-01

    Caustic soda was evaluated for its value as an additive in combined nitrogen oxides/sulfur oxides (NO{sub x}/SO{sub x}) removal from coal combustion gases in a four-week field test at a 22-MW (electric) industrial-scale spray-dryer facility at Argonne National Laboratory (ANL). A combination of modified process conditions and additions of caustic soda to the lime-based spary-dryer system yielded some removal of NO{sub X} from the flue gases, but an increased sorbent ratio was needed to maintain the SO{sub 2}-removal ability. The higher concentration of NO{sub 2} at the system outlet than at the inlet indicated that the oxidation of NO to NO{sub 2} was a key step in the overall removal process; a large increase in the concentration of nitrates was correlated with the increased oxidation of NO to NO{sub 2}. The test data also indicated that the outlet temperature from the spray dryer was a key factor in simultaneous NO{sub x}/SO{sub x} removal. Above 190{degree}F, a relationship for NO{sub x} removal was found between the equivalence ratio of the reactants and the pollutants, the thickness of the filter cake, and the ratio of SO{sub x} to NO{sub x} at the system entrance. The existence of temperature window'' ideal for NO{sub x} removal could not be verified during the field tests, primarily due to an upper temperature limit of 210-215{degree}F. Also, as the filter-cake thickness increased, so did NO{sub x} removal. NO{sub x} removal (up to 45%) was enhanced by high ratios of SO{sub x}/NO{sub x} (>5:1) in the flue gas. At low SO{sub x}/NO{sub x} ratios (<2:1), virtually no NO{sub x} removal (<10%) took place, even when SO{sub x} removal was well over 90%. 15 refs., 29 figs., 16 tabs.

  12. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    Science.gov (United States)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  13. Improved safety in advanced control complexes, without side effects

    International Nuclear Information System (INIS)

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I ampersand C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator's monitoring and control task requirements. 22 refs., 3 figs., 5 tabs

  14. Guidelines for the review of advanced controls and displays

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed and refined in the commercial nuclear industry as part of future reactor designs. These ACRs will utilize advanced human-system interface (HSI) technologies which may have significant implications for plant safety in that they may affect: (1) the operators' overall role (function) in the system; (2) the methods by which operators receive information about system status; (3) the ways in which the operators interact with the system; and (4) the requirements on operators to understand and supervise an increasingly complex system. The Nuclear Regulatory Commission (NRC) reviews control room designs to ensure that they incorporate good human factors engineering principles so as to support operator performance and reliability necessary to protect public health and safety. The principal guidance available to the NRC (NUREG-0700) was developed more than ten years ago and does not address new technologies. Accordingly, the guidance must be updated. This paper discusses the development of an NRC Advanced Control Room Design Review Guideline

  15. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  16. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  17. Overview of insertion device controls at the Advanced Photon Source

    Science.gov (United States)

    Ramanathan, Mohan; Smith, Martin; Grimmer, John; Merritt, Michael

    2002-03-01

    The Advanced Photon Source (APS) is a third-generation synchrotron with major emphasis on insertion device (ID) sources. Currently, there are 25 sectors instrumented out of a possible 35 ID sources. Most of the insertion devices are undulators. Beamlines have been using the ID radiation at the APS for more than five years. The control system of choice at the APS is the experimental physics and industrial control system (EPICS) (http://www.aps.anl.gov/epics). Based on operational experience, the ID control system has been completely revamped. During user operations, the beamline user has complete control of the insertion device. Various interfaces, from RS-232 to EPICS channel access, have been provided for the users to control the IDs. The control system software has been designed to accommodate scanning of the insertion device synchronized to each user's beamline monochromator. The users have the option of operating the device in a tapered mode. The control software allows the users to control the undulators in energy space from the fundamental to the seventh harmonic. The design philosophy of the insertion device control system will be discussed. The implementation and operational experience will be presented in detail.

  18. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  19. Intelligent main control room for advanced PWR plants

    International Nuclear Information System (INIS)

    The design targets of the main control room of nuclear power plants are as follows. (1) To make a good working environment where operators can operate easily. (2) To reduce the work load and operators error. To this end, MHI has been improving main control room design for advanced PWR plants. The new intelligent main control room consists of a soft operation console and a large display panel. According to our evaluation, the work load and human error of the new main control room are reduced by about 35% compared with the latest plants. This new design will be used to plan new plants and will have the additional feature of saving costs by standardizing plant design. (author)

  20. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  1. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    The nuclear power industry has used analog instrumentation and controls (I and C) in their control rooms and technical support centers since the first nuclear power plant went on-line in the late 1950's. Even today the industry, as a whole, has been slow to implement advanced/digital I and C. The utilization of digital I and C appears, however, to be the wave of the future because most of the analog components and systems are becoming obsolete and no longer available. These advanced systems will also probably be utilized in the life extension of nuclear plants. It has been demonstrated in other industries that digital I and C provides almost error-free performance that is three-to-four orders of magnitude better than analog components performing the same function. With the increase in sophistication in the operation of modern nuclear power plants that is needed to handle the multiple (and sometimes conflicting) goals of efficiency, reliability, economic operation, and safety, the nuclear industry will be driven to the use of advanced I and C. Oak Ridge National Laboratory (ORNL) is currently performing a research project for the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research. The purpose of the project is to provide the technical basis for the development of regulatory criteria to evaluate the safety implications of human factors associated with advanced I and C in nuclear power plants. During the first part of this project a survey of the US and Canadian utilities and vendors was conducted. The survey was oriented towards determining the human factors issues related to the current, planned, and potential future uses of digital systems in control rooms and technical support centers. The human factors issues were prioritized in regards to their importance by representatives from both ORNL and NRC

  2. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  3. Evaluation of information display at advanced main control room

    International Nuclear Information System (INIS)

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences

  4. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Yu, Seon Jae; Choi, Eui Sun [Korea Univ., Seoul (Korea, Republic of)

    2000-03-15

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences.

  5. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    International Nuclear Information System (INIS)

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  6. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  7. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  8. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  9. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  10. Simulating advanced life support systems to test integrated control approaches

    Science.gov (United States)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  11. Chain-Branching Control of the Atomic Structure of Alkanethiol-Based Gold–Sulfur Interfaces

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Zhang, Jingdong; Hush, Noel S.; Reimers, Jeffrey R.; Ulstrup, Jens

    2011-01-01

    Density functional theory structure calculations at 0 K and simulations at 300 K of observed high-resolution in situ scanning tunneling microscopy (STM) images reveal three different atomic-interface structures for the self-assembled monolayers (SAMs) of three isomeric butanethiols on Au(111......): direct binding to the Au(111) surface without pitting, binding to adatoms above a regular surface with extensive pitting, and binding to adatoms with local surface vacancies and some pitting. Thermal motions are shown to produce some observed STM features, with a very tight energy balance controlling the......, controls substrate reorganization energies and adsorbate distortion energies. Most significantly, by manipulating these features, chemical control of the adsorbate can produce stable interfaces with surface pitting eliminated, providing new perspectives for technological applications of SAMs....

  12. Concept of advanced back-up control panel design of digital control room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the back-up means for main computerized control means (MCM). This paper focus on technical issues for advanced design of back-up panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. Human factors engineering (HFE) issues also have been considered in the BCP design. Then, as the mean to fulfill safety target of nuclear power plant (NPP), an ideal ergonomic design method is exploited for advanced BCP design. (author)

  13. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  14. Integration and Application of TCV Advanced Plasma Control System

    International Nuclear Information System (INIS)

    Full text: A digital system for plasma control at Tokamak a Configuration Variable (TCV) was developed and integrated. The Advanced Plasma Control System (APCS) enables enhanced control of plasma properties such as shape, position, current and density, with more flexibility and better performance than the existing analogue system. APCS is a grid of 32 interconnected processing units with analogue input/output capabilities, using in-house developed data communication bus and protocol. The control cycle using the entire grid, with data sharing between all units, can go up to 25us, defined as the slow control cycle. For faster control needs such as the vertical stabilization of plasma, single hardware module with 4 processing units is used. By confining the communication to one hardware module, the time for data sharing is reduced and the control cycle can go down, defined as the fast control cycle. The APCS hardware and data sharing architecture is described in this contribution. To integrate the APCS in the existing TCV control plant, a software package that runs in the embedded system hosting the hardware modules was developed and installed. The host state-machine and the structure of the software are discussed, as well as the system performance and stability. An application that uses the APCS to enhance the plasma vertical position stabilization is under development. Past tokamaks with circular cross-section plasmas were vertically stable; however, vertically elongated cross section plasmas suffer from a vertical instability that demands the use of closed loop feedback control systems. The use of the APCS for vertical instability control is evaluated and results on a new vertical position observer are presented. (author)

  15. Advanced Controls for the Multi-pod Centipod WEC device

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Alan [Dehlsen Associates, LLC, Santa Barabara, CA (United States); Fleming, Alex [Dehlsen Associates, LLC, Santa Barabara, CA (United States)

    2016-02-15

    Dehlsen Associates, LLC (DA) has developed a Wave Energy Converter (WEC), Centipod, which is a multiple point absorber, extracting wave energy primarily in the heave direction through a plurality of point absorber floats sharing a common stable reference structure. The objective of this project was to develop advanced control algorithms that will be used to reduce Levelized Cost of Energy (LCOE). This project investigated the use of Model Predictive Control (MPC) to improve the power capture of the WEC. The MPC controller developed in this work is a state-space, “look ahead” controller approach using knowledge of past and current states to predict future states to take action with the PTO to maximize power capture while still respecting system constraints. In order to maximize power, which is the product of force and velocity, the controller must aim to create phase alignment between excitation force and velocity. This project showed a 161% improvement in the Annual Energy Production (AEP) for the Centipod WEC when utilizing MPC, compared to a baseline, fixed passive damping control strategy. This improvement in AEP was shown to provide a substantial benefit to the WEC’s overall Cost of Energy, reducing LCOE by 50% from baseline. The results of this work proved great potential for the adoption of Model Predictive Controls in Wave Energy Converters.

  16. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  17. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  18. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  19. Reviewing the impact of advanced control room technology

    International Nuclear Information System (INIS)

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed

  20. Advanced Neutron Source reactor control and plant protection systems design

    International Nuclear Information System (INIS)

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges

  1. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  2. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  3. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Perez, L.

    1990-01-01

    The progress achieved in leading to effective surface control for selective agglomeration processes was summarized. Several analytical techniques developed in Task 3 were utilized during this quarter to characterize coal samples obtained from agglomeration tests. Surface and near surface (1 {mu}m depth) functional groups were analyzed using Diffuse Reflectance Infrared Fourier Transform spectroscopy. Surface composition analyses were conducted using Laser Microprobe Mass Analyzer. The results of these analysis are being used to relate the agglomeration results with surface modifications to the properties of coal samples. The development of a method a for direct determination of pyrite using X-ray diffraction was continued. The sample preparation technique was improved in order to increase the reproducibility of the analysis. The contact angle of n-heptane droplets on coal pellets immersed in water were measured. The results of these measurements suggest that high shear mixing is necessary for wetting coal surfaces with n-heptane. Agglomeration tests using n-heptane as agglomerant were carried out this quarter. For Pittsburgh {number sign}8 coal, better performance was obtained using n-heptane than using n-pentane. For Upper Freeport coal, however, lower pyritic sulfur rejection was obtained with n-heptane. A n-heptane to coal ratio between 1.25 and 1.5 was found to produce the best performance results for Illinois {number sign}6 coal. A study of the effect of agglomeration time on the agglomeration process performance for Illinois {number sign}6 coal using n-pentane and n-heptane as agglomerants indicates that no significant gains in performance are possible using agglomeration times longer than 60 seconds. The addition of tall oil as a binding agent after the high shear agglomeration step resulted in a large increase in overall coal yield and energy recovery for Illinois {number sign}6 coal. 27 figs., 13 tabs.

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. New virtual laboratories presenting advanced motion control concepts

    Science.gov (United States)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  6. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  7. Real-Time Profile Control for Advanced Tokamak Operation

    International Nuclear Information System (INIS)

    Simultaneous control of the plasma shape, the magnetic and kinetic plasma profiles (such as the safety factor, q(x), and gyro-normalized temperature gradient, ρTe*;(x), respectively) and the boundary flux is being investigated on JET, and has potential applications in the operation of ITER steady state advanced tokamak discharges. The control of radially distributed parameters was achieved for the first time on JET in 2004 [1-4]. The controller was based on the static plasma response only. The approach newly implemented on JET aims to use a dynamical plasma model, all the available heating and current drive (H and CD) systems, and the poloidal field (PF) system in an optimal way to achieve a set of requested magnetic and kinetic profiles. This paper describes the new model-based optimal profile controller which has been tested during the last 2007 experimental campaign. The controller aims to use the combination of heating and current drive systems - and optionally the PF system. First experimental results of current profile control obtained during the last 2007 JET campaign are presented

  8. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  9. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  10. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot

  12. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  13. Halden Reactor Project Workshop: Understanding Advanced Instrumentation and Controls Issues

    International Nuclear Information System (INIS)

    A Halden Reactor Project Workshop on 'Understanding Advanced Instrumentation and Controls Issues' was held in Halden, Norway, during June 17-18, 1991. The objectives of the workshop were to (1) identify and prioritize the types of technical information that the Halden Project can produce to facilitate the development of man-machine interface guidelines and (2) to identify methods to effectively integrate and disseminate this information to signatory organizations. As a member of the Halden Reactor Project, the Nuclear Regulatory Commission (NRC) requested the workshop. This request resulted from the NRC's need for human factors guidelines for the evaluation of advanced instrumentation and controls. The Halden Reactor Project is a cooperative agreement among several countries belonging to the Organization for Economic Cooperation and Development (OECD). The US began its association with the Halden Project in 1958 through the Atomic Energy Commission. The project's activities are centered at the Halden heavy-water reactor and its associated man-machine laboratory in Halden, Norway. The research program conducted at Halden consists of studies on fuel performance and computer-based man-machine interfaces

  14. Efficacy of omeprazole on cough, pulmonary function and quality of life of patients with sulfur mustard lung injury: A placebo-control, cross-over clinical trial study

    OpenAIRE

    Mohammad Hossein Emami; Mohammad Talaei; Yunes Panahi; Amin Saburi; Mostafa Ghanei

    2014-01-01

    Background: Gastro-esophageal reflux disease (GERD) is prevalent and related to more severe disease in patients with respiratory problems. We evaluated the effects of antireflux therapy in warfare victims of exposure to Mustard gas with chronic cough. Materials and Methods: This randomized, double-blind, placebo-controlled, cross-over study was conducted on 45 cases of sulfur mustard injury with chronic cough (≥8 weeks) and GERD. Patients were randomized into two groups, receiving either 20 m...

  15. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control

  16. Advanced Issues of Wind Turbine Modelling and Control

    Science.gov (United States)

    Simani, Silvio

    2015-11-01

    The motivation for this paper comes from a real need to have an overview about the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this topic represents a key point mainly for offshore wind turbines with very large rotors, since they are characterised by challenging modelling and control problems, as well as expensive and safety critical maintenance works. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are addressed, and open problems in the areas of modelling of wind turbines are also outlined.

  17. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  18. A modern control room for Indian Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre, India. AHWR is a vertical, pressure tube type, heavy-water-moderated, boiling light-water-cooled, innovative reactor, relying on natural circulation for core cooling in all operating and accident conditions. In addition, it incorporates various passive systems for decay heat removal, containment cooling and isolation. In addition to the many passive safety features, AHWR has state of the art I and C architecture based on extensive use of computers and networking. In tune with the many advanced features of the reactor, a centralized modern control room has been conceived for operation and monitoring of the plant. The I and C architecture enables the implementation of a fully computerised operator friendly control room with soft Human Machine Interfaces (HMI). While doing so, safety has been given due consideration. The control and monitoring of AHWR systems are carried out from the fully computer-based operator interfaces, except safety systems, for which only monitoring is provided from soft HMI. The control of the safety systems is performed from dedicated hardwired safety system panels. Soft HMI reduces the number of individual control devices and improves their reliability. The paper briefly describes the I and C architecture adopted for the AHWR plant along with the interfaces to the main and backup control rooms. There are many issues involved while introducing soft HMI based operator interfaces for Nuclear Power Plants (NPP) compared to the conventional plants. Besides discussing the implementation issues, the paper elaborates the design considerations that have undergone in the design of various components in the main control room especially operator workstations, shift supervisor console, safety system panels and large display panels. Mainly task based displays have been adopted for the routine operator interactions of the plant

  19. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  20. AMBA Based Advanced DMA Controller for SoC

    Directory of Open Access Journals (Sweden)

    Abdullah Aljumah

    2016-03-01

    Full Text Available this paper describes the implementation of an AMBA Based Advanced DMA Controller for SoC. It uses AMBA Specifications, where two buses AHB and APB are defined and works for processor as system bus and peripheral bus respectively. The DMA controller functions between these two buses as a bridge and allow them to work concurrently. Depending on the speed of peripherals it uses buffering mechanism. Therefore an asynchronous FIFO is used for synchronizing the speed of peripherals. The proposed DMA controller can works in SoC along with processor and achieve fast data rate. The method introduced significant volume of data transfer with very low timing characteristics. Thus it is a better choice in respect of timing and volume of data. These two issues have been resolved under this research study. The results are compared with the AMD processors, like Geode GX 466, GX 500 and GX 533, and the presence and absence of DMA controller with processor is discussed and compared. The DMAC stands to be better alternative in SoC design.

  1. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  2. Bumpless Transfer Between Advanced Controllers with Applications to Power Plant Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob; Trangbæk, Klaus

    2003-01-01

    This paper deals with bumpless transfer between a number of advanced controllers, e.g. in a gain-scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of the system model in a set of operating points, and gain scheduling control can subseque....... In this paper we propose a systematic approach to achieve bumpless transfer between different nominal controllers. The approach is tested on a simple, but highly nonlinear model of a coal-fired power plant....

  3. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  4. Insight into Sulfur Reactions in Li–S Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; Belharouak, Ilias; Zhang, Xiaofeng; chamoun, rita; Yu, Cun; Ren, Yang; Nie, Anmin; Reza, Shahbazian-Yassar; Lu, Jun; Li, James C.M.; Amine, Khalil

    2014-12-09

    Understanding and controlling the sulfur reduction species (Li2Sx, 1 ≤ x ≤ 8) under realistic battery conditions are essential for the development of advanced practical Li–S cells that can reach their full theoretical capacity. However, it has been a great challenge to probe the sulfur reduction intermediates and products because of the lack of methods. This work employed various ex situ and in situ methods to study the mechanism of the Li–S redox reactions and the properties of Li2Sx and Li2S. Synchrotron high-energy X-ray diffraction analysis used to characterize dry powder deposits from lithium polysulfide solution suggests that the new crystallite phase may be lithium polysulfides. The formation of Li2S crystallites with a polyhedral structure was observed in cells with both the conventional (LiTFSI) electrolyte and polysulfide-based electrolyte. In addition, an in situ transmission electron microscopy experiment observed that the lithium diffusion to sulfur during discharge preferentially occurred at the sulfur surface and formed a solid Li2S crust. This may be the reason for the capacity fade in Li–S cells (as also suggested by EIS experiment in Supporting Information). The results can be a guide for future studies and control of the sulfur species and meanwhile a baseline for approaching the theoretical capacity of the Li–S battery.

  5. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  6. Advanced analytical techniques for boiling water reactor chemistry control

    International Nuclear Information System (INIS)

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs

  7. Temperature controlled material irradiation in the advanced test reactor

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor's principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor's capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment 'in-pile tube (IPT)' inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities

  8. International conference on Advances in Intelligent Control and Innovative Computing

    CERN Document Server

    Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing

    2012-01-01

    In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...

  9. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  10. Implementation of advanced modified PCF in large telescope control system

    Science.gov (United States)

    Shuai, Xiaoying; Zhang, Zhenchao; Zhu, Yongtian

    2008-07-01

    Large Telescope Control System (TCS) is a complicated system, which contains thousands of actuators. Wired TCS is inconvenient to point and track for a large telescope. This paper proposes a TCS based on IEEE 802.11 Wireless Local Area Network (WLAN), which provides flexibility, reduced infrastructure costs, and greater convenience. The IEEE 802.11 standard MAC protocol includes the DCF and the PCF. The DCF is designed for asynchronous data transmission, while the PCF is designed for real-time data. The performance of a WLAN with DCF will fall when the number of wireless station increase in a basic service set (BSS). An advanced modified PCF (APCF) is presented to poll data from the AP to stations and response data from stations to the AP in CFP. The analysis indicates that APCF can improve communication performance, and is very suitable for large TCS.

  11. Controlled clinical trial in the advanced primary lung cancer

    International Nuclear Information System (INIS)

    The results of a controlled clinical trial in the treatment of advanced primary lung cancer are presented. There were 39 patients who entered the present study that was conducted at the Thoracic Surgery Departament of the A.C. Camargo Hospital of the Antonio Prudente Foundation of Sao Paulo, Brazil. The patients were divided in two groups 1) - Radiotherapy with Cobalt 60 plus Chemotherapy. 2) - Chemotherapy only. The radiotherapy was provided by the split dose technic (6.000 rads in 3 cycles of 2.000 rads each). The chemotherapy consisted of the following drugs (5 FU, Metil hidrazina, Methotrexate, Actinomycin D, Oncovin, Cytoxan) administered in 16 cycles, aiming the synchronous funtional blockade. There was no statistically significant difference in survival of the two groups, ie, the first with 19,3 weeks and the second group with 14,6 weeks. (Author)

  12. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  13. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  14. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Science.gov (United States)

    2010-02-19

    ...On February 10, 2000 (65 FR 6698), EPA published emission standards for light-duty vehicles and light-duty trucks requiring vehicle manufacturers to reduce tailpipe emissions. Specifically, EPA sought to reduce emissions of nitrogen oxides and non-methane hydrocarbons, pollutants which contribute to ozone pollution. The rulemaking also required oil refiners to limit the sulfur content of the......

  15. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Science.gov (United States)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  16. [Effects of sulfur plus resin-coated controlled release urea fertilizer on winter wheat dry matter accumulation and allocation and grain yield].

    Science.gov (United States)

    Man, Jian-Guo; Zhou, Jie; Wang, Dong; Yu, Zhen-Wen; Zhang, Min; Hu, Zhi-Ying; Hou, Xiu-Tao

    2011-05-01

    A field experiment was conducted to study the effects of sulfur plus resin-coated urea fertilizer on the winter wheat dry matter accumulation and allocation and grain yield. Four treatments were installed, i.e., sulfur plus resin-coated urea (SRCU), resin-coated urea (RCU), sulfur-amended conventional urea (SU), and conventional urea (U). The coated urea fertilizers were applied as basal, and the conventional urea fertilizers were 50% applied as basal and 50% applied as topdressing. There were no significant differences in the plant dry matter accumulation and grain yield between treatments RCU and U. Under the conditions the available S content in 0-20 cm soil layer was 43.2 mg x kg(-1) and the S application rate was 91.4 kg x hm(-2), treatments SRCU and SU had no significant differences in the dry matter accumulation and allocation after anthesis and the grain yield, but the amount of the assimilates after anthesis allocated in grain, the grain-filling rate at mid grain-filling stage, the 1000-grain weight, and the grain yield in the two treatments were significantly higher than those in treatment RCU. When the available S content in 0-20 cm soil layer was 105.1 mg x kg(-1) and the S application rate was 120 kg x hm(-2), the grain yield in treatment SRCU was significantly higher than that in treatment SU, but had no significant difference with that in treatments RCU and U. These results suggested that from the viewpoints of dry matter accumulation and allocation and grain yield, the nitrogen released from SRCU had the same regulation effect as the conventional urea 50% applied as basal and 50% applied as topdressing, while the regulation effect of the sulfur released from SRCU was controlled by the available S content in 0-20 cm soil layer. When the soil available S content was 43.2 mg x kg(-1), the released sulfur could promote the dry matter accumulation after anthesis and the grain-filling, and increase the grain yield significantly; when the soil available S

  17. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  18. Advancing cancer control research in an emerging news media environment.

    Science.gov (United States)

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  19. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  20. Advanced illumination control algorithm for medical endoscopy applications

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  1. Second Generation Advanced Reburning for High Efficiency NOx Control

    International Nuclear Information System (INIS)

    Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NOx control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NOx control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NOx control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NOx control in excess of 80% is required. AR will provide flexible installations that allow NOx levels to be lowered when regulations become more stringent. The total cost of NOx control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NOx control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO2, N2O, total hydrocarbons, NH

  2. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  3. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  4. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  5. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  6. Recent Advances in Understanding Integrative Control of Potassium Homeostasis

    Science.gov (United States)

    Youn, Jang H.; McDonough, Alicia A.

    2016-01-01

    The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K+], there is evidence for a feedforward mechanism: Dietary K+ intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K+ excretion. This pathway may explain renal and extrarenal responses to altered K+ intake that occur independently of changes in ECF [K+]. Mechanisms for conserving ECF K+ during fasting or K+ deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K+ channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K+ uptake. How these mechanisms are triggered by K+ deprivation remains unclear. Cellular AMP kinase–dependent protein kinase activity provokes the acute transfer of K+ from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K+ diet for the cardiovascular system. PMID:18759636

  7. Noise and control decoupling of Advanced LIGO suspensions

    International Nuclear Information System (INIS)

    Ground-based interferometric gravitational wave observatories such as Advanced LIGO must isolate their optics from ground vibrations with suspension systems to meet their stringent noise requirements. These suspensions typically have very high quality-factor resonances that require active damping. The sensor noise associated with this damping is a potential significant contributor to the sensitivity of these interferometers. This paper introduces a novel scheme for suspension damping that isolates much of this noise and permits greater amounts of damping. It also decouples the damping feedback design from the interferometer control. The scheme works by invoking a change from a local coordinate frame associated with each suspension, to a coordinate frame aligned with the interferometric readout. In this way, degrees of freedom invisible to the readout can employ effective, but noisy damping. The degree of freedom measured by the readout is then damped using low noise interferometer signals, eliminating the need to use the usual noisy sensors. Simulated and experimental results validate the concepts presented in this paper. (paper)

  8. Advanced h∞ control towards nonsmooth theory and applications

    CERN Document Server

    Orlov, Yury V

    2014-01-01

    This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.    Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is exten...

  9. 3. IFAC workshop: advances in automotive control. Vol. 1. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    As the subject indicates, the aim of this workshop will be to discuss the latest advances related to motor vehicles, but also, and more generally, to exchange ideas between academic partners, car-manufacturers and subcontractors. The programme shows that a special effort has been made in this respect. No doubt plenary lectures are of great importance and the thematic sessions in the different sectors are the essence of such workshops; however, the discussions between experts in the different fields, the meetings between people from industry, universities and public or private laboratories, as well as the resulting exchange of ideas, are at least as important. Research is often criticized for providing merely theoretical results and for the insufficient number of its applications. But the motor vehicle offers a wide field of applications in which we can validate all techniques, tools and methods. This allows us to be involved in all the areas of fundamental research, in all the different possible approaches from fundamental research to technology transfer, and to observe the actual effects of our results. The increase in road traffic was a major problem of the past XXth century. It is clear that one the challenges of the XXIst century will be improve driving safety and comfort. The different work sessions concerning more control, driveline modelling, vehicle dynamics, electronic architecture, intelligent components, engine control, engine modelling, the modelling of combustion and turbocharging, diagnostics and subsystems. The quality of the papers and the diversity of their origins clearly shows the interest that we all take in this key sector of our research and industry. (orig.)

  10. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  11. Sulfur meter speeds coal blending

    International Nuclear Information System (INIS)

    The sulfur content has become the most important criterion that industry looks at when purchasing coal. The exact amount of sulfur in coal being processed by a preparation plant must be known and, if possible, controlled by blending coal streams of various sulfur contents. Present techniques, however, of measuring the sulfur in coal involve laborious and time-consuming sampling and chemical analysis (12 to 24 hr), and the results usually are not available until the following day. By then, the coal barges or trains are already on the way to their destinations. A new nuclear sulfur meter is expected to overcome these difficulties and help lead to true automation in coal preparation plants. Initially developed by the Bureau of Mines' Morgantown Energy Research Center (MERC) at Morgantown, W. Va., and completed after reorganization of the center by the US Energy Research and Development Administration (ERDA), the meter can scan coal to produce a reading within 2 min to an accuracy of 0.04 percent sulfur. The meter is expected to soon result in an element-ash-moisture-Btu meter that would rapidly detect the sulfur, sodium, potassium, and overall mineral content of the coal, as well as its ash and Btu content

  12. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They...... utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in...... other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the...

  13. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  14. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  15. Fuzzy-like PD controller for spatial control of advanced heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Londhe, P.S., E-mail: pandurangl97@gmail.com [Research Scholar, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded 431606 (India); Patre, B.M., E-mail: bmpatre@ieee.org [Department of Instrumentation Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri, Nanded 431 606 (India); Tiwari, A.P., E-mail: aptiwari@barc.gov.in [Reactor Control Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2014-07-01

    Highlights: • Highly non-linear model of AHWR is used for spatial power control. • A simple fuzzy-like PD (FZ-PD) control structure with robust rule base is developed. • Robust rule structure reduces the difficulties in design and tuning of controller. • Proposed FZ-PD structure shows robust and better transient performance. • Proposed FZ-PD controller is able to suppress spatial oscillations in AHWR. - Abstract: Spatial oscillations in the neutron flux distribution due to xenon reactivity feedback requires stringent control in large nuclear reactors, like advanced heavy water reactor (AHWR). If the spatial oscillations in the power distribution are not controlled, power density and rate of change of power at some locations in the reactor core may exceed limits of fuel failure due to ‘flux tilting’. Further, situations such as on-line refueling might cause transient variations in flux-shape from the nominal flux-shape. For analysis and control of spatial oscillations in AHWR, it is necessary to design a suitable control strategy, which will stabilize these oscillations. In this paper, a simplified scheme to design a conventional fuzzy logic controller for spatial control of AHWR is presented. This scheme known as fuzzy-like proportional derivative (FZ-PD) controller, uses robust PD (proportional derivative) type rule base. Due to robust rule base structure, tuning of scaling factors is greatly reduced. The non-linear coupled core neutronics-thermal hydraulics model of AHWR considered here represented by 90 first order differential equations. Through the dynamic simulations, it is observed that the designed FZ-PD controller is able to suppress spatial oscillations developed in AHWR and its performance is found to be robust.

  16. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haves, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, S. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Torcellini, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hansen, D. [U.S. Dept. of Energy, Washington, D.C. (United States); Holmberg, D. R. [National Institute of Science and Technology, Gaithersburg, MD (United States); Roth, K. W. [TIAX, LLC, Cambridge, MA (United States)

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Science.gov (United States)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  18. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    International Nuclear Information System (INIS)

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO

  19. Dynamic Event Tree advancements and control logic improvements

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  20. Dynamic Event Tree advancements and control logic improvements

    International Nuclear Information System (INIS)

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named 'Hybrid Dynamic Event Tree' (HDET) and its Adaptive variant 'Adaptive Hybrid Dynamic Event Tree' (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre

  1. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  2. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  3. Integrated surveillance and control system (ISACS-1): The prototype of an advanced control room

    International Nuclear Information System (INIS)

    At the OECD Halden Reactor Project in Norway, development and validation of computerized operator support system (COSS) in realistic environments have taken place for a number of years. But as advanced operator support systems are used to cover a wider spectrum of functions, the question of efficient integration of a large number of COSS into the whole control room design becomes increasingly important. The Halden Project is therefore developing a prototype of the Integrated Surveillance and Control System (ISACS). Typical questions being considered in this project are how to cope with the large amount of information available to the operator, how to design the man-machine interface to function efficiently in all operational situations, how to guide the operator in a positive manner, while still keeping him in charge of the plant control. It is hoped that these and other relevant questions will be answered in the coming years on the basis of experiments with the new control room concept as implemented in the simulator based experimental control room in the Halden Man-Machine Laboratory, HAMMLAB. 6 refs, 3 figs, 1 tab

  4. Analysis for Secondary Task in Advanced Main Control Room Using Soft Controls

    International Nuclear Information System (INIS)

    The purpose of this study is to analyze operator tasks using soft controls from the simulation data of an advanced MCR. In this study, the primary and secondary tasks of eighteen simulation data were analyzed. The results showed that secondary tasks were required to perform scenarios more than primary task needs. Among these secondary tasks, the 'switch screen' made up the largest portion. This indicates that operator workload would increase with an increase of the 'switch screen' task. To reduce operator workload, Cps designers put the screen link buttons in the Cps. According to an analysis of secondary tasks using the screen link buttons, it is recognized that using the screen link buttons of the Cps helps reduce the number of secondary tasks and reduce errors of the 'switch screen'. Therefore, although increased secondary tasks can affect the increase of operator workload according to the adapting soft controls in advanced MCRs, using supporting designs such as the screen link buttons helps to reduce operator workload and errors

  5. Advanced Stellar Compass - Adeos II - Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren; Madsen, Peter Buch; Riis, Troels; Thuesen, Gøsta; Jørgensen, Finn

    This document describes the Advanced Stellar Compass (ASC) and defines the interfaces between the instrument and the ADEOS II satellite. The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of...... reliability issues. Section 6 deals with the testing and the calibration procedures and in section 7 the mechanical and electrical interfaces are given. In section 8 and 9 we address issues like manufacturing, transportation and storage, in section 10 the requirements imposed by the ASC on the system are...

  6. Advances in Structural Control in Civil Engineering in China

    Directory of Open Access Journals (Sweden)

    Hongnan Li

    2010-01-01

    Full Text Available In the recent years, much attention has been paid to the research and development of structural control techniques with particular emphasis on alleviation of wind and seismic responses of buildings and bridges in China. Structural control in civil engineering has been developed from the concept into a workable technology and applied into practical engineering structures. The aim of this paper is to review a state of the art of researches and applications of structural control in civil engineering in China. It includes the passive control, active control, hybrid controland semiactive control. Finally, the possible future directions of structural control in civil engineering in China are presented.

  7. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.

    2000-01-01

    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  8. Advanced control of walking-beam reheating furnace

    Institute of Scientific and Technical Information of China (English)

    Zhigang Chen; Chao Xu; Bin Zhang; Huihe Shao; Jianmin Zhang

    2003-01-01

    Reheating furnace is an important device with complex dynamic characteristics in steel plants. The temperature tracing control of reheating furnace has great importance both to the quality of slabs and energy saving. A model-based control strategy,multivariable constrained control (MCC) for the reheating furnace control is used. With this control method, the furnace is treated as a six-input-six-output general model with loops coupled in nature. Compared with the traditional control, the proposed control strategy gets better temperature tracing accuracy and exhibits some energy saving feature. The simulation results show that the performance of the furnace is greatly improved.

  9. Multicontroller: an object programming approach to introduce advanced control algorithms for the GCS large scale project

    CERN Document Server

    Cabaret, S; Coppier, H; Rachid, A; Barillère, R; CERN. Geneva. IT Department

    2007-01-01

    The GCS (Gas Control System) project team at CERN uses a Model Driven Approach with a Framework - UNICOS (UNified Industrial COntrol System) - based on PLC (Programming Language Controller) and SCADA (Supervisory Control And Data Acquisition) technologies. The first' UNICOS versions were able to provide a PID (Proportional Integrative Derivative) controller whereas the Gas Systems required more advanced control strategies. The MultiController is a new UNICOS object which provides the following advanced control algorithms: Smith Predictor, PFC (Predictive Function Control), RST* and GPC (Global Predictive Control). Its design is based on a monolithic entity with a global structure definition which is able to capture the desired set of parameters of any specific control algorithm supported by the object. The SCADA system -- PVSS - supervises the MultiController operation. The PVSS interface provides users with supervision faceplate, in particular it links any MultiController with recipes: the GCS experts are ab...

  10. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Paul, Satyam; Yu, Wen; Li, Xiaoou

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The i...

  11. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Satyam Paul; Wen Yu; Xiaoou Li

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. Th...

  12. Function analysis and function assignment of NPP advanced main control room

    International Nuclear Information System (INIS)

    The author addresses the requirements of function analysis and function assignment, which should be carried out in the design of main control room in nuclear power plant according to the design research of advanced main control room, then states its contents, functions, importance and necessity as well as how to implement these requirements and how to do design verification and validation in the design of advanced main control room of nuclear power plant

  13. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  14. Integrated controls/structures study of advanced space systems

    Science.gov (United States)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  15. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok, E-mail: nuclear82@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Ar Ryum, E-mail: arryum@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Harbi, Mohamed Ali Salem Al, E-mail: 100035556@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Lee, Seung Jun, E-mail: sjlee@kaeri.re.kr [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, 150-1, Dukjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-04-15

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  16. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    International Nuclear Information System (INIS)

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  17. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  18. An advanced plasma control system for Tore Supra

    International Nuclear Information System (INIS)

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author)

  19. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  20. Advanced data handling for plasma profile control in JT-60

    International Nuclear Information System (INIS)

    A real-time profile control system based on PCI-bus modules has been installed in the existing plasma control system (PCS) to control high performance plasmas. In profile control, pre-programmed profile reference data, which are two-dimensional, must be manipulated as the other mono-dimensional pre-programmed reference data such as plasma current in the discharge parameter set-up and in the post-discharge data archiving process, to re-use of the existing man-machine communication tools. An preprogram algorithm number was introduced to allow the change not only of control gains but also of control algorithm during a discharge, providing flexibility and extensibility to cope with future requirements coming from control studies that are now in progress. This system has been successfully applied to safety factor profile control by lower hybrid radio frequency heating system

  1. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  2. Optimisation techniques for advanced process supervision and control

    OpenAIRE

    Abu-el-zeet, Z.H.

    2000-01-01

    This thesis is concerned with the use and development of optimisation techniques for process supervision and control. Two major areas related to optimisation are combined namely model predictive control and dynamic data reconciliation. A model predictive control scheme is implemented and used to simulate the control of a coal gasification plant. Static as well as dynamic data reconciliation techniques are developed and used in conjunction with steady-state optimisation and model predictive co...

  3. Advanced Control of a Continuous Solution Copolymerization Process

    OpenAIRE

    Nádson Murilo Nascimento Lima; Lamia Zuñiga Liñan; Flavio Manenti; Rubens Maciel Filho; Marcelo Embiruçu; Maria Regina Wolf Maciel

    2011-01-01

    A model-based predictive control system is designed for a copolymerization reactor. These processes typically have such a high nonlinear dynamic behavior to make practically ineffective the conventional control techniques, still so widespread in process and polymer industries. A predictive controller is adopted in this work, given the success this family of controllers is having in many chemical processes and oil refineries, especially due to their possibility of including bounds on both mani...

  4. Advanced control of propylene polimerizations in slurry reactors

    OpenAIRE

    Bolsoni A.; Lima E.L.; Pinto J.C.

    2000-01-01

    The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality) and the amount of unreacted monomer (productivity). The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron). The simulated performance of the controller was evaluated for a typical propylene polym...

  5. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    the overall welding process; one of these factors are the ability of the welding machine to control the process. The internal control algorithms in GMAW machines are the topic of this PhD project. Basically, the internal control includes an algorithm which is able to keep the electrode at a given...

  6. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  7. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez;

    2016-01-01

    , including the facilities, configurations and communication network, is first introduced. The complete control system is based on a generic hierarchical control scheme including primary, secondary and tertiary control. Primary control loops are developed and implemented in digital control platform, while...... system supervision, advanced secondary and tertiary management are realized in a microgrid central controller. The software and hardware schemes are described. Several example case studies are introduced and performed in order to achieve power quality regulation, energy management and flywheel energy...

  8. Advanced Control Structures of Turbo Generator System of Nuclear Power Plant

    OpenAIRE

    Paweł Sokólski; Karol Kulkowski; Anna Kobylarz; Kazimierz Duzinkiewicz; Tomasz A. Rutkowski; Michał Grochowski

    2015-01-01

    In the paper a synthesis of advanced control structures of turbine and synchronous generator for nuclear power plant working under changing operating conditions (supplied power level) is presented. It is based on the nonlinear models of the steam turbine and synchronous generator cooperating with the power system. The considered control structure consists of multi-regional fuzzy control systems with local linear controllers, including PID controllers, in particular control loops of turbine...

  9. Advanced Control Strategy for Single-Phase Voltage-Source Active Rectifier with Low Harmonic Emission

    Science.gov (United States)

    Blahník, Vojtĕch; Peroutka, Zdenĕk; Talla, Jakub

    2014-03-01

    This paper introduces the advanced control of single-phase voltage-source active rectifier. This control provide direct control of trolley-wire current and active damping of low-frequency disturbances at the converter ac side. Our proposed control strategy combines PR controller with feed-forward model and low-frequency harmonic compensator based on resonant controllers. Achieved experimental results show excellent converter behavior, where converter is fed by strongly distorted supply voltage.

  10. Testing and evaluation of polyethylene and sulfur cement waste forms

    International Nuclear Information System (INIS)

    This paper discusses the results of recent studies related to the use of polyethylene and modified sulfur cement as new binder materials for the improved solidification of low-level wastes. Waste streams selected for this study include those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those that remain problematic for solidification using contemporary agents (ion-exchange resins). Maximum waste loadings were determined for each waste type. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported for polyethylene. For sulfur cement the recommended waste loadings of 40 wt % sodium sulfate and boric acid salts and 43 wt % incinerator ash are reported. However, incorporation of ion-exchange resin waste in modified sulfur cement is not recommended due to poor waste form performance. The work presented in this paper will, in part, present data that can be used to assess the acceptability of polyethylene and modified sulfur cement waste forms to meet the requirements of 10 CFR 61. 8 refs., 10 figs., 6 tabs

  11. Testing and evaluation of polyethylene and sulfur cement waste forms

    International Nuclear Information System (INIS)

    This paper discusses the results of recent studies related to the use of polyethylene and modified sulfur cement as new binder materials for the improved solidification of low-level wastes. Waste streams selected for this study include those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those that remain problematic for solidification using contemporary agents (ion exchange resins). Maximum waste loadings were determined for each waste type. Recommended waste loadings of 70 wt% sodium sulfate, 50 wt% boric acid, 40 wt% incinerator ash and 30 wt% ion exchange resins, which are based on process control and waste form performance considerations are reported for polyethylene. For sulfur cement the recommended waste loadings of 40 wt% sodium sulfate and boric acid salts and 43 wt% incinerator ash are reported. However, incorporation of ion exchange resin waste in modified sulfur cement is not recommended due to poor waste form performance. Data is presented that can be used to assess the acceptability of polyethylene and modified sulfur cement waste forms to meet the requirements of 10 CFR 61. 8 references, 10 figures, 6 tables

  12. Verbal Communication in the APR1400 Advanced Control Room

    International Nuclear Information System (INIS)

    This paper introduces the characteristics of communication in advanced main controlghd rooms (MCRs) and some observations from a case study performed for APR1400 MCR. In advanced MCRs, operators need not maintain the same communication patterns as they do in conventional ones. For example, a senior reactor operator (SRO) does not have to rely on board operators for information acquisition and can get any information from his/her own workstation. This situation may also bring about new problems in MCRs such as lack of shared situation awareness and collaboration between MCR operators. To cope with these problems, the APR1400 MCR adapts several approaches in design and training for encouraging operators to communicate with each other. This paper introduces the possible changes of communication patterns and the countermeasures in design and training. Some findings from an integrated system validation for Shin Kori Units 3 and 4 are also presented

  13. Mishap risk control for advanced aerospace/composite materials

    Science.gov (United States)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  14. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  15. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  16. Solubility of Sulfur Dioxide in Sulfuric Acid

    Science.gov (United States)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  17. Advances in Thrust-Based Emergency Control of an Airplane

    Science.gov (United States)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  18. Evaluation program of the integrated surveillance and control ISACS -- An advanced control room prototype

    International Nuclear Information System (INIS)

    The concept of an integrated surveillance and control system (ISACS) has been developed into a first prototype, ISACS-1, which is now in operation at the pressurized water reactor simulator-based experimental control room HAMMLAB of the Organization for Economic Cooperation and Development's Halden Reactor Project, Halden, Norway. It is characteristic of ISACS that it covers the whole interface between the process and the operator, and this interface is fully computerized using tools like cathode ray tubes and dynamic keyboards. In addition, a large number of computerized operator support systems are included in ISACS. The ISACS-1 is presently subject to extensive evaluation. The test and evaluation program aims at both providing design feedback and addressing general human-machine topics in advanced control rooms. The program is separated into three stages, starting with basic human factors work concerning layout and coding remedies. The next stage focuses on the qualitative aspects of the ISACS interface. In the final stage, the evaluation addresses higher level human factors issues, including experiments to evaluate ISAC's impact on the operator's overview and understanding of the current status of the process. The goal is to investigate how modern computer technology can be used to improve operational safety and efficiency of nuclear power plants and other complex processes

  19. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  20. Advanced human-machine interface for collaborative building control

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  1. Advanced human-machine interface for collaborative building control

    Science.gov (United States)

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  2. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  3. Advances in Structural Control in Civil Engineering in China

    OpenAIRE

    Hongnan Li; Linsheng Huo

    2010-01-01

    In the recent years, much attention has been paid to the research and development of structural control techniques with particular emphasis on alleviation of wind and seismic responses of buildings and bridges in China. Structural control in civil engineering has been developed from the concept into a workable technology and applied into practical engineering structures. The aim of this paper is to review a state of the art of researches and applications of structural control in civil enginee...

  4. Development and implementation of advanced control methods for hybrid simulation

    OpenAIRE

    Kim, Hong

    2011-01-01

    Hybrid simulation is an effective way of testing structures that combines the benefits of a computational analysis and experimental testing techniques. Innovative structures consists of state-ofthe-art components and assemblages whose function as a system needs to be tested experimentally. Often times, these components and assemblages push the controller and other testing equipment to its limits. Performing hybrid simulation with the controller in displacement control mode does not always suf...

  5. Nuclear developments: the DMAX advanced reactor control system

    International Nuclear Information System (INIS)

    Framatome has recently developed a new system for controlling the rod cluster control assemblies of pressurized water reactors, called the DMAX. The associated reactor control method is called 'mode X'. The DMAX system will be installed in all 'N4' model Framatome nuclear steam supply systems, the first two of which are presently under construction on the Chooz site in France. It will enable fine controlling of the reactor coolant temperature and the axial power offset, entirely automatically, due to double closed-loop regulation. The new DMAX system allows temperature control and continuous maintenance of a stable reactor core power distribution, because of an original method for controlling the movements of the control rods within the reactor. The disturbing xenon oscillations are practically eliminated and the operator is freed from the need of constantly monitoring the axial power offset, which is necessary in the commonly used 'A' or 'G' control modes. The probability of penalizing initial conditions in case an incident or accident occurs is considerably reduced in mode X, with the DMAX system, and the reactor's load-following performances are improved. In addition, the reactivity variations that must necessarily be compensated for in mode G by changing the boric acid concentration of the reactor coolant can be simply compensated for by control rod movements in mode X. This possibility yields a major reduction in the volume of liquid effluents that must subsequently be created. The system is outlined and its operation explained. (author)

  6. Development and validation process of the advanced main control board for next Japanese PWR plants

    International Nuclear Information System (INIS)

    The purpose of main control room improvement is to reduce operator workload and potential human errors by offering a better working environment where operators can maximize their abilities. Japanese pressurized water reactor (PWR) utilities and Mitsubishi group have developed a touch -screen-based main control console (i.e. advanced main control room) the next generation PWRs to further improve the plant operability using a state of the art electronics technology. The advanced main control room consists of an operator console, a supervisor console and large display panels. The functional specifications were evaluated by utility operators using a prototype main control console connected to a plant simulator. (author)

  7. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    Advances in on-line monitoring of nutrient salt concentrations and computer technology has created a large potential for the implementation of advanced and complex control strategies in biological nutrient removal systems. The majority of wastewater treatment plants today are operated with very...

  8. Benchmarking Advanced Control Algorithms for a Laser Scanner System

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Ordys, A.W.; Smillie, I.

    1996-01-01

    The paper describes tests performed on the laser scanner system toassess feasibility of modern control techniques in achieving a requiredperformance in the trajectory following problem. The two methods tested areQTR H-infinity and Predictive Control. The results are ilustated ona simulation example....

  9. Conduction-type control of SnSx films prepared by the sol–gel method for different sulfur contents

    International Nuclear Information System (INIS)

    Highlights: ► The effect of S content on the electrical property of the SnSx film was examined. ► For S-rich films, the probability of having formed Sn vacancies (VSn) should be high. ► Transformation from VSn to VSn2- is accompanied by lattice relaxation. ► Transformation from Sn2+ to Sn4+ is an offset to lattice relaxation. ► A link between the conduction type and defects was established. -- Abstract: The effect of S content on the electrical property of the sol–gel SnSx films was examined. The observed conduction-type changes are related to the different ratios between the concentrations of Sn4+ and Sn2+. The experimental identification confirms that n-type conversion is due to an increase in the atomic concentration ratio of Sn4+/(Sn4+ + Sn2+) in the S-rich film. The probability of having formed Sn vacancies (VSn) should be high under S-rich growth conditions. Transformation from VSn to VSn2- is accompanied by lattice relaxation. Therefore, transformation from Sn2+ to Sn4+ is an offset to lattice relaxation under S-rich growth conditions, increasing the electron density and producing n-type conversion. A suitable sulfur concentration is an important issue for tuning conduction type of SnSx

  10. The Advanced Light Source Accelerator Control System at Ten Years from Commissioning

    OpenAIRE

    Biocca, A.; Brown, W.; Domning, E.; Fowler, K; Jacobson, S; McDonald, J.; Molinari, P.; Robb, A; Shalz, L.; Spring, J; Timossi, C.

    2001-01-01

    The Advanced Light Source was commissioned 10 years ago using the newly constructed control system. Further experience with the control system was reported in 1993. In this publication, we report on recent experience with the operation and especially growth of the computer control system and expansion to accommodate the new superconducting bend magnets and fast orbit feedback for the ALS electron storage ring.

  11. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    Science.gov (United States)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  12. Advanced methods for controlling untethered magnetic devices using rotating magnetic fields

    Science.gov (United States)

    Mahoney, Arthur W., Jr.

    This dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic "microrobots" and magnetically actuated capsule endoscopes, motivated by problems in minimally invasive medicine. This dissertation focuses on applying rotating magnetic fields for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimic the propulsion of bacterial flagella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be differentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet.

  13. Guest Editorial Advanced Distributed Control of Energy Conversion Devices and Systems

    DEFF Research Database (Denmark)

    Davoudi, Ali; Guerrero, Josep M.; Lewis, Frank; Balog, Robert; Johnson, Brian; Weaver, Waine; Wang, Liwei; Edrington, Chris; Blasco-Gimenez, Ramon; Dominguez-Garcia, Alejandro; Chow, Mo-Yuen

    2014-01-01

    The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards....

  14. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  15. Process control integration requirements for advanced life support systems applicable to manned space missions

    Science.gov (United States)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  16. Advances in automation and control research in China

    Institute of Scientific and Technical Information of China (English)

    CHENG DaiZhan

    2009-01-01

    Automation is the utilization of control techniques together with other Information technology to control industrial processes,reducing the need for human intervention.It plays a highly important role in social and economy as well as In daily life.Control theory is the theory of automation,and is an interdisciplinary branch of engineering and mathematics,examining the behavior of dynamical systems.China has a long history of manufacturing automatic devices.In recent years,some rapid progresses in control theory have been made in China.Many new theories and new methodologies have been developed to meet the increasing demands in industry,agriculture,defense,and other social sectors.Contemporary sciences such as complexity,systems biology,quantum technologies,have also found their close links to control theories and technologies.On the other hand,control theory itself has many unsolved fundamental problems requiring further studies and investigation.This paper is to review the development and progress that have been made in all these aspects in China.Some remarks on the future development of control theory are also presented.

  17. Microgrid Controller and Advanced Distribution Management System Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herron, Andrew N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    A microgrid controller, which serves as the heart of a microgrid, is responsible for optimally managing the distributed energy resources, energy storage systems, and responsive demand and for ensuring the microgrid is being operated in an efficient, reliable, and resilient way. As the market for microgrids has blossomed in recently years, many vendors have released their own microgrid controllers to meet the various needs of different microgrid clients. However, due to the absence of a recognized standard for such controllers, vendor-supported microgrid controllers have a range of functionalities that are significantly different from each other in many respects. As a result the current state of the industry has been difficult to assess. To remedy this situation the authors conducted a survey of the functions of microgrid controllers developed by vendors and national laboratories. This report presents a clear indication of the state of the microgrid-controller industry based on analysis of the survey results. The results demonstrate that US Department of Energy funded research in microgrid controllers is unique and not competing with that of industry.

  18. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    Science.gov (United States)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  19. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  20. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    OpenAIRE

    Hahne, Janne M.; Farina, Dario; Jiang, Ning; Liebetanz, David

    2016-01-01

    Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a...

  1. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG

    2002-10-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.

  2. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  3. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok; Jung, Wondea [KAERI, Daejeon (Korea, Republic of); Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation.

  4. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  5. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    di erent types of controllers have been studied and compared. The possibility of using the information about grid variables into the control structure in order to improve the control of DPGS has also been investigated. As a consequence, improved behavior of resonant controller has been noticed if......The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been...... voltage phase angle. Has been found that identi cation of positive and negative sequence components and in addition, the capability of the algorithm to follow only the positive sequence component, plays a crucial role in providing a clean synchronization angle even during severe voltage unbalance caused...

  6. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  7. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  8. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  9. Advanced stability theory analyses for laminar flow control

    Science.gov (United States)

    Orszag, S. A.

    1980-01-01

    Recent developments of the SALLY computer code for stability analysis of laminar flow control wings are summarized. Extensions of SALLY to study three dimensional compressible flows, nonparallel and nonlinear effects are discussed.

  10. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  11. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  12. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  13. Advanced monitoring and control systems for fast reactors

    International Nuclear Information System (INIS)

    One of the important aspects of nuclear power station (NPS) improvement with fast reactors is provision of safety. The safety conception of advanced fast power reactors is directed on elaborating such solutions where as much as possible properties of reactor self-protection and natural laws are used in which the self-protection of the nuclear reactor is realized. To these solutions we may refer the usage of hydraulically weighted rods of alarm protection, negative temperature and power coefficients, negative sodium empty effect, natural circulation without power sources, natural convection and other measures. Additionally special technological systems are envisaged, which start functioning with the coming of the initial event of the accident. 1 ref., 7 figs, 1 tab

  14. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  15. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  16. A structured architecture for advanced plasma control experiments

    Energy Technology Data Exchange (ETDEWEB)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented.

  17. Efficacy of omeprazole on cough, pulmonary function and quality of life of patients with sulfur mustard lung injury: A placebo-control, cross-over clinical trial study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Emami

    2014-01-01

    Full Text Available Background: Gastro-esophageal reflux disease (GERD is prevalent and related to more severe disease in patients with respiratory problems. We evaluated the effects of antireflux therapy in warfare victims of exposure to Mustard gas with chronic cough. Materials and Methods: This randomized, double-blind, placebo-controlled, cross-over study was conducted on 45 cases of sulfur mustard injury with chronic cough (≥8 weeks and GERD. Patients were randomized into two groups, receiving either 20 mg twice daily omeprazole-placebo (OP or matching placebo (placebo-omeprazole [PO] for 4 months, followed by a 1-month washout period and the alternative treatment for 4 months. Assessments included GERD and cough, quality of life, and pulmonary function using spirometry. Leicester Cough Questionnaire and SF-36 were used for measuring quality of life. Results: Patients in the OP group experienced a more decrease than those in the PO group in severity of Leicester cough scores during the first 4-month of trial. After crossing the groups, the OP group experienced an increase (P = 0.036 and the PO group experienced a nonsignificant decrease (P = 0.104 in the severity of scores. The OP group also experienced improvement in GERD symptoms and quality of life at the end of the trial, but changes in the PO group was not significant. There was no significant change in respiratory function indices in any groups. Conclusion: Long-term treatment with high-dose omeprazole improved GERD as well as cough, and quality of life, but not changed respiratory function indices in sulfur mustard injured cases with respiratory symptoms.

  18. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  19. Advances in dynamics and control of tethered satellite systems

    Institute of Scientific and Technical Information of China (English)

    Hao Wen; Dongping P. Jin; Haiyan Y. Hu

    2008-01-01

    The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and interesting problems related to their dynamics, control, and physical implementation. Over the past decades, this exciting topic has attracted significant attention from many researchers and gained a vast number of analytical, numerical and experimental achievements with a focus on the two essential aspects of both dynamics and control. This review article presents the historic background and recent hot topics for the space tethers, and introduces the dynamics and control of TSSs in a progressive manner, from basic operating principles to the state-of-the-art achievements.

  20. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  1. Advanced and intelligent computations in diagnosis and control

    CERN Document Server

    2016-01-01

    This book is devoted to the demands of research and industrial centers for diagnostics, monitoring and decision making systems that result from the increasing complexity of automation and systems, the need to ensure the highest level of reliability and safety, and continuing research and the development of innovative approaches to fault diagnosis. The contributions combine domains of engineering knowledge for diagnosis, including detection, isolation, localization, identification, reconfiguration and fault-tolerant control. The book is divided into six parts:  (I) Fault Detection and Isolation; (II) Estimation and Identification; (III) Robust and Fault Tolerant Control; (IV) Industrial and Medical Diagnostics; (V) Artificial Intelligence; (VI) Expert and Computer Systems.

  2. Advances in Inertial Measurement Technology for Marine Motion Control

    Directory of Open Access Journals (Sweden)

    Mathias Håndlykken

    1996-01-01

    Full Text Available This paper describes the function of an inertial "strap down" attitude sensor based on solid state Coriolis force rate gyros, accelerometers and magnetic sensor. Performance is analyzed taking into account the typical excitations in attitude and linear motion seen in marine applications. The use is for control of fast crafts, ROV and AUV heading, roll, pitch and heave control. The influence on performance given by utilization of external information from velocity log and more accurate heading devices is also analyzed. Typical performance of this low cost type of technology is shown.

  3. Advanced Control Architectures for Intelligent Microgrids—Part II

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chiang Loh, Poh; Lee, Tzung-Lin; Chandorkar, Mukul

    2013-01-01

    This paper summarizes the main problems and solutions of power quality in microgrids, distributed-energy-storage systems, and ac/dc hybrid microgrids. First, the power quality enhancement of grid-interactive microgrids is presented. Then, the cooperative control for enhance voltage harmonics and...

  4. Prospects for advancing tuberculosis control efforts through novel therapies

    NARCIS (Netherlands)

    J.A. Salomon; J.O. Lloyd-Smith; W.M. Getz; S. Resch; M.S. Sanchez; T.C. Porco; M.W. Borgdorff

    2006-01-01

    Background Development of new, effective, and affordable tuberculosis ( TB) therapies has been identified as a critical priority for global TB control. As new candidates emerge from the global TB drug pipeline, the potential impacts of novel, shorter regimens on TB incidence and mortality have not y

  5. Dysprosium and hafnium base absorbers for advanced WWER control rods

    International Nuclear Information System (INIS)

    Dysprosium titanate is an attractive control rod material for thermal neutron nuclear reactors such as WWER and RBMK. Its main advantages are almost non-swelling, no out-gassing under neutron irradiation, quit high neutron efficiency, a high melting point (∼ 1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication. nonradioactive waste and easy to reprocess. The dysprosium titanate control rods have worked without operating problems in the reactor MIR during 17 years and in WWER-1000 4 years. After post-irradiation examinations, this long-life control rod type was recommended for using in the nuclear reactors. Dysprosium hafnate is a promising absorber ceramic material. The research results confirmed that it has a large radiation damage resistance. The examination results of hafnium dummies (GFE-1) irradiated in BOR-60 are presented. The maximum accumulated neutron fluence was 3.4 x 1022cm-2 (E>0.1 MeV) and the temperature range was 340 to 360 deg. C. Due to high radiation growth (3-4 %) and the absence of an axial gap between the dummy and the upper capsule tip the dummies were bent. The irradiated dummies have high mechanical properties. Other aspects of the expected hafnium irradiation behaviour and the use of hafnium in control rods are discussed. This report presents some experimental data on Dy2O3·TiO2, Hf, Dy2O3·HfO2 and possibilities of their use in WWER control rods. (author)

  6. Implementation of skeletal muscle model with advanced activation control

    Directory of Open Access Journals (Sweden)

    Kocková H.

    2009-12-01

    Full Text Available The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the implemented composite model (involving the matrix, passive and active fibers is used to perform the isometric, concentric and excentric muscle contraction simulations.

  7. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  8. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine

    OpenAIRE

    Wright, A. D.; Fleming, P; Van Wingerden, J.W.

    2011-01-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be des...

  9. Advanced Burst Mode Control to Reduce the Standby Power of Flyback Converter

    OpenAIRE

    Min-Sung Kim; Hyoung-Woo Kim; Ji-Hye Jang; Ki-Hyun Kim

    2013-01-01

    This paper we proposed advanced burst mode control technique to reduce the standby power consumption of the switch mode power supply (SMPS). To reduce the standby power consumption, most of the converter use burst mode or skip mode control technique. However Conventional standby mode control techniques have some problems such as audible noise and poor regulation. In proposed techniques, basically, the burst mode control technique is employed to reduce the fundamental switching frequency while...

  10. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  11. Advanced Control and Protection system Design Methods for Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs

  12. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  13. Nuclear plants control: towards an more advanced automation

    International Nuclear Information System (INIS)

    Reactor operation appears to have a lower automation level than other fields of production industry. Compiled data point out that human factors are implied in about 70 % of un acceptable errors happening in a nuclear plant. But no obvious conclusion can result from these data. Human factor are so numerous and unlike that no mathematical model can be achieved. For instance, instead of assuming a whole automated control, a computerized aided control system can lower human faults probability by lowering attention requirements and hence fatigue. Man-machine system engineering and interactive display devices appear to be the best tools to determine the optimal automation level for the highest safety level. CEA and EDF use them in their ''ESCRIME'' coordinated research program. (D.L.)

  14. Recent advances in sliding modes from control to intelligent mechatronics

    CERN Document Server

    Efe, Mehmet

    2015-01-01

    This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.  

  15. System design and control integration for advanced manufacturing

    CERN Document Server

    Li, Han-Xiong

    2014-01-01

    Most existing robust design books address design for static systems, or achieve robust design from experimental data via the Taguchi method. Little work considers model information for robust design particularly for the dynamic system. This book covers robust design for both static and dynamic systems using the nominal model information or the hybrid model/data information, and also integrates design with control under a large operating region. This design can handle strong nonlinearity and more uncertainties from model and parameters.

  16. Recent advances in the photochemical control of protein function

    OpenAIRE

    Riggsbee, Chad W.; Deiters, Alexander

    2010-01-01

    Biological processes are regulated with a high level of spatial and temporal resolution. In order to understand and manipulate these processes, scientists need to be able to regulate them with Nature’s level of precision. In this context, light is a unique regulatory element because it can be precisely controlled in location, timing and amplitude. Moreover, most biological laboratories have a wide range of light sources as standard equipment. This review article summarizes the most recent adv...

  17. Advanced methods of microscope control using μManager software.

    OpenAIRE

    Edelstein, Arthur D.; Tsuchida, Mark A.; Nenad Amodaj; Henry Pinkard; Vale, Ronald D.; Nico Stuurman

    2014-01-01

    µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we presen...

  18. Advances in area-wide tsetse control in Zambia

    International Nuclear Information System (INIS)

    Full text: Trypanosomosis is one of the major constraints to sustainable agricultural development particularly in the traditional sector, which accounts for about 80% of the national livestock (cattle) in Zambia. The remaining 20% commercially managed herds are located in tsetse free areas. More than five-eighths of Zambia is tsetse infested, and the boundaries of tsetse infestation are not constantly monitored, indicated boundaries are only estimates. In the late 1980's it was reported by Chizyuka and colleagues, that two thirds of the country was infested with tsetse flies and 25% of the traditional herd was at risk of trypanosomosis. Currently Zambia accounts some 2.8 million cattle, a million goats, a marginal number of sheep and 0.5 million pigs. The 1999-2003 Health Statistics Report by the Ministry of Health indicated 83 cases of reported human trypanosomosis, of which 31 were children under five years and 52 were above five years of age. Between January 2003 and 25th August 2003, seven cases of human trypanosomosis have been documented from Nyimba, Luangwa, Mpika, Serenje and Mambwe districts. During the last 15 years Zambia had achieved a lot in terms of tsetse control in the country. Tsetse densities and the disease prevalence were brought down from fly densities as high as 7 fly/trap/day to as low as 0.05 fly/trap/day and trypanosomosis prevalence from as high as 20% to as low as 0% in the tsetse controlled areas. Tsetse have been controlled in approximately 50,000 km2 under projects funded by different donors in separate areas in Western, Southern, Lusaka and Eastern provinces. In recent years the country has been experiencing re-invasion of the areas that where once cleared. The main specific problems experienced from past control operations under the support of donors (EU, Belgium, the Netherlands) include among others: - Re-invasion of tsetse flies in controlled areas when maintenance activities were relaxed due to insufficient funding and

  19. Advanced Control Surface Seal Development for Future Space Vehicles

    Science.gov (United States)

    DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    High temperature control surface seals have been identified as a critical technology in the development of future space vehicles. These seals must withstand temperatures of up to 2600 F and protect underlying temperature-sensitive structures (such as actuators and sealing capability by remaining resilient during flight conditions. The current baseline seal, used on the Shuttle orbiters and the X-38 vehicle, consists of a Nextel 312 sheath, an internal Inconel X-750 knitted spring tube, and hand-stuffed Saffil batting. Unfortunately at high temperatures (> 1500 F), the seal resiliency significantly degrades due to yielding and creep of the spring tube element. The permanent set in the seals can result in flow passing over the seals and subsequent damage to temperature sensitive components downstream of the seals. Another shortcoming of the baseline seal is that instances have been reported on Shuttle flights where some of the hand-stuffed Saffil batting insulation has been extracted, thus potentially compromising the seal. In vehicles where the thermal protection systems are delicate (such as with Shuttle tiles), the control surface seals must also limit the amount of force applied to the opposing surfaces. Additionally, in many applications the seals are subjected to scrubbing as control surfaces are actuated. The seals must be able to withstand any damage resulting from this high temperature scrubbing and retain their heat/flow blocking abilities.

  20. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  1. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dai Hwan; Jo, Heon Jin; Jeon, Byung Ho [Korea Univ., Seoul (Korea, Republic of)

    2001-03-15

    The purpose of this research is first to establish an evaluation method for CBPs(Computer-Based Procedures) at the advanced MCR as a part of regulation technology for the safety of KNGR. The second purpose is to design a prototype of a support system for the evaluation. We have selected the guideline method for the evaluation, since currently there is not any better alternative. Several guidelines have been published for the design of CBPs. The guidelines include both guidance for CBP design process review and guidance for CBP design product review. Although CBPs have many advantages over PBPs(Pater-Based Procedures), they have some drawbacks since CBPs show the information on display screens instead of papers, and generate some new issues that have not been raised with PBPs. For the new issues, we need to be cautious because it is hard to generalize the effects of CBPs and there is no conclusive answer yet. A support system is necessary for the evaluation of CBPs, since it is not easy to carry out an evaluation task even though an evaluator has firm background on cognitive engineering theories and practical experiences. The support system is going to have web-style interface and databases of evaluation items, guidelines for each evaluation item, and technical bases from which a guideline is derived. Evaluation items include those for desirable feature of CBPs and those for a subjective evaluation by the operating crew. The support system will facilitate the task of evaluators by linking evaluation items with technical basis and by providing features for recording and tracing the evaluation result and efforts for resolving the issues identified.

  2. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    problems with SR technology is the reputation of the high acoustic noise emission compared to other electrical machines. Therefore, extra focus to analyze this specific subject is done. The major origin to the high level of acoustic noise is due to highly concentrated normal forces with a high harmonic...... the control strategy and the output is the sound pressure at the top of the stator yoke. This is presented as both a technical A-weighted value and as a subjective value in form of the sound from the PC having the SRDaS program installed. The developed acoustic models are also verified in practice on...

  3. Control and dynamic systems v.42 advances in theory and applications

    CERN Document Server

    Leonides, CT

    2014-01-01

    Control and Dynamic Systems: Advances in Theory and Applications, Volume 42: Analysis and Control System Techniques for Electric Power Systems, Part 2 of 4 covers the research studies on the significant advances in areas including economic operation of power systems and voltage and power control techniques.This book is composed of eight chapters and begins with a survey of the application of parallel processing to power system analysis as motivated by the requirement for faster computation. The next chapters deal with the issues of power system protection from a system point of view, t

  4. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Science.gov (United States)

    2010-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter... this subchapter, using advances in mechanical meat/bone separation machinery (i.e., AMR systems)...

  5. Advance and recommendations for the control of illnesses in cocoa

    International Nuclear Information System (INIS)

    Among the diverse problems phyto sanitary that affect the production of cocoa in Colombia the moniliasis they stand out (Moniliophthora roreri) and witch's broom (pernicious Crinipellis). It is considered that for these illnesses the country loses but of 40 percent of the production, equivalent to some 16.000 tons of commercial grain per year. The ICA and their investigation program in cocoa have come developing in the CRI Tulenapa, Uraba, basic investigations and applied on the biology and dynamics of these pathogens, the physiology of the cultivation and the development of control programs, works that have allowed to define a handling system that consists on establishing defined times of removal of sick material for monilia and witch's broom through the year. With ends of technical and economic evaluation of this system, in 1981 they settled down in Tulenapa a demonstrative parcel of 1 there is of cocoa. The results of the rehearsal showed that the application of this system reduced the incidence of monilia of 65 percent in 1981 to 10 percent in 1985; equally, the brooms/tree/year index lowered of but of 100 at 19 in the same period. The yields that were of 280 kg/ha, increased to 422,942 and 657 kg/ha, respectively, between 1982 and 1985. Of the results of the study it comes off that this control system can be considered like model for the Uraba area some recommendations they are formulated to apply it in other regions, in accordance with its ecological conditions

  6. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  7. ISACS-1, a limited prototype of an advanced control room

    International Nuclear Information System (INIS)

    The concept of an Integrated Surveillance And Control System (ISACS) has been developed into a prototype, ISACS-1, which presently is in operation at the simulator-based experimental control room HAMMLAB of the OECD Halden Reactor Project. Characteristics of ISACS is that it covers the whole interface between the process and the operator, and this interface is fully computerized using tools like Cathode Ray Tubes (CRTs) and dynamic keyboards. In addition, a large number of computerized operator support systems (COSSs) are included in ISACS, assisting the operator in functions like disturbance detection and diagnosis, identification of relevant actions, and implementation of procedures. An information coordinator called ''Intelligent Coordinator'' (IC) in ISACS observes the information received from the process and the COSSs, generates new high-level information and structures and prioritizes information to be presented to the operator. The limited ISACS-1 prototype was completed in early 1991. An extensive evaluation programme is in progress. This paper will describe main features of the system and some of the conclusions to be drawn from the evaluation programme. (author). 5 refs, 2 figs

  8. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    Energy Technology Data Exchange (ETDEWEB)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility

  9. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  10. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  11. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  12. Advanced Interactive Display Formats for Terminal Area Traffic Control

    Science.gov (United States)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  13. LOFT advanced control room operator diagnostic and display system (ODDS)

    International Nuclear Information System (INIS)

    The Loss-of-Fluid Test (LOFT) Reactor Facility in Idaho includes a highly instrumented nuclear reactor operated by the Department of Energy for the purpose of establishing nuclear safety requirements. The results of the development and installation into LOFT of an Operator Diagnostic and Display System (ODDS) are presented. The ODDS is a computer-based graphics display system centered around a PRIME 550 computer with several RAMTEK color graphic display units located within the control room and available to the reactor operators. Use of computer-based color graphics to aid the reactor operator is discussed. A detailed hardware description of the LOFT data system and the ODDS is presented. Methods and problems of backfitting the ODDS equipment into the LOFT plant are discussed

  14. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  15. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  16. Advanced topics in control and estimation of state-multiplicative noisy systems

    CERN Document Server

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  17. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  18. Guest Editorial Special Issue on Recent Advances and New Directions in Switched Control Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ As guest editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems. Recently, switched control systems have attracted much attention in the control systems community. Problems in this area are not only academically challenging for the inherent mathematical complexity, but also are derived or motivated from advanced applications in natural sciences, engineering, and social sciences. For survival, natural biological systems switch their survival strategies in accordance with environmental changes. For improved performance, switching has been extensively utilized/exploited in engineering systems such as automotive drive train control, electronic devices, control of power systems, etc.

  19. Advanced terahertz techniques for quality control and counterfeit detection

    Science.gov (United States)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  20. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    International Nuclear Information System (INIS)

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods

  1. Contribution to the study and design of advanced controllers : application to smelting furnaces

    OpenAIRE

    Ojeda Sarmiento, Juan Manuel

    2013-01-01

    In this doctoral thesis, contributions to the study and design of advanced controllers and their application to metallurgical smelting furnaces are discussed. For this purpose, this kind of plants has been described in detail. The case of study is an Isasmelt plant in south Peru, which yearly processes 1.200.000 tons of copper concentrate. The current control system is implemented on a distributed control system. The main structure includes a cascade strategy to regulate the molten bath tempe...

  2. Advanced Control Scenario of High-Performance Steady-State Operation for JT-60 Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu

    2004-01-01

    Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.

  3. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Price, Lynn; Zheng, Nina; Ke, Jing; Hasanbeigi, Ali

    2011-10-15

    Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO{sub 2} emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives. Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG) emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO{sub 2} and SO{sub 2} emissions in the cement, iron &steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO{sub 2} mitigation scenarios and SO{sub 2} control scenarios were also established to evaluate the impact of each of the measures and the combined effects. In the power sector, although the end of pipe SO{sub 2} control technology such as flue gas desulfurization (FGD) has the largest reduction potential for SO{sub 2} emissions, other CO{sub 2} control options have important co-benefits in reducing SO{sub 2} emissions of 52.6 Mt of SO{sub 2} accumulatively. Coal efficiency improvements along with hydropower, renewable and nuclear capacity expansion will result in more than half of the SO{sub 2} emission reductions as the SO{sub 2} control technology through 2016. In comparison, the reduction from carbon capture and sequestration (CCS) is much less and has negative SO{sub 2} reductions

  4. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.

    2012-04-21

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  5. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  6. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  7. Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-year Plans and lessons for the future

    International Nuclear Information System (INIS)

    China's Central government established national goals to reduce sulfur dioxide (SO2) emissions by 10% in both the 10th and 11th Five-year Plan periods, 2001–2005 and 2006–2010, respectively. But the early policies were unsuccessful at reducing emissions—emissions increased 28% during the 10th Five-year Plan. After adapting a number of policies and introducing new instruments during the 11th Five-year Plan, SO2 emissions declined by 14%. We examine the evolution of these policies, their interplay with technical and institutional factors, and capture lessons from the 11th Five-year Plan to guide future pollution control programs. We find that several factors contributed to achievement of the 11th Five-year Plan SO2 reduction goal: (1) instrument choice, (2) political accountability, (3) emission verification, (4) political support, (5) streamlined targets, and (6) political and financial incentives. The approach integrated multiple policy instruments—market-based, command-and-control, and administrative instruments specific to the Chinese context. The evolution of SO2 reduction policies and programs has implications for further SO2 reductions from power plants and other sources, as well as control of other atmospheric pollutants such as nitrogen oxides (NOX) and carbon dioxide (CO2) in China. - Highlights: ► This paper assesses China's SO2 reduction policies between 2000 and 2010. ► Government used a variety of policy instruments to achieve emission targets. ► Experience shows that accountability, incentives, and political support were key. ► The policy lessons can aid future policies for SO2, NOx, and CO2 reductions.

  8. Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre- and postbottling controlled oxygen exposure.

    Science.gov (United States)

    Ugliano, Maurizio; Dieval, Jean-Baptiste; Siebert, Tracey E; Kwiatkowski, Mariola; Aagaard, Olav; Vidal, Stéphane; Waters, Elizabeth J

    2012-09-01

    The evolution of different volatile sulfur compounds (VSCs) during bottle maturation of two Shiraz wines submitted to controlled oxygen exposure prior to bottling (through micro-oxygenation, MOX) and postbottling (through the closure) was investigated. H(2)S, methyl mercaptan (MeSH), and dimethyl sulfide (DMS) were found to increase during aging. Lower postbottling oxygen exposure, as obtained by different degrees of oxygen ingress through the closure, resulted in increased H(2)S and methyl mercaptan. In one wine MOX increased the concentration of H(2)S and methyl mercaptan during maturation. Dimethyl disulfide and DMS were not affected by any form of oxygen exposure. Overall, postbottling oxygen had a stronger influence than MOX on the evolution of VSCs. Data suggest that dimethyl disulfide was not a precursor to methyl mercaptan during bottle maturation. For the two wines studied, a consumption of oxygen of 5 mg/L over 12 months was the most effective oxygen exposure regimen to decrease accumulation of MeSH and H(2)S during bottle aging. PMID:22900817

  9. Effects of sulfur bath on hip osteoarthritis: a randomized, controlled, single-blind, follow-up trial: a pilot study

    Science.gov (United States)

    Kovács, Csaba; Bozsik, Ágnes; Pecze, Mariann; Borbély, Ildikó; Fogarasi, Andrea; Kovács, Lajos; Tefner, Ildikó Katalin; Bender, Tamás

    2016-06-01

    The effects of balneotherapy were evaluated in patients with osteoarthritis of the hip. This randomized, controlled, investigator-blinded study enrolled outpatients with hip osteoarthritis according to ACR criteria. In addition to home exercise therapy, one patient group received balneotherapy for 3 weeks on 15 occasions. The mineral water used in this study is one of the mineral waters with the highest sulfide ion content (13.2 mg/L) in Hungary. The control group received exercise therapy alone. The WOMAC Likert 3.1 index and the EQ-5D quality of life self-administered questionnaire were completed three times during the study: prior to first treatment, at the end of the 3-week treatment course, and 12 weeks later. The main endpoint was achievement of Minimal Clinically Important Improvement (MCII) at 12 weeks, defined as ≥7.9 points in a normalized WOMAC function score. The intention to treat analysis included 20 controls and 21 balneotherapy patients. At 12 weeks, 17 (81 %) balneotherapy group patients had Minimal Clinically Important Improvement and 6 (30 %) of controls (p = 0.001). Comparing the results of the two groups at the end of treatment, there was a significant difference in the WOMAC stiffness score only, whereas after 12 weeks, the WOMAC pain, stiffness, function, and total scores also showed a significant difference in favor of the balneotherapy group. The difference between the two groups was significant after 12 weeks in point of EQVAS score, too. The results of our study suggest that the combination of balneotherapy and exercise therapy achieves more sustained improvement of joint function and decreases in pain than exercise therapy alone.

  10. Kinetics and Mechanisms of Chalcopyrite Dissolution at Controlled Redox Potential of 750 mV in Sulfuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2016-08-01

    Full Text Available To better understand chalcopyrite leach mechanisms and kinetics, for improved Cu extraction during hydrometallurgical processing, chalcopyrite leaching has been conducted at solution redox potential 750 mV, 35–75 °C, and pH 1.0 with and without aqueous iron addition, and pH 1.5 and 2.0 without aqueous iron addition. The activation energy (Ea values derived indicate chalcopyrite dissolution is initially surface chemical reaction controlled, which is associated with the activities of Fe3+ and H+ with reaction orders of 0.12 and −0.28, respectively. A surface diffusion controlled mechanism is proposed for the later leaching stage with correspondingly low Ea values. Surface analyses indicate surface products (predominantly Sn2− and S0 did not inhibit chalcopyrite dissolution, consistent with the increased surface area normalised leach rate during the later stage. The addition of aqueous iron plays an important role in accelerating Cu leaching rates, especially at lower temperature, primarily by reducing the length of time of the initial surface chemical reaction controlled stage.

  11. Advances in robot control from everyday physics to human-like movements

    CERN Document Server

    Kawamura, Sadao

    2007-01-01

    Robotics is still a young science, but we can already identify the people who de?ned its primary course of development. Suguru Arimoto is one of them. His early works laid the foundations of what nowadays is called modern robot control, and we believe it is both appropriate and necessary to write a book on recent advances in this ?eld in the context of his scienti?c interests. While presenting recent advances in robot control is the main intention of this book, we also think it is appropriate to highlight Suguru Arimoto's research career, main scienti?c achievements, and his personality, too.

  12. Controlled Sulfurization Process for the Synthesis of Large Area MoS2 Films and MoS2/WS2 Heterostructures

    OpenAIRE

    Chiappe, Daniele; Asselberghs, Inge; Sutar, Surajit; Iacovo, Serena; Afanas'ev, Valeri; Stesmans, Andre; Balaji, Yashwanth; Peters, Lisanne; Heyne, Markus; Mannarino, Manuel; Vandervorst, Wilfried; Sayan, Safak; Huyghebaert, Cedric; Caymax, Matty; Heyns, Marc

    2015-01-01

    Large area MoS2 films with tunable physical-chemical properties are grown on dielectric substrates by annealing of ultrathin Mo layers in the presence of a sulfur-containing gaseous precursor. Different growth conditions are found to have a significant impact on material properties, including chemical composition, roughness, and grain sizes, thus shedding light on critical parameters that govern sulfurization processes for the synthesis of large area 2D transition metal dichalcogenides. Optim...

  13. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  14. Advanced turbine systems sensors and controls needs assessment study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  15. Operator’s cognitive, communicative and operative activities based workload measurement of advanced main control room

    International Nuclear Information System (INIS)

    Highlights: • An advanced MMIS in the advanced MCR requires new roles and tasks of operators. • A new workload evaluation framework is needed for a new MMIS environment. • This work suggests a new workload measurement approach (COCOA) for an advanced MCR. • COCOA enables 3-dimensional measurement of cognition, communication and operation. • COCOA workload evaluation of the reference plant through simulation was performed. - Abstract: An advanced man–machine interface system (MMIS) with a computer-based procedure system and high-tech control/alarm system is installed in the advanced main control room (MCR) of a nuclear power plant. Accordingly, though the task of the operators has been changed a great deal, owing to a lack of appropriate guidelines on the role allocation or communication method of the operators, operators should follow the operating strategies of conventional MCR and the problem of an unbalanced workload for each operator can be raised. Thus, it is necessary to enhance the operation capability and improve the plant safety by developing guidelines on the role definition and communication of operators in an advanced MCR. To resolve this problem, however, a method for measuring the workload according to the work execution of the operators is needed, but an applicable method is not available. In this research, we propose a COgnitive, Communicative and Operational Activities measurement approach (COCOA) to measure and evaluate the workload of operators in an advanced MCR. This paper presents the taxonomy for additional operation activities of the operators to use the computerized procedures and soft control added to an advanced MCR, which enables an integrated measurement of the operator workload in various dimensions of cognition, communication, and operation. To check the applicability of COCOA, we evaluated the operator workload of an advanced MCR of a reference power plant through simulation training experiments. As a result, the amount

  16. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  17. PREFACE: 12th European Workshop on Advanced Control and Diagnosis (ACD 2015)

    Science.gov (United States)

    Straka, Ondřej; Punčochář, Ivo; Duník, Jindřich

    2015-11-01

    The 12th European Workshop on Advanced Control and Diagnosis (ACD 2015) took place at the Research Centre NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic, on November 19 - 20, 2015. The annual European Workshop on Advanced Control and Diagnosis has been organized since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary, and Denmark to bring together senior and junior academics and engineers from diverse fields of automatic control, fault detection, and signal processing. The workshop provides an opportunity for researchers and developers to present their recent theoretical developments, practical applications, or even open problems. It also offers a great opportunity for industrial partners to express their needs and priorities and to review the current activities in the fields. A total of 74 papers have been submitted for ACD 2015. Based on the peer reviews 48 papers were accepted for the oral presentation and 10 papers for the poster presentation. The accepted papers covered areas of control theory and applications, identification, estimation, signal processing, and fault detection. In addition, four excellent plenary lectures were delivered by Prof. Fredrik Gustafsson (Automotive Sensor Mining for Tire Pressure Monitoring), Prof. Vladimír Havlena (Advanced Process Control for Energy Efficiency), Prof. Silvio Simani (Advanced Issues on Wind Turbine Modelling and Control), and Prof. Robert Babuška (Learning Control in Robotics). The ACD 2015 was for the first time in the workshop history co-sponsored by the International Federation of Automatic Control (IFAC). On behalf of the ACD 2015 organising committee, we would like to thank all those who prepared and submitted papers, participated in the peer review process, supported, and attended the workshop.

  18. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  19. Application of Advanced Process Control techniques to a pusher type reheating furnace

    Science.gov (United States)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  20. Review of advanced control rooms: Methodological considerations for the use of HFE guidelines

    International Nuclear Information System (INIS)

    Control rooms for advanced nuclear power plants use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews HSIs to ensure that they are designed to accepted human factors engineering (HFE) principles. The principal review guidance, however, is more than ten-years old (US NRC, 1981). Accordingly, an Advanced HSI Design Review Guideline (DRG) was developed to provide criteria for these reviews. The DRG contains seven major sections: Information Display, User-System Interaction, Process Control and Input Devices, Alarms, Analysis and Decision Aids, Inter-Personnel Communication, and Workplace Design (see O'Hara ampersand Brown, 1993). The purpose of this paper is to describe the methodology for DRG use

  1. Development of advanced digital control and monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    For the latest Operating Japanese PWR Plant, to enhance reliability, operability and maintainability, the state of the art computer technology and human factors engineering has been applied for Main Control Boards, and the digital technology has been applied for main control system of the latest operating Japanese PWR plant. For the next Japanese PWR plant (APWR; Advanced PWR), it is planed to apply digital technology for all the instrumentation and control (I and C) system including the safety grade system and also apply advanced Main Control Boards which utilize soft operation, to enhance the system capability. This paper describes the system concepts, configuration, features and enhanced maintainability of integrated digital I and C system. And also describes prototype system validation. (author)

  2. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  3. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  4. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    Science.gov (United States)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  5. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  6. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures

    Institute of Scientific and Technical Information of China (English)

    Weili Lin; Xiaobin Xu; Zhiqiang Ma; Huarong Zhao; Xiwen Liu; Ying Wang

    2012-01-01

    SO2 measurements made in recent years at sites in Beijing and its surrounding areas are performed to study the variations and trends of surface SO2 at different types of sites in Northern China.The overall average concentrations of SO2 are (16.8 ± 13.1) ppb,(14.8 ±9.4) ppb,and (7.5 ± 4.0) ppb at China Meteorological Administration (CMA,Beijing urban area),Gucheng (GCH,relatively polluted rural area,110 km to the southwest of Beijing urban area),and Shangdianzi (SDZ,clean background area,100 km to the northeast of Beijing urban area),respectively.The SO2 levels in winter (heating season) are 4-6 folds higher than those in summer.There are highly significant correlations among the daily means of SO2 at different sites,indicating regional characteristics of SO2 pollution.Diurnal patterns of surface SO2 at all sites have a common feature with a daytime peak,which is probably caused by the downward mixing and/or the advection transport of SO2-richer air over the North China Plain.The concentrations of SO2 at CMA and GCH show highly significant downward trends (-4.4 ppb/yr for CMA and -2.4 ppb/yr for GCH),while a less significant trend (-0.3 ppb/yr) is identified in the data from SDZ,reflecting the character of SDZ as a regional atmospheric background site in North China.The SO2 concentrations of all three sites show a significant decrease from period before to after the control measures for the 2008 Olympic Games,suggesting that the SO2 pollution control has long-term effectiveness and benefits.In the post-Olympics period,the mean concentrations of SO2 at CMA,GCH,and SDZ are (14.3 ± 11.0) ppb,(12.1 ± 7.7) ppb,and (7.5 ± 4.0) ppb,respectively,with reductions of 26%,36%,and 13%,respectively,compared to the levels before.Detailed analysis shows that the differences of temperature,relative humidity,wind speed,and wind direction were not the dominant factors for the significant differences of SO2 between the pre-Olympics and post-Olympics periods.By extracting the data

  7. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    Interest in high speed rotorcraft has directed attention toward the slowed-rotor, high advance ratio compound autogyro concept as evidenced by the current DARPA Heliplane project. The behavior of partially unloaded rotors, autorotating at high advance ratio is not well understood and numerous technical issues must be resolved before the vehicle can be realized. Autorotation in helicopters usually indicates an emergency loss of power. For the concept vehicle autorotation is the normal working state of the rotor. The necessity for a reduction in rotor speed with increasing flight speed results in high advance ratio operation where the retreating side of the rotor is dominated by the reverse flow region. Further, rotor speed changes also affect the rotor dynamics and the associated hub moments generated by cyclic flapping. The result is rotor characteristics that vary widely depending on advance ratio. In the present work, rotor behavior is characterized in terms of issues relevant to the control system conceptual design and the rotor impact on the intrinsic vehicle flight dynamics characteristics. A series of trim, stability, and control analyses, based on features inherent in the concept vehicle, are performed. Trends are identified through parametric variation of rotor operating conditions, augmented by inclusion of the sensitivities to blade mass and blade stiffness properties. In this research, non-linear models, including the rotor speed degree of freedom, were created and analyzed with FLIGHTLAB(TM) rotorcraft modeling software. Performance analysis for rotors trimmed to autorotate with zero average hub pitching and rolling moments indicates reduced rotor thrust is achieved primarily through rotor speed reduction at lower shaft incidence angle, and imposing hub moment trim constraints results in a thrust increment sign reversal with collective pitch angle above advance ratio mu ˜ 1.0. Swashplate control perturbations from trim indicate an increase in control

  8. Design methodology for fault-tolerant control of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, B. de; Verhaegen, M.H.G.

    2003-01-01

    The objective of this project is to develop a methodology for the design, testing, evaluation and implementation of control systems for Advanced Driver Assistance Systems (ADAS). Examples of ADAS are collision avoidance systems, lane departure warning systems, pre-crash sensing, and adaptive cruise

  9. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC I. Instructor Book.

    Science.gov (United States)

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…

  10. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Statistical Process Control.

    Science.gov (United States)

    Billings, Paul H.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…

  11. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    Science.gov (United States)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  12. On the Controllability of a Differential Equation with Delayed and Advanced Arguments

    Directory of Open Access Journals (Sweden)

    Raúl Manzanilla

    2010-01-01

    Full Text Available A semigroup theory for a differential equation with delayed and advanced arguments is developed, with a detailed description of the infinitesimal generator. This in turn allows to study the exact controllability of the equation, by rewriting it as a classical Cauchy problem.

  13. Advanced control rooms and crew performance issues: Implications for human reliability

    International Nuclear Information System (INIS)

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs)

  14. Energy Savings and Economics of Advanced Control Strategies for Packaged Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Huang, Yunzhi; Katipamula, Srinivas

    2012-10-31

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), evaluated a number of control strategies for packaged cooling equipment that can be implemented in an advanced controller, which can be retrofit into existing packaged heat pump units to improve their operational efficiency. This report documents the results of that analysis.

  15. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  16. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  17. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  18. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback...... controller minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...

  19. Neural network setpoint control of an advanced test reactor experiment loop simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1990-09-01

    This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.

  20. Real-time modeling and controls analysis using the MMS and the IBM advanced control system (ACS)

    International Nuclear Information System (INIS)

    The Penn State Nuclear Engineering Department has been used the EPRI sponsored Modular Modeling System (MMS) for research and education since 1985. The new capability presented in this paper is the adaptation of the MMS modeling procedure to produce a real-time interactive simulator. The technique additionally uses existing features of the Advanced Continuous Simulation Language (ACSL) and a commercially available control system for industrial applications, the IBM Advanced Control System (ACS). In the university environment, the IBM ACS mainframe software is used to effect the real-time interactive simulator capability. Successful demonstration of the basic mechanics for converting an existing batch mode MMS simulation to a real-time simulator using the ACS has been achieved for the MMS Deaerator example model. Future near-term work is expected to produce a real-time simulation of a primary loop of a Nuclear Steam Supply System that is used in an undergraduate Systems Interaction Course at Penn State

  1. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    Science.gov (United States)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  2. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  3. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  4. A framework for advanced methods of control of human-induced vibrations

    Science.gov (United States)

    Reynolds, Paul

    2012-04-01

    The vibration serviceability of civil engineering structures under human dynamic excitation is becoming ever more critical with the design and redevelopment of structures with reduced mass, stiffness and damping. A large number of problems have been reported in floors, footbridges, sports stadia, staircases and other structures. Unfortunately, the range of options available to fix such problems are very limited and are primarily limited to structural modification or the implementation of passive vibration control measures, such as tuned mass dampers. This paper presents the initial development of a new framework for advanced methods of control of humaninduced vibrations in civil engineering structures. This framework includes both existing passive methods of vibration control and more advanced active, semi-active and hybrid control techniques, which may be further developed as practical solutions for these problems. Through the use of this framework, rational decisions as to the most appropriate technologies for particular human vibration problems may be made and pursued further. This framework is also intended to be used in the design of new civil engineering structures, where advanced control technologies may be used both to increase the achievable slenderness and to reduce the amount of construction materials used and hence their embodied energy. This will be an ever more important consideration with the current drive for structures with reduced environmental impact.

  5. Fuzzy logic control of water level in advanced boiling water reactor

    International Nuclear Information System (INIS)

    The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller

  6. The influence of government actions on innovative activities in the development of environmental technologies to control sulfur dioxide emissions from stationary sources

    Science.gov (United States)

    Taylor, Margaret R.

    2001-12-01

    A better understanding of the influence of government actions on innovation is needed to inform future policy endeavors in areas ranging from industrial competitiveness to environmentally sustainable growth. Environmental control technology is a rich area for the study of this influence, since government has stronger incentives to promote innovation in these technologies than does the private sector. This dissertation investigated the case of sulfur dioxide (SO2) control technologies for electric power plants. In studying innovation in these technologies, it was very important to understand the details of these technologies as well as their long organizational history. These technologies have been affected by government actions ranging from government-sponsored research and technology transfer mechanisms to national regulatory events. The dissertation integrated insights from several complementary and repeatable innovation evaluation methods; this approach supported a fuller understanding of innovation while it structured the research results for potential future comparative analysis. Innovative activities were investigated through: patent activity analysis; technical content analysis and researcher co-authorship network analysis in a conference held for over twenty years; learning curve analysis for eighty-eight U.S. power plants; and a dozen expert interviews from a variety of innovative actors. Innovative outcomes were investigated through: analysis of observed improvements in newly installed technologies over time; evaluation of historic cost studies on standardized systems; and expert interviews. Several policy-relevant findings resulted from this dissertation. (1) The existence of national government regulation stimulated inventive activity more than government research support alone. (2) The existence and the anticipation of government regulation appeared to spur inventive activity, while regulatory stringency appeared to drive inventive activity and the

  7. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    Science.gov (United States)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  8. Advanced electric drives analysis, control, and modeling using MATLAB/Simulink

    CERN Document Server

    Mohan, Ned

    2014-01-01

    Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformations for easy visualization Confirms the physics-based analysis of electric drives mathematically Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme Makes the MATLAB/Simulink files used in exampl

  9. Study and development of advanced control techniques for nuclear reactors and robots

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, C.

    1989-08-01

    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs.

  10. Status of the Advanced Photon Source and its accelerator control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  11. Study and development of advanced control techniques for nuclear reactors and robots

    International Nuclear Information System (INIS)

    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs

  12. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  13. The advanced liquid metal reactor: Towards component protection based automatic control

    International Nuclear Information System (INIS)

    As advanced computing technology becomes part of the control system for power plants, the opportunity arises to address the real goals of plant control. Digital control systems are able to monitor more information and to accomplish more simultaneous tasks than human operators. In future nuclear plants, intelligent supervisory control systems should be responsible for maneuvering the plant in a fashion to minimize the component stress damage. The control system should generate strategies based on traditional operational objectives and on the current plant state and the stress history of various components and transients. In this paper, the authors elaborate on the desirability of including component mechanical stress information in digital control systems. Explicit consideration of stress constraints in the control strategy can significantly reduce the impact of transients on critical components, providing a significant contribution towards meeting current lifetime design goals of approximately 60 years. For illustration, one of the Advanced Liquid Metal Reactor design duty cycles events is discussed from this perspective for three hypothetical response scenarios. 7 refs., 4 figs

  14. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators.

  15. Dynamics and Control of Switched Electronic Systems Advanced Perspectives for Modeling, Simulation and Control of Power Converters

    CERN Document Server

    Iannelli, Luigi

    2012-01-01

    The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided...

  16. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    Science.gov (United States)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  17. How to measure human performance in main control room of an advanced NPP?

    International Nuclear Information System (INIS)

    As CRT-based display and advanced information technology were applied to advanced reactor such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) of an advanced reactor. In order to support the advanced reactor design certification reviews, the Human Factors Engineering Program Review Model (HFE PRM) was developed with the support of U.S. NRC. The HFE PRM describes the HFE program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design and provides the review criteria for their evaluation. One of the review elements is human factors verification and validation (V and V). The role of V and V evaluations in the HFE PRM is to comprehensively determine that the design conforms to HFE design principles and it enables plant personnel to successfully perform their tasks to achieve plant safety and other operational goals. Integrated System Validation (ISV) is part of this review activity. An integrated system design is evaluated through performance-based tests to determine whether it acceptably supports safe operation of the plant. The performance- based tests are based on several human (operator) performance measures such as plant performance, personnel task, situation awareness, workload, team work, and anthropometric/physiological factors. In this work, some techniques already developed in nuclear or other industry and new techniques are incorporated into a methodology for the human performance evaluation

  18. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    Science.gov (United States)

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted. PMID:26250546

  19. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  20. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  1. Evaluation of dead time measurement for Monju control systems using advanced wavelet analysis method

    International Nuclear Information System (INIS)

    Dead times appear inevitably in responses of plant control systems, which often make the stable control difficult in case with improper values. It is necessary to evaluate them correctly in order to realize the stability of the control systems. A correlation method by a maximum-length linear shift register sequence (M-sequence) was proposed to evaluate the dead time as an accurate method. In nuclear power plants (NPPs), however, response data against M-sequence signals are unavailable at some parts of control systems, because the target locations and signal specifications are highly restricted not to disturb the stable operations. A wavelet analysis method against step responses was applied to Japanese prototype fast breeder reactor MONJU control system in the heat transfer system; one was the primary sodium flow control system and another was the secondary sodium flow control system. This method was considered as a promising method without application of M-sequence signals to the control systems. We also evaluated the dead times by the M-sequence method in the same control systems in order to validate the accuracy. Accordingly, the dead times evaluated by the wavelet analysis method also agreed well with those by the M-sequence method in the two control systems. From these results, we concluded that the present advanced method could predict the dead times with good accuracy in any control systems of NPPs. (author)

  2. DYNAMIC MODELLING AND ADVANCED PREDICTIVE CONTROL OF A CONTINUOUS PROCESS OF ENZYME PURIFICATION

    Directory of Open Access Journals (Sweden)

    Dechechi E.C.

    1997-01-01

    Full Text Available A dynamic mathematical model, simulation and computer control of a Continuous Affinity Recycle Extraction (CARE process, a protein purification technique based on protein adsorption on solid-phase adsorbents is described in this work. This process, consisting of three reactors, is a multivariable process with considerable time delay in the on-line analyses of the controlled variable. An advanced predictive control configuration, specifically the Dynamic Matrix Control (DMC, was applied. The DMC algorithm was applied in process schemes where the aim was to maintain constant the enzyme concentration in the outlet of the third reactor. The performance of the DMC controller was analyzed in the feed-flow disturbances and the results are presented.

  3. Advanced flow measurement and active flow control of aircraft with MEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Chengyu; Deng Jinjun; Ma Binghe; Yuan Weizheng

    2012-01-01

    Advanced flow measurement and active flow control need the development of new type devices and systems. Micro-electro-mechanical systems (MEMS) technologies become the important and feasible approach for micro transducers fabrication. This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators. Micro sensors include the flexible thermal sensor array, capacitive shear stress sensor and high sensitivity pressure sensor. Micro actuators are the balloon actuator and synthetic jet actuator respectively. Through wind tunnel test, these micro transducers achieve the goals of shear stress and pressure distribution measurement, boundary layer separation control, lift enhancement, etc. And unmanned aerial vehicle (UAV) flight test verifies the ability of maneuver control of micro actuator. In the future work, micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.

  4. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Ostergaard, Jacob;

    2012-01-01

    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the...... instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the...... oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT...

  5. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  6. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  7. Evaluations of the computerized procedure system at an advanced main control room

    International Nuclear Information System (INIS)

    An advanced main control room is planned for the next generation of nuclear power plants in Korea. Among the new features of the advanced main control room, a lot of controversies exist about the CPS(computerized procedure system). This paper presents the result from two evaluations on the CPS. First, an evaluation was conducted on the basis of guidelines recommended by regulation agencies or utility companies. This paper indicates some deviations from guidelines and suggests corrections. However, there are several issues for which guidelines do not exist currently. For those issues, the second evaluation was conducted empirically by observing the process of executing an emergency operating procedure by an operating team. We hope that the result from these evaluation would contribute to future improvements and safety of the CPS

  8. Profile control of advanced tokamak plasmas in view of continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Mazon, D., E-mail: Didier.Mazon@cea.fr

    2015-07-15

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named ‘advanced scenarios’ are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated ‘bootstrap’ current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  9. Profile control of advanced tokamak plasmas in view of continuous operation

    Science.gov (United States)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  10. Profile control of advanced tokamak plasmas in view of continuous operation

    International Nuclear Information System (INIS)

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named ‘advanced scenarios’ are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated ‘bootstrap’ current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described

  11. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    International Nuclear Information System (INIS)

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m2 and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust

  12. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dalian University of Technology, Dalian 116024 (China); Guo, H.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); General Atomics, P. O. Box 85608, San Diego, CA 92186 (United States); Li, J.; Wan, B.N.; Gong, X.Z.; Zhang, X.D.; Hu, J.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association EURATOM-FZJ, D-52425 Jülich (Germany); Xu, G.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Maingi, R.; Menard, J.E. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Luo, G.N.; Gao, X.; Hu, L.Q.; Gan, K.F.; Liu, S.C.; Wang, H.Q.; Chen, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-08-15

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m{sup 2} and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust.

  13. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  14. Innovations in building regulation and control for advancing sustainability in buildings (I)

    OpenAIRE

    Meacham, B.; Visscher, H.J.; Meijer, F.M.; Chan, C.; Chan, E; Laubscher, J.; Neng Kwei Sung, J.; Dodds, B.; J. Serra; Tenorio, J.A.; Echeverria, J.B.; Sanches-Ostiz, A.

    2014-01-01

    This session brings together policy-makers, government officials, researchers and others to present perspectives on how innovation in building regulation and control, such as performancebased approaches, are currently being used to advance sustainability concepts in buildings, and where and how we might see further innovation in the coming years. In this grouping of session papers, representatives of the Inter-jurisdictional Regulatory Collaboration Committee (IRCC) and the International Coun...

  15. Recent Advances in Biological Control of Pest Insects by Using Viruses in China

    Institute of Scientific and Technical Information of China (English)

    Xiu-lian SUN; Hui-yin PENG

    2007-01-01

    Insect viruses are attractive as biological control agents and could be a feasible alternative to chemical insecticides in the management of insect infestations. This review describes recent advances in the development of wild-type and genetically modified viruses as insecticides. A new strategy of application of insect viruses in China is reviewed. Also, the assessment of biosafety of genetically modified Helicoverpa armigera Nucleopolyhedovirus (HearNPV) is emphasized as a case-study.

  16. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Guo Lie; Ren Zejian; Ge Pingshu; Chang Jing

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  17. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  18. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality. PMID:19005652

  19. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    International Nuclear Information System (INIS)

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO42-. It can monitor the sulfur pollution in atmosphere. (authors)

  20. Separation of sulfur isotopes

    Science.gov (United States)

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.