Steady State Advanced Tokamak (SSAT): The mission and the machine
International Nuclear Information System (INIS)
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q
2015-02-01
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development. PMID:25699449
Institute of Scientific and Technical Information of China (English)
H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu
2004-01-01
Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.
Overview of JT-60U progress towards steady-state advanced tokamak
International Nuclear Information System (INIS)
Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s Ip flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (βN) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high βp H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher βN ∼ 3 is maintained for 6.2 s in high βp H-mode plasmas. High bootstrap current fraction (fBS) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high βN regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at βN ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)
A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
Mitsuru Kikuchi
2010-01-01
Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR) best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fund...
Magnetic sensor for steady state tokamak
Energy Technology Data Exchange (ETDEWEB)
Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-06-01
A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).
Real-time control of the q-profile in JET for steady state advanced tokamak operation
International Nuclear Information System (INIS)
In order to simultaneously control the current and pressure profiles in high performance tokamak plasmas with internal transport barriers (ITB), a multi-variable model-based technique has been proposed. New algorithms using a truncated singular value decomposition (TSVD) of a linearized model operator and retaining the distributed nature of the system have been implemented in the JET control system. Their simplest versions have been applied to the control of the current density profile in reversed shear plasmas using three heating and current drive actuators (neutral beam injection, ion cyclotron resonant frequency heating and lower hybrid current drive). Successful control of the safety factor profile has been achieved in the quasi-steady-state, on a timescale of the order of the current redistribution time. How the TSVD algorithm will be used in the forthcoming campaigns for the simultaneous control of the current profile and of the ITB temperature gradient is discussed in some detail, but this has not yet been attempted in the present pioneering experiments. (author)
A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
Directory of Open Access Journals (Sweden)
Mitsuru Kikuchi
2010-11-01
Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.
Towards steady-state tokamak operation with double transport barriers
International Nuclear Information System (INIS)
Internal Transport Barriers characteristic for the Optimised Shear regime and an edge transport barrier of an ELMy H-mode regime have been superposed in the Double Barrier mode. In DT discharges the Double Barrier mode has resulted in 50% higher fusion power output and a factor 2 higher fusion gain Q than in conventional sawtoothing steady-state ELMy H-mode plasmas. Steady-state conditions in temperature and density profiles have been approached in Double Barrier discharges in deuterium. The Double Barrier mode has been routinely established in the new Gas Box divertor configuration on JET. Off-axis LHCD has been used for current profile control during the high performance phase. In preparation of a new DTE2 campaign on JET the potential of the Double Barrier mode for sustained high fusion performance has been explored in modelling studies. Steady-state operation on ITER has been studied in transport code modelling for Advanced Tokamak scenarios in the Double Barrier mode. (author)
Steady State versus Pulsed Tokamak DEMO
International Nuclear Information System (INIS)
Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 — 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(HIPBy2 = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures Te ∼ 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)
International Nuclear Information System (INIS)
Based on the last decade JAERI reactor design studies, the advanced commercial reactor concept (A-SSTR2) which meets both economical and environmental requirements has been proposed. The A-SSTR2 is a compact power reactor (Rp=6.2m, ap=1.5m, Ip=12MA) with a high fusion power (Pf=4GW) and a net thermal efficiency of 51%. The machine configuration is simplified by eliminating a center solenoid (CS) coil system. SiC/SiC composite for blanket structure material, helium gas cooling with pressure of 10MPa and outlet temperature of 900 deg. C, and TiH2 for bulk shield material are introduced. For the toroidal field (TF) coil, a high temperature (TC) superconducting wire made of bismuth with the maximum field of 23T and the critical current density of 1000A/mm2 at a temperature of 20K is applied. In spite of the CS-less configuration, a computer simulation gives a satisfactory plasma equilibria, plasma initiation process and current ramp up scenario. (author)
A Steady State Tokamak Operation by Use of Magnetic Monopoles
Narihara, K.
1991-01-01
A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which the magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficie...
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
Small steady-state tokamak (TST) for divertor testing
International Nuclear Information System (INIS)
The TST is a small steady-state tokamak designed for testing diverters under conditions similar to those anticipated in future large tokamaks. An initial design has R0/a = 2.5, R0 = 0.75 m, a = 0.3 m, and Bt0 = 2.2 T with full inductive capability. With heating and current drive power of 4.5 MW, the heat flux at the plasma edge Q perpendicular can be as high as 0.3 MW/m2. Plasma currents Ip above 500 kA can be maintained by 1 MW of lower hybrid power (2.45 GHz) for average densities ne up to 3 x 1019 m-3. Additional power via ICRF (2 MW) and neutral beams (1.5 MW) maintain current for ne up to 5 x 1019 m-3. Fully demountable, actively cooled, steady-state toroidal field coils permit ample access for the auxiliary systems and diverter cassettes. The toroidal field magnets require a steady-state supply of less than 40 MW. The size and cost of the TST can be reduced by eliminating the solenoid, reducing Bt0 to 1.4 T, and lowering R0/a to 1.7. This option permits low-R0/a experimentation while maintaining the capability for testing divertors but requires successful noninductive current initiation and maintenance in the low-R0/a regime
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed which includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures which minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in an INTOR-sized reactor, then the optimum temperatures are typically T/sub e/ approx. = 12 to 15 keV and T/sub i/ approx. = keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E/sub b/ less than or equal to 400 keV, but rises only slowly above E/sub b/ approx. 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1
International Nuclear Information System (INIS)
SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)
Concept study of the Steady State Tokamak Reactor (SSTR)
International Nuclear Information System (INIS)
The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)
Small steady-state tokamak (TST) for divertor testing
Energy Technology Data Exchange (ETDEWEB)
Peng, Y.M.; Colchin, R.J.; Swain, D.W.; Nelson, B.E.; Monday, J.F. (Oak Ridge National Lab., TN (United States)); Blevins, J.; Delisle, M.; Stringer, J. (Canadian Fusion Fuels Technology Project, Mississauga, ON (Canada)); Bonoli, P.; Luckhardt, S. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Pauletti, R. (Sao Paulo Univ., SP (Brazil))
1992-01-01
The TST is a small steady-state tokamak designed for testing diverters under conditions similar to those anticipated in future large tokamaks. An initial design has R{sub 0}/a = 2.5, R{sub 0} = 0.75 m, a = 0.3 m, and Bt{sub 0} = 2.2 T with full inductive capability. With heating and current drive power of 4.5 MW, the heat flux at the plasma edge Q{perpendicular} can be as high as 0.3 MW/m{sup 2}. Plasma currents I{sub p} above 500 kA can be maintained by 1 MW of lower hybrid power (2.45 GHz) for average densities n{sub e} up to 3 {times} 10{sup 19} m{sup {minus}3}. Additional power via ICRF (2 MW) and neutral beams (1.5 MW) maintain current for n{sub e} up to 5 {times} 10{sup 19} m{sup {minus}3}. Fully demountable, actively cooled, steady-state toroidal field coils permit ample access for the auxiliary systems and diverter cassettes. The toroidal field magnets require a steady-state supply of less than 40 MW. The size and cost of the TST can be reduced by eliminating the solenoid, reducing Bt{sub 0} to 1.4 T, and lowering R{sub 0}/a to 1.7. This option permits low-R{sub 0}/a experimentation while maintaining the capability for testing divertors but requires successful noninductive current initiation and maintenance in the low-R{sub 0}/a regime.
Preliminary design study of a steady state tokamak device
International Nuclear Information System (INIS)
Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)
Operating tokamaks with steady-state toroidal current
International Nuclear Information System (INIS)
Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements
International Nuclear Information System (INIS)
The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs
Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime
Ren, Q.
2015-11-01
Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
Steady state operation of tokamaks. Proceedings of a technical committee meeting
International Nuclear Information System (INIS)
The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition
Implications of rf current drive theory for next step steady-state tokamak design
International Nuclear Information System (INIS)
Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor
Steady state tokamak equilibrium with specified magnetic axis and two magnetic null points
International Nuclear Information System (INIS)
An analysis method of tokamak plasma equilibrium by a relaxation method with specified magnetic axis and null points (two magnetic separatrix points) is developed. The six degrees of freedom due to designated positions of the magnetic axis and null points is possible by using six poloidal field coil currents. Stable steady state tokamak plasma equilibria are calculated along with the MHD (magnetohydrodynamic) potential energy. Assuming an RF heating plasma, the plasma generates a plasma current which partially or fully cancels the magnetic field from the poloidal field coils. For low-temperature plasmas, the plasma current distribution is centrally peaked; for high-temperature plasmas, the plasma current has a hole. A centrally peaked current distribution in a low-temperature plasma is evolved into a current distribution with a hole by increasing the plasma pressure by heating. These calculations show that, under sufficient heating, the pressure driven current in tokamak plasmas form a current hole which minimizes the MHD potential energy. (author)
Physical design of MW-class steady-state spherical tokamak, QUEST
International Nuclear Information System (INIS)
QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, Ip=20-30 kA on open divertor configuration and phase II: steady state operation with Ip = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.
2016-06-01
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN , despite strong internal transport barriers. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. More investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.
Investigation of component failure rates for pulsed versus steady state tokamak operation
International Nuclear Information System (INIS)
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments
Development of the ITER Advanced Steady State and Hybrid Scenarios
International Nuclear Information System (INIS)
Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, ΒN ∼ 2.5 for H98 = 1.6, Q's range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ∼ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.
A comparison of pulsed and steady-state tokamak reactor burn cycles. Pt. 2
International Nuclear Information System (INIS)
Pulsed operation of a tokamak reactor imposes cost penalties due to such problems as mechanical fatigue and the need to periodically transfer large amounts of energy to various reactor components. This study focuses on lifetime limitations and capital costs of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas include: fatigue in pulsed poloidal field coils; out-of-plane bending fatigue in toroidal field coils; electric power supply costs; and noninductive current driver costs. A capital cost comparison is made for tokamak reactors operating under the four distinct operating cycles which have been proposed. Since high availability and a low cost of energy will be mandatory for a commercial fusion reactor, we can characterize improvements in physics and technology which will help achieve these goals for different burn cycles. A key conclusion is that steady-state operation is likely to result in the least expensive tokamak reactor (perhaps 20% cheaper than the best pulsed reactor), provided noninductive current drive efficiency can be increased roughly four-fold over present-day experimental results. (orig.)
Steady-state resistive toroidal-field coils for tokamak reactors
International Nuclear Information System (INIS)
If spatially-averaged values of the beta ratio can reach 5 to 10% in tokamaks, as now seems likely, resistive toroidal-field coils may be advantageous for use in reactors intended for fusion-neutron applications. The present investigation has parameterized the design of steady-state water-cooled copper coils of rectangular cross section in order to maximize figures of merit such as the ratio of fusion neutron wall loading to coil power dissipation. Four design variations distinguished by different ohmic-heating coil configurations have been examined. For a wall loading of 0.5 MW/m2, minimum TF-coil lifetime costs (including capital and electricity costs) are found to occur with coil masses in the range 2400 to 4400 tons, giving 200 to 250 MW of resistive dissipation, which is comparable with the total power drain of the other reactor subsystems
Recent progress towards steady state tokamak operation with improved confinement in JT-60U
Energy Technology Data Exchange (ETDEWEB)
Fujita, Takaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2000-07-01
In the JT-60U tokamak, optimization of high {beta}{sub p} mode and reversed shear mode plasmas are being done for establishment of scientific basis for steady state operation of tokamaks. In high {beta}{sub p} H-mode plasmas, {beta}{sub N}=2.9 and H{sub 89}=2.2-2.4 were sustained sanitarily by using high triangularity configuration and pressure profile optimization. Steady state performance was limited by resistive low toroidal mode number instabilities. Stabilization of resistive modes by using a newly installed ECRF system was attempted and a decrease of mode amplitude was observed but complete stabilization could not be achieved. In reversed shear plasmas, high fusion performance with equivalent DT fusion power gain of 0.5 was sustained for 0.8 s or an energy confinement time. The duration was limited by disruptive beta collapse that was encountered when the minimum value of q became 2 even with moderate beta, {beta}{sub N} {approx}1.2. Stationary sustainment of ITB was demonstrated in a full CD reversed shear plasma with LHCD. The sustainment of reversed shear current profile by bootstrap current was demonstrated in an ELMy H-mode edge reversed shear plasma with a high triangularity in a high q regime. A confinement enhancement factor of 3.5 and {beta}{sub N} of 2 were sustained for 2.7 s with stationary current and pressure profiles. Ar puffing to H mode plasmas aiming at high confinement with high density and high radiation fraction was performed and H{sub 89}{approx}1.4 with radiation fraction of 80% was obtained at 70% of Greenwald density. (author)
Recent advancement in research and planning toward high beta steady state operation in KSTAR
International Nuclear Information System (INIS)
The goal of Korean Superconducting Tokamak Advanced Research (KSTAR) research is to explore stable improved confinement regimes and technical challenge for superconducting tokamak operation and thus, to establish the basis for predictable high beta steady state tokamak plasma operation. To fulfil the goal, the current KSTAR research program is composed of three elements: 1) Exploration of anticipated engineering and technology for a stable long pulse operation of high beta plasmas including Edge Localized Mode (ELM) control with the low n (=1, 2) Resonant Magnetic Perturbation (RMP) using in-vessel control coils and innovative non-inductive current drives. The achieved long pulse operation up to ∼50s and fully non-inductive current drive will be combined in the future. Study of efficient heat exhaust will be combined with an innovative divertor design/operation. 2) Exploration of the operation boundary through establishment of true stability limits of the harmful MagnetoHydroDynamic (MHD) instabilities and confinement of the tokamak plasmas in KSTAR, making use of the lowest error field and magnetic ripple simultaneously achieved among all tokamaks ever built. The intrinsic machine error field has a long history of research as the source of MHD instabilities and magnetic ripple is known to be a cause of energy loss in the plasma. The achieved high beta discharges at βN ∼4 and stable discharges at q95 (∼2) will be further improved. 3) Validation of theoretical modeling of MHD instabilities and turbulence toward predictive capability of stable high beta plasmas. In support of these research goals, the state of the art diagnostic systems, such as Electron Cyclotron Emission Imaging (ECEI) system in addition to accurate profile diagnostics, are deployed not only to provide precise 2D/3D information of the MHD instabilities and turbulence but also to challenge unresolved physics problems such as the nature of ELMs, ELM-crash dynamics and the role of the core
Projections for a steady-state tokamak reactor based on ITER
International Nuclear Information System (INIS)
The extensions of the physics and engineering guidelines for the ITER device needed for acceptable operating points for a steady-state tokamak power reactor are examined. Non-inductive current drive is provided in steady state by high-energy neutral-beam injection in the plasma core, lower-hybrid slow waves in the outer regions of the plasma and (30%) bootstrap current. Three different levels of extension of the ITER physics/engineering guide-lines, with differing assumptions on the possible plasma beta, elongation and aspect ratio, are considered for power-reactor applications. Plasma gain, Qp = fusion power/input power, in excess of 20 and average neutron wall fluxes from 2.3 to 3.6 MW/m2 are predicted in devices with major radii varying from 7.0 to 6.0 m and aspect ratios from 2.9 to 4. 3. Peak divertor heat fluxes range up to 12.2 MW/m2 which is somewhat higher than the current ITER design limit of 10 MW/m2 with a magnetically swept divertor. These designs were selected on the basis of improvements in physics/engineering consistent with time scales for development of future reactors. The design re-optimization on the basis of cost-of-electricity (COE) was then examined using a reactor systems model. This analysis generally verified the original estimates for the required extensions of the ITER guidelines. Cost of electricity is projected to be less than 66 mills/kWeh in all of the configurations. The smallest reactor, which has the largest neutron wall flux and mass power density, yields the lowest COE, 56 mills/kWeh. 37 refs., 8 figs., 11 tabs
Challenges to radiative divertor/mantle operations in advanced, steady-state scenarios
International Nuclear Information System (INIS)
Full text of publication follows. Managing the heat exhaust problem is well recognized to be a major challenge in transforming present successes in magnetic confinement fusion experiments to demonstration of cost-effective, steady-state power generation from fusion [1][2]. One approach is to convert plasma thermal energy, normally directed to isolated surfaces, to isotropic photon emission, distributing exhaust power over a large surface area. Successful demonstrations of this technique on existing short pulse devices are shown, along with the inherent limitations; the collapse of core confinement with excessive radiation from the bulk plasma and restrictions to dissipation in the divertor volume. Feedback control of impurity seeding is discussed, showing recent examples from tokamaks [3]. For steady-state devices, additional constraints on divertor scenarios are driven by long-term plasma material interaction effects, with fuel recycling, net erosion limits and surface morphology changes forcing detached plasma operation where both heat and particle fluxes are substantially reduced. The instability of these detachment layers in standard X-point divertors with impurity seeding is outlined. Achieving these steady-state, high performance scenarios also restricts the divertor solution by requiring it be compatible with current-drive actuators and enhanced core confinement regimes. While ITER will operate with impurity seeding in a conventional tokamak geometry [4], it is not clear that this concept will reliably scale to a reactor and has been identified as a major risk factor in the development of fusion power [2]. Alternatives concepts are discussed, including the snowflake [5] and super-X divertor [6], along with their respective proof of principle experiments. The complications in convincingly scaling these concepts to a reactor are outlined, including challenges in validating numerical simulations of advanced, dissipative divertors. References: [1] Greenwald, M
High Internal Inductance for High βN Steady-State Tokamak Operation
Ferron, J. R.
2015-11-01
An attractive scenario for steady-state tokamak operation at relatively high values of the internal inductance, li > 1 , has been demonstrated at DIII-D. The more peaked current density profile leads to reduced core energy transport and higher ideal stability limits that could eliminate the need for n >= 1 active stabilization coils at βN ~ 4, or enable βN ~ 5 with wall stabilization. The scenario's potential is shown by discharges at li ~ 1.3 with high bootstrap current fraction fBS ~0.8 , high plasma pressure βN ~ 5 and excellent confinement H98 (y , 2) ~ 1.8. This very high βN discharge with q95 =7.5 has noninductive current fraction fNI > 1 and too much bootstrap current in the H-mode pedestal, so li decreases with time. To achieve a stationary current profile, the key is to maximize βN and fBS while maintaining li high enough for stability through choice of q95 or by reduced pedestal current. DIII-D modeling shows that with q95 reduced to lower fBS to ~ 0.5, a self-consistent equilibrium has li ~ 1.07 and βN ~ 4 (below the n=1 no-wall limit) with q95 ~ 6. The remainder of the current can be externally-driven near the axis where the efficiency is high. Discharge tests with similar li in the ITER shape at q95=4.8 have reached fNI=0.7, fBS=0.4 at βN ~ 3.5 with performance appropriate for the ITER Q=5 mission, H89βN /q952~ 0.3. The li was shown to increase further above 1, to enable higher self-consistent fBS and βN, by reducing pedestal pressure and bootstrap current density through application of n = 3 resonant magnetic fields. With similar fields for ELM mitigation, and neutral beam and electron cyclotron current drive sources for near-axis current drive, the high li scenario is a potential option for ITER. The increased core confinement can help mitigate the effect of reduced pedestal pressure. Supported by US DOE under DE-FC02-04ER54698.
Advanced tokamak burning plasma experiment
International Nuclear Information System (INIS)
A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)
International Nuclear Information System (INIS)
The first IAEA Technical Committee Meeting on Steady State Operation of Tokamaks was held in October 1998 in Hefei, China. This meeting marks the timely start of Technical Committee Meetings in an important area of tokamak research since several experiments are already yielding impressive results and several new experiments are under construction. Among the ongoing experiments interesting results were reported from the superconducting tokamaks TRIAM 1-M, Tore Supra, and HT-7 and from a conventional tokamak, HL-1M
Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors
International Nuclear Information System (INIS)
Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles
Diagnostics and control for the steady state and pulsed tokamak DEMO
Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.
2016-02-01
The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.
Advanced tokamak operating modes in TPX and ITER
International Nuclear Information System (INIS)
A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER
Major progress on tore supra toward steady state operation of tokamaks
International Nuclear Information System (INIS)
During winter 2000-2001, a major upgrade of the internal components of Tore Supra has been completed that increased the heat extraction capability to 25 MW in steady state. Operating Tore Supra in this new configuration has produced a wealth of new results. The highlights of the 2002 long duration discharges campaign are: 4 minutes 25 seconds long discharges with an integrated energy of 0.75 GJ, which is three time higher than the old Tore Supra world record; recharge of the primary transformer by Lower Hybrid Current Drive (LHCD) for about 1 minute; 4 minutes long LHCD pulses; 1 minute long Ion Cyclotron Resonant Heating (ICRH) pulse (0.11 GJ of ICRH injected energy). Beyond the quantitative step, significant qualitative progress in the steady state nature of the discharge has been accomplished: contrary to the situation in the old Tore Supra configuration, the plasma density is perfectly controlled by active pumping over the overall shot duration. The duration of Tore Supra discharges is sufficient to allow the complete diffusion of the resistive current. Surprising new physics is revealed in such discharges when approaching zero loop voltage. Slow central electron temperature oscillations have been observed in a variety of situations. Such oscillations are not likely to be linked to any MHD instabilities and probably results from an interplay between current profile shape, LHCD power deposition and transport. Analysis of the temperature gradient in the core region shows a very interesting behaviour and the normalised temperature gradient length is compared to the critical thresholds. Finally, the performance of heating and current drive systems and the observations made of the interior of Tore Supra after the long duration discharges campaign are reported. (author)
Comparative study of pulsed and steady-state tokamak reactor burn cycles
International Nuclear Information System (INIS)
Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles
Design constraints for rf-driven steady-state tokamak reactors
International Nuclear Information System (INIS)
Plasma current density profiles are computed due to electron Landau damping of lower hybrid waves launched into model tokamak density and temperature profiles. The total current and current profile shape are chosen consistent with magnetohydrodynamic equilibrium for a variety of temperature and density distributions and plasma beta values. Surface current equilibria appear attractive and are accessible to waves with n/sub z/ as low as 1.2. By suitably choosing the spectrum location and width it is possible to drive the 9.8 MA current of a 7.0-m reactor with as little as 2.8% of the fusion power recirculated as rf input from the waveguides
Woolley, Robert D.
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations
International Nuclear Information System (INIS)
Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m2 and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust
Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations
Energy Technology Data Exchange (ETDEWEB)
Wang, L., E-mail: lwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dalian University of Technology, Dalian 116024 (China); Guo, H.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); General Atomics, P. O. Box 85608, San Diego, CA 92186 (United States); Li, J.; Wan, B.N.; Gong, X.Z.; Zhang, X.D.; Hu, J.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association EURATOM-FZJ, D-52425 Jülich (Germany); Xu, G.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Maingi, R.; Menard, J.E. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Luo, G.N.; Gao, X.; Hu, L.Q.; Gan, K.F.; Liu, S.C.; Wang, H.Q.; Chen, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others
2015-08-15
Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m{sup 2} and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust.
Update to advanced neutron source steady-state thermal-hydraulic report
International Nuclear Information System (INIS)
This report is intended to be a supplement to ORNL/TM-12398, Steady-State Thermal-Hydraulic Design Analysis of the Advanced Neutron Source Reactor. It updates the core thermal-hydrualic design to the latest three-element configuration and also provides the most recent information on the thermal-hydraulic statistical uncertainty analysis. In addition, it includes calculations of beam tube cooling and control rod lift forces, which were not addressed in the initial report. This report describes work that is a snapshot in time as it stood at the end of the project. The three-element core calculations include a description of changes made to the overall coolant system; however, most of the analysis is focused on fuel loading thermal-hydraulic calculations. This analysis uses updated uncertainty values and indicates that a two-dimensional fuel grading in the three-element core would still be necessary to meet the desired operating and safety criteria. Analysis of cooling in the reflector tank examines various cooling options for the reflector tank components. This work investigated multiple forced convection designs as well as natural convection cooling requirements. Lift forces on the inner control rods caused by the upward coolant flow were also examined. Initial control rod designs were such that a sheared control rod would tend to lift because of flow forces. Design changes were recommended that would eliminate this issue. They included geometry changes to the inner control rod cooling channels, changes to the orificing in the central hole region, and reduction of inner control rod coolant velocity
Experimental and theoretical basis for advanced tokamaks
International Nuclear Information System (INIS)
In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments
International Nuclear Information System (INIS)
Significant progress in obtaining high-performance discharges under quasi-steady-states in the HT-7 superconducting tokamak has been realized since the last IAEA meeting. In relation to the previous experiments, various features of the non-inductive current driven, heating, profile control, MHD stabilization and edge physics are integrated and optimized to achieve steady-state high-performance discharges. Both on-axis and off-axis electron heating with global peaked and locally steepened electron pressure profiles were realized with improved confinement if the ion Bernstein wave (IBW) resonant layer was properly selected. Stabilization of MHD instabilities was demonstrated by off-axis IBW heating. The internal transport barrier structure was formed by off-axis lower hybrid current drive (LHCD). Long-pulse discharges with Te ∼ 1 keV and central density ∼1 x 1019 m-3 were obtained with a duration of 10-20 s. A combination of IBW heating and LHCD produced a broadened current density profile, which may be a signature of the synergy effect between two waves. Experimental results show that features of IBW in controlling electron pressure profile can be integrated into LHCD target plasmas. HT-7 has produced a variety of discharges with βN x H89 > 1-4 for durations of several to several tens of energy confinement times with a non-inductive driven current of 50-80% by optimizing the IBW heating and LHCD and avoiding MHD activities. (author)
ADX - Advanced Divertor and RF Tokamak Experiment
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Advancing the detection of steady-state visual evoked potentials in brain–computer interfaces
Abu-Alqumsan, Mohammad; Peer, Angelika
2016-06-01
Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain–computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.
MHD stability of advanced tokamak scenarios
International Nuclear Information System (INIS)
Tokamak plasmas with a non-monotonic q-profile (current profile) and negative shear in the plasma centre have been associated with improved confinement and large pressure gradients in the region of negative shear. In JET, this regime, has been obtained with pellet injection (the PEP mode) and in DIII-D by ramping the plasma elongation. In JET, the phase of improved confinement is transient and usually ends in a collapse due to an MHD instability which leads to a redistribution of the current and a monotonic q-profile. The infernal mode, which is driven by a large pressure gradient in the region of low shear near the minimum in the q-profile, is the most likely candidate for the observed instability. To extend the transient phase to steady state, control of the shape of the current density profile is essential. The modelling of these advanced tokamak scenarios with a non-monotonic q-profile using non-inductive current drive of lower hybrid waves, fast waves, and neutral beams is discussed elsewhere. The aim is to find suitable initial states and to maintain MHD stability when the plasma β is built up. For this purpose, the robustness of the MHD stability of these configurations is studied with respect to changes in the position and in the depth of the minimum in q, and in the shape of the q and pressure profile. The classes of equilibria chosen for the analysis are based on the modelling of the current-drive schemes for advanced tokamak scenarios in JET. The toroidal ideal and resistive MHD stability code CASTOR is used for the stability calculations. (author) 7 refs., 4 figs
Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor
International Nuclear Information System (INIS)
The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan
Oomens, A. A. M.
1996-01-01
From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e
Oomens, A. A. M.
1998-01-01
From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e
Devriese, Lot A; Koch, Kevin M; Mergui-Roelvink, Marja; Matthys, Gemma M; Ma, Wen Wee; Robidoux, Andre; Stephenson, Joe J; Chu, Quincy S C; Orford, Keith W; Cartee, Leanne; Botbyl, Jeff; Arya, Nikita; Schellens, Jan H M
2014-01-01
AIM: To quantify the effect of food on the systemic exposure of lapatinib at steady state when administered 1 h before and after meals, and to observe the safety and tolerability of lapatinib under these conditions in patients with advanced solid tumours. METHODS: This was a three-treatment, randomi
Physics design of advanced steady-state tokamak reactor A-SSTR2
International Nuclear Information System (INIS)
Based on design studies on the fusion power reactor such as the DEMO reactor SSTR, the compact power reactor A-SSTR and the DREAM reactor with a high environmental safety and high availability, a new concept of compact and economic fusion power reactor (A-SSTR2) with high safety and high availability is proposed. Employing high temperature superconductor, the toroidal filed coils supplies the maximum field of 23T on conductor which corresponds to 11T at the magnetic axis. A-SSTR2 (Rp=6.2m, ap=1.5m, Ip=12MA) has a fusion power of 4GW with βN=4. For an easy maintenance and for an enough support against a strong electromagnetic force on coils, a poloidal coils system has no center solenoid coils and consists of 6 coils located on top and bottom of the machine. Physics studies on the plasma equilibrium, controllability of the configuration, the plasma initiation and non-inductive current ramp-up, fusion power controllability and the diverter have shown the validity of the A-SSTR2 concept. (author)
International Nuclear Information System (INIS)
Full text: EAST will be one of the world's first magnetic confinement devices that must address Plasma- Wall Interaction (PWI) issues facing high power steady-state operations. EAST has recently significantly augmented its RF heating capabilities up to 10 MW, including LHCD and ICRH. It has also undertaken an extensive upgrade during the recent shutdown to replace the carbon tiles on the main chamber wall and divertor surface by the Mo tiles, except those near the strike points, allowing baking up to 250 deg C, with active water cooling. The divertor titles will further be upgraded to monoblock Tungsten, as to be used in ITER, to address PWI issues for ITER and DEMO. EAST demonstrated long pulse operation over 100 s, entirely driven by LHCD during the last experimental campaign. In order to achieve this, the following major means were applied to EAST to actively control PWI interactions: 1. Active divertor pumping using an in-vessel large capacity cryopump for facilitating density control. 2. Advanced wall conditioning with Lithium (Li) evaporation and real-time, in-situ Li powder injection for controlling neutral recycling. 3. Localized divertor gas puffing for reducing peak heat fluxes near the strike points. 4. Strike point sweeping to spread the heat loads on the divertor target plates. In addition, highly radiative impurity Ar was injected into the divertor to further reduce the peak divertor heat fluxes and mitigate the in-out divertor plasma asymmetries in EAST. Despite the injection of Ar, Zeff in the core plasma was little affected, suggesting strong divertor screening. Ar seeding has also been explored in the newly achieved H-modes in EAST, significantly increasing the frequency and decreasing the amplitude of ELMs, thus reducing the particle and heat loads on the divertor target plates. These first results are very promising, and will further be investigated in EAST for high power, long pulse operations. EAST has now just started a new experimental
International Nuclear Information System (INIS)
The methodology used to develop the LMFBR carbide/nitride fuels code, LIFE4-CN, is described in detail along with some subtleties encountered in code development. Fuel primary and steady-state thermal creep have been used as an example to illustrate the need for physical modeling and the need to recognize the importance of the materials characteristics. A self-consistent strategy for LIFE4-CN verification against irradiation data has been outlined with emphasis on the establishment of the gross uncertainty bands. These gross uncertainty bands can be used as an objective measure to gauge the overall success of the code predictions. Preliminary code predictions for sample steady-state and transient cases are given
International Nuclear Information System (INIS)
The physics efficiency of current drive (γB ∝ ne I0 R0/PCD), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γB depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium
International Nuclear Information System (INIS)
This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts
Modelling of pulsed and steady-state DEMO scenarios
Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.
2015-07-01
Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.
Czech Academy of Sciences Publication Activity Database
Sauter, O.; Angioni, C.; Coda, S.; Gomez, P.; Goodman, T. P.; Henderson, M. A.; Hofmann, F.; Hogge, J. P.; Moret, J. M.; Nikkola, P.; Pietrzyk, Z. A.; Weisen, H.; Alberti, S.; Appert, K.; Bakos, J.; Behn, R.; Blanchard, P.; Bosshard, P.; Chavan, R.; Condrea, I.; Degeling, A.; Duval, B. P.; Fasel, D.; Favez, J. Y.; Favre, A.; Furno, I.; Kayruthdinov, R. R.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Lukash, V. E.; Gorgerat, P.; Isoz, P. F.; Joye, B.; Magnin, J. C.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y. R.; Martynov, An.; Mayor, J. M.; Minardi, E.; Mlynar, J.; Paris, P. J.; Perez, A.; Peysson, Y. R.; Piffl, Vojtěch; Pitts, R. A.; Pochelon, A.; Reimerdes, H.; Rommers, J. H.; Scavino, E.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Zabolotsky, A.
2001-01-01
Roč. 8, č. 5 (2001), s. 2199-2207. ISSN 1070-664X. [Annual Meeting of the APS Division of Plasma Physics with the 10th International Congress on Plasma Physics/42nd./. Quebec City, Quebec, 23.10.2000-27.10.2000] Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.223, year: 2001
International Nuclear Information System (INIS)
Passive and active feedback stabilization schemes being considered in Korea Superconducting Tokamak Advanced Research (KSTAR) device for the stabilization of the resistive magnetohydrodynamic modes such as the resistive wall and the neoclassical tearing are briefly introduced. A short summary is also presented on the tokamak simulation results of disruption dynamics and load in the KSTAR tokamak obtained using the tokamak simulation code (TSC)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS
International Nuclear Information System (INIS)
OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance
INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS
Energy Technology Data Exchange (ETDEWEB)
HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M
2003-10-01
OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.
Real-Time Profile Control for Advanced Tokamak Operation
International Nuclear Information System (INIS)
Simultaneous control of the plasma shape, the magnetic and kinetic plasma profiles (such as the safety factor, q(x), and gyro-normalized temperature gradient, ρTe*;(x), respectively) and the boundary flux is being investigated on JET, and has potential applications in the operation of ITER steady state advanced tokamak discharges. The control of radially distributed parameters was achieved for the first time on JET in 2004 [1-4]. The controller was based on the static plasma response only. The approach newly implemented on JET aims to use a dynamical plasma model, all the available heating and current drive (H and CD) systems, and the poloidal field (PF) system in an optimal way to achieve a set of requested magnetic and kinetic profiles. This paper describes the new model-based optimal profile controller which has been tested during the last 2007 experimental campaign. The controller aims to use the combination of heating and current drive systems - and optionally the PF system. First experimental results of current profile control obtained during the last 2007 JET campaign are presented
Advanced fusion technologies developed for JT-60 superconducting tokamak
International Nuclear Information System (INIS)
The modification of JT-60U is planned as a full superconducting tokamak (JT-60SC). The objectives of the JT-60SC program are to establish scientific and technological bases for the steady-state operation of high performance plasmas and utilization of reduced-activation materials in economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to DEMO reactor have been developed in the superconducting magnet technology and plasma facing components for the design of JT-60SC. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFC) of JT-60SC. The R and D to demonstrate applicability of Nb3Al conductor to the TFC by a react-and-wind technique have been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low AC loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the CFC target was successfully demonstrated on the electron beam irradiation stand. (author)
The optimized li advanced tokamak scenario with high bootstrap current fraction
International Nuclear Information System (INIS)
Equilibrium and stability analyses have identified a class of tokamak configurations with conventional safety factor profiles (q0∼qmin approx-gt 1) at moderately high li(li∼1.0), and high normalized β(βN∼3.5 - 4.0), that are stable to the ideal n=1 kink without the requirement of wall stabilization. In contrast to previously identified high li, high βN equilibria, these configurations have high bootstrap current fractions (fBS∼50%- 70%); they require only modest central current drive for maintaining steady state and are therefore compatible with advanced tokamak (AT) operation. Strong plasma shaping is crucial for achieving the high β and high bootstrap fraction simultaneously. copyright 1999 American Institute of Physics
Multiple Steady States in Distillation
Bekiaris, Nikolaos
1995-01-01
We study multiple steady states in distillation. We first analyze the simplest case of ternary homogeneous azeotropic mixtures. We show that in the case of infinite reflux and an infinite number of trays (∞/∞ case) one can construct bifurcation diagrams on physical grounds with the distillate flow as the bifurcation parameter. Multiple steady states exist when the distillate flow varies non-monotonically along the continuation path of the bifurcation diagram. We derive a necessary and suffici...
Status of and prospects for advanced Tokamak regimes from multi-machine comparisons
International Nuclear Information System (INIS)
In this series of 21 slides the author presents an assessment of the present fusion performance of the advanced tokamaks (AT) regimes for non-inductive operation. These AT regimes include data from ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U and Tore-Supra. Only data from both the 'hybrid' without necessarily an ITB (internal transport barrier) or the 'steady-state' scenario have been considered because these scenarios are the 2 candidates for the ITER non inductive current drive operation. A new operational diagram is proposed: the figure of merit for fusion performance and confinement H(ITER-89P).βN/q295 versus the bootstrap current fraction e1/2.βP. In this diagram there is a continuous progression from the 'inductive' to the 'hybrid' and 'steady-state' tokamak operating mode. The following range of performance: H(ITER-89P).βN/q295 ∼ 0.3-0.4 at βP ∼ 1, q95 ∼ 5, is expected for Q = 5 non inductive current drive operation for ITER. Fusion performances tend to decrease with the pulse duration, so extending the plasma performances achieved on a short time scale requires operating safely far from the operational limits. Other conclusions concerning the operating domain of dimensionless parameters such as Larmor radius, collisionality, Mach number and ratio of ion to electron temperature are also presented. (A.C.)
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process.......This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...
Owens, J. A.
1982-01-01
Options for faculty utilization in a steady state are examined, with consideration for their economy or ability to increase turnover or flexibility: early retirement, part retirement, retraining, exchange with other institutions or industry, and fixed-term appointments or lecturer positions. (MSE)
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Advanced tokamak physics experiments on DIII-D
Energy Technology Data Exchange (ETDEWEB)
Taylor, T.S. [General Atomics, San Diego, CA (United States)
1998-12-01
Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy confinement time ({tau}{sub E}) and the plasma pressure (or beta {beta}{sub T} = 2 {mu}{sub 0} < p > /B{sub T}{sup 2}) can be achieved in steady-state conditions with high self driven bootstrap current fraction. In addition, effective power exhaust and impurity and particle control is required. Significant progress has been made in experimentally achieving regimes having the required performance in all of these aspects as well as in developing a theoretical understanding of the underlying physics. The authors have extended the duration of high performance ELMing H-mode plasmas with {beta}{sub N} H{sub iop} {approximately} 10 for 5 {tau}{sub E} ({approximately}1 s) and have demonstrated that core transport barriers can be sustained for the entire 5-s neutral beam duration in L-mode plasmas. Recent DIII-D work has advanced the understanding of improved confinement and internal transport barriers in terms of E x B shear stabilization of micro turbulence. With the aim of current profile control in discharges with negative central magnetic shear, they have demonstrated off-axis electron cyclotron current drive for the first time in a tokamak, finding an efficiency above theoretical expectations. MHD stability has been improved through shape optimization, wall stabilization, and modification of the pressure and current density profiles. Heat flux reduction and improved impurity and particle control have been realized through edge/divertor radiation and understanding and utilization of forced scrape off layer flow and divertor baffling.
Advanced tokamak physics experiments on DIII-D
International Nuclear Information System (INIS)
Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy confinement time (τE) and the plasma pressure (or beta βT = 2 μ0 /BT2) can be achieved in steady-state conditions with high self driven bootstrap current fraction. In addition, effective power exhaust and impurity and particle control is required. Significant progress has been made in experimentally achieving regimes having the required performance in all of these aspects as well as in developing a theoretical understanding of the underlying physics. The authors have extended the duration of high performance ELMing H-mode plasmas with βN Hiop ∼ 10 for 5 τE (∼1 s) and have demonstrated that core transport barriers can be sustained for the entire 5-s neutral beam duration in L-mode plasmas. Recent DIII-D work has advanced the understanding of improved confinement and internal transport barriers in terms of E x B shear stabilization of micro turbulence. With the aim of current profile control in discharges with negative central magnetic shear, they have demonstrated off-axis electron cyclotron current drive for the first time in a tokamak, finding an efficiency above theoretical expectations. MHD stability has been improved through shape optimization, wall stabilization, and modification of the pressure and current density profiles. Heat flux reduction and improved impurity and particle control have been realized through edge/divertor radiation and understanding and utilization of forced scrape off layer flow and divertor baffling
Steady-state compact neutron sources with HTS magnets
International Nuclear Information System (INIS)
Full text of publication follows. Recent advantages in the development of high temperature superconductors (HTS), and encouraging results of first tests of HTS coils on a tokamak [1], open new prospects for compact high field TF magnets for Spherical Tokamaks (STs). High β (ratio of the plasma pressure to magnetic pressure) values have been achieved in STs, which opens a path to compact Fusion devices, as the Fusion power is proportional to β2Bt4V. To make advantages of high β in compact STs, the toroidal field should be maximised, which is challenging, and all present STs operate at fields < 1 T. The favourable dependence of confinement on Bt recently found in STs [2] may allow enhanced performance in high-field STs, also encouraging increase in Bt. We investigate feasibility of HTS magnets in next-step STs and compare such designs with proposed conventional aspect ratio designs with HTS magnets (VECTOR, VULCAN etc). Main issues are: - the capital cost (will the use of HTS increase the capital cost?); - running cost (can the use of HTS reduce the running cost?); - will increase in the field in STs easy requirements on current drive?; - how much use of HTS will affect the size (e.g. the cost) of a neutron source (divertor, blanket maintenance options, shielding etc.)? Several physics aspects of a low- and medium-power steady-state neutron source will be discussed. These include fast particle and alpha particle losses, effect of increase in Bt on micro-stability etc. The demonstration of reliable steady state operations in a compact ST even at the level of a few MW Fusion output (which easy application of HTS) as a first step will significantly advance not only the mainstream Fusion for Energy research, but also the commercial exploitation of Fusion Power. [1] M Gryaznevich et al., 'Progress in applications of High Temperature Superconductor in Tokamak Magnets', Fusion Engineering and Design, accepted for publication, (2013). [2] M. Valovic et al, Nucl
Steady-state eternal inflation
International Nuclear Information System (INIS)
Since the advent of inflation, several theorems have been proven suggesting that although inflation can (and generically does) continue eternally into the future, it cannot be extended eternally into the past to create a 'steady-state' model with no initial time. Here we provide a construction that circumvents these theorems and allows a self-consistent, geodesically complete, and physically sensible steady-state eternally inflating universe, based on the flat slicing of de Sitter space. This construction could be used as the background spacetime for creation events that form big-bang-like regions, and hence could form the basis for a cosmology that is compatible with observations and yet which avoids an initial singularity or beginning of time
Steady state neutral beam injector
International Nuclear Information System (INIS)
Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >105 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m2, frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)
Tokamak advanced pump limiter experiments and analysis
International Nuclear Information System (INIS)
Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment
Advanced tokamak research at the DIII-D National Fusion Facility in support of ITER
International Nuclear Information System (INIS)
Fusion energy research aims to develop an economically and environmentally sustainable energy system. The tokamak, a doughnut shaped plasma confined by magnetic fields generated by currents flowing in external coils and the plasma, is a leading concept. Advanced Tokamak (AT) research in the DIII-D tokamak seeks to provide a scientific basis for steady-state high performance operation. This necessitates replacing the inherently pulsed inductive method of driving plasma current. Our approach emphasizes high pressure to maximize fusion gain while maximizing the self-driven bootstrap current, along with external current profile control. This requires integrated, simultaneous control of many characteristics of the plasma with a diverse set of techniques. This has already resulted in noninductive conditions being maintained at high pressure on current relaxation timescales. A high degree of physical understanding is facilitated by a closely coupled integrated modelling effort. Simulations are used both to plan and interpret experiments, making possible continued development of the models themselves. An ultimate objective is the capability to predict behaviour in future AT experiments. Analysis of experimental results relies on use of the TRANSP code via the FusionGrid, and our use of the FusionGrid will increase as additional analysis and simulation tools are made available
Control of the Resistive Wall Mode in Advanced Tokamak Plasmas on DIII-D
International Nuclear Information System (INIS)
Resistive wall mode (RWM) instabilities are found to be a limiting factor in advanced tokamak (AT) regimes with low internal inductance. Even small amplitude modes can affect the rotation profile and the performance of these ELMing H-mode discharges. Although complete stabilization of the RWM by plasma rotation has not yet been observed, several discharges with increased beam momentum and power injection sustained good steady-state performance for record time extents. The first investigation of active feedback control of the RWM has shown promising results: the leakage of the radial magnetic flux through the resistive wall can be successfully controlled, and the duration of the high beta phase can be prolonged. The results provide a comparative test of several approaches to active feedback control, and are being used to benchmark the analysis and computational models of active control
Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu
2015-02-01
The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters. PMID:25725844
Transient heat transport studies in JET conventional and advanced tokamak plasmas
International Nuclear Information System (INIS)
Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)
Summary discussion: An integrated advanced tokamak reactor
International Nuclear Information System (INIS)
The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept
Inconsistencies in steady state thermodynamics
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.
Collective effects and self-consistent energetic particle dynamics in advanced tokamaks
International Nuclear Information System (INIS)
In the present paper, we address the issue of fast ion and fusion product transport in conditions that are typically relevant for burning plasmas operating in so called Advanced Tokamak regimes. Our results have direct implications, e.g., on the choice of current profiles for ITER steady state operations. We demonstrate that in a Tokamak equilibrium with hollow-q profile, in general, two types of EPM (Energetic Particle Modes gap modes may exist near the minimum-q surface (q = q0), characterized by opposite signature in frequency: one with upwards chirping frequency and the other with downward chirping frequency as q 0 drops. It is shown that EPM gap modes are described by the same dispersion relation of the usual resonant EPMs and that they can indeed be considered as the same mode with, however, different dominant damping mechanisms. This work also presents a discussion of EPM non-linear dynamics with respect to energetic ion transport in tokamaks with hollow q-profiles. Numerical simulations based on a Hybrid MHD-Gyrokinetic Code (HMGC), demonstrate that, above the EPM excitation threshold, fast radial redistribution of energetic ions takes place on a time scale that is proportional to the inverse EPM growth rate (typically ∼ 100τ R0/vA being the Alfven time). The rapid evolution of EPM mode structures and the associated fast ion transport is interpreted within the framework of the relay runner model for non-linear EPM dynamics. It is found that a sensitive parameter for tokamak equilibria with hollow-q profiles is q at the minimum-q surface, higher q corresponding to larger particle transport. This fact has clear implications on the choice of current profiles in a burning plasma. (author)
Accelerator based steady state neutron source
International Nuclear Information System (INIS)
Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450 M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source is most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc., with the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs
An accelerator based steady state neutron source
International Nuclear Information System (INIS)
Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2 s themal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of Dollar 300-450 is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs. (orig.)
The technology and science of steady-state operation in magnetically confined plasmas
International Nuclear Information System (INIS)
The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a
Development of burning plasma and advanced scenarios in the DIII-D tokamak
International Nuclear Information System (INIS)
Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance and basic tokamak physics has been made by the DIII-D team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than the value specified for Q = 10 in ITER reference scenario, under stationary conditions. Discharges have also been demonstrated in DIII-D with enhanced performance under stationary conditions that project to Q ∼ 10 for longer than 1 h in ITER at reduced current, if such a mode of operation can be realized in ITER. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, edge localized mode avoidance and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behaviour in the electron heat transport, rotation in plasmas in the absence of external torque, measurements in the edge pedestal region and plasma fuelling. Understanding these phenomena at a fundamental level contributes to development and ultimately the optimization of tokamak scenarios
Progress towards high-performance, steady-state spherical torus.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.G (Korea Basic Science Institute, Taejon, Republic of Korea); Kugel, W. (Princeton University, NJ); Efthimion, P. C. (Princeton University, NJ); Kissick, M. W. (University of Wisconsin, WI); Bourdelle, C. (CEA Cadarache, France); Kim, J.H (Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea); Gray, T. (Princeton University, NJ); Garstka, G. D. (University of Wisconsin, WI); Fonck, R. J. (University of Wisconsin, WI); Doerner, R. (University of California, San Diego, CA); Diem, S.J. (University of Wisconsin, WI); Pacella, D. (ENEA, Frascati, Italy); Nishino, N. (Hiroshima University, Hiroshima, Japan); Ferron, J. R. (General Atomics, San Diego, CA); Skinner, C. H. (Princeton University, NJ); Stutman, D. (Johns Hopkins University, Baltimore, MD); Soukhanovskii, V. (Princeton University, NJ); Choe, W. (Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea); Chrzanowski, J. (Princeton University, NJ); Mau, T.K. (University of California, San Diego, CA); Bell, Michael G. (Princeton University, NJ); Raman, R. (University of Washington, Seattle, WA); Peng, Y-K. M. (Oak Ridge National Laboratory, Oak Ridge, TN); Ono, M. (Princeton University, NJ); Park, W. (Princeton University, NJ); Hoffman, D. (Princeton University, NJ); Maqueda, R. (Los Alamos National Laboratory, Los Alamos, NM); Kaye, S. M. (Princeton University, NJ); Kaita, R. (Princeton University, NJ); Jarboe, T.R. (University of Washington, Seattle, WA); Hill, K.W. (Princeton University, NJ); Heidbrink, W. (University of California, Irvine, CA); Spaleta, J. (Princeton University, NJ); Sontag, A.C (University of Wisconsin, WI); Seraydarian, R. (University of California, San Diego, CA); Schooff, R.J. (University of Wisconsin, WI); Sabbagh, S.A. (Columbia University, New York, NY); Menard, J. (Princeton University, NJ); Mazzucato, E. (Princeton University, NJ); Lee, K. (University of California, Davis, CA); LeBlanc, B. (Princeton University, NJ); Probert, P. H. (University of Wisconsin, WI); Blanchard, W. (Princeton University, NJ); Wampler, William R.; Swain, D. W. (Oak Ridge National Laboratory, Oak Ridge, TN); Ryan, P.M. (Oak Ridge National Laboratory, Oak Ridge, TN); Rosenberg, A. (Princeton University, NJ); Ramakrishnan, S. (Princeton University, NJ); Phillips, C.K. (Princeton University, NJ); Park, H.K. (Princeton University, NJ); Roquemore, A. L. (Princeton University, NJ); Paoletti, F. (Columbia University, New York, NY); Medley, S. S. (Princeton University, NJ); Fredrickson, E. D. (Princeton University, NJ); Kessel, C. E. (Princeton University, NJ); Stevenson, T. (Princeton University, NJ); Darrow, D. S. (Princeton University, NJ); Majeski, R. (Princeton University, NJ); Bitter, M. (Princeton University, NJ); Neumeyer, C. (Princeton University, NJ); Nelson, B.A. (University of Washington, Seattle, WA); Paul, S. F. (Princeton University, NJ); Manickam, J. (Princeton University, NJ); Ostrander, C. N. (University of Wisconsin, WI); Mueller, D. (Princeton University, NJ); Lewicki, B.T (University of Wisconsin, WI); Luckhardt, S. (University of California, San Diego, CA); Johnson, D.W. (Princeton University, NJ); Grisham, L.R. (Princeton University, NJ); Kubota, Shigeru (University of California, Los Angeles, CA); Gates, D.A. (Princeton University, NJ); Bush, C. (Oak Ridge National Laboratory, Oak Ridge, TN); Synakowski, E.J. (Princeton University, NJ); Schaffer, M. (General Atomics, San Diego, CA); Boedo, J. (University of California, San Diego, CA); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Redi, M. (Princeton University, NJ); Pinsker, R. (General Atomics, San Diego, CA); Bigelow, T. (Oak Ridge National Laboratory, Oak Ridge, TN); Bell, R. E. (Princeton University, NJ)
2004-06-01
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX
Progress Towards High Performance, Steady-state Spherical Torus
Energy Technology Data Exchange (ETDEWEB)
M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden
2003-10-02
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been
Progress towards high-performance, steady-state spherical torus
Energy Technology Data Exchange (ETDEWEB)
Ono, M.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D. S.; Diem, S. J.; Doerner, R.; Efthimion, P. C.; Ferron, J. R.; Fonck, R. J.; Fredrickson, E. D.; Garstka, G. D.; Gates, D A; Gray, T.; Grisham, L. R.; Heidbrink, W.; Hill, K. W.; Hoffman, D.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kim, J. H.; Kissick, M. W.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Lee, S. G.; Lewicki, B. T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T. K.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ostrander, C. N.; Pacella, D.; Paoletti, F.; Park, H. K.; Park, W.; Paul, S. F.; Peng, Y-K M.; Phillips, C. K.; Pinsker, R.; Probert, P. H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Schaffer, M.; Schooff, R. J.; Seraydarian, R.; Skinner, C. H.; Sontag, A. C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K. L.; Unterberg, E. A.; Halle, A. Von.; Wilgen, J.; Williams, M.; Wilson, J. R.; Xu, X.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Carter, M. D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R. J.; Hatcher, R. E.; Hawryluk, R. J.; Houlberg, W.; Harvey, R.; Jardin, S. C.; Hosea, J. C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L. L.; Levinton, F. M.; Luhmann, N. C.; Marsala, R.; Mastravito, D.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G. D.; Ram, A. K.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Vero, R.; Wampler, W. R.; Wurden, G. A.
2003-12-01
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (β), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values β_{T} of up to 35% with a near unity central β_{T} have been obtained. NSTX will be exploring advanced regimes where β_{T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction (~ 60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX to
Progress Towards High-Performance, Steady-State Spherical Torus
Energy Technology Data Exchange (ETDEWEB)
Lawrence Livermore National Laboratory
2004-01-04
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX
Progress Towards High Performance, Steady-state Spherical Torus
International Nuclear Information System (INIS)
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted
Chemical reaction systems with toric steady states
Millan, Mercedes Perez; Shiu, Anne; Conradi, Carsten
2011-01-01
Mass-action chemical reaction systems are frequently used in Computational Biology. The corresponding polynomial dynamical systems are often large, consisting of tens or even hundreds of ordinary differential equations, and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversib...
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
Advanced tokamak concepts and reactor designs
Oomens, A. A. M.
2000-01-01
From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples
International Nuclear Information System (INIS)
As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.
High performance advanced tokamak regimes in DIII-D for next-step experiments
International Nuclear Information System (INIS)
Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results
International Nuclear Information System (INIS)
The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment
Energy Technology Data Exchange (ETDEWEB)
Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)
1997-12-01
The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment
Study of an advanced D-T tokamak fusion reactor with compact fusion advanced rankine (CFAR) cycle
International Nuclear Information System (INIS)
Recent progress of the CFAR (Compact Fusion Advanced Rankine) cycle concept for a D-T tokamak reactor is presented with emphasis on how an enthalpy extraction can be achieved by a nonequilibrium disk-type MHD generator. For the gas stagnation temperatures of 3,000 K, enthalpy extraction in excess of 50% is found to be achievable, leading to a 40% overall plant efficiency with application of recuperative heat cycle and recently advanced thermoelectric converters. About 6 ton/sec mercury flow is required to remove fusion energy while achieving the 3,000 K gas stagnation temperature prior to the MHD generator. Studies of plasma parameters in the steady-state operation regime subject to plasma physics constraints, the minimum power in the start up phase required for ignition, effects of MHD magnet to the plasma confining magnetic fields, neutron and microwave superheat, and mercury corrosion test of ceramic rods for 2,000 hours are also described. 14 refs., 6 figs., 1 tab
Stability of infernal and ballooning modes in advanced tokamak scenarios
Holties, H. A.; Huysmans, G. T. A.; Goedbloed, J. P.; Kerner, W.; Parail, V.V.; Soldner, F. X.
1996-01-01
A numerical parameter study has been performed in order to find MHD stable operating regimes for advanced tokamak experiments In this study we have concentrated on internal modes. Ballooning stability and stability with respect to infernal modes are considered. The calculations confirm that pressure
DIII-D Advanced Tokamak Research Overview
International Nuclear Information System (INIS)
This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously βNH of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues
Lithium-cooled blankets for advanced tokamaks
International Nuclear Information System (INIS)
The main objective of the Tokamak Power System Studies (TPSS) at Argonne National Lab. during fiscal year 1985 was to explore innovative design concepts that have the potential for significant enhancement of the attractiveness of a tokamak-based power plant. Activities in the area of plasma engineering resulted in a reference reactor concept, which served as a model for the impurity control and first-wall/blanket/shield studies. The liquid-metal-cooled first-wall/blanket/shield design activity was centered around the vanadium alloy structure and liquid-lithium coolant leading blanket concept as identified by the Blanket Comparison and Selection Study (BCSS). A ferritic steel structure and a LiPb breeder were considered as backup options. The magnetohydrodynamics (MHD) effects associated with self-cooled liquid-metal blanket/first-wall systems are substantially reduced by the lower magnetic fields required for higher plasmas, the lower neutron wall loading resulting from reduced power output, and the smaller reactor size of the TPSS model reactor. Therefore, improved performance characteristics of self-cooled liquid-metal blanket concepts are achievable mainly because the design constraints are more relaxed compared to the BCSS guidelines. Key aspects of the designs evaluated in the current study include the following: (1) design simplicity; (2) use of the first wall as an impurity control device; (3) modular first-wall/blanket/reflector/shield construction; and (4) integrated first-wall/blanket/reflector/shield
Steady State Vapor Bubble in Pool Boiling
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.
2016-02-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-01-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464
An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.
2010-11-01
A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.
ADX: a high field, high power density, advanced divertor and RF tokamak
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept
A concept for next step advanced tokamak fusion device
International Nuclear Information System (INIS)
A concept is introduced for initiating the design study of a special class of tokamak, which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST, also well known by the name 'spherical tokamak'). The leading design parameter in the present proposal is a dimensionless geometrical parameter the machine aspect ratio A = R0/a0 = 2.0, where the parameters a0 and R0 denote, respectively, the plasma (equatorial)minor radius and the plasma major radius. The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0 ≅ 2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0, R0) parameter space in current international tokamak database, between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs. Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently, the plasma major radius R0 is regarded as a dependent design parameter. In the present concept, a nominal plasma minor radius a0 = 1.2 m is adopted to be the principal design value, and smaller values of a0 can be used for auxiliary design purposes, to establish extensive database linkage with existing tokamaks. Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments, for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii. The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs, and thereby a specially arranged central-bore region insider the envisioned tokamak torus, with retrieved space in the direction of plasma minor radius, will be available for technological adjustments and maneuvering to facilitate implementation of engineering instrumentation and real
Optimizing the beta limit in DIII-D advanced tokamak discharges
International Nuclear Information System (INIS)
Results are presented from comparisons of modeling and experiment in studies to assess the best choice of safety factor (q) profile, pressure profile and discharge shape for high beta, steady-state, noninductive advanced tokamak operation. This is motivated by the need for high qminβN to maximize the self-driven bootstrap current while maintaining high toroidal beta to increase fusion gain. Experiment and theory both show that increases in the achievable normalized beta (βN) can be obtained through broadening of the pressure profile and use of a symmetric double-null divertor shape. The general trend is for βN to decrease as the minimum q value (qmin) increases, but with a broadened pressure profile, βN = 4 is obtained with qmin ∼ 2 and qminβN increases with qmin. Modeling of equilibria with near 100% bootstrap current indicates that operation with βN ∼ 5 should be possible with a sufficiently broad pressure profile. (author)
Characterisation, modelling and control of advanced scenarios in the european tokamak jet
International Nuclear Information System (INIS)
The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)
Development of burning plasma and advanced scenarios in the DIII-D tokamak
International Nuclear Information System (INIS)
Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q ∼ 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque. (author)
Energy Transport in the Steady State Plasma Sustained by DC Helicity Current Drive
K. Itoh; Itoh, S.-I.; Fukuyama, A.
1992-01-01
Steady state operation of tokamaks which is sustained by the DC helicity current drive near edge is studied. The necessary value of the current diffusivity is obtained. Relation between the current diffusivity and the thermal diffusivity, which are governed by the microscopic turbulence, indicates that this requires too large thermal transport for the parameters in present day experiments.
International Nuclear Information System (INIS)
The SST-1 is a superconducting tokamak, which is in the commissioning phase and will soon be ready for plasma operation. The superconducting magnet system of SST-1 comprises toroidal field (TF) and poloidal field (PF) coils. The 16 TF coils are nosed and clamped towards the in-board side and are supported toroidally with the inter-coil structure at the out-board side, forming a rigid body system. The 9 PF coils are clamped on the TF coils structure. The integrated system of TF coils and PF coils forms the cold mass of 50 ton weight. This cold mass system (CMS) is freely supported on the rigid support ring at 16 locations and the support ring in turn is supported on the 8 columns of the machine support structure. This CMS is accommodated inside the high vacuum chamber (cryostat). During the operation this cold mass attains a cryogenic temperature of 4.2 K in the hostile environment of high vacuum. During the cool down, the thermal excursion of cold mass and its supporting structure generates severe frictional forces at the sliding surfaces of the support. There is a design requirement of introducing a thin layer of solid lubricant film of molybdenum disulfide having coefficient of friction 0.05 between the sliding surfaces to control the stress contribution due to the friction. To ascertain the compatibility of molybdenum disulphide (MoS2) as a solid lubricant in a high vacuum and very low temperature environment, we have carried out qualification tests on various samples and measured the coefficient of friction in both room temperature conditions and at high vacuum and after thermal shocking at a temperature of 4.2 K in a high vacuum environment to simulate the actual working condition. After successful qualification tests and process establishment, the actual components are fabricated and integrated in the cold mass support structure assembly. The design requirement and qualification tests performed at 4.2 K and room temperature as well as details about the
Jeon, Y M
2015-01-01
A free-boundary Tokamak Equilibrium Solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered after all in equilibrium calculation with a free-boundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence on variations of computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by a direct comparison with an analytic equilibrium known as a generalized Solovev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As a valuable application, a snowflake equilibrium that requires a second order zero of the poloidal magnetic field is discussed in the circumstance of KSTAR coil system.
A steady state theory for processive cellulases
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;
2013-01-01
remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady-state...... rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity....... This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....
Multiple steady state phenomenon in martensitic transformation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.
Physics studies for steady state operation coordinated by the ITPA
International Nuclear Information System (INIS)
Full text of publication follows. The International Tokamak Physics Activity (ITPA) aims at cooperation on an international level in development of the physics basis for burning tokamak plasmas, supporting the preparation of ITER operation, and tokamak research worldwide. The topical group on 'Integrated Operation Scenarios' coordinates research in the following 4 areas: First, IEA collaboration experiments, coordinated by the ITPA. These experiments, performed as joint experiments in several different machines, mainly concern the validation of ITER operation scenarios, including the hybrid and steady state scenarios for ITER. Specific access conditions of these two scenarios are studied together with operation close to ITER conditions. For the heating systems, specific experiments are coordinated to study the coupling of ICRH and LHCD. Secondly, modelling and benchmarking of heating systems (actuators). Benchmarking of the actuators available for heating and current drive is an important area of international collaboration. They have been performed and completed in recent years for LHCD, for ICRH and for NBCD. In particular, LHCD at high plasma density have been studied and compared to experimental data. Thirdly, the coordinated modelling of ITER scenarios. Simulations for hybrid and steady state scenarios have a particular focus on comparing code to code results (benchmarking). For hybrid scenarios the current rise phase and the current profile evolution toward q(0)=1 were modelled with various integrated modelling codes. ITER H-mode scenarios at low plasma density have been modelled showing that the burn can be sustained for > 1000 s, suitable for neutron fluence studies in ITER. The effectiveness of the ITER day-1 heating systems for obtaining steady state scenarios as well as potential heating and current drive upgrades for ITER have been evaluated. Fourth, real time control requirements. Control of burning plasma remains a focus of research
JET steady state ITB operation with active control of the pressure profile
International Nuclear Information System (INIS)
Stationary operations have been achieved at JET in ITBs scenarios, with the discharge time limited only by plant constraints. Full current drive was obtained, all over the high performance phase, with the current density profile frozen by using Lower Hybrid current drive. For the first time a feed-back control on the total pressure and on the electron temperature profile was implemented by using respectively the Neutral Beams and the Ion Cyclotron waves. Although impurity accumulation could be a problem in steady state ITBs, these experiments bring some elements to answer to it. Tokamak operation in enhanced confinement regimes, characterized by edge and/or Internal Transport Barriers (respectively known as H-mode and ITB), is attractive as it represents an important step towards the approach of ignition conditions. Moreover, the necessity of steady state operation in a Tokamak reactor, has led to the concept of the Advanced Tokamak, in which the current density profile is no longer tied to the plasma conductivity and is non inductively driven. Since the bootstrap current is a consequence of the pressure gradient, one of the primary goal of the Advanced Tokamak studies is to maximize the bootstrap fraction, with a proper alignment, both in H mode and in ITB regimes. However, for several reasons, it is difficult to envisage an operational situation in which the bootstrap fraction is close to 100%: for instance, there are few chances of pressure or/and current profile control to optimize the MHD stability. So far, various experiments have been performed with improved confinement regimes lasting up to tens of the confinement time and up to some current relaxation times. In some experiments a large non inductive plasma current (< 75%) was obtained with about 50% from bootstrap and 25% from Neutral Beam Injection (NBI); however, no full current drive operation was achieved and, moreover, with the available heating systems, no active feedback control of the current
LIDAR Thomson scattering for advanced tokamaks. Final report
International Nuclear Information System (INIS)
The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured
Steady-state spheromak reactor studies
International Nuclear Information System (INIS)
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported
Thermodynamics of Stability of Nonequilibrium Steady States.
Rastogi, R. P.; Shabd, Ram
1983-01-01
Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)
Energy Technology Data Exchange (ETDEWEB)
Tresset, G
2002-09-26
The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)
Steady State Analysis of Towed Marine Cables
Institute of Scientific and Technical Information of China (English)
WANG Fei; HUANG Guo-liang; DENG De-heng
2008-01-01
Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems, the steady state problem can be resolved into two-point boundary-value problem, or initial value problem in some special cases where the initial values are available directly. A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency. First, the boundary conditions are transformed into a set of nonlinear governing equations about the initial values, then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method. In common sense, non-uniform (sheared) current is assumed, which varies in magnitude and direction with depth. The schemes are validated through the DE Zoysa's example, then several numerical examples are also presented to illustrate the numerical schemes.
Development of steady state magnetic sensor
Energy Technology Data Exchange (ETDEWEB)
Hara, Shigemitsu; Nakayama, Takahide [Hitachi Ltd., Tokyo (Japan); Nagashima, Akira; Kasai, Satoshi
1998-12-01
A prototype of new mechanical sensor based on the steady state electromagnetic force (J x B force) measurement has been developed and tested. The mechanical force sensor is a new type of the magnetic sensor which is available for frequencies smaller than 0.1 Hz. The prototype of the mechanical sensor has been examined, and the following results were obtained; (1) A signal was proportional to simulated force in the load cell tests. (2) A signal drift concerning the temperature was reproducible over the range of the ITER environment. (3) A signal was proportional to the magnetic field in the steady state magnetic field measurement tests. (4) A load cell linearity error did not increase significantly after irradiation of 7.2 x 10{sup 6} Gy. These results indicate that the mechanical sensor will provide the practical feasibility in the long time magnetic field measurement. (author)
Halo current diagnostic system of experimental advanced superconducting tokamak.
Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J
2015-10-01
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well. PMID:26520954
Design and construction of the KSTAR tokamak
International Nuclear Information System (INIS)
The extensive design effort has been focused on two major aspects of the KSTAR project mission, steady-state operation capability and 'advanced tokamak' physics. The steady-state aspect of mission is reflected in the choice of superconducting magnets, provision of actively cooled in-vessel components, and long-pulse current-drive and heating systems. The 'advanced tokamak' aspect of the mission is incorporated in the design features associated with flexible plasma shaping, double-null divertor and passive stabilizers, internal control coils , and a comprehensive set of diagnostics. Substantial progress in engineering has been made on superconducting magnets, vacuum vessel, plasma facing components, and power supplies. The new KSTAR experimental facility with cryogenic system and de-ionized water-cooling and main power systems has been designed, and the construction work has been on-going for completion in year 2004. (author)
Variational methods in steady state diffusion problems
International Nuclear Information System (INIS)
Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions
On Typicality in Nonequilibrium Steady States
Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto
2016-08-01
From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.
International Nuclear Information System (INIS)
Neutral beam injection (NBI) system is a workhorse to heat magnetically confined tokamak fusion plasma. The heart of any NBI system is an ion extractor system. Steady State Superconducting Tokamak-1 (SST-1) needs 0.5 MW of hydrogen beam power at 30 kV to raise the plasma ion temperature to ∼1 keV and 1.7 MW of hydrogen beam power at 55 kV for future upgradation. To meet this requirement, an ion extractor system consisting of three actively cooled grids has been designed, fabricated, and its performance test has been done at MARION test stand, IPP, Julich, Germany. During long pulse (14 s) operation, hydrogen ion beam of energy 31 MJ has been extracted at 41 kV. In this paper, we have presented detailed analysis of calorimetric data of actively cooled extractor grids and showed that by monitoring outlet water temperature, grid material temperature can be monitored for safe steady state operation of a NBI system. Steady state operation of NBI is the present day interest of fusion research. In the present experimental case, performance test analysis indicates that the actively cooled grids attain steady state heat removal condition and the grid material temperature rise is ∼18 deg. C and saturates after 10 s of beam pulse.
Long Pulse Operation on Tore-Supra: Towards Steady State
International Nuclear Information System (INIS)
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch
On the optimization of a steady-state bootstrap-reactor
International Nuclear Information System (INIS)
A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r0 ≡ PCD/Pα BS≡IBS/I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 1020 m-3, fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for rBS/I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab
Siple Dome: Is it in Steady State?
Pettit, E. C.; Waddington, E. D.; Nereson, N. A.; Zumberge, M. A.; Hamilton, G. S.
2001-12-01
Changes in the West Antarctic Ice Sheet since the end of the last ice age have implications for how we interpret its present behavior, in terms of both its stability and its record of climate history. Siple Dome, the ridge between Ice Streams C and D, is not presently thinning and is close to being in balance with present environmental conditions. We present three independent measurements of ice thickness change in the divide region of Siple Dome: a GPS surface horizontal strain network, fiber optic vertical strain measurements at depth, and precision GPS measurements of vertical motion of near-surface ice ("coffee-can" method). From the horizontal strain network, we calculate the divergence of the horizontal velocity. This divergence is equal to the gradient of vertical velocity at the surface and, with some assumptions about the distribution of strain rates with depth, we can calculate the vertical velocity at the surface. For steady state, the vertical velocity must be balanced by the local accumulation rate. The fiber optic instruments provide a profile of the relative vertical velocity with depth. We fit a theoretical vertical velocity pattern to these data and extrapolate to find the surface vertical velocity. Our third method (coffee-can) directly measures the vertical motion of a marker 20 meters deep using precision GPS and compares it with the local long-term rate of snow accumulation to calculate the net rate of ice sheet thickness change. All three methods reach the same conclusion: Siple Dome is currently very close to being in steady state. This result has two implications. First, ice dynamics models developed to interpret radar images or ice core data can assume steady state behavior, simplifying the models. Second, our result suggests that the central part of the Ross Embayment may have had a low-elevation profile during the late Holocene, even though other areas of the WAIS may have been thicker.
Steady state plasma operation in RF dominated regimes on EAST
Energy Technology Data Exchange (ETDEWEB)
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2015-12-10
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Characteristics of edge-localized modes in the experimental advanced superconducting tokamak (EAST)
DEFF Research Database (Denmark)
Jiang, M.; Xu, G.S.; Xiao, C.;
2012-01-01
Edge-localized modes (ELMs) are the focus of tokamak edge physics studies because the large heat loads associated with ELMs have great impact on the divertor design of future reactor-grade tokamaks such as ITER. In the experimental advanced superconducting tokamak (EAST), the first ELMy high...... repetition frequency increased immediately. The frequency and amplitude of type-III ELMs can be effectively influenced by puffing impurity argon gas....
ITER steady-state magnetic sensors: design status and performance
International Nuclear Information System (INIS)
(private communication); [2] P. Moreau et al, Fusion Engineering and Design 84 (2009) 1344-1350; [3] ITER Design Description Document 55.A5,A6 Outer Vessel Steady State Sensors (private communication); [4] GRT047 Technical Report on Equilibrium reconstruction in ITER using external pick-up and steady state sensors, in preparation (private communication); [5] GRT047 Technical Report on Total toroidal current reconstruction in ITER using external pick-up and steady state sensors, in preparation (private communication). (authors)
Steady state phreatic surfaces in sloping aquifers
Loáiciga, Hugo A.
2005-08-01
Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) . y'(x) + a . y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -$\\sqrt{{\\rm K}/{\\rm N} tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.
Advanced ICRF antenna design for R-TOKAMAK
International Nuclear Information System (INIS)
The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For a high power heating, a new type antenna called 'Panel heater antenna' is proposed, and it has a wide radiation area and is able to select a parallel wave number. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for the ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma. (author)
Magnetic confinement experiment. I: Tokamaks
International Nuclear Information System (INIS)
Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices
Steady states of the parametric rotator and pendulum
Energy Technology Data Exchange (ETDEWEB)
Bouzas, Antonio O, E-mail: abouzas@fis.mda.cinvestav.m [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2010-11-15
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.
Steady states of the parametric rotator and pendulum
International Nuclear Information System (INIS)
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.
Technical Challenges in the Construction of the Steady-State Stellarator Wendelsetin 7-X
International Nuclear Information System (INIS)
Full text: The 'fully-optimized' stellarator Wendelstein 7-X stellarator, presently under construction in Greifswald, combines a quasi-isodynamic magnetic field configuration sustained by superconducting coils with a steady-state exhaust concept, steady-state heating at high power, and a size sufficient to reach reactor-relevant nΤτ-values. It is the mission of the project to demonstrate the reactor potential of the optimized stellarator line. For the development of a credible stellarator reactor concept, steady-state operation has to be demonstrated with fully integrated discharge scenarios at high heating power with a divertor providing suitable power and particle exhaust. The development of reactor-relevant operation regimes is the chief scientific goal of Wendelstein 7-X. The subject of steady-state operation, however, is of more general interest, as this is also of great concern and interest for future tokamak devices. Consistent with the physics requirements of steady-state plasmas must be the engineering aspects of a steady-state fusion device. We discuss these issues for the design, manufacturing, and assembly of Wendelstein 7-X. The major components of Wendelstein 7-X have been manufactured, tested and delivered: 70 super-conducting coils, 121 superconducting bus-bars for the 7 coil current circuits, about 1000 cryo pipes, 10 half-modules of the central support structure, the plasma vessel and outer vessel, and 254 ports. The main focus of the project has in recent years shifted to the assembly process and considerable progress has been achieved. Although in the early phases of the Wendelstein 7-X construction several schedule delays have accumulated, there have been no major project delays for more than four years and completion of the device is foreseen for mid 2014. A summary of the technological challenges that have been faced in the project and solutions found are discussed in this paper. In addition the route towards completion, commissioning, and
The ARIES Advanced and Conservative Tokamak Power Plant Study
International Nuclear Information System (INIS)
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5,a βtotalN of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2. The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced-activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a βtotalN of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here
Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches
International Nuclear Information System (INIS)
This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new
Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches
Energy Technology Data Exchange (ETDEWEB)
Kim, S. K.; Lee, K. W.; Hwang, C. K.; Hong, B. G.; Hong, G. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-05-01
This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new.
Influence of helium puff on divertor asymmetry in experimental advanced superconducting tokamak
DEFF Research Database (Denmark)
Liu, S. C.; Guo, H. Y.; Xu, G. S.; Wang, L.; Wang, H. Q.; Ding, R.; Duan, Y. M.; Gan, K. F.; Shao, L. M.; Chen, L.; Yan, Ning; Zhang, W.; Chen, R.; Xiong, H.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gao, X.
2014-01-01
Divertor asymmetries with helium puffing are investigated in various divertor configurations on Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected into...
Steady-state creep in the mantle
Directory of Open Access Journals (Sweden)
G. RANALLI
1977-06-01
Full Text Available SUMMARY - The creep equations for steady-state flow of olivine at high
pressure and temperature are compared in an attempt to elucidate the rheological
behaviour of the mantle. Results are presented in terms of applied deformation
maps and curves of effective viscosity v depth.
In the upper mantle, the transition stress between dislocation and diffusion
creep is between 10 to 102 bar (as orders of magnitude for grain sizes from
0.01 to 1 cm. The asthenosphere under continents is deeper, and has higher
viscosity, than under oceans. Predominance of one creep mechanism above the
others depends on grain size, strain rate, and volume fraction of melt; the
rheological response can be different for different geodynamic processes.
In the lower mantle, on the other hand, dislocation creep is predominant
at all realistic grain sizes and strain rates. If the effective viscosity has to be only
slightly higher than in the upper mantle, as some interpretations of glacioisostatic
rebound suggest, then the activation volume cannot be larger than
11 cm3 mole^1.
ARIES-AT: An advanced tokamak, advanced technology fusion power plant
International Nuclear Information System (INIS)
The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher βN and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (βN=6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)
ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG
2002-10-01
A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.
Constrained optimal steady-state control for isolated traffic intersections
Institute of Scientific and Technical Information of China (English)
Jack HADDAD; David MAHALEL; Ilya IOSLOVICH; Per-Olof GUTMAN
2014-01-01
The steady-state or cyclic control problem for a simplified isolated traffic intersection is considered. The optimization problem for the green-red switching sequence is formulated with the help of a discrete-event max-plus model. Two steady-state control problems are formulated: optimal steady-state with green duration constraints, and optimal steady-state control with lost time. In the case when the criterion is a strictly increasing, linear function of the queue lengths, the steady-state control problems can be solved analytically. The structure of constrained optimal steady-state traffic control is revealed, and the effect of the lost time on the optimal solution is illustrated.
Steady-State Chemotactic Response in E. coli
Kafri, Yariv
2007-01-01
The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: `runs', in which it moves in near straight lines, and `tumbles', in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors obtains, that depends subtly upon several aspects of the system - memory, correlation, and tumbling stochasticity in particular.
An Adsorption Equilibria Model for Steady State Analysis
Ismail, Azhar Bin
2016-02-29
The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.
Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang
2015-08-01
An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s. PMID:26329188
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak
International Nuclear Information System (INIS)
An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s
Development of a plasma control system for steady-state operation on QUEST
International Nuclear Information System (INIS)
A drift error correction technique with machine vision and a real-time equilibrium calculation code have been developed on the QUEST (Q-shu university experiment with the steady-state spherical tokamak) for steady-state operation. The drift error caused by the long time-integration of magnetic raw signals has to be removed. With a captured image of the plasma's cross section, the plasma's position is identified by use of image filters. The measured magnetic flux values are corrected to the calculated flux values estimated by using this plasma position. The correction with the captured image work as expected in the preliminary result using a flashlight instead of a plasma.
Development of a plasma control system for steady-state operation on QUEST
Energy Technology Data Exchange (ETDEWEB)
Hasegwa, Makoto; Nakamura, Kazuo; Zushi, Hideki [Kyushu University, Fukuoka (Japan); and others
2014-10-15
A drift error correction technique with machine vision and a real-time equilibrium calculation code have been developed on the QUEST (Q-shu university experiment with the steady-state spherical tokamak) for steady-state operation. The drift error caused by the long time-integration of magnetic raw signals has to be removed. With a captured image of the plasma's cross section, the plasma's position is identified by use of image filters. The measured magnetic flux values are corrected to the calculated flux values estimated by using this plasma position. The correction with the captured image work as expected in the preliminary result using a flashlight instead of a plasma.
Development of a plasma control system for steady-state operation on QUEST
Hasegwa, Makoto; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Matsuoka, Keisuke; Idei, Hiroshi; Nagashima, Yoshihiko; Tokunaga, Kazutoshi; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki
2014-10-01
A drift error correction technique with machine vision and a real-time equilibrium calculation code have been developed on the QUEST (Q-shu university experiment with the steady-state spherical tokamak) for steady-state operation. The drift error caused by the long time-integration of magnetic raw signals has to be removed. With a captured image of the plasma's cross section, the plasma's position is identified by use of image filters. The measured magnetic flux values are corrected to the calculated flux values estimated by using this plasma position. The correction with the captured image work as expected in the preliminary result using a flashlight instead of a plasma.
Data acquisition and control system for steady state neutral beam injector
International Nuclear Information System (INIS)
This paper presents the control system overview, hardware, software and network for Data acquisition and Control system for steady state neutral beam injector (NBIDACS) to be used for heating of plasma in steady state superconducting tokamak (SST-1). The task for NBIDACS is not only to safely deliver 1.7 MW of neutral beams at 55 keV H deg. a period of 1000 s with 16.7% duty cycle but also to acquire the data related to house keeping of the system and its auxiliaries and diagnostics which determine the quality and parameters of the beam. Major issues concerning the design of the system stem from operation duty cycle of 1000 s ON/5000 s OFF. This calls for use of intelligent techniques not only for managing a large amount (100 MB) of data per shot but also to obtain failsafe, reliable control system and to archive the recorded data
Comparison between a steady-state fusion reactor and an inductively driven pulse reactor
International Nuclear Information System (INIS)
In the present report, a comparison is made between tokamak reactors of steady state operation -SSTR- and pulse operation. The former design uses neutral beams as a current driver to realize steady state operation. The latter is inductively operated basic tokamak with burn time of one hour to a half day. This time is determined by dimensions of the central solenoid coil and these dimensions also determine the basic design concept of the pulse tokamak. The dimension includes effect of fatigue due to pulse operation. Performance as a power plant is evaluated with a schematic design of heat transport and power generation system. Heat accumulation in the primary coolant loop is studied in order to make up for a dwell time of a pulse reactor. It is shown that large heat accumulator is necessary to suppress a drop in output during the dwell time. The dwell time has an optimum length with respect to the dwell time. Comparison of fusion plant with other energy source reveals that reduction of the size is essential in order that the fusion is competitive with other sources. (author)
Defining Features of Steady-State Timbres
Hall, Michael D.
1995-01-01
Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for
Positive Steady States of a Competitor-Competitor-Mutualist Model
Institute of Scientific and Technical Information of China (English)
Wen-yan Chen; Ming-xin Wang
2004-01-01
In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist model with diffusion and homogeneous Dirichlet boundary conditions.We rst give the necessary conditions,and then establish the su cient conditions for the existence of positive steady states.
INTEGATED ADVANCED TOKAMAK OPERATION ON DIII-D
International Nuclear Information System (INIS)
Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high β with 1.5 min min > 2.0, plasmas with β ∼ 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Negative central magnetic shear is produced by the ECCD, leading to the formation of a weak internal transport barrier even in the presence of Type I ELMs. Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with β = 3.3% and > 90% of the current driven non-inductively. In addition, stable operation well above the ideal no-wall β limit has been sustained for several energy confinement times with the duration only limited by resistive relaxation of the current profile to an unstable state. Stability analysis indicates that the experimental β limit depends on the degree to which the no-wall limit can be exceeded and weakly on the actual no-wall limit. Achieving the necessary density levels required for adequate ECCD efficiency requires active divertor exhaust and reducing the wall inventory buildup prior to the high performance phase. Simulation studies indicate that the successful integration of high β operation with current profile control consistent with these experimental results should result in high β, fully non-inductive plasma operation
Steady State of Pedestrian Flow in Bottleneck Experiments
Liao, Weichen; Seyfried, Armin; Chraibi, Mohcine; Drzycimski, Kevin; Zheng, Xiaoping; Zhao, Ying
2015-01-01
Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. In this work, a feasible algorithm - Cumulative Sum Control Chart - is proposed and improved to automatically detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with previous manually selected ones, the modified algorithm gives more reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The study about pedestrian flow shows that the difference between the flows in all states and in steady state mainly depends on the ratio of pedestrian number to bottleneck width. When the ratio is higher than a critical value (approximately 115 persons/m), the flow in all states is almost ...
Steady-State Performance of Kalman Filter for DPLL
Institute of Scientific and Technical Information of China (English)
QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming
2009-01-01
For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.
Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D
International Nuclear Information System (INIS)
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. In contrast, similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes
UNIVERSAL THEORY OF STEADY-STATE ONE-DIMENSIONAL PHOTOREFRACTIVE SOLITONS
Institute of Scientific and Technical Information of China (English)
刘劲松
2001-01-01
A universal theory of steady-state one-dimensional photorefractive spatial solitons is developed which applies to the steady-state one-dimensional photorefractive solitons under various realizations, including the screening solitons in a biased photorefractive medium, the photovoltaic solitons in open- and closed-circuit photovoltaic-photorefractive media and the screening-photovoltaic solitons in biased photovoltaic-photorefractive media. Previous theories advanced individually elsewhere for these solitons can be obtained by simplifying the universal theory under the appropriate conditions.
ASPECT: An advanced specified-profile evaluation code for tokamaks
Energy Technology Data Exchange (ETDEWEB)
Stotler, D.P.; Reiersen, W.T.; Bateman, G.
1993-03-01
A specified-profile, global analysis code has been developed to evaluate the performance of fusion reactor designs. Both steady-state and time-dependent calculations are carried out; the results of the former can be used in defining the parameters of the latter, if desired. In the steady-state analysis, the performance is computed at a density and temperature chosen to be consistent with input limits (e.g., density and beta) of several varieties. The calculation can be made at either the intersection of the two limits or at the point of optimum performance as the density and temperature are varied along the limiting boundaries. Two measures of performance are available for this purpose: the ignition margin or the confinement level required to achieve a prescribed ignition margin. The time-dependent calculation can be configured to yield either the evolution of plasma energy as a function of time or, via an iteration scheme, the amount of auxiliary power required to achieve a desired final plasma energy.
ASPECT: An advanced specified-profile evaluation code for tokamaks
International Nuclear Information System (INIS)
A specified-profile, global analysis code has been developed to evaluate the performance of fusion reactor designs. Both steady-state and time-dependent calculations are carried out; the results of the former can be used in defining the parameters of the latter, if desired. In the steady-state analysis, the performance is computed at a density and temperature chosen to be consistent with input limits (e.g., density and beta) of several varieties. The calculation can be made at either the intersection of the two limits or at the point of optimum performance as the density and temperature are varied along the limiting boundaries. Two measures of performance are available for this purpose: the ignition margin or the confinement level required to achieve a prescribed ignition margin. The time-dependent calculation can be configured to yield either the evolution of plasma energy as a function of time or, via an iteration scheme, the amount of auxiliary power required to achieve a desired final plasma energy
Measurement of non-steady-state free fatty acid turnover
International Nuclear Information System (INIS)
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [14C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [(14C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra
Measurement of non-steady-state free fatty acid turnover
Energy Technology Data Exchange (ETDEWEB)
Jensen, M.D.; Heiling, V.; Miles, J.M. (Mayo Clinic, Rochester, MN (USA))
1990-01-01
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with ({sup 14}C)-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra (({sup 14}C)oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra.
Development on JET of Advanced Tokamak Operations for ITER
International Nuclear Information System (INIS)
Recent research on Advanced Tokamak in JET has focused on scenarii with both monotonic and reversed shear q profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide ITBs, R∼3.7m, are formed at ITER relevant triangularity δ∼0.45, with ne/nG∼60% and ELMs moderated by Ne injection. At higher current (IP≤3.5MA, δ∼0.25) wide ITBs sitting at R≥ 3.5m (positive shear region) have been developed, generally MHD events terminate these barrier otherwise limited in strength by power availability. ITBs with core density close to Greenwald value are obtained with plasma target preformed by opportune timing of LHCD, pellet injection and small amount of NBI power. ITB start with toroidal rotation 4 times lower than the standard NBI heated ITBs. Full CD is achieved in reversed shear ITBs at 3T/1.8 MA, by using 10MW NBI, 5MW ICRH and 3MW LH. Wide ITBs located at R=3.6m, without impurity accumulation and type-III ELMs edge can be sustained for a time close to neo-classical resistive time. These discharges have been extended to the maximum duration allowed by subsystems (20s) with the JET record of injected energy: E∼330 MJ. Integrated control of pressure and current profile isit; feature used in these discharges. Central ICRF mode conversion electron heating, added to about 14MW NBI power, produced impressive ITBs with equivalent QDT ∼ 0.25. Conversely ion ITBs are obtained with low torque injection, by ICRH 3He minority heating of ions, on pure LHCD electron ITBs. Similarity experiments between JET and AUG have compared the dynamics of ITBs and have been the starting point of Hybrid Scenarios activity, then developed at ρ* as low as ρ*∼3*10-3. The development of hybrid regime with dominant electron heating has also started. Injection of trace of tritium and a mixture of Ar/Ne allowed studying fuel and impurities transport in many of the explored AT scenarios. (author)
A Note on Equations for Steady-State Optimal Landscapes
Energy Technology Data Exchange (ETDEWEB)
Liu, H.H.
2010-06-15
Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.
International Nuclear Information System (INIS)
The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.)
Enhancement of the steady-state magnetization in TROSY experiments
International Nuclear Information System (INIS)
Under the condition that the longitudinal relaxation time of spin I is shorter than the longitudinal relaxation time of spin S the steady-state magnetization in [S,I]-TROSY-type experiments can be enhanced by intermediate storage of a part of the steady-state magnetization of spin I on spin S with a pulse sequence element during the relaxation delay. It is demonstrated with samples ranging in size from the 1 kDa cyclosporin to the 110 kDa 15N,2H-labeled dihydroneopterin Aldolase that intermediate storage of steady-state magnetization in a [15N,1H]-TROSY experiment yields a signal gain of 10-25%. The method proposed here for intermediate storage of steady-state magnetization can be implemented in any [15N,1H]-TROSY-type experiments
First experiments with SST-1 tokamak
International Nuclear Information System (INIS)
Full text: SST-1, a steady state superconducting tokamak, is at advanced stage of erection at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. The SST-1 tokamak is a large aspect ratio tokamak, configured to run double null diverted plasmas with significant elongation and triangularity. The machine has a major radius of 1.1 m, minor radius of 0.20 m, a toroidal field of 3.0 T at plasma center and a plasma current of 220 kA. Hydrogen gas will be used and plasma discharge duration will be 1000 s. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel, made up of 16 vessel sectors having ports and 16 rings with D- shaped cross-section, which are welded in-situ during the SST-1 assembly. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as Sc magnets and cryostat, to minimize the radiation losses at the Sc magnets. In SST-1 tokamak, the auxiliary current drive will be based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. The assembly of the SST-1 tokamak is nearing completion. The cool down of the Superconducting magnets is scheduled to start by middle of year 2004
Steady-state current transfer and scattering theory
Ben-Moshe, Vered; Rai, Dhurba; Skourtis, Spiros S.; Nitzan, Abraham
2010-01-01
The correspondence between the steady state theory of current transfer and scattering theory in a system of coupled tight-binding models of 1-dimensional wires is explored. For weak interwire coupling both calculations give nearly identical results, except at singular points associated with band edges. The effect of decoherence in each of these models is studied using a generalization of the Liouville-von Neuman equation suitable for steady-state situations. An example of a single impurity mo...
Steady-state leaching of tritiated water from silica gel
DEFF Research Database (Denmark)
Das, H.A.; Hou, Xiaolin
2009-01-01
Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....
TRANSIENT AND STEADY-STATE DYNAMICS OF GRANULAR SHEAR FLOWS
Losert, W.; Kwon, G.
2001-01-01
The initiation and steady-state dynamics of granular shear flow are investigated experimentally in a Couette geometry with independently moveable outer and inner cylinders. The motion of particles on the top surface is analyzed using fast imaging. During steady state rotation of both cylinders at different rates, a shear band develops close to the inner cylinder for all combinations of speeds of each cylinder we investigated. Experiments on flow initiation were carried out with one of the cyl...
International Nuclear Information System (INIS)
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Hwan [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Suk-Ho [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); National Fusion Research Institute (NFRI), Daejeon 305-333 (Korea, Republic of); Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)
2015-12-15
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028
International Nuclear Information System (INIS)
Among the R and D missions for possible new European plasma fusion devices, the FAST project will address the issue of 'First wall materials and compatibility with ITER /DEMO relevant plasmas'. FAST can operate with ITER relevant values of P/R (up to 22 MW/m, against the ITER 24 MW/m, inclusive of the alpha particles power), thanks to its compactness; thus it can investigate the physics of large heat loads on divertor plates. The FAST divertor will be made of bulk W tiles, for basic operations, but also fully toroidal divertor targets made of liquid lithium (L-Li) are foreseen. Viability tests of such a solution for DEMO divertor will be carried out as final step of an extended program started on FTU tokamak by using a liquid lithium limITER. To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self-consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. This code, already validated in the past on experimental data (namely JET, FTU, Textor), is able to describe self-consistently the core and edge plasma in a tokamak device by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. In the present work the results of such calculations will be illustrated, including heat loads on the divertor. The overall picture shows that at the low plasma densities typical of steady state regimes W is effective in dissipating input power by radiative losses, while Li needs additional impurities (Ar, Ne). In the intermediate and, mainly, in the high density H-mode scenarios impurity seeding is needed with either Li or W as target material, but a small (0.08% atomic concentration) amount of Ar, not affecting the core purity, is sufficient to maintain the divertor peak loads below 18 MW/m2 that represents the safety limit for the W monoblock technology, presently accepted for the ITER divertor tiles. The
The impact of ripple on the design of advanced fuel tokamaks
International Nuclear Information System (INIS)
Enhanced ion transport due to toroidal field ripple is a concern in the design of tokamak power reactors. This concern is quantified for advanced fuel cycle applications where the simultaneous requirement of high /eta//tau/ and high T makes the constraint on deviation from axisymmetry especially severe
The ARIES-AT advanced tokamak, Advanced technology fusion power plant
International Nuclear Information System (INIS)
The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N. ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
International Nuclear Information System (INIS)
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane
DEFF Research Database (Denmark)
Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G.S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, Ning; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.
2012-01-01
Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental...... advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera is...
The contribution to the energy balance and transport in an advanced-fuel tokamak reactor
International Nuclear Information System (INIS)
The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D-3He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D-3He tokamak plasma
Lake contamination models for evolution towards steady state
Directory of Open Access Journals (Sweden)
Johan C. VAREKAMP
2003-09-01
Full Text Available Most lakes are in an average steady state for water but contaminants may not yet have reached steady state or are gradually being flushed out in a clean-up program. The evolution towards steady state for fully mixed or stratified lakes can be described by basic equations of mass flow. The time-concentration paths for fully mixed lakes are asymptotic toward a steady state concentration, which is reached in about 6 contaminant residence times (and clean-up also takes about 6 residence times. Stratified lakes also evolve towards a whole-lake steady state concentration but show oscillating patterns of concentration versus time, with the amplitude and dampening period depending on the volume ratio of epilimnion to total lake volume. In most natural lakes, the compositional contrast between epilimnion and hypolimnion will become almost erased in 2-4 residence times. An acid lake in North-Patagonia is used as an example of contamination of a thermally stratified lake by volcanic effluents.
Nonequilibrium steady states in fluids of platelike colloidal particles
Bier, Markus; van Roij, René
2008-02-01
Nonequilibrium steady states in an open system connecting two reservoirs of platelike colloidal particles are investigated by means of a recently proposed phenomenological dynamic density functional theory [M. Bier and R. van Roij, Phys. Rev. E 76, 021405 (2007)]. The platelike colloidal particles are approximated within the Zwanzig model of restricted orientations, which exhibits an isotropic-nematic bulk phase transition. Inhomogeneities of the local chemical potential generate a diffusion current which relaxes to a nonvanishing value if the two reservoirs coupled to the system sustain different chemical potentials. The relaxation process of initial states towards the steady state turns out to comprise two regimes: a smoothening of initial steplike structures followed by an ultimate relaxation of the slowest diffusive mode. The position of a nonequilibrium interface and the particle current of steady states depend nontrivially on the structure of the reservoirs due to the coupling between translational and orientational degrees of freedom of the fluid.
Stable MIMO Constrained Predictive Control with Steady state Objective Optimization
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is pre sented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that .the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.
From Steady-State To Cyclic Metal Forming Processes
Montmitonnet, Pierre
2007-05-01
Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the example of pilgering, a seamless tube cold rolling process.
Avoiding Rebound through a Steady-State Economy
DEFF Research Database (Denmark)
Nørgaard, Jørgen
conditions in many parts of the world, the transition towards a steady-state economy needs to begin first in the affluent countries, including the Nordic countries from where most of the information in this chapter is drawn. The politicians in these countries are not seeking a steady-state economy, but some...... only buy some time. From this perspective, the environmental problem with the rebound effect is not the higher energy efficiency, which pushes towards lower flows of resources through the economy, but rather the conventional economy which rebounds the savings, because of its quest for higher flows. In...... this chapter, I shall take the rebound debate further by discussing the possible role of energy efficiency in a sustainable economy that is based on the notion of ‘sufficiency’. The assumption is that globally we need to achieve a ‘steady-state economy’. Considering the urgent need for better material...
Free Boundary Problem of Ono—steady State Seepage Flow
Institute of Scientific and Technical Information of China (English)
XiaomingGUO; Ying－SUN; 等
1999-01-01
Along with the vigorous developing construction,the number of various underground engineerings is greatly increasing,Such as:the foundations of dams and high-rise multistoried houses,subways and tunnels,water and oil wells etc., where the close attention is always payed to the seepage behaviour in the media around the strutures.The Variatonal Inequality formulation and its FEM solution for the free boundary problem of 2D steady state seepage flow was given by the authors,In this paper a further investigation is made on the non-steady state seepage problem,taken the seepage flow of wells as an example.The presented approach-Variational Inequality and its FEM solution-is also very beneficial to the non-steady state problems,where the transient free boundary can also be defined directly without conventional iterations.
Thermalization of Starlight in the Steady-State Cosmology
Ibison, M
2009-01-01
We investigate the fate of starlight in the Steady-State Cosmology. We discover that it is largely unaffected by the presence of ions in intergalactic space as it gets progressively red-shifted from the visible all the way down to the plasma frequency of the intergalactic matter. At that point, after about 450 Gyr - and contrary to previously published claims - the radiation will be thermalized. Under the assumptions adopted by Gold, Bondi, Hoyle, Narlikar, Burbidge and others concerning the creation of matter in the Steady-State Cosmology, and using reasonable estimates for the baryonic mass-density and mass-fraction of 4He, the analysis predicts a universal radiation field matching the CMB, i.e. having a black-body spectrum and temperature of about 2.7 K. The Steady-state Cosmology predicts that this radiation field will appear to originate from the intergalactic plasma.
Steady-state and transient wellbore temperatures during drilling
Energy Technology Data Exchange (ETDEWEB)
McDonald, W.J.
1976-05-20
An extensive literature search was made to locate technical publications and computer programs relating to wellbore temperatures during drilling operations. The search confirmed the need for knowledge of transient and steady state circulating temperatures in the design of geothermal bits. Two approaches were used in calculating borehole temperatures. The steady state solution of Holmes and Swift was programmed and 2100 cases calculated for various borehole configurations. For transient temperature studies, calculations were made for ten borehole configurations. These calculations help emphasize the need for better high temperature bit performance and improved engineering procedures in drilling. The conclusions and recommendations are based on latest available technology for calculating wellbore temperatures.
Correlation Between Steady State and Impulse Earth Resistance Values
Directory of Open Access Journals (Sweden)
N. M. Nor
2009-01-01
Full Text Available This study presented experimental results of earthing systems under low-magnitude currents and under high impulse currents. The details of the measuring circuit involved for both types of testing were described. Three field sites were selected. At each site, three earth electrodes configurations were used. This makes up to nine earthing systems. From both low magnitude and impulse tests, the correlation between the steady state earth resistance value and the earth resistance under fast impulse currents can be observed. The relation between the calculated and measured steady state earth resistance is also shown in this study.
Steady-state entanglement activation in optomechanical cavities
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
Electric machines steady state, transients, and design with Matlab
Boldea, Ion
2009-01-01
Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui
Influence of the epithermal effects on the MCF steady state
International Nuclear Information System (INIS)
This work is devoted to the correct interpretation of the steady-state parameters of the muon catalyzed fusion (MCF) process in a D/T mixture. Previously the influence of the epithermal effects (dtμ-molecule formation by 'hot', non-thermalized tμ atoms) on the steady-state parameters was studied only for measurements with a low-density target (density φ=0.01 relative to the liquid hydrogen density). We suggest a new method allowing direct determination of the necessary corrections to the MCF cycling rate for high-density data (φ≥0.4)
OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM
Energy Technology Data Exchange (ETDEWEB)
BURRELL,KH
2002-11-01
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet
On the steady states of weakly reversible chemical reaction networks
Deng, Jian; Jones, Christopher; Feinberg, Martin; Nachman, Adrian
2011-01-01
A natural condition on the structure of the underlying chemical reaction network, namely weak reversibility, is shown to guarantee the existence of an equilibrium (steady state) in each positive stoichiometric compatibility class for the associated mass-action system. Furthermore, an index formula is given for the set of equilibria in a given stoichiometric compatibility class.
Optimising performance in steady state for a supermarket refrigeration system
DEFF Research Database (Denmark)
Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik
Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance is...
Plasticity, Fracture and Friction in Steady-State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1997-01-01
A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...
Plasticity, Fracture and Friction in Steady-State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1997-01-01
A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new kinema...
SBWR Model for Steady-State and Transient Analysis
Gilberto Espinosa-Paredes; Alejandro Nuñez-Carrera
2008-01-01
This paper presents a model of a simplified boiling water reactor (SBWR) to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (ch...
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
A displacement based FE formulation for steady state problems
Yu, Yuhong
2005-01-01
In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a s
Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients
Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.
2005-01-01
Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Extending the quasi-steady state approximation by changing variables
Borghans, J.A.M.; Boer, R.J. de; Segel, L.A.
1996-01-01
The parameter domain for which the quasi-steady state assumption is valid can be considerably extended merely by a simple change of variable. This is demonstrated for a variety of biologically significant examples taken from enzyme kinetics, immunology and ecology.
Steady state nutrition by transpiration controlled nutrient supply
Braakhekke, W.G.; Labe, D.A.
1990-01-01
Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no
Analysis of steady-state hydraulic tests in fractured rock
International Nuclear Information System (INIS)
A model for the analysis of steady-state hydraulic injection tests into single fractures of a rock-mass is presented, and solved analytically. It is used to obtain a probability distribution for the transmissivities of fractures in Cornish granite. (author)
Three novel tokamak plasma regimes in TFTR
International Nuclear Information System (INIS)
Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region
Three novel tokamak plasma regimes in TFTR
Energy Technology Data Exchange (ETDEWEB)
Furth, H.P.
1985-10-01
Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region.
Profile control of advanced tokamak plasmas in view of continuous operation
Energy Technology Data Exchange (ETDEWEB)
Mazon, D., E-mail: Didier.Mazon@cea.fr
2015-07-15
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named ‘advanced scenarios’ are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated ‘bootstrap’ current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.
Profile control of advanced tokamak plasmas in view of continuous operation
Mazon, D.
2015-07-01
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.
Profile control of advanced tokamak plasmas in view of continuous operation
International Nuclear Information System (INIS)
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named ‘advanced scenarios’ are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated ‘bootstrap’ current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described
Advances in comprehensive gyrokinetic simulations of transport in tokamaks
International Nuclear Information System (INIS)
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)
Action-at-a-distance electrodynamics in quasi-steady-state cosmology
Indian Academy of Sciences (India)
Kaustubh Sudhir Deshpande
2014-09-01
Action-at-a-distance electrodynamics – alternative approach to field theory – can be extended to cosmological models using conformal symmetry. An advantage of this is that, the origin of arrow of time in electromagnetism can be attributed to the cosmological structure. Different cosmological models can be investigated, based on Wheeler–Feynman absorber theory, and only those models can be considered viable for our Universe which have net full retarded electromagnetic interactions, i.e., forward direction of time. This work evaluates the quasi-steady-state model and demonstrates that it admits full retarded and not advanced solution. Thus, quasi-steady-state cosmology (QSSC) satisfies this necessary condition for a correct cosmological model, based on action-at-a-distance formulation.
Liu, X; Zhao, H L; Liu, Y; Li, E Z; Han, X; Domier, C W; Luhmann, N C; Ti, A; Hu, L Q; Zhang, X D
2014-09-01
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems. PMID:25273727
Energy Technology Data Exchange (ETDEWEB)
Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)
2014-09-15
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.
Advanced Tokamak Regimes in Alcator C-Mod with Lower Hybrid Current Drive
Parker, R.; Bonoli, P.; Gwinn, D.; Hutchinson, I.; Porkolab, M.; Ramos, J.; Bernabei, S.; Hosea, J.; Wilson, R.
1999-11-01
Alcator C-Mod has been proposed as a test-bed for developing advanced tokamak scenarios owing to its strong shaping, relatively long pulse length capability at moderate field, e.g. t ~ L/R at B = 5T and T_eo ~ 7keV, and the availability of strong ICRF heating. We plan to exploit this capability by installing up to 4 MW RF power at 4.6 GHz for efficient off-axis current drive by lower hybrid waves. By launching LH waves with a grill whose n_xx spectrum can be dynamically controlled over the range 2 2. Such reversed or nearly zero shear regimes have already been proposed as the basis of an advanced tokamak burning-plasma experiment-ATBX (M. Porkolab et al, IAEA-CN-69/FTP/13, IAEA,Yokohama 1998.), and could provide the basis for a demonstration power reactor. Theoretical and experimental basis for this advanced tokamak research program on C-Mod, including design of the lower hybrid coupler, its spectrum and current drive capabilities will be presented.
Towards steady-state operational design for the data and PF control systems of the HT-7U
International Nuclear Information System (INIS)
Fusion energy is an ultimate and inexhaustible source of energy for mankind and is expected to be obtained in controlled operation within this century. Among various possible candidates for fusion, the tokamak is presently the most qualified one, and since it uses superconducting magnetic coils, it will be adequate for steady-state operation. The HT-7U superconducting tokamak is a part of national project in China on fusion research, scheduled to become available on-line by the end of 2004 (Wan Y.X. and HT-7 and HT-7U Groups 2000 Overview of steady state operation of HT-7 and present status of the HT-7U project Nucl. Fusion 40 1057). The control system of the HT-7U is designed as a distributed control system (HT7UDCS), including many subsystems that provide the various functions of supervision, remote control, real-time monitoring, data acquisition and data handling. The major features of the HT-7U tokamak, which make long-pulse (∼1000 s) operation possible are the flexible poloidal field (PF) system, an auxiliary heating system, the current-driving system and a divertor system. In order to realize these features simultaneously, real-time data handling and analysis, along with a significant control capability is required. This paper discusses the design of the HT7UDCS. (author)
The Steady State Calculation for SMART with MIDAS/SMR
International Nuclear Information System (INIS)
KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values
The Steady State Calculation for SMART with MIDAS/SMR
Energy Technology Data Exchange (ETDEWEB)
Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seong Won [KORTIC, Daejeon (Korea, Republic of)
2010-10-15
KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values
Nonequilibrium Steady States of a Stochastic Model System.
Zhang, Qiwei
We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.
Steady-state current transfer and scattering theory.
Ben-Moshe, Vered; Rai, Dhurba; Skourtis, Spiros S; Nitzan, Abraham
2010-08-01
The correspondence between the steady-state theory of current transfer and scattering theory in a system of coupled tight-binding models of one-dimensional wires is explored. For weak interwire coupling both calculations give nearly identical results, except at singular points associated with band edges. The effect of decoherence in each of these models is studied using a generalization of the Liouville-von Neuman equation suitable for steady-state situations. An example of a single impurity model is studied in detail, leading to a lattice model of scattering off target that affects both potential scattering and decoherence. For an impurity level lying inside the energy band, the transmission coefficient diminishes with increasing dephasing rate, while the opposite holds for impurity energy outside the band. The efficiency of current transfer in the coupled wire system decreases with increasing dephasing. PMID:20707524
Theory of minimum dissipation of energy for the steady state
International Nuclear Information System (INIS)
The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space
Steady-state propagation of interface corner crack
DEFF Research Database (Denmark)
Veluri, Badrinath; Jensen, Henrik Myhre
2013-01-01
Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated by...... estimating the fracture mechanics parameters that includes the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the interface crack front. A numerical approach was then applied for coupling the far field solutions based on the Finite Element Method to the near...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based on...
Steady states of the parametric rotator and pendulum
Bouzas, Antonio O
2011-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, non-linear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravi...
Master equation based steady-state cluster perturbation theory
Nuss, Martin; Dorn, Gerhard; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico
2015-09-01
A simple and efficient approximation scheme to study electronic transport characteristics of strongly correlated nanodevices, molecular junctions, or heterostructures out of equilibrium is provided by steady-state cluster perturbation theory. In this work, we improve the starting point of this perturbative, nonequilibrium Green's function based method. Specifically, we employ an improved unperturbed (so-called reference) state ρ̂S, constructed as the steady state of a quantum master equation within the Born-Markov approximation. This resulting hybrid method inherits beneficial aspects of both the quantum master equation as well as the nonequilibrium Green's function technique. We benchmark this scheme on two experimentally relevant systems in the single-electron transistor regime: an electron-electron interaction based quantum diode and a triple quantum dot ring junction, which both feature negative differential conductance. The results of this method improve significantly with respect to the plain quantum master equation treatment at modest additional computational cost.
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Steady-state Physics, Effective Temperature Dynamics in Holography
Kundu, Arnab
2013-01-01
Using the gauge-gravity duality, we argue that for a certain class of out-of-equilibrium steady-state systems in contact with a heat bath at a given temperature, the macroscopic physics can be captured by an effective thermodynamic description. The steady-state is obtained by applying a constant electric field that results in a stationary current flow. Within holography, we consider generic probe systems where an open string equivalence principle and an open string metric govern the effective thermodynamics. This description comes equipped with an effective temperature, which is larger than the bath temperature, and a corresponding effective entropy. For conformal or scale-invariant theories, certain scaling behaviours follow immediately. In general, in the large electric field limit, this effective temperature is also observed to obey certain generic relations with various physical parameters in the system.
Persistent Probability Currents in Non-equilibrium Steady States
Zia, Royce; Mellor, Andrew; Mobilia, Mauro; Fox-Kemper, Baylor; Weiss, Jeffrey
For many interesting phenomena in nature, from all life forms to the global climate, the fundamental hypothesis of equilibrium statistical mechanics does not apply. Instead, they are perhaps better characterized by non-equilibrium steady states, evolving with dynamical rules which violate detailed balance. In particular, such dynamics leads to the existence of non-trivial, persistent probability currents - a principal characteristic of non-equilibrium steady states. In turn, they give rise to the notion of 'probability angular momentum'. Observable manifestations of such abstract concepts will be illustrated in two distinct contexts: a heterogeneous nonlinear voter model and our ocean heat content. Supported in part by grants from the Bloom Agency (Leeds, UK) and the US National Science Foundation: OCE-1245944. AM acknowledges the support of EPSRC Industrial CASE Studentship, Grant No. EP/L50550X/1.
Steady state test on PWR steam generator thermohydraulics
International Nuclear Information System (INIS)
Experimental activity on U-tube steam generator thermal hydraulics is under way at CISE and SIET in the framework of ENEA's LWR safety research programme. The test section includes 9 tubes. Hot side and cold side can be separated simulated, with primary and secondary fluid in full thermalhydraulic conditions. The experimental matrix includes: steady state tests (in both adiabatic and diabatic conditions); transients tests that simulate various accidents. Some steady state tests are reported. The secondary side average density, measured by the quick closing valve technique can be accurately calculated by the Zuber-Dix and Zuber-Rohuani correlations. Continuous pressure drops can be very well predicted by an adapted version of Thom correlation and CISE DIF-3 correlation: the development of an empirical correlation was, instead, necessary for assessment of the local pressure drops across spacer grids
Turnover of messenger RNA: Polysome statistics beyond the steady state
Valleriani, A.; Ignatova, Z.; Nagar, A.; Lipowsky, R.
2010-03-01
The interplay between turnover or degradation and ribosome loading of messenger RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of newly created mRNA chains requires some time to reach steady state, a fraction of the extracted mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the mean ribosome density obtained from the extracted complexes is found to be inversely proportional to the mRNA length. On the other hand, the ribosome density profile shows an exponential decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.
Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James
2016-01-01
Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. PMID:26522612
A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants
Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi
2014-10-01
Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.
Non-equilibrium steady states for chains of four rotors
Cuneo, Noé; Eckmann, Jean-Pierre
2015-01-01
We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external ...
Steady-State Oscillations in Resonant Electrostatic Vibration Energy Harvesters
Blokhina, Elena; Galayko, Dimitri; Basset, Philippe; Feely, Orla
2013-01-01
In this paper, we present a formal analysis and description of the steady-state behavior of an electrostatic vibration energy harvester operating in constant-charge mode and using different types of electromechanical transducers. The method predicts parameter values required to start oscillations, allows a study of the dynamics of the transient process, and provides a rigorous description of the system, necessary for further investigation of the related nonlinear phenomena and for the optimis...
Simulation of Power Electronic Converters Using Quasi Steady State Approximation
Predrag Pejović
2012-01-01
A new method to compute voltage and current waveforms of power electronic converters is proposed in the paper. The method relies on simulation result of averaged circuit model, and superimposes the ripple of the inductor currents to the obtained average values, assuming that the linear ripple approximation applies. To determine the amplitude of the switching ripple, a quasi steady state approximation is proposed. After the inductor currents are obtained, currents of switching components are c...
Steady State Plasma Accelerators and their Applications in Thermonuclear Research
International Nuclear Information System (INIS)
Steady state plasma accelerators make it possible in principle to obtain plasma fluxes of high energy and large flow rate. This is of interest in thermonuclear research for two reasons. Firstly, the accelerator can be used for injecting plasma into existing traps; secondly, it can be used to design new-types of thermonuclear reactors, which might be referred to as, ''Flow-type Reactors'' in which a positive yield is-realised during the time the material passes through the reactor system. The main types of accelerating mechanisms operating in this accelerator are described and a brief review is given of theoretical, numerical and experimental investigations carried out by the author and his colleagues. The numerical and theoretical analysis of the processes taking place in coaxial steady state accelerators revealed the possible existence of steady-state compressive flows during which the applied electromagnetic energy is not converted into kinetic plasma energy but is used for compression of the plasma. When the compressed flow is allowed to expand its thermal energy is converted into kinetic energy. Devices in which compressive flow is attained are referred to as magnetic plasma compressors. At the present stage the existence of compressive flows has been confirmed experimentally. To ensure a positive yield in-the region of compression a density of 1020 - 1020 cm-3 is essential. The possibility of obtaining a positive yield in linear ''Flow type Reactors'' is discussed. Such reactors consist of magnetic plasma guides of length ∼ 100 m, in which a flow of hot plasma is produced by a steady state plasma accelerator. (author)
Overview of recent experimental results from the DIII-D advanced tokamak program
International Nuclear Information System (INIS)
The D III-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: 1) We have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; 2) Using this rotational stabilization, we have achieved βNH89 ≥ 10 for 4 τE limited by the neoclassical tearing mode; 3) Using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased βT by 60%; 4) We have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; 5) We have made the first integrated AT demonstration discharges with current profile control using ECCD; 6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and 7) We have demonstrated stationary tokamak operation for 6.5 s (36 τE) at the same fusion gain parameter of βNH89/q952 ≅ 0.4 as ITER but at much higher q95 = 4.2. We have developed general improvements applicable to conventional and advanced tokamak operating modes: 1) We have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 τE) with constant density and constant radiated power; 2) We have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; 3) We have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. (author)
Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes
Energy Technology Data Exchange (ETDEWEB)
R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng
2004-10-21
Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.
Understanding and Control of Transport in Advanced Tokamak Regimes in DIII-D
International Nuclear Information System (INIS)
Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection takes place when the heating power exceeds a threshold value of about 9 MW, contrasting to CO-NBI injection, where Pthreshold NH89 = 9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode edge and an ITB, and exhibiting ion thermal transport down to 2-3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency MHD activity is identified as the probable cause
EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA
Energy Technology Data Exchange (ETDEWEB)
MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD
2003-08-01
OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/
{approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.
Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria
Energy Technology Data Exchange (ETDEWEB)
Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D
2003-07-07
The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.
Transient and steady-state currents in epoxy resin
Energy Technology Data Exchange (ETDEWEB)
Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)
2006-02-07
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.
Steady state theta pinch concept for slow formation of FRC
International Nuclear Information System (INIS)
A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)
Extracting Steady State Components from Synchrophasor Data Using Kalman Filters
Directory of Open Access Journals (Sweden)
Farhan Mahmood
2016-04-01
Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.
Transient and steady-state currents in epoxy resin
International Nuclear Information System (INIS)
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature Tg = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm-1 with a sample thickness of 0.5 mm. Above Tg, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below Tg, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm-1 have been measured
SBWR Model for Steady-State and Transient Analysis
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2008-05-01
Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.
International Nuclear Information System (INIS)
The advanced reactor concepts use, various heat transfer media e.g., sodium, lead alloy, supercritical water, helium and molten salt mixtures etc. The capability of core heat removal by natural circulation is extensively exploited for normal as well as accidental situations. Thus it is necessary to study the steady state and transient behaviour of a natural circulation loop using different heat transfer media. Towards this objective, a general purpose computer code LeBENC (Lead Bismuth Eutectic Natural Circulation) based on finite difference method is developed. The code is first used to obtain the steady state and transient behaviour of a uniform diameter rectangular water-loop. The results obtained for steady state conditions are compared with the experimental data. After validating the code as mentioned above, steady state and transient behaviour of Heavy-metal Alloy Natural Circulation Study (HANS) loop set up in BARC, with LBE as heat transfer media, is predicted. Transient studies for start-up of natural circulation and loss of heat sink circulation in the HANS loop have been carried out. The transient results are subsequently compared with experimental data and are found in good agreement with the latter. A Molten Salt Loop (MSL) is also being constructed at BARC to carry out heat transfer and pressure drop studies. Pre-test analysis for the same is also carried out for steady state and various postulated transients using code LeBENC. (author)
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
Energy Technology Data Exchange (ETDEWEB)
Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Heidbrink, W. W.; Collins, C. [Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 05843 (United States); Gong, X.; Ren, Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Park, J. M.; Kim, K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Turco, F. [Columbia University, 2960 Broadway, New York, New York 10027 (United States)
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations
Energy Technology Data Exchange (ETDEWEB)
Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.
1986-06-01
Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.
Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839
International Nuclear Information System (INIS)
A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.
Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations
International Nuclear Information System (INIS)
Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost
An advanced plasma control system for the DIII-D tokamak
Energy Technology Data Exchange (ETDEWEB)
Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. [General Atomics, San Diego, CA (United States); Lazarus, E. [Oak Ridge National Lab., TN (United States)
1991-11-01
An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.
Steady state free radical budgets and ozone photochemistry during TOPSE
Cantrell, Christopher A.; Mauldin, L.; Zondlo, M.; Eisele, F.; Kosciuch, E.; Shetter, R.; Lefer, B.; Hall, S.; Campos, T.; Ridley, B.; Walega, J.; Fried, A.; Wert, B.; Flocke, F.; Weinheimer, A.; Hannigan, J.; Coffey, M.; Atlas, E.; Stephens, S.; Heikes, B.; Snow, J.; Blake, D.; Blake, N.; Katzenstein, A.; Lopez, J.; Browell, E. V.; Dibb, J.; Scheuer, E.; Seid, G.; Talbot, R.
2003-02-01
A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40° to 85°N, and at altitudes from the surface to 7.6 km. HO2 + RO2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (σ = 0.73) and 0.96 (σ = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes. The midlatitude part of the study region is a significant net source of ozone, while the high latitudes constitute a small net sink leading to the hypothesis that transport from the middle latitudes can explain the observed increase in ozone in the high latitudes. Radical reservoir species concentrations are modeled and compared with the observations. For most conditions, the model does a good job of reproducing the formaldehyde observations, but the peroxide observations are significantly less than steady state for this study. Photostationary state (PSS) derived total peroxy radical levels and NO/NO2 ratios are compared with the measurements and the model; PSS-derived results are higher than observations or the steady state model at low NO concentrations.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
A new low drift integrator system for the Experiment Advanced Superconductor Tokamak
International Nuclear Information System (INIS)
A new type of the integrator system with the low drift characteristic has been developed to accommodate the long pulse plasma discharges on Experiment Advanced Superconductor Tokamak (EAST). The integrator system is composed of the Ethernet control module and the integral module which includes one integrator circuit, followed by two isolation circuits and two program-controlled amplifier circuits. It compensates automatically integration drift and is applied in real-time control. The performance test and the experimental results in plasma discharges show that the developed integrator system can meet the requirements of plasma control on the accuracy and noise level of the integrator in long pulse discharges.
Steady-state Compartmentalization of Lipid Membranes by Active Proteins
DEFF Research Database (Denmark)
Sabra, Mads Christian; Mouritsen, Ole G.
1998-01-01
-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer...... conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid...
Steady-State Plasmas in KT5D Magnetized Torus
Institute of Scientific and Technical Information of China (English)
ZHU Zhenhua; LIU Wandong; WAN Baonian; ZHAO Yanping; LI Jiangang; YAN Longwen; YANG Qingwei; DING Xuantong; XU Min; YU Yi; WANG Zhijiang; LU Ronghua; WEN Yizhi; YU Changxuan; MA Jinxiu; WAN Shude
2007-01-01
Steady-state plasma generated by electron cyclotron resonance (ECR) wave in the KT5D magnetized torus was studied using a fast high-resolution camera and Langmuir probes. It was found that both the discharge patterns taken by the camera and the plasma parameters measured by the probes were very sensitive to the working gas pressure and the magnetic configuration of the torus both without and with vertical fields. There existed fast vertical motion of the plasma. Tentative discussion is presented about the observed phenomena such as the bright resonance layer at a high gas pressure and the wave absorption mechanism at a low pressure. Further explanations should be found.
Steady State of the Dusty Plasma in a dc Discharge
Institute of Scientific and Technical Information of China (English)
马锦秀; 郁明阳; 梁小平; 郑坚; 刘万东; 俞昌旋
2002-01-01
The steady state formed by the diffusion of plasma particles in an inhomogeneous dusty plasma is investigated theoretically and compared with our previous experimental results /Nucl. Fusion Plasma Phys. 20(2000)180 (in Chinese); Phys. Plasmas 8(2001)1459]. The negatively charged dust grains with an average charge number of the order of 105 on a single grain enhance the plasma inhomogeneity by decreasing the diffusion velocity, and can cause significant depletion of electrons. The theoretical electron density profile is in good agreement with the experiment, and the theoretical profile of the electron-to-ion density ratio is in reasonable agreement with experimentally estimated data.
Steady-state and transient wellbore temperatures during drilling
Energy Technology Data Exchange (ETDEWEB)
McDonald, W.J.
1976-05-20
An extensive literature search was made to locate technical publications and computer programs relating to wellbore temperatures during drilling operations. Publications obtained are listed in the References. Two approaches were used in calculating borehole temperatures: The steady state solution of Holmes and Swift was programmed and 2100 cases calculated for various borehole configurations. For transient temperature studies, Exxon Production Research Co. made calculations for ten borehole configurations under subcontract. These calculations emphasize the need for better high temperature bit performance and improved engineering procedures in drilling.
Literature review: Steady-state modelling of loop heat pipes
Siedel, B.; Sartre, V.; Lefèvre, Frédéric
2015-01-01
Loop heat pipes (LHPs) are efficient and reliable heat transfer systems whose operation is based on the liquid–vapour phase-change phenomenon. They use the capillary pressure generated in a porous structure to passively circulate the fluid from a heat source to a heat sink. In this paper, an exhaustive literature review is carried out in order to investigate the existing steady-state models of LHPs. These models can be divided into three categories: numerical models of the entire system, nume...
Analysis of steady-state ductile crack growth
DEFF Research Database (Denmark)
Niordson, Christian
1999-01-01
The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which the...... fracture zone. Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....
Steady-state organization of binary mixtures by active impurities
DEFF Research Database (Denmark)
Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.
1998-01-01
The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...... for the two species, become active by an external driving of a transition between the two impurity states, leading to an energy flow from the impurities into the binary mixture. In steady state, the drive is found to break down the phase-separated state and lead to a new finite length scale controlled...
Control algorithms for quasi-steady-state reactor operation
International Nuclear Information System (INIS)
Specialized algorithms for digitally controlling the quasi-steady-state operation of reactors can be derived from the well-known neutron and energy balance equations for reactors. Utilizing the appropriate assumptions, these equations can be reduced to yield the classical proportional-integral-derivative feedback control approach. This method may be applied to single- or multiple-region reactors to control fuel temperature or neutron flux by manipulating system reactivity, specifically control rod reactivity. This paper discusses the development of single- and multiple-region flux and temperature control as well as numerical and experimental testing of these algorithms
Skewness of steady-state current fluctuations in nonequilibrium systems
Belousov, Roman; Cohen, E. G. D.; Wong, Chun-Shang; Goree, John A.; Feng, Yan
2016-04-01
A skewness of the probability for instantaneous current fluctuations, in a nonequilibrium steady state, is observed experimentally in a dusty plasma. This skewness is attributed to the spatial asymmetry, which is imminent to the nonequilibrium systems due to the external hydrodynamic gradient. Using the modern framework of the large deviation theory, we extend the Onsager-Machlup ansatz for equilibrium fluctuations to systems with a preferred spatial direction, and provide a modulated Gaussian probability distribution, which is tested by simulations. This probability distribution is also of potential interest for other statistical disciplines. Connections with the principles of statistical mechanics, due to Boltzmann and Gibbs, are discussed as well.
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Curva de Laffer para Portugal, perspetiva de steady state
Azevedo, Diogo Ricardo Reis
2014-01-01
São analisadas as receitas de imposto sobre o trabalho, consumo e capital, em termos de curva de Laffer, através da aplicação de um modelo neoclássico, especialmente calibrado para a economia Portuguesa, envolvendo o período de tempo de 1995 a 2012. Foi encontrada a evidência, robusta, de curvas de Laffer para a tributação sobre o trabalho e capital. Este estudo concluiu que Portugal tem margem para aumentar impostos, numa perspetiva de steady state, sendo que Portugal pode aumentar a sua rec...
Steady-state capabilities for hydroturbines with OpenFOAM
International Nuclear Information System (INIS)
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Power supplies and quench protection for the Tokamak Physics Experiment
International Nuclear Information System (INIS)
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems
Bootstrap current in a tokamak
Energy Technology Data Exchange (ETDEWEB)
Kessel, C.E.
1994-03-01
The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.
Bootstrap current in a tokamak
International Nuclear Information System (INIS)
The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and βp must be kept below a critical value
International Nuclear Information System (INIS)
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems
Development of candidate high heat flux components for steady state operation of the EAST device
International Nuclear Information System (INIS)
EAST is a full superconducting tokamak, as a National project in ASIPP, which will operate in high power and steady state, and impose severe requirements on plasma facing components (PFC). There are three aspects important: 1) PFM has high enough thermal conductivity, which can fulfill the criteria to exhaust the high power deposit on PFC and can meet the requirements of surface temperature constraints; 2) Erosion resistance is also very important, which directly related to the lifetime of plasma facing components and plasma recycling control. 3) Integration behavior of PFC under actively water-cooled conditions. A series of multi-element doped graphite has been developed for the first wall, and a super carbon sheet has been chosen as compliant layer to improve the thermal contact and minimize the surface temperature; Contrary to CBM, SiC has much lower chemical and high-temperature sputtering, is capable of oxygen gettering and lower hydrogen recycling. The behavior of thick SiC gradient coatings on different CBM under steady state and pulsed high heat flux, and HT-7 limiter plasma irradiation was investigated. Tungsten is now under development being considered as one of the promising candidate materials for the divertor plate of EAST device, several joining Methods have been developed, 2mm thick tungsten tile brazed or direct by blast compound to copper alloy heat sink with functionally gradient layer, a modeling for residual stress analysis has been established and high heat flux experiments have also been finished, a small mock-up possess good performance, a large module is now under way. In the above experiments, the samples were examined with respect to the temperature distribution, changes of surface morphology, surface atomic composition and etc. (authors)
High Beta Steady State Research and Future Directions on JT-60U and JFT-2M
Ishida, Shinichi
2003-10-01
JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.
Physics Modeling for Steady-State Experiments at Wendelstein 7-X
International Nuclear Information System (INIS)
Full text: The optimized stellarator Wendelstein 7-X (W7-X) is being built in Greifswald, Germany, as a superconducting device to show the inherent steady-state capability of stellarators at reactor-relevant parameters. For this purpose W7-X is equipped with a 10 MW cw-ECRH system at 140 GHz and a High-Heat-Flux Divertor capable of withstanding 10 MW/m2 to control particle and energy exhaust in steady-state operation. In the simplest approach, the expected plasma parameters may be derived from scaling laws like the ISS04, derived for stellarators, or for comparison from the ITER-IPB98(y,2)-scaling assuming an equivalent circular tokamak with W7-X parameters (R = 5.5 m, A = 11, ι = 1, B = 2.5 T). For densities of 1020/m3 and 10 MW heating power both scalings predict energy confinement times (τE) around 150 ms, leading to -values about 1.5%. Here, we present more detailed physics predictions based on 1D-transport modeling using a neoclassical and a simple anomalous transport model to study the accessibility of high-performance plasmas under steady-state conditions. The simulations are done for the most promising configurations of W7-X, the standard (SC) and the high-mirror configuration (HM). The SC shows an increase in tauE by a factor of up to 2.5, which makes -values of about 4% accessible for the given heating power. However, the transport simulations also show that in the SC, which has the better confinement, bootstrap currents up to 100 kA can develop while in the HM, where tauE is 30% lower than in the SC, the bootstrap current minimization from the optimization of W7-X is most effective and the net toroidal current is small. The time-evolution of the scenarios shows that on a time scale of the internal skin time (on the order of seconds) discharges in the SC without much net current may be possible. But as W7-X has no ohmic transformer, current and iota control is necessary on the global L/R-time-scale to ensure proper island divertor operation
Transient and steady-state selection in the striatal microcircuit
Directory of Open Access Journals (Sweden)
Adam Tomkins
2014-01-01
Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.
A steady-state measurement system for total hemispherical emissivity
International Nuclear Information System (INIS)
A steady-state calorimetric technique was developed for measuring the total hemispherical emissivity of a conductive material. The system uses a thin strip of the conductive sample electrically heated by alternating current to high temperatures in a vacuum chamber. The emissivity was measured in a central region of the sample with an approximately uniform temperature distribution. Considering the influences of the gray body assumption, wire heat losses, effects of residual gas and conductive heat loss from the region to the rest of the strip, the emissivity was accurately determined by solving the inverse one-dimension steady-state heat transfer problem. The emissivities of various metal samples (nickel and 45# steel) were measured to verify the system accuracy. And the results were then analyzed to estimate the relative errors of emissivity arising from the gray body assumption, wire heat losses, effects of residual gas, non-uniform temperature distribution and the measurement uncertainty of emissivity. In the temperature range from 700 to 1300 K, the accuracy is acceptable for practical applications within the total measurement uncertainties of 1.1%. To increase the system applicability, some issues related to sample specifications, heating power control and temperature uniformity of sample test section were discussed. Thus, this system can provide accurate measurements of the total hemispherical emissivity of conductive samples at high temperatures. (paper)
Nonequilibrium many-body steady states via Keldysh formalism
Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2016-01-01
Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.
Steady-state operation of spheromaks by inductive techniques
International Nuclear Information System (INIS)
A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation
Non-steady state tidal heating of Enceladus
Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.
2014-06-01
Enceladus is one of the most geologically active bodies in the Solar System. The satellite's diverse surface suggests that Enceladus was subject to past episodic heating. It is largely probable that the activity of Enceladus is not in a steady state. In order to analyze the non-steady state heating, thermal and orbital coupled calculation is needed because they affect each other. We perform the coupled calculation assuming conductive ice layer and low melting temperature. Although the heating state of Enceladus strongly depends on the rheological parameters used, episodic heating is induced if the Q-value of Saturn is less than 23,000 and Enceladus' core radius is less than 161 km. The duration of one episodic heating cycle is around one hundred million years. The cyclic change in ice thickness is consistent with the origin of a partial ocean which is suggested by plume emissions and diverse surface states of Enceladus. Although the obtained tidal heating rate is smaller than the observed heat flux of a few giga watt, other heating mechanisms involving e.g., liquid water and/or specific chemical reactions may be initiated by the formation of a partial or global subsurface ocean.
International Nuclear Information System (INIS)
To upgrade the Experimental Advanced Superconducting Tokamak dome and first-wall, flat-type W/Cu plasma-facing components will be installed in the coming years in order to exhaust the increasing heat flux. Mock-ups with an interlayer of oxygen-free Cu (OFC) made by vacuum hot pressing have been developed and the bonding strength was found to be over 100 MPa. The behavior of the mock-ups under steady-state high heat flux loads has been studied. No crack or exfoliation occurred on the W surface and W/OFC/CuCrZr interfaces after screening tests with heat fluxes of 2.24–7.73 MW m−2. The mock-up survived up to 1000 cycles heat load of 3.24 MW m−2 with cooling water of 4 m s−1, 20 °C. However, cracks appeared in W around the gaps at about the 300th cycle under a heat load of 5.37 MW m−2. We have also studied the chemical vapor deposition W coated CuCrZr with an OFC interlayer. It has been found that: (i) the OFC interlayer plays a significant role in achieving coatings without any crack, (ii) the deposition rate was about 0.3–0.5 mm h−1 at 490–580 °C and (iii) a bonding strength of 53.7 MPa was achieved with laser surfi-sculpt. (paper)
International Nuclear Information System (INIS)
The present study reveals the following two introduction conditions of a tokamak fusion power plant in a long term world energy scenario. The first condition is the electric breakeven condition, which is required for the fusion energy to be recognized as a suitable candidate of an alternative energy source in the long term world energy scenario. As for the plasma performance (normalized beta value βN, confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density limit fnGW), the electric breakeven condition requires the simultaneous achievement of 1.2NGWtmax=16 T, thermal efficiency ηe=30%, and current drive power PNBIN∼1.8, HH∼1.0, and fnGW∼0.9, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric breakeven condition. The second condition is the economic breakeven condition, which is required to be selected as an alternative energy source. By using a long term world energy and environment model, the potential of the fusion energy in the long term world energy scenario is being investigated. Under the constraint of 550 ppm CO2 concentration in the atmosphere, a breakeven price for introduction of the fusion energy in the year 2050 is estimated from 65mill/kWh to 135mill/kWh, which is considered as the economic breakeven condition in the present study. Under the conditions of Btmax=16T, ηe=40%, plant availability 60%, and a radial build with/without CS coil, the economic breakeven condition requires βN∼2.5 for 135mill/kWh of higher breakeven price case and βN∼6.0 for 65mill/kWh of lower breakeven price case. Finally, the demonstration of steady state operation with βN∼3.0 in the ITER project leads to the prospect to achieve the upper region of breakeven price in the world energy scenario. (author)
Tore Supra: 25 years of research in support of steady state operation
International Nuclear Information System (INIS)
Full text of publication follows. Since its first plasma exactly 25 years ago, Tore Supra team has developed an ambitious scientific and technical program in support of steady state scenario. Both the achievement of discharges of 1 GJ of injected/extracted energy with 2.8 MW/ 6 min and more recently 6.3 MW/ 160 s demonstrated the Tore Supra capabilities for steady state operation in particular in the area of actively cooled plasma facing components, long pulse radio-frequency heating systems, active profile model based control and material inventory. The experimental efforts have been seconded efficiently by the development of sophisticated integrated modeling tools used to interpret steady state or advanced scenario in existing experiments such as Tore Supra, JET, EAST and JT60U but also prepare the operation of future devices such as ITER, JT60SA and DEMO. Free boundary equilibrium codes coupled with transport codes have been developed for the modeling of ITER discharges. A complete suite of 1D transport code solver now integrates the most advanced source modules for neutral beam injection (NBI), ion cyclotron heating (ICH) and lower hybrid (LH) heating and current drive. This coherent program is accompanied by dedicated technological developments that have given more strength to long pulse capabilities of heating and current drive system (ICH, LH, NBI). The study and self-consistent modeling of RF-sheath is now proving essential in the design of ICRH antenna in metallic environments. Significant progress is made on the LH coupling studies at high density and in H-mode edge. Actively cooled LH launchers with low reflected power have been qualified and successful Research/Development programs are being conducted on RF windows, heavy duty sliding contacts for ICH antennas and materials for negative ion sources. In becoming an X-point diverted device with a full tungsten first wall (WEST project), Tore Supra is now entering a new phase where its long pulse
Effect of RF field strength on steady-state NOE enhancement
International Nuclear Information System (INIS)
The steady-state properties of a spin system irradiated by RF field are analysed. The steady-state NOE experiment is described by the extended Solomon equations. The steady-state NOE enhancement factor is obtained and verified by the experiments of liquids and solids
Directory of Open Access Journals (Sweden)
Jun Liu
2015-01-01
Full Text Available As using the classical quasi-steady state (QSS model could not be able to accurately simulate the dynamic characteristics of DC transmission and its controlling systems in electromechanical transient stability simulation, when asymmetric fault occurs in AC system, a modified quasi-steady state model (MQSS is proposed. The model firstly analyzes the calculation error induced by classical QSS model under asymmetric commutation voltage, which is mainly caused by the commutation voltage zero offset thus making inaccurate calculation of the average DC voltage and the inverter extinction advance angle. The new MQSS model calculates the average DC voltage according to the actual half-cycle voltage waveform on the DC terminal after fault occurrence, and the extinction advance angle is also derived accordingly, so as to avoid the negative effect of the asymmetric commutation voltage. Simulation experiments show that the new MQSS model proposed in this paper has higher simulation precision than the classical QSS model when asymmetric fault occurs in the AC system, by comparing both of them with the results of detailed electromagnetic transient (EMT model of the DC transmission and its controlling system.
Steady-state negative Wigner functions of nonlinear nanomechanical oscillators
Rips, Simon; Wilson-Rae, Ignacio; Hartmann, Michael J
2011-01-01
We propose a scheme to prepare nanomechanical oscillators in non-classical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser driven resonances of an optical cavity. By lowering the resonant frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables preparation of the nanomechanical oscillator in a single phonon Fock state. Our scheme can for example be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity.
Steady-state negative Wigner functions of nonlinear nanomechanical oscillators
International Nuclear Information System (INIS)
We propose a scheme for preparing nanomechanical oscillators in nonclassical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser-driven resonances of an optical cavity. By lowering the resonance frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables the preparation of the nanomechanical oscillator in a single-phonon Fock state. Our scheme can, for example, be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity. (paper)
Waveguides formed by quasi-steady-state photorefractive spatial solitons
Morin, Matthew; Duree, Galen; Salamo, Gregory; Segev, Mordechai
1995-10-01
We show that a quasi-steady-state photorefractive spatial soliton forms a waveguide structure in the bulk of a photorefractive material. Although the optically induced waveguide is formed by a very low-power (microwatts) soliton beam, it can guide a powerful (watt) beam of a longer wavelength at which the medium is nonphotosensitive. Furthermore, the waveguide survives, either in the dark or when guiding the longer-wavelength beam, for a long time after the soliton beam is turned off. We take advantage of the solitons' property of evolution from a relatively broad input beam into a narrow channel and show that the soliton induces a tapered waveguide (an optical funnel) that improves the coupling efficiency of light into the waveguiding structure.
Steady State Rheological Characteristic of Semisolid Magnesium Alloy
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Isothermal compressive experiments at different temperatures, strain rates and holding time for semisolid AZ91D, Zr modified AZ91D and MB15 alloy with higher solid volume fraction were carried out by using Gleeble-15000 simulator and the true stress-strain curves were given directly. The relationship of apparent viscosity vs temperature, shear rate and holding time of the three kinds of semi-solid magnesium alloys, as well as isothermal steady state rheological characteristic and mechanical behavior were studied. The results show that the three magnesium alloys had the characteristic of shear-thinning. The rheological characteristic of the semi-solid MB15 is different from that of semi-solid AZ91D. The semi-solid MB15 has higher apparent viscosity and deformation resistance.
NASA Lewis Steady-State Heat Pipe Code Architecture
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
Relativistic Hydrodynamics and Non-Equilibrium Steady States
Spillane, Michael
2015-01-01
We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.
Factorised steady states and condensation transitions in nonequilibrium systems
Indian Academy of Sciences (India)
M R Evans
2005-06-01
Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several `condensation' transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.
Simulation of Power Electronic Converters Using Quasi Steady State Approximation
Directory of Open Access Journals (Sweden)
Predrag Pejović
2012-12-01
Full Text Available A new method to compute voltage and current waveforms of power electronic converters is proposed in the paper. The method relies on simulation result of averaged circuit model, and superimposes the ripple of the inductor currents to the obtained average values, assuming that the linear ripple approximation applies. To determine the amplitude of the switching ripple, a quasi steady state approximation is proposed. After the inductor currents are obtained, currents of switching components are computed by multiplying them with appropriate switching functions. The algorithmprovides an efficient tool to generate the converter waveforms in order to compute their spectra, mean and RMS values, which are of interest in designing filters and estimating converter losses.
Steady-state, cavity-less, multimode superradiance
Greenberg, Joel A
2012-01-01
The study of collective light-matter interactions, where the dynamics of an individual scatterer depend on the state of the entire multi-scatterer system, has recently received much attention in the areas of fundamental research and photonic technologies. Cold atomic vapors represent an exciting system for studying such effects because light-based manipulation of internal and center-of-mass atomic states lead to reduced instability thresholds and new phonomena. Previous investigations required single-mode cavities to realize strong light mediated atom-atom interactions, though, which limits the observable phenomena. Here we demonstrate steady-state, mirrorless superradiance in a cold vapor pumped by weak optical fields. Beyond a critical pumping strength, the vapor spontaneously transforms into a spatially self-organized state: a density grating forms. Scattering of the pump beams off this grating generates new optical fields that act back on the vapor to enhance the atomic organization. This system has appli...
The thermal vacuum for non-equilibrium steady state
Imai, Ryosuke; Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya
Our purpose is to construct a theoretical description of non-equilibrium steady state (NESS), employing thermo field dynamics (TFD). TFD is the operator-based formalism of thermal quautum field theory, where every degree of freedom is doubled and thermal averages are given by expectation values of the thermal vacuum. To specify the thermal vacuum for NESS is a non-trivial issue, and we attempt it on the analogy between the superoperator formalism and TFD. Using the thermal vacuum thus obtained, we analyze the NESS which is realized in the two-reservoir model. It will be shown that the NESS vacuum of the model coincides with the fixed point solutions of the quantum transport equation derived by the self-consistent renormalization of the self-energy in non-equilibrium TFD.
Avoiding Rebound through a Steady-State Economy
DEFF Research Database (Denmark)
Nørgaard, Jørgen
2008-01-01
The debate on the rebound effect as presented in most chapters in this book is based upon experience from the past more than visions of the future. The analyses are dominated by conventional economic theory, which implicitly assumes insatiable demand for energy services. Material consumption is...... only buy some time. From this perspective, the environmental problem with the rebound effect is not the higher energy efficiency, which pushes towards lower flows of resources through the economy, but rather the conventional economy which rebounds the savings, because of its quest for higher flows. In...... this chapter, I shall take the rebound debate further by discussing the possible role of energy efficiency in a sustainable economy that is based on the notion of ‘sufficiency’. The assumption is that globally we need to achieve a ‘steady-state economy’. Considering the urgent need for better material...
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
Stabilization of unstable steady states by variable delay feedback control
Gjurchinovski, Aleksandar
2008-01-01
We report on a dramatic improvement of the performance of the classical time-delayed autosynchronization method (TDAS) to control unstable steady states, by applying a time-varying delay in the TDAS control scheme in a form of a deterministic or stochastic delay-modulation in a fixed interval around a nominal value $T_0$. The successfulness of this variable delay feedback control (VDFC) is illustrated by a numerical control simulation of the Lorenz and R\\"{o}ssler systems using three different types of time-delay modulations: a sawtooth wave, a sine wave, and a uniform random distribution. We perform a comparative analysis between the VDFC method and the standard TDAS method for a sawtooth-wave modulation by analytically determining the domains of control for the generic case of an unstable fixed point of focus type.
Transient and steady state modelling of a coupled WECS
Nathan, G. K.; Tan, J. K.
The paper presents a method for simulation of a wind turbine using a dc motor. The armature and field voltages of the dc motor are independently regulated to obtain torque-speed characteristics which correspond to those of a wind turbine at different wind speeds. The mass moment of inertia of the wind turbine is represented by adding a rotating mass to a parallel shaft which is positively coupled to the motor shaft. To verify the method of simulation, an American multiblade wind turbine is chosen, loaded by coupling to a centrifugal pump. Using the principle of conservation of energy and characteristics of both constituent units, two mathematical models are proposed: one for steady state operation and another for the transient state. The close comparison between the theoretical and the experimental results validates the proposed models and the method of simulation. The experimental method is described and the results of the experimental and theoretical investigation are presented.
Steady States in SIRS Epidemical Model of Mobile Individuals
Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan
2006-01-01
We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.
Charged particle creation in the steady state universe
International Nuclear Information System (INIS)
The birth of a particle of charge q(0), initial mass m(0), and radius a in the steady state universe is studied. With the particle's birth, in accord with causality, gravity, and Coulomb fields propagate away from it with the speed of light. Field energies are supplied by the particle's mass which subsequently decays in time. Asymptotic solution to a nonlinear equation for the remaining mass gives the criterion m(0) is greater that q(0)2/2ac2 as a necessary condition for the initial mass to survive the field expansion. The resulting radius of a classical charged particle is found to be greater than the standard value obtained by equating self- and rest-mass energies of the initial particle. 12 refs
Steady-state solution methods for open quantum optical systems
Nation, P D
2015-01-01
We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterat...
Entanglement structure of non-equilibrium steady states
Mahajan, Raghu; Mumford, Sam; Tubman, Norm; Swingle, Brian
2016-01-01
We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a di...
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steady state asymmetric planetary electrical induction. [by solar wind
Horning, B. L.; Schubert, G.
1974-01-01
An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.
Determining "small parameters" for quasi-steady state
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2015-08-01
For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.
Laguna Verde BWRs operational experience: steady-state fuel performance
International Nuclear Information System (INIS)
The two BWR at Laguna Verde nuclear power station are finishing 21 and 15 years of continuous successful operation as of 2010. During Unit 1 and 2 commercial operations only Ge/GNF fuel designs have been employed; fuel lattice designs 8 x 8 and 10 x 10 were used at the reactor, with an original licensed thermal power (OLTP: 1931 MWt) and the reactor's first power up-rates of 5%. GNF fuel will be also used for the second EPU to reach 120% of OLTP in the near future. Thermal and gamma traversing in-core probes (Tip) are used for power monitoring purposes along with the Ge (now GNF-A) core monitoring system, 3-dimensional MonicoreTM. GNF-A has also participated by preparing the core management plan that is regularly fine-tuned in collaboration with Comision Federal de Electricidad (CFE owner of the Laguna Verde reactors). For determination of thermal margins and eigenvalue prediction, GNF-A employs the NRC-licensed steady-state core simulator PANAC11. Tip comparisons are routinely used to adapt power distributions for a better thermal margin calculation. Over the years, several challenges have appeared in the near and long term fuel management planning such as increasing cycle length, optimization of the thermal margins, rated power increase, etc. Each challenge has been successfully overcome via operational strategy, code improvements and better fuel designs. This paper summarizes Laguna Verde Unit 1 and 2 steady-state performance from initial commercial operation, with a discussion of the nuclear and thermal-hydraulic design features, as well as of the operational strategies that set and interesting benchmark for future fuel applications, code development and operation of the BWRs. (Author)
Steady-state spectroscopy of new biological probes
Abou-Zied, Osama K.
2007-02-01
The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.
A mathematical model of pan evaporation under steady state conditions
Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.
2016-09-01
In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.
Recent Progress of HT-7U Superconducting Tokamak
Weng, Pei-de
2002-12-01
HT-7U is a superconducting tokamak, which is being constructed in Institute of Plasma Physics, Chinese Academy of Sciences. The mission of the HT-7U project is to develop a scientific and engineering basis of the steady state operation of advanced tokamak. The engineering design of the device has been optimized. The R&D program is going on. Short samples of the conductor and a CS model coil were tested. All the TF and PF coils will be manufactured and tested in Institute of Plasma Physics. Therefore, a 600-meter long jacketing line for cable-in-conduit conductors along with two winding machines, a set of VPI equipment and a test facility for the TF and PF coils are ready in ASIPP now. In this paper, the recent progress of the HT-7U is described.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
Energy Technology Data Exchange (ETDEWEB)
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Hu, Liqun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Yubao [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
International Nuclear Information System (INIS)
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S
2015-07-01
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377
The study of heat flux for disruption on experimental advanced superconducting tokamak
Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen
2016-05-01
Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.
International Nuclear Information System (INIS)
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties
Energy Technology Data Exchange (ETDEWEB)
Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)
2015-07-15
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.
Exploration of steady-state scenarios for the Fusion Development Facility (FDF)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.; Choi, M.; Kinsey, J. E.; Lao, L. L.; Snyder, P. B.; St. John, H. E.; Turnbull, A. D.
2011-10-01
A Fusion Nuclear Science Facility (FNSF) has to operate at 105 times longer duration than that of present tokamak discharges. The scalability of plasma sustainment to such a long time is an issue that needs to be resolved by scientific understanding. We carry out steady-state (SS) scenario development of the FDF (a candidate for FNSF-AT) using an iterative process toward a self-consistent solution via alternating temperature profiles and current profile evolution. The temperature profile evolves according to a physics-based transport model GLF23. SS requires large off-axis current drive (CD). To achieve this with no NBI is highly challenging. It however simplifies tritium containment, increases area for tritium breeding, and avoids costly negative-ion NBI technology. We find that with ECH/ECCD only, too much power is required. A SS baseline equilibrium is found by adding LHCD: Qfus ~ 4 , H98 y 2 ~ 1 . 2 , fBS ~ 70 %, Pfus ~ 260 MW, PEC = 35 MW, PLH = 21 MW. The GATO ideal MHD code finds the equilibrium stable to n = 1 internal kink at κ = 2 . 3 . Work supported by General Atomics internal funds.
Data system design considerations for a pseudo-steady-state device
International Nuclear Information System (INIS)
The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis
Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H
2014-11-01
The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G. PMID:25430242
International Nuclear Information System (INIS)
The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G
Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Fan, T. S.; Chen, J. X.; Li, X. Q.; Zhang, G. H.
2014-11-01
The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.
International Nuclear Information System (INIS)
The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.
Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q
2014-11-01
A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s. PMID:25430391
Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.
Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C
2014-11-01
To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented. PMID:25430314
International Nuclear Information System (INIS)
A test assembly of carbon coated molybdenum tiles was exposed to a sequence of well-diagnosed ohmic helium discharges in the Experimental Advanced Superconducting Tokamak (EAST) using the material and plasma evaluation system. The test assembly was configured to approximate, on a reduced scale, the profile of a first-wall panel in ITER. Net erosion and deposition of carbon was determined from measurements of the thickness of a carbon surface layer by ion-beam analysis before and after the plasma exposure. The highest erosion of 800 nm, or about one third of the initial thickness, occurred near the EAST midplane on the side facing the ion-drift direction. Erosion decreased in toroidal and poloidal directions with increasing distance from the plasma. Net deposition was not observed anywhere above the limit of detection. This experiment provides data needed to benchmark codes being used to predict erosion/deposition in ITER. (paper)
International Nuclear Information System (INIS)
The Fusion Experimental Reactor (FER) which is being developed at JAERI as a next-generation tokamak following JT-60 has the major purpose of realizing a self-ignited, long-burning DT plasma and demonstrating engineering feasibility. The paper emphasizes the advanced scenario of FER plasma operation and control and the advantage in engineering design made possible by the scenario. The FER concept is discussed, which is based on quasi-steady-state operation by a lower-hybrid-wave current drive or steady-state operation by three candidate radiofrequency waves, impurity control by a cold and dense divertor plasma and vertical position control of a highly elongated plasma. (author)
Steady-state operation of tokamaks: Key physics and technology developments on Tore Supra
International Nuclear Information System (INIS)
Important technological and physics issues related to long pulse operation required for a reactor are now being addressed in Tore Supra. experimental results in conditions where all the plasma facing components are actively cooled during pulses exceeding six minutes. Important physics issues related to continuous operation are observed in non inductively driven plasmas. (author)
Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra
Czech Academy of Sciences Publication Activity Database
Giruzzi, G.; Abgrall, R.; Allegretti, L.; Ané, J.M.; Angelino, P.; Aniel, T.; Argouarch, A.; Artaud, J.F.; Balme, S.; Basiuk, V.; Bayetti, P.; Bécoulet, A.; Bécoulet, M.; Begrambekov, L.; Benkadda, M.S.; Benoit, F.; Berger-by, G.; Bertrand, B.; Beyer, P.; Blum, J.; Boilson, D.; Bottollier-Curtet, H.; Bouchand, C.; Bouquey, F.; Bourdelle, C.; Brémond, F.; Brémond, S.; Brosset, C.; Bucalossi, J.; Buravand, Y.; Cara, P.; Carpentier, S.; Casati, A.; Chaibi, O.; Chantant, M.; Chappuis, P.; Chatelier, M.; Chevet, G.; Ciazynski, D.; Ciraolo, G.; Clairet, F.; Clary, J.; Colas, L.; Corre, Y.; Courtois, X.; Crouseilles, N.; Darmet, G.; Davi, M.; Daviot, R.; De Esch, H.; Decker, J.; Decool, P.; Delchambre, E.; Delmas, E.; Delpech, L.; Desgranges, C.; Devynck, P.; Doceul, L.; Dolgetta, N.; Douai, D.; Dougnac, H.; Duchateau, J.L.; Dumont, R.; Dunand, A.; Durocher, A.; Ekedahl, A.; Elbeze, D.; Eriksson, L.G.; Escarguel, A.; Escourbiac, F.; Faisse, F.; Falchetto, G.; Farge, M.; Farjon, L.J.; Fedorczak, N.; Fenzi-Bonizec, C.; Garbet, X.; Garcia, J.; Gardarein, J.L.; Gargiulo, L.; Garibaldi, P.; Gauthier, E.; Géraud, A.; Gerbaud, T.; Geynet, M.; Ghendrih, P.; Gil, C.; Goniche, M.; Grandgirard, V.; Grisolia, C.; Gros, G.; Grosman, A.; Guigon, R.; Guilhem, D.; Guillerminet, B.; Guirlet, R.; Gunn, J.; Hacquin, S.; Hatchressian, J.C.; Hennequin, P.; Henry, D.; Hernandez, C.; Hertout, P.; Heuraux, S.; Hillairet, J.; Hoang, G.T.; Hong, S.H.; Honore, C.; Hourtoule, J.; Houry, M.; Hutter, T.; Huynh, P.; Huysmans, G.; Imbeaux, F.; Joffrin, E.; Johner, J.; Journeaux, J.Y.; Jullien, F.; Kazarian, F.; Kočan, M.; Lacroix, B.; Lamaison, V.; Lasalle, J.; Latu, G.; Lausenaz, Y.; Laviron, C.; Le Niliot, C.; Lennholm, M.; Leroux, F.; Linez, F.; Lipa, M.; Litaudon, X.; Loarer, T.; Lott, F.; Lotte, P.; Luciani, J.F.; Lütjens, H.; Macor, A.; Madeleine, S.; Magaud, P.; Maget, P.; Magne, R.; Manenc, L.; Marandet, Y.; Marbach, G.; Maréchal, J.L.; Martin, C.; Martin, V.; Martinez, A.; Martins, J.P.; Masset, R.; Mazon, D.; Meunier, L.; Meyer, O.; Million, L.; Missirlian, M.; Mitteau, R.; Mollard, P.; Moncada, V.; Monier-Garbet, P.; Moreau, D.; Moreau, P.; Nannini, M.; Nardon, E.; Nehme, H.; Nguyen, C.; Nicollet, S.; Ottaviani, M.; Pacella, D.; Pamela, S.; Parisot, P.; Parrat, H.; Pastor, P.; Pecquet, A.L.; Pégourié, B.; Petržílka, Václav; Peysson, Y.; Portafaix, C.; Prou, M.; Ravenel, N.; Reichle, R.; Reux, C.; Reynaud, P.; Richou, M.; Rigollet, F.; Rimini, F.; Roche, H.; Rosanvallon, S.; Roth, J.; Roubin, P.; Sabot, R.; Saint-Laurent, F.; Salasca, S.; Salmon, T.; Samaille, F.; Santagiustina, A.; Saoutic, B.; Sarazin, Y.; Schlosser, J.; Schneider, K.; Schneider, M.; Schwander, F.; Ségui, J.L.; Signoret, J.; Simonin, A.; Song, S.; Sonnendruker, E.; Spuig, P.; Svensson, L.; Tamain, P.; Tena, M.; Theis, J.M.; Thonnat, M.; Torre, A.; Travère, J.M.; Trier, E.; Tsitrone, E.; Turco, F.; Vallet, J.C.; Vatry, A.; Vermare, L.; Villecroze, F.; Villegas, D.; Voyer, D.; Vulliez, K.; Xiao, W.; Yu, D.; Zani, L.; Zou, X.L.; Zwingmann, W.
2009-01-01
Roč. 49, č. 10 (2009), s. 104010-104010. ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : SOL * LH wave * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.270, year: 2009 http://www.iop.org/EJ/toc/0029-5515/49/10
A simplified system for steady state process simulation
International Nuclear Information System (INIS)
The system described in this report represents an attempt to apply the function of industrial flow sheet simulators to tritium processing applications. To overcome some of the difficulties associated with the use of larger simulation packages, report formats have been designed to accommodate wide ranges of component concentrations; and physical property data requirements have been designed around commonly available data. The simulation system includes a predefined structure for storage of stream and component data, unit operation block parameters, and the other data needed to describe a simulation. Other support subroutines, which are needed to perform computations common to different unit operation subroutines, are included, along with some of the more common unit operation modules. To perform a simulation, the user codes an executive routine that calls the appropriate support and unit operation subroutines - as well as any additional support or unit operation subroutines not already part of the system. This code is then compiled and linked to a library, which contains the existent parts of the system, to produce an executable program. This program is run, with the user's data file as input, to compute the steady state performance of the flow sheet being simulated. The existent part of the system is coded in Microsoft FORTRAN-77, which should be largely compatible with other FORTRAN compilers. The simulation system has been compiled and placed in a library which is usable by a Microsoft linkage editor on an IBM PC
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Raz, Oren; Subasi, Yigit; Jarzynski, Christopher
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.
Steady state relativistic stellar dynamics around a massive black hole
Bar-Or, Ben
2015-01-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...
Comparison of Gene Regulatory Networks via Steady-State Trajectories
Directory of Open Access Journals (Sweden)
Seungchan Kim
2007-05-01
Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.
Comparison of Gene Regulatory Networks via Steady-State Trajectories
Directory of Open Access Journals (Sweden)
Choi Woonjung
2007-01-01
Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.
Steady-state growth of the marine diatom Thalassiosira pseudonana
Energy Technology Data Exchange (ETDEWEB)
Olson, R.J. (Scripps Inst. of Oceanography, La Jolla, CA); SooHoo, J.B.; Kiefer, D.A.
1980-09-01
Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using /sup 15/N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which /sup 15/N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea.
Steady-state growth of the marine diatom Thalassiosira pseudonana
International Nuclear Information System (INIS)
Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using 15N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which 15N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state. PMID:26764644
Flavour fields in steady state: stress tensor and free energy
Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan
2016-02-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Estimation of the Maximal Lactate Steady State in Endurance Runners.
Llodio, I; Gorostiaga, E M; Garcia-Tabar, I; Granados, C; Sánchez-Medina, L
2016-06-01
This study aimed to predict the velocity corresponding to the maximal lactate steady state (MLSSV) from non-invasive variables obtained during a maximal multistage running field test (modified University of Montreal Track Test, UMTT), and to determine whether a single constant velocity test (CVT), performed several days after the UMTT, could estimate the MLSSV. Within 4-5 weeks, 20 male runners performed: 1) a modified UMTT, and 2) several 30 min CVTs to determine MLSSV to a precision of 0.25 km·h(-1). Maximal aerobic velocity (MAV) was the best predictor of MLSSV. A regression equation was obtained: MLSSV=1.425+(0.756·MAV); R(2)=0.63. Running velocity during the CVT (VCVT) and blood lactate at 6 (La6) and 30 (La30) min further improved the MLSSV prediction: MLSSV=VCVT+0.503 - (0.266·ΔLa30-6); R(2)=0.66. MLSSV can be estimated from MAV during a single maximal multistage running field test among a homogeneous group of trained runners. This estimation can be further improved by performing an additional CVT. In terms of accuracy, simplicity and cost-effectiveness, the reported regression equations can be used for the assessment and training prescription of endurance runners. PMID:27116348
Hyperbolic method for magnetic reconnection process in steady state magnetohydrodynamics
Baty, Hubert; Nishikawa, Hiroaki
2016-06-01
A recent numerical approach for solving the advection-diffusion and Navier-Stokes equations is extended for the first time to a magnetohydrodynamic (MHD) model, aiming in particular consistent improvements over classical methods for investigating the magnetic reconnection process. In this study, we mainly focus on a two-dimensional incompressible set of resistive MHD equations written in flux-vorticity scalar variables. The originality of the method is based on hyperbolic reformulation of the dissipative terms, leading to the construction of an equivalent hyperbolic first-order (spatial derivatives) system. This enables the use of approximate Riemann solvers for handling dissipative and advective flux in the same way. A simple second-order finite-volume discretization on rectangular grids using an upwind flux is employed. The advantages of this method are illustrated by a comparison to two particular analytical steady state solutions of the inviscid magnetic reconnection mechanism, namely the magnetic annihilation and the reconnective diffusion problems. In particular, the numerical solution is obtained with the same order of accuracy for the solution and gradient for a wide range of magnetic Reynolds numbers, without any deterioration characteristic of more conventional schemes. The amelioration of the hyperbolic method and its extension to time-dependent MHD problems related to solar flares mechanisms is also discussed.
The Path of Carbon in Photosynthesis. XX. The Steady State
Energy Technology Data Exchange (ETDEWEB)
Calvin, M.; Massini, Peter
1952-09-01
The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.
Interplanetary cosmic ray radial gradients with steady state modulation models
Energy Technology Data Exchange (ETDEWEB)
Potgieter, M.S.; Le Roux, J.A.; Burger, R.A.
1989-03-01
We have used steady state modulation models of increasing complexity, with emphasis on drift models, to establish to what extent these models can simulate the observed cosmic ray integral radial gradient (energygreater than or equal to60--70 MeV/nucleon) in the heliosphere from 1977 to 1986. Special attention has been given to the apparent asymmetric behavior of the radial gradient with respect to the recent interplanetary magnetic field polarity reversal, and the remarkable constant radial gradient for the years 1977--1982. Instead of using differential intensities at specific energies, we presented integral radial gradients calculated from the computed integral intensities which made comparison with observations more realistic. We found that nondrift models had difficulties producing constant radial gradients over several years of increasing solar activity, because these models depend primarily on changes of the radial diffusion coefficient K/sub r//sub r/ to simulate an 11-year cycle and therefore produce, in general, radial gradients symmetric with respect to solar maximum activity. Making these models independent of changes in K/sub r//sub r/ needs, in our opinion, unrealistic changes in the conventional modulation parameters.
Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity
Directory of Open Access Journals (Sweden)
Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes
2014-09-01
Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.
Dynamic steady-state of periodically-driven quantum systems
Yudin, V I; Basalaev, M Yu; Kovalenko, D
2015-01-01
Using the density matrix formalism, we prove an existence theorem of the periodic steady-state for an arbitrary periodically-driven system. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution ($t$$\\to$$+\\infty$) due to relaxation processes. The presented derivation simultaneously contains a simple computational algorithm non-using both Floquet and Fourier theories, i.e. our method automatically guarantees a full account of all frequency components. The description is accompanied by the examples demonstrating a simplicity and high efficiency of our method. In particular, for three-level $\\Lambda$-system we calculate the lineshape and field-induced shift of the dark resonance formed by the field with periodically modulated phase. For two-level atom we obtain the analytical expressions for signal of the direct frequency comb spectroscopy with rectangular light pulses. In this case it was shown the radical dependence of the spectroscopy lineshape on pul...
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
Steady state thermal-hydraulic analyses of the MITICA cooling circuits
Energy Technology Data Exchange (ETDEWEB)
Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)
2016-02-15
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.
Vacuum system problems of EBT: a steady-state fusion experiment
International Nuclear Information System (INIS)
Many of the vacuum problems faced by EBT will soon be shared by other plasma devices as high-power microwave systems and long pulse lengths become more common. The solutions used on EBT (such as the raised lip with elastomer seal) are not unique; however, experience has shown that microwave-compatible designs must be carefully thought out. All details of the vacuum must be carefully thought out. All details of the vacuum must be carefully screened in advance to insure that microwaves do not leak into pumps or diagnostics where they can cause major damage. Sputter coating, which even now is noticeably present in most pulsed plasma systems, becomes much worse as systems approach steady state. And finally, radiation degradation of components which is presently a minor problem will become significant on high-power microwave-fed devices, such as EBT-P
Steady-State Microbunching in a Storage Ring for Generating Coherent Radiation
Energy Technology Data Exchange (ETDEWEB)
Ratner, Daniel F.; /Stanford U., Appl. Phys. Dept.; Chao, Alexander W.; /SLAC
2011-05-19
Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high repetition rates, and free electron lasers (FELs) produce radiation pulses with high peak brightness. However, at present few light sources can generate both high repetition rate and high brightness outside the optical range. We propose to create steady-state microbunching (SSMB) in a storage ring to produce coherent radiation at a high repetition rate or in continuous wave (CW) mode. In this paper we describe a general mechanism for producing SSMB and give sample parameters for EUV lithography and sub-millimeter sources. We also describe a similar arrangement to produce two pulses with variable spacing for pump-probe experiments. With technological advances, SSMB could reach the soft X-ray range (< 10 nm).
Steady state thermal-hydraulic analyses of the MITICA cooling circuits
International Nuclear Information System (INIS)
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled
Runov, A. M.; Kasilov, S. V.; Helander, P.
2015-11-01
A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.
Fast Estimation of Plant Steady State, with Application to Static RTO
Rodrigues, Diogo; Amrhein, Michael; Billeter, Julien; Bonvin, Dominique
2016-01-01
In the operation of continuous processes, many tasks require the knowledge of plant steady state at various operating points. This is for example the case in the context of kinetic modeling, response surface modeling and real-time optimization. If the computational techniques are in principle straightforward, the time needed to reach steady state represents the main limiting factor. This work proposes a novel way of speeding up the estimation of plant steady state through...
Aslan Sabahaldeen Jalal Abdi
2011-01-01
The objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state...
Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas
Ribeiro, Celso
2015-11-01
The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.
Overview of recent experimental results from the DIII-D advanced tokamak program
International Nuclear Information System (INIS)
The goals of DIII-D Advanced Tokamak (AT) experiments are to investigate and optimize the upper limits of energy confinement and MHD stability in a tokamak plasma, and to simultaneously maximize the fraction of non-inductive current drive. Significant overall progress has been made in the past 2 years, as the performance figure of merit βN H89P of 9 has been achieved in ELMing H-mode for over 16 τE without sawteeth. We also operated at βN∼7 for over 35 τE or 3 τR, with the duration limited by hardware. Real-time feedback control of β (at 95% of the stability boundary), optimizing the plasma shape (e.g., δ, divertor strike- and X-point, double/single null balance), and particle control (ne/nGW∼0.3, ZeffN H89P of 7. The QDB regime has been obtained to date only with counter neutral beam injection. Further modification and control of internal transport barriers (ITBs) has also been demonstrated with impurity injection (broader barrier), pellets, and ECH (strong electron barrier). The new Divertor-2000, a key ingredient in all these discharges, provides effective density, impurity and heat flux control in the high-triangularity plasma shapes. Discharges at ne/nGW∼1.4 have been obtained with gas puffing by maintaining the edge pedestal pressure; this operation is easier with Divertor-2000. We are developing several other tools required for AT operation, including real-time feedback control of resistive wall modes (RWMs) with external coils, and control of neoclassical tearing modes (NTMs) with electron cyclotron current drive (ECCD). (author)
Steady State Analysis of Multiple Effect Evaporation (MEE) Desalination Process
International Nuclear Information System (INIS)
Life without water is not possible. Like other natural resources, the global resources of fresh water are unevenly distributed. The world population is increasing at very rapid rate while the natural water resources remain constant. This gap is expected to widen dramatically in the near future. Our country like most countries in the east suffer from water stressed condition. Desalination is only the logical or available solution. In MED units, the feed seawater sprayed individually in each effect is heated to form pure vapors, which condense to form product water. Irrespective of the continuous development of the desalination industry the thermal desalination is still expensive. The study presented in this thesis is motivated by, to study the impact of various cost controlling parameters on the performance of MEE desalination process. KANUPP has two desalination plants (RO and NDDP). The NDDP has parallel feed cross flow multiple effect evaporation (MEE-PC) configurations. The study presented in this thesis describes a simplified steady state mathematical model to analyze the MED systems. The results obtained by the model are compared with the NDDP data. The developed model is used to investigate the effect of the parameters controlling the product water cost. These parameters includes thermal performance ratio, cooling water flow rate and heat transfer area. It can also be used to study the effect of variation in the operating conditions of the plant on the plant performance. The effect of the process variables on the performance of MED is carried out. This includes the effect of number of effects, intake seawater salinity and heating stream temperature, vacuum condition in term of vapor temperature of last effect. (author)
Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity
Figueiredo, Pedro; Nazario, Rafael; Sousa, Marisa; Pelarigo, Jailton Gregório; Vilas-Boas, João Paulo; Fernandes, Ricardo
2014-01-01
The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS). Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA), allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%): stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation). However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity. Key Points In MLSS swimming intensity, stability of the stroke length and stroke frequency occurs after an initial adaptation. Efficiency indicators seem to be more sensitive to possible changes occurring through time at MLSS intensity. MLSS is a useful and practical swimming intensity to be maintained for a long period of time, but some constraints in technique can occur. PMID:25177189
Impact of aquifer desaturation on steady-state river seepage
Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen
2016-02-01
Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.
A new perspective on steady-state cosmology: from Einstein to Hoyle
O'Raifeartaigh, Cormac
2015-01-01
We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein's steady-state cosmology with that of Hoyle, Bondi and Gold and consider the reasons Einstein abandoned his model. The relevance of steady-state models for today's cosmology is briefly reviewed.
The diffusion equation and the steady state. Chapter 2
International Nuclear Information System (INIS)
We shall now study the equations that govern the neutron field in a reactor. These equations are based on the concept of local neutron balance, which takes into account the reaction rates in an element of volume and the net leakage rates out of the volume. The reaction rates are written in terms of the local cross sections, assumed known from a preprocessed database (e.g., ENDF/B-VI). The starting equation is the Maxwell-Boltzmann transport equation, in its integro-differential form. The various approximations required to go from the transport equation to the neutron diffusion equation will be presented first, because all finite-reactor calculations are based on the diffusion approximation. We shall then discuss the multi-group formalism of the diffusion equations and study the mathematical properties of this equation in steady state. This preliminary step will allow us to derive in a more accurate way, in the next chapter, the reactor point-kinetics equations. In the diffusion approximation, neutrons diffuse from regions of high concentration to regions of low concentration, just as heat diffuses from regions of high temperature to those of low temperature, or, rather, as gas molecules diffuse to reduce spatial variations in concentration. While it is sufficiently accurate to treat the transport of gas molecules as a diffusion process, this approach is too limiting for neutron transport. In contrast to a gas, where collisions are very frequent, the cross sections for the interaction of neutrons with nuclei are relatively small, as we saw in chapter 1 (of the order of barns, i.e., 10-24cm2) . This implies that neutrons traverse appreciable distances (of the order of a centimetre) between collisions. This relatively long neutron mean free path, together with the heterogeneity of the physical medium, requires that a more complete treatment be carried out, taking account of variations in the angular distribution of neutron speed in the vicinity of highly absorbing
MHD issues in Tore Supra steady-state fully non-inductive scenario
International Nuclear Information System (INIS)
Full text: Impact of MHD modes on non-inductive discharges: a crucial issue Fully non-inductive tokamak plasma discharges are attractive for a fusion reactor, and the understanding of their MHD limitations beyond the linear stability analysis is therefore essential. Specific features are due to the enhanced impact of non-linear effects: one is due to the bootstrap current perturbation, and the other is linked to the intrinsic physics of plasma current generation by the external system used. In the Tore Supra tokamak, a Lower Hybrid wave launcher provides the external source, which has non-linear dependences on the plasma current and electron temperature profiles. Such complex interplay is causing spontaneous temperature oscillations, but also a regime with permanent MHD activity, after the triggering of a double-tearing mode. We report observations and interpretations of MHD modes in such non-inductive discharges in Tore Supra. The double-tearing mode and its non-linear impact: experiment and simulations Due to the slightly hollow deposition profile of LH waves in Tore Supra, the magnetic configuration exhibits a flat or reversed q-profile. The plasma is therefore prone to the triggering of double-tearing modes. In its non-linear development, this mode can either produce a regime of periodic crashes (the q=2 sawteeth), or degenerate into the MHD regime where islands are produced on q=3 and q=4. With its large radial extension, the double-tearing mode could have dramatic effect on a scenario with important bootstrap fraction, as confirmed by numerical simulations. MHD modes: a powerful diagnostic for investigating oscillating regimes In cases where oscillating regimes are present, MHD modes give valuable information about the dynamics of the current profile, as will be shown. Safe operation diagram for non-inductive discharges: preforming and steady-state phases Only the full reconnection of a double tearing mode has an important impact on a Tore Supra non
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-Mei; WAN Bao-Nian; WU Zhen-Wei
2007-01-01
Diagnostic neutral beam (DNB) attenuation and charge exchange recombination emission are estimated on EAST tokamak. Approximately 40% of the beam with the energy of 50 keV can reach the plasma centre (r = 0) for the typical parameters of the Experimental Advanced Superconducting Tokamak (EAST) plasma. Emissivities of CVI (n = 8 → 7, 529.0nm) and OVⅢ (n = 10 → 9, 607.0 nm) visible charge exchange recombination emissions based on the DNB are estimated. The emissivities of the visible bremsstrahlung emission near this wavelength are also calculated for comparison. The results show that the charge exchange recombination emission is about two orders of magnitude greater than the bremsstrahlung emission. It is theoretically indicated that the ratio of signal of charge exchange recombination spectroscopy to the noise from background bremsstrahlung emission,S/N, is large enough in the EAST tokamak with the typical designed parameters. The present results are helpful for experiment design of charge-exchange recombination spectroscopy based on the DNB in the EAST tokamak.
Moreau, D.; Mazon, D.; Ariola, M.; DeTommasi, G.; Laborde, L.; Piccolo, F.; Sartori, F.; Tala, T.; Zabeo, L.; Boboc, A.; Bouvier, E.; Brix, M.; Brzozowski, J.; Challis, C. D.; Cocilovo, V.; Cordoliani, V.; Crisanti, F.; DeLa Luna, E.; Felton, R.; Hawkes, N.; King, R.; Litaudon, X.; Loarer, T.; Mailloux, J.; Mayoral, M.; Nunes, I.; Surrey, E.; Zimmerman, O.; EFDA Contributors, JET
2008-10-01
Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems—and optionally the poloidal field (PF) system—in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, \\rho _Te^*(x) . In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal proportional-integral control algorithm. Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the controller response have been performed in
Radio-frequency wave trajectories for current drive in tokamak reactors
International Nuclear Information System (INIS)
Detailed ray tracing calculations were carried out for three modes of waveguide-launched radio-frequency waves for tokamak reactor parameters to evaluate their applicability for steady state current drive. The merits and demerits of each mode are discussed
Radio-frequency wave trajectories for current drive in tokamak reactors
Energy Technology Data Exchange (ETDEWEB)
Wong, K.L.; Ono, M.
1982-12-01
Detailed ray tracing calculations were carried out for three modes of waveguide-launched radio-frequency waves for tokamak reactor parameters to evaluate their applicability for steady state current drive. The merits and demerits of each mode are discussed.
International Nuclear Information System (INIS)
Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ∼3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2–3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1–1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D2 MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak
Energy Technology Data Exchange (ETDEWEB)
Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)
2015-12-15
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.
Institute of Scientific and Technical Information of China (English)
Ou Jing; Yang Jin-Hong
2011-01-01
The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow,i.e.,the scrape-off layer (SOL) flow,in the experimental advanced superconducting tokamak (EAST) divertor. Simulation results show that the SOL flow in the divertor region can exhibit complex behaviour,such as a high Mach flow and flow reversal in different plasma regimes. When the divertor plasma is in the detachment state,the high Mach flow with approaching or exceeding sonic speed is observed away from the target plate in our simulation. When the divertor plasma is in the high recycling The driving mechanisms for the high Mach flow and the reversed flow are analysed theoretically through momentum and continuity equations,respectively. The profile of the ionization sources is shown to be a possible formation condition causing the complex behaviour of the SOL flow. In addition,the effects of the high Mach flow and the flow reversal on the impurity transport are also discussed in this paper.
Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak
International Nuclear Information System (INIS)
An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=ZR+ZI is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active ZR and reactive ZI impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)
PROGRESS TOWARD SUSTAINED HIGH-PERFORMANCE ADVANCED TOKAMAK DISCHARGES IN DIII-D
Energy Technology Data Exchange (ETDEWEB)
J.R. FERRON; D.P. BREEAN; T.A. CASPER; A.M. GAROFALO; C.M. GREENFIELD; A.W. HYATT; R.J. JAYAKUMAR; L.C. JOHNSON; J.E. KINSEY; R.J. LaHAYE; L.L. LAO; E.A. LAZARUS; J. LOHR; T.C. LUCE; M. MURAKAMI; M. OKABAYASHI; C.C. PETTY; P.A. POLITZER; R. PRATER; H. REIMERDES; E.J. STRAIT; T.S. TAYLOR; A.D. TURNBULL; J.G. WATKINS; M.R. WADE; W.P. WEST
2002-07-01
Key elements of a sustained advanced tokamak discharge in DIII-D are a large fraction of the total current from bootstrap current (f{sub BS}) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at {rho} {approx} 0.5 to maintain the desired current profile [1-4]. Increased f{sub BS} results from increasing both the normalized beta ({beta}{sub N}) and the minimum value of the safety factor (q{sub min}). Off-axis ECCD is, for the available gyrotron power, optimized at high {beta}{sub N}, high electron temperature (T{sub e}) and low electron density (n{sub e}). As previously reported [2-4], these required elements have been separately demonstrated: density control at high {beta}{sub N} with n{sub e} {le} 5 x 10{sup 19} m{sup -3} using divertor-region pumping, stability at high {beta}, and off-axis ECCD at the theoretically predicted efficiency. This report summarizes recent work on optimizing and integrating these results through evaluation of the dependence of the beta limit on q{sub min} and q{sub 95}, exploration of discharges with relatively high q{sub min}, testing of feedback control of T{sub e} for control of the q profile evolution, and modification of the current profile time evolution when ECCD is applied.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak
International Nuclear Information System (INIS)
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks
Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak
Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu
2016-05-01
A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.
Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L
2015-12-01
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks. PMID:26724032
Advanced scenarios for ITER operation
International Nuclear Information System (INIS)
In thermonuclear fusion research using magnetic confinement, the tokamak is the leading candidate for achieving conditions required for a reactor. An international experiment, ITER is proposed as the next essential and critical step on the path to demonstrating the scientific and technological feasibility of fusion energy. ITER is to produce and study plasmas dominated by self heating. This would give unique opportunities to explore, in reactor relevant conditions, the physics of α-particle heating, plasma turbulence and turbulent transport, stability limits to the plasma pressure and exhaust of power and particles. Important new results obtained in experiments, theory and modelling, enable an improved understanding of the physical processes occurring in tokamak plasmas and give enhanced confidence in ITER achieving its goals. In particular, progress has been made in research to raise the performance of tokamaks, aimed to extend the discharge pulse length towards steady-state operation (advanced scenarios). Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Advanced scenarios on the other hand use a modified current density profile. Different advanced scenarios range from (i) plasmas that sustain a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure, to (ii) discharges with an off axis maximum of the current density profile (reversed magnetic shear in the core), able to form internal transport barriers, to increase the confinement of the plasma. The physics of advanced tokamak discharges is described, together with an overview of recent results from different tokamak experiments. International collaboration between experiments aims to provide a better understanding, control and optimisation of these plasmas. The ability to explore advanced scenarios in ITER is very desirable, in order to verify the result obtained in experiments
Energy Technology Data Exchange (ETDEWEB)
Charles Kessel, et al
2014-03-05
The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.
Maximum entropy tokamak configurations
International Nuclear Information System (INIS)
The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)
Demonstration tokamak power plant
Energy Technology Data Exchange (ETDEWEB)
Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.
1983-01-01
A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System.
Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil; Tatsumi, Hirosuke; Spodsberg, Nikolaj; Borch, Kim; Westh, Peter
2012-01-01
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded...
A new perspective on steady-state cosmology: from Einstein to Hoyle
O Raifeartaigh, Cormac; Mitton, Simon
2015-01-01
We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein's steady-state cosmology with that of Hoyle, Bondi...
Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models
Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.
2011-01-01
The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law hav...
Bansal, Pikesh; Chattopadhyay, Ajit Kumar; Agrawal, Vishnu Prakash
2016-04-01
The aim of the present study is to theoretically determine the steady state characteristics of hydrodynamic oil journal bearings considering the effect of deformation of liner and with micropolar lubrication. Modified Reynolds equation based on micropolar lubrication theory is solved using finite difference method to obtain steady state film pressures. Minimum film thickness is calculated taking into consideration the deformation of the liner. Parametric study has been conducted and steady state characteristics for journal bearing with elasticity of bearing liner are plotted for various values of eccentricity ratio, deformation factor, characteristic length and coupling number.
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
International Nuclear Information System (INIS)
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
Energy Technology Data Exchange (ETDEWEB)
S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West
2003-10-07
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.
Free-boundary simulations of ITER advanced scenarios
International Nuclear Information System (INIS)
The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
International Nuclear Information System (INIS)
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition. (special topic)
A generalised correlation for the steady state flow in single-phase natural circulation loops
International Nuclear Information System (INIS)
To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived
Steady State Performance Characteristics of a Single Pad Externally Adjustable Fluid Film Bearing
Shenoy, Satish B.; Pai, Raghuvir
The steady state performance characteristics of centrally loaded 60 degree single pad externally adjustable partial arc bearing is studied theoretically. Principal feature of the bearing is the facility to control its radial clearance and circumferential film thickness gradient, during operation. The bearing has aspect ratios of 1.0, 0.5 and 0.25 and operates over a wide range of eccentricity ratios and adjustments. Steady state performance characteristics of the bearing are presented in terms of attitude angle, load carrying capacity, oil flow and friction variable. The steady state form of Reynolds equation in two dimensions is solved numerically using the finite difference method. The effect of tilt and the radial adjustments on the steady state performance characteristics are presented in the form of plots. A comparative study predicts that negative radial and negative tilt adjustment results in better load carrying capacity with reduced oil flow and friction.
Measurements of Gene Expression at Steady State Improve the Predictability of Part Assembly.
Zhang, Haoqian M; Chen, Shuobing; Shi, Handuo; Ji, Weiyue; Zong, Yeqing; Ouyang, Qi; Lou, Chunbo
2016-03-18
Mathematical modeling of genetic circuits generally assumes that gene expression is at steady state when measurements are performed. However, conventional methods of measurement do not necessarily guarantee that this assumption is satisfied. In this study, we reveal a bi-plateau mode of gene expression at the single-cell level in bacterial batch cultures. The first plateau is dynamically active, where gene expression is at steady state; the second plateau, however, is dynamically inactive. We further demonstrate that the predictability of assembled genetic circuits in the first plateau (steady state) is much higher than that in the second plateau where conventional measurements are often performed. By taking the nature of steady state into consideration, our method of measurement promises to directly capture the intrinsic property of biological parts/circuits regardless of circuit-host or circuit-environment interactions. PMID:26652307
A steady-state fluid model of the coaxial plasma gun
International Nuclear Information System (INIS)
The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)
Quasi steady-state aerodynamic model development for race vehicle simulations
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
International Nuclear Information System (INIS)
For supercritical pressure natural circulation loops, explicit correlation for steady state flow are not available. While using the subcritical natural circulation flow correlation for supercritical pressure data, it has been observed that subcritical flow correlation is not able to predict the steady state flow accurately near supercritical pressure condition. A generalized correlation has been proposed to estimate the steady state flow in supercritical pressure natural circulation loop based on a relationship between dimensionless density and dimensionless enthalpy reported in literature. This generalized correlation has been tested with the steady state supercritical pressure CO2 data and found to be in good agreement. Subsequently supercritical pressure data for different working fluids reported in literature has also been compared with the proposed correlation. It is observed that the same generalized correlation is applicable for other fluids also. The present paper deals with the details of the test facility, the derivation of the generalized correlation and comparison with experimental data. (author)
Potential multiple steady-states in the long-term carbon cycle
Tennenbaum, Stephen; Schwartzman, David
2013-01-01
Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...
Steady state of active systems is characterized by unique effective temperature
Nandi, Saroj Kumar
2016-01-01
Understanding the properties of active matter systems, consisting of particles capable of taking up and dissipating energy and thus driven out of equilibrium, is important as it provides the possibility of a unified framework to analyze a diverse class of biological systems. Analysis of a large number of such systems shows an extension of equilibrium-like ideas are, sometimes, capable of capturing the steady state properties and a thermodynamic formulation of the problem might be possible. Investigating the detailed steady state properties and how the systems depart from equilibrium is important for such a formulation. Here we address the question through the framework of mode-coupling theory for dense active systems. We obtain a generic nonequilirbium theory for such systems and then taking the steady state limit of the theory we show that the system is characterized by a unique effective temperature, unlike other driven systems like a glass under shear. We discuss the differences of the steady states of an ...
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Non-equilibrium Steady States in Kac's Model Coupled to a Thermostat
Evans, Josephine
2016-09-01
This paper studies the existence, uniqueness and convergence to non-equilibrium steady states in Kac's model with an external coupling. We work in both Fourier distances and Wasserstein distances. Our methods work in the case where the external coupling is not a Maxwellian equilibrium. This provides an example of a non-equilibrium steady state. We also study the behaviour as the number of particles goes to infinity and show quantitative estimates on the convergence rate of the first marginal.
Analysis of steady state creep behaviour of 9-12% chromium ferritic-martensitic steels
Energy Technology Data Exchange (ETDEWEB)
Dimmler, G.; Weinert, P.; Cerjak, H. [Graz University of Technology (Austria). Institute of Materials Science
2004-12-15
The present work deals with the creep behaviour of 9-12% Cr steels in the steady state (secondary) creep regime in order to enable a more detailed and exact description of the creep rupture strength on the basis of the Monkman-Grant relationship. Special attention is paid to the microstructural aspects. The steady state creep behaviour has been investigated by evaluating the creep rate and the change of stress exponent of already established grades of high temperature creep resistant steels. (author)
Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics
International Nuclear Information System (INIS)
An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells
Price, Nathan D; Schellenberger, Jan; Palsson, Bernhard O
2004-01-01
Reconstruction of genome-scale metabolic networks is now possible using multiple different data types. Constraint-based modeling is an approach to interrogate capabilities of reconstructed networks by constraining possible cellular behavior through the imposition of physicochemical laws. As a result, a steady-state flux space is defined that contains all possible functional states of the network. Uniform random sampling of the steady-state flux space allows for the unbiased appraisal of its c...
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Terminal Value Techniques in Equity Valuation - Implications of the Steady State Assumption
Levin, Joakim; Olsson, Per M.
2000-01-01
This paper examines the conditions necessary for calculating steady state terminal values in equity (company) valuation models. We make explicit use of the fact that a company's income statements and balance sheets can be modeled as a system of difference equations. From these difference equations, we derive conditions for steady state. The conditions ensure that the company remains qualitatively similar year by year after the valuation horizon and that it has a stable development of earnings...
Steady-State Thermal-Hydraulic Analysis of TRIGA Research Reactor
Mohammad Mizanur Rahman; Mohammad Abdur R. Akond; Mohammad Khairul Basher; Md. Quamrul Huda
2014-01-01
The COOLOD-N2 and PARET computer codes were used for a steady-state thermal hydraulic and safety analysis of the 3 MW TRIGA Mark-II research reactor located at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh. The objective of the present study is to ensure that all important safety related thermal hydraulic parameters uphold margins far below the safety limits by steady-state calculations at full power. We, therefore, have calculated the hot channel fuel centreline ...
Control of unstable steady states by extended time-delayed feedback
Dahms, Thomas; Hoevel, Philipp; Schoell, Eckehard
2007-01-01
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system represents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. ...
Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ...
Effects of impulse noise and continuous steady state noise on hearing.
Mäntysalo, S; Vuori, J
1984-01-01
In this study the effects on hearing induced by occupational exposure to impulse noise were compared with those induced by exposure to continuous steady state noise. Three groups exposed to impulse noise, one group exposed to continuous steady state noise, and an unexposed control group were studied. The hearing thresholds of the groups were measured by a puretone audiometer three times in two workdays. None of the groups showed significant differences between the hearing thresholds measured ...
Steady-state priors and Bayesian variable selection in VAR forecasting
Louzis, Dimitrios P.
2015-01-01
This study proposes methods for estimating Bayesian vector autoregressions (VARs) with an automatic variable selection and an informative prior on the unconditional mean or steady-state of the system. We show that extant Gibbs sampling methods for Bayesian variable selection can be efficiently extended to incorporate prior beliefs on the steady-state of the economy. Empirical analysis, based on three major US macroeconomic time series, indicates that the out-of-sample forecasting accuracy of ...
Steady-state particle tracking in the object-oriented regional groundwater model ZOOMQ3D
Jackson, C.R.
2002-01-01
This report describes the development of a steady-state particle tracking code for use in conjunction with the object-oriented regional groundwater flow model, ZOOMQ3D (Jackson, 2001). Like the flow model, the particle tracking software, ZOOPT, is written using an object-oriented approach to promote its extensibility and flexibility. ZOOPT enables the definition of steady-state pathlines in three dimensions. Particles can be tracked in both the forward and reverse directions en...
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; 10.1103/PhysRevA.84.033606
2011-01-01
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
Steady State Analysis of Convex Combination of Affine Projection Adaptive Filters
Directory of Open Access Journals (Sweden)
S. Radhika
2015-05-01
Full Text Available The aim of the study is to propose an adaptive algorithm using convex combinational approach to have both fast convergence and less steady state error simultaneously. For this purpose, we have used two affine projection adaptive filters with complementary nature (both in step size and projection order as the component filters. The first component filter has high projection order and large step size which makes it to have fast convergence at the cost of more steady state error. The second component filter has slow convergence and less steady state error due to the selection of small step size and projection order. Both are combined using convex combiner so as to have best final output with fast convergence and less steady state error. Each of the component filters are updated using their own error signals and stochastic gradient approach is used to update the convex combiner so as to have minimum overall error. By using energy conservation argument, analytical treatment of the combination stage is made in stationary environment. It is found that during initial stage the proposed scheme converges to the fast filter which has good convergence later it converges to either of the two (whichever has less steady state error and towards the end, the final output converges to slow filter which is superior in lesser steady state error. Experimental results proved that the proposed algorithm has adopted the best features of the component filters.
Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling
Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C.
2015-11-01
Actual problems in geotechnical design, e.g., of underground openings for radioactive waste repositories or high-pressure gas storages, require sophisticated constitutive models and consistent parameters for rock salt that facilitate reliable prognosis of stress-dependent deformation and associated damage. Predictions have to comprise the active mining phase with open excavations as well as the long-term development of the backfilled mine or repository. While convergence-induced damage occurs mostly in the vicinity of openings, the long-term behaviour of the backfilled system is dominated by the damage-free steady-state creep. However, because in experiments the time necessary to reach truly stationary creep rates can range from few days to years, depending mainly on temperature and stress, an innovative but simple creep testing approach is suggested to obtain more reliable results: A series of multi-step tests with loading and unloading cycles allows a more reliable estimate of stationary creep rate in a reasonable time. For modelling, we use the advanced strain-hardening approach of Günther-Salzer, which comprehensively describes all relevant deformation properties of rock salt such as creep and damage-induced rock failure within the scope of an unified creep ansatz. The capability of the combination of improved creep testing procedures and accompanied modelling is demonstrated by recalculating multi-step creep tests at different loading and temperature conditions. Thus reliable extrapolations relevant to in-situ creep rates (10^{-9} to 10^{-13} s^{-1}) become possible.
Quantitative in silico analysis of neurotransmitter pathways under steady state conditions
Directory of Open Access Journals (Sweden)
Erkki eSomersalo
2013-10-01
Full Text Available The modeling of glutamate/GABA-glutamine cycling in the brain tissue involving astrocytes, glutamatergic, and GABAergic neurons leads to a complex compartmentalized metabolic network that comprises neurotransmitter synthesis, shuttling, and degradation. Without advanced computational tools, it is difficult to quantitatively track possible scenarios and identify viable ones. In this article, we follow a sampling-based computational paradigm to analyze the biochemical network in a multi-compartment system modeling astrocytes, glutamatergic and GABAergic neurons, and address some questions about the details of transmitter cycling, with particular emphasis on the ammonia shuttling between astrocytes and neurons, and the synthesis of transmitter GABA. More specifically, we consider the joint action of the alanine-lactate shuttle, the branched chain amino acid shuttle, and the glutamine-glutamate cycle, as well as the role of glutamate dehydrogenase (GDH activity. When imposing a minimal amount of bound constraints on reaction and transport fluxes, a preferred stoichiometric steady state equilibrium requires an unrealistically high reductive GDH activity in neurons, indicating the need for additional bound constants which were included in subsequent computer simulations. The statistical flux balance analysis also suggests a stoichiometrically viable role for leucine transport as an alternative to glutamine for replenishing the glutamate pool in neurons.
International Nuclear Information System (INIS)
Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)
Positive Steady States of a Prey-predator Model with Diffusion and Non-monotone Conversion Rate
Institute of Scientific and Technical Information of China (English)
Rui PENG; Ming Xin WANG; Wen Yan CHEN
2007-01-01
In this paper,we study the positive steady states of a prey-predator model with di .usion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of the existence and non-existence of positive steady states.The stability and uniqueness of positive steady states are also discussed.
SST and ADITYA tokamak research in India
International Nuclear Information System (INIS)
Steady state operation of tokamaks plays an important role in high temperature magnetically confined plasma research. Steady state Superconducting Tokamak (SST) programme in India deals with the development of various technologies in this direction. SST-1 machine has been engineered and is being fabricated at the Institute for Plasma Research. The objectives of the machine are to study physics of plasma processes under steady state condition and develop the technologies related to steady state operation. Various sub-systems are being prototyped and developed. SST-1 is a large aspect ratio machine with a major radius of 1.1 m and a plasma minor radius of 0.2 m with elongation of 1.7 to 1.9 and triangularity of 0.5 to 0.7. It has been designed for 1000 sec operation at 3 T toroidal magnetic eld. Neutral beam Injection and Radio frequency heating systems are being developed to heat the plasma. Lower hybrid Current Drive system would sustain 200 kA of plasma current during 1000 sec operation. ADITYA tokamak has been upgraded with new diagnostics and RF heating systems. Thomson Scattering and ECE diagnostics have been operated. 200 kW Ion Cyclotron Resonance Heating (ICRH) and 200 kW Electron Cyclotron Resonance Heating (ECRH) systems have been successfully commissioned. RF assisted initial breakdown experiments have been initiated with these systems. (author)
The design of the Tokamak Physics Experiment (TPX)
Energy Technology Data Exchange (ETDEWEB)
Schmidt, J.A.; Goldston, R.J.; Sinnis, J.C.; Bernabei, S.; Bialek, J.M.; Bronner, G.; Chen, S.J.; Chrzanowski, J.; Citrolo, J.; Dahlgren, F.
1993-09-01
The Tokamak Physics Experiment (TPX) is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. It is based on an emerging class of tokamak operating modes, characterized by beta limits well in excess of the Troyon limit, confinement scaling well in excess of H-mode, and bootstrap current fractions approaching unity. Such modes are attainable through the use of advanced, steady state plasma controls including strong shaping, current profile control, and active particle recycling control. Key design features of the TPX are superconducting toroidal and poloidal field coils; actively-cooled plasma-facing components; a flexible heating and current drive system; and a spacious divertor for flexibility. Substantial deuterium plasma operation is made possible with an in-vessel remote maintenance system, a low-activation titanium vacuum vessel, and shielding of ex-vessel components. The facility will be constructed as a national project with substantial participation of US industry. Operation will begin with first plasma in the year 2000.
Present design of the HT-7U tokamak device
International Nuclear Information System (INIS)
The HT-7U superconducting tokamak is an advanced steady-state plasma physics experimental device to be built at the Institute of Plasma Physics, the Chinese Academy of Sciences (CASIPP). The preliminary engineering design incorporates the superconducting toroidal field (TF) and poloidal field (PF) magnets, the vacuum vessel, the radiation shields, the cryostat and the current leads. The general mechanical structure of the HT-7U tokamak device with the detail structure of main parts is in design phase. The stability calculation and analysis of superconductors and coils have been done initially. The maximum field on the TF and PF coils and the maximum stress on the cases of coils, vacuum vessel and cryostat are evaluated. The R and D programs on the HT-7U tokamak device have been planned and in progress, which are focused on the design and development of conductors and model coils both in bath-cooling and force-cooling, test facility, winding machine, prototype of one 1/16 segment of vacuum vessel, and some key technologies. (author)
HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T
International Nuclear Information System (INIS)
HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described
Design and exploitation of Advanced Tokamak scenarios at JET using the new Extreme Shape Controller
International Nuclear Information System (INIS)
In 2005 the JET machine entered a new exploitation phase with the MK2-HD (High Delta ) divertor, designed for ITER-relevant high triangularity and high elongation plasmas. The need to control the plasma boundary in these extreme equilibria with large variations of plasma parameters motivated the upgrade of the JET Shape Controller into the new fully model-based Extreme Shape Controller (XSC) [F. Sartori et al., Fusion Eng. and Design 74 (2005) 587-591, R. Albanese et al., Nucl. Fusion 38 (1998) 723-738]. An early version of XSC was tested in 2004 [F. Sartori et al., Proc of 31st EPS Conf. on Contr. Fusion and Plasma Physics, London 2004]; after minor modifications a new version has now been implemented. In this paper the use of the XSC tools for designing the complete time evolution of a physics discharge and its experimental validation will be presented. As test case, a JET Advanced Tokamak scenario at high triangularity [F.G. Rimini et al., Nucl. Fusion 45 (2005) 1481-1492] has been chosen. This scenario features a) the early formation of a single-null X-point configuration, b) the use of non-inductive Current Drive tools to tailor the current profile and c) the application of full power additional heating before the plasma current flat-top has been reached. This complex time evolution, with large variations of magnetic pressure, b, and internal inductance li, makes this scenario perfect for testing the XSC capabilities. Firstly the whole scenario is designed, using the equilibrium codes in the XSC tools suite, evolving from the early low triangularity to a high triangularity, d ∼ 0.4, equilibrium at the current flat-top. Next is the design of the actual controller, i.e. the choice of weights for the various poloidal field currents and geometric descriptors. In order to facilitate the boundary control different '' controllers '', i.e. sets of gains, have been devised for the low and the high triangularity phases. A closed-loop simulation of the whole scenario
Steady state flow evaluations for passive auxiliary feedwater system of APR
International Nuclear Information System (INIS)
This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results
The spherical tokamak fusion power plant
International Nuclear Information System (INIS)
The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)
Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael
2016-02-01
A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in kcat and KM values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/KS) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate. PMID:26714303
International Nuclear Information System (INIS)
This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking
International Nuclear Information System (INIS)
Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.
International Nuclear Information System (INIS)
The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.)
Deuterium-Tritium Simulations of the Enhanced Reversed Shear Mode in the Tokamak Fusion Test Reactor
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, D.R.; Manickam, J.; Scott, S.D.; Zarnstorff
1997-04-01
The potential performance, in deuterium-tritium plasmas, of a new enhanced con nement regime with reversed magnetic shear (ERS mode) is assessed. The equilibrium conditions for an ERS mode plasma are estimated by solving the plasma transport equations using the thermal and particle dif- fusivities measured in a short duration ERS mode discharge in the Tokamak Fusion Test Reactor [F. M. Levinton, et al., Phys. Rev. Letters, 75, 4417, (1995)]. The plasma performance depends strongly on Zeff and neutral beam penetration to the core. The steady state projections typically have a central electron density of {approx}2:5x10 20 m{sup -3} and nearly equal central electron and ion temperatures of {approx}10 keV. In time dependent simulations the peak fusion power, {approx} 25 MW, is twice the steady state level. Peak performance occurs during the density rise when the central ion temperature is close to the optimal value of {approx} 15 keV. The simulated pressure profiles can be stable to ideal MHD instabilities with toroidal mode number n = 1, 2, 3, 4 and {infinity} for {beta}{sub norm} up to 2.5; the simulations have {beta}{sub norm} {le} 2.1. The enhanced reversed shear mode may thus provide an opportunity to conduct alpha physics experiments in conditions imilar to those proposed for advanced tokamak reactors.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.
Su, Yan; Peter Guengerich, F
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785
Mu, Baojie; Li, Yaoyu; Seem, John E.
2016-08-01
A major class of extremum seeking control (ESC) is based on the use of periodic dither perturbation of plant input for extracting the gradient information. Presence of the dither input into the steady state operation is undesirable in practice due to the possible excessive wear of actuators. It is thus beneficial to stop the dithering action after the ESC reaches its steady state. In this paper, we propose a method for automatically discriminating between the steady state and the transient state modes of extremum seeking control process using the sinusoidal detection techniques. Some design guidelines are proposed for the parameter selection of the relevant sinusoidal detection scheme. The proposed scheme is validated with simulation study on dynamic virtual plant of two building HVAC systems.
Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings
Popkov, Vladislav; Presilla, Carlo
2016-02-01
Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach, looking at both its theoretical and applicative aspects, in the example case of an open X X Z spin-1 /2 chain, driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths effectively needed to generate steady states which are almost indistinguishable from the target pure states.
EFFICIENT STEADY-STATE ANALYSIS METHOD FOR CLOSED-LOOP PWM SWITCHING CONVERTERS
Institute of Scientific and Technical Information of China (English)
Yin Youwei; Ma Xikui
2006-01-01
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
Energy Technology Data Exchange (ETDEWEB)
Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@ioe.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.
DEFF Research Database (Denmark)
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen;
2016-01-01
AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...
Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation
Directory of Open Access Journals (Sweden)
Denis J. Evans
2013-04-01
Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.
Steady-state and transient DNB experiments for double-flat-core HCPWR
International Nuclear Information System (INIS)
Critical heat flux (CHF) experiments were performed using triangular pitched 7-rod assemblies simulating the double-flat-core type HCPWR. The onset of steady-state CHR was predicted within the uncertainty of 10 % with the KfK correlation coupled with the subchannel analysis code COBRA-IV-I. Transient CHF's under flow reduction, power increase and flow and power simultaneous variation were predicted with the quasi-steady-state method within the same uncertainty as the steady-state cases. The predictive capability did not depend on the transient speed within 30 %/s of low reduction rate and within 120 %/s of power increase rate. A large DNB (departure from nucleate boiling) margin under accident conditions was confirmed. (author)
Steady states in hierarchical structured populations with distributed states at birth
Farkas, J Z
2010-01-01
We address the existence and linearised stability of steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured models describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behaviour. The other distinctive feature of the model we treat is that individuals may be recruited into the population at arbitrary size, that is, individuals may have infinite states at birth. This assumption amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states using results from the theory of...
History-independence of steady-state in simultaneous two-phase flow through porous media
Erpelding, Marion; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-01-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From the measurements of global pressure evolution, histogram of saturation and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
Open Markov processes: A compositional perspective on non-equilibrium steady states in biology
Pollard, Blake S
2016-01-01
In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illus...
International Nuclear Information System (INIS)
A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, ic = 31.1 + 1.06 (Ks), (R2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, ic = 30.0 + 29.9(A), (R2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, ic 388.7(Pe) - 10.8(R2 = 0.7265, p ≤ 0.001) where ic is in (cm/hr) and Pe in (cm3/cm3). (author). 20 refs, 3 figs, 4 tabs
Steady-state Hadronic Gamma-Ray Emission from 100-Myr-Old Fermi Bubbles
Crocker, Roland M.; Bicknell, Geoffrey V.; Carretti, Ettore; Hill, Alex S.; Sutherland, Ralph S.
2014-08-01
Fermi Bubbles are enigmatic γ-ray features of the Galactic bulge. Both putative activity (within few × Myr) connected to the Galactic center super-massive black hole and, alternatively, nuclear star formation have been claimed as the energizing source of the Bubbles. Likewise, both inverse-Compton emission by non-thermal electrons ("leptonic" models) and collisions between non-thermal protons and gas ("hadronic" models) have been advanced as the process supplying the Bubbles' γ-ray emission. An issue for any steady state hadronic model is that the very low density of the Bubbles' plasma seems to require that they accumulate protons over a multi-gigayear timescale, much longer than other natural timescales occurring in the problem. Here we present a mechanism wherein the timescale for generating the Bubbles' γ-ray emission via hadronic processes is ~few × 108 yr. Our model invokes the collapse of the Bubbles' thermally unstable plasma, leading to an accumulation of cosmic rays and magnetic field into localized, warm (~104 K), and likely filamentary condensations of higher-density gas. Under the condition that these filaments are supported by non-thermal pressure, the hadronic emission from the Bubbles is L γ ~= 2 × 1037 erg s-1 \\dot{M}in/(0.1 {M_⊙ } yr-1 ) TFB^2/(3.5 × 10^7 K)2 M fil/M pls, equal to their observed luminosity (normalizing to the star-formation-driven mass flux into the Bubbles and their measured plasma temperature and adopting the further result that the mass in the filaments, M fil is approximately equal to the that of the Bubbles' plasma, M pls).
Mihajlovic, V.; Garcia Molina, G.; Peuscher, J
2011-01-01
Recent technological advances in the field of skin electrodes and on-body sensors indicate a possibility of having an alternative to the traditionally used conductive gel electrodes for measuring electrical signals of the brain (electroencephalogram, EEG). This paper evaluates whether water-based and dry contact electrode solutions can replace the gel ones. The quality of the obtained signal by three headsets, each using 8 electrodes of a different type, is estimated onthe steady state visual...
Roberto Colombo; Cristina Nali; Sergio Cogliati; Cinzia Panigada; Valentina Picchi; Micol Rossini; Michele Meroni
2008-01-01
High spectral resolution spectrometers were used to detect optical signals of ongoing plant stress in potted white clover canopies subjected to ozone fumigation. The case of ozone stress is used in this manuscript as a paradigm of oxidative stress. Steady-state fluorescence (Fs) and the Photochemical Reflectance Index (PRI) were investigated as advanced hyperspectral remote sensing techniques able to sense variations in the excess energy dissipation pathways occurring when photosynthesis decl...
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
Analysis on the steady-state coherent synchrotron radiation with strong shielding
International Nuclear Information System (INIS)
There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
DEFF Research Database (Denmark)
Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen; Frandsen, Henrik Lund
The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects of...... model size, representativeness, and boundary conditions on the numerical results are investigated. Two analytical models for creep rate of porous bodies are derived by extending the Hashin-Shtrikman bound and the Ramakrishnan-Arunchalam model in linear elasticity to steady-state creep based on nonlinear...
Destruction of the family of steady states in the planar problem of Darcy convection
International Nuclear Information System (INIS)
We consider natural convection of an incompressible fluid in a porous medium described by the planar Darcy equation. For some boundary conditions, Darcy problem may have non-unique solutions in form of a continuous family of steady states. We are interested in the situation when these boundary conditions are violated. The resulting destruction of the family of steady states is studied via computer experiments based on a mimetic finite-difference approach. Convection in a rectangular enclosure is considered under different perturbations of boundary conditions (heat sources, infiltration). Two scenario of the family of equilibria are found: the transformation to a limit cycle and the formation of isolated convective patterns
Ways of investigating steady-state condition of steam generators by means of digital simulation
International Nuclear Information System (INIS)
In the present paper steam generators are represented by models in order to get information on the influence of variations of the boundary conditions or the structural design on the steady-state behavior. The description of the models and all the calculations are performed on the simulation language CSMP 10 applying two different methods. By the first method (inductive method) the system of differential equations describing the temperatures as a function of the geometric locus is solved. By the second one (deductive method) control circuits are established enforcing the steady-state condition by levelling the comments of heat. (GL)
Coherent control of long-distance steady state entanglement in lossy resonator arrays
Angelakis, Dimitris G.; Dai, Li; Kwek, Leong-Chuan
2009-01-01
We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through wave guides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of ...
Comments on steady-state equilibrium profiles in field-reversed configurations
International Nuclear Information System (INIS)
This paper presents conclusions about the character of equilibrium profiles which may be sustained in steady state in a highly elongated (long-thin) Field-Reversed Configuration (FRC). It is shown in this paper that equilibria which can be sustained in a steady state in a long-thin FRC obeying classical diffusion are likely to involve relatively high fluid pressure outside the separatrix - a condition which also leads to rapid particle losses along the open field lines. Thus, suppression of microinstabilities may not actually result in better particle confinement
International Nuclear Information System (INIS)
The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects
Steady-state FEL: particle dynamics in the FEL portion of a two-beam accelerator
International Nuclear Information System (INIS)
Motivated by its use in a Two-Beam Accelerator, we have studied a ''steady-state'' FEL; i.e., a periodic but very long structure in which the electron beam energy is replenished once a period with a short induction acceleration unit. We have studied longitudinal particle motion in such a device using a 1-D simulation code. We show that after an initial start-up section, particle detrapping from the pondermotive wave is minimal in a steady-state FEL of several kilometers. A simple linear model of particle diffusion is shown to describe the numerical results quite well
International Nuclear Information System (INIS)
For burning plasma simulation and reactor system analysis on steady-state high beta fusion reactors, TOTAL physics code and PEC engineering code have been developed. From TOTAL analysis, it is clarified that by choosing appropriate external current drive profile, high bootstrap-current fraction is achieved in steady-state. From PEC analysis, it is found that the current drive efficiency should be raised for cost of electricity (COE) and CO2 reductions in rather low-beta reactors. Newly derived scaling formulas on COE and life-cycle CO2 emission rate might contribute to the future reactor design projection. (author)
International Nuclear Information System (INIS)
Full text: The Fusion Research Group of the Autonomous University of Nuevo Leon (UANL, Spanish acronyms) presents its advances into the electrical, control systems and its coils design developed toward the Tokamak Experimental Facility [1]. This Research and Development Project (R+D) was approved from the Mexican Education Ministry (UANL-EXB-156). The present electrical and control systems studies are mainly oriented to establish our Magnetic Confinement Facility into our University Campus, with a D-shaped tokamak design with the next main characteristics: major radius R = 41 cm, minor radius a = 18.5 cm, aspect ratio A = 2.2162, safety factor q = 1.9552, plasma current Ip = 277 kA , toroidal field Bt = 1.3 T, electronic plasma density ne = 2 — 3 x 1013 cm-3. The present study at this time is an effective electrical engineering proposal to our University involving studies over the electrical power quality provided by Federal Electricity Commission. We define our parameters in voltage, current, frequency, to implement the correct strategies of electrical supplies in order to protect our facility. The analysis was performed measuring in the five domestic circuits of the University Campus: phase imbalances (current and voltage), harmonic distortion total and individual (voltages and currents of 1 — 50), transient capture, presentation of the power factor, registration of electrical interruptions and reclosing, measuring and recording quality power systems, crest factors (voltage and current), accurate RMS measurements of voltage and current, presentation of phasor diagrams. Our tokamak design contains a proposal coils arrangement capable for generate 1.6 T, with a coil current range (10,000 — 30, 000 A), short circuit times from 0.3 s to 1 s. The entirely systems uses Cu like first analysis material. The coils are designed with 3D CAD modeling and after, we apply finite element analysis through the software COMSOL Multiphysics. Our numerical calculus programs
Development of advanced tokamak scenarios based on high bootstrap currents in JET
International Nuclear Information System (INIS)
High bootstrap current experiments with the bootstrap fraction (Ibootstrap/Iplasma) up to 0.7 at 1 MA and 0.5 at 1.5 MA were previously achieved in JET in plasmas with high q(a), high triangularity and high confinement (H≥3). During initial operation with the new JET pumped divertor, the domain of parameters has been extended to cover reactor relevant domains such as low q(a) and high βn; up to βn = 3. High beta poloidal plasmas (necessary for the achievement of high bootstrap fractions) with βp up to 1 for 2 MA plasmas and with βp up to 2 for 1 MA plasmas have been achieved. Values of βp = 1.5 and βn = 3 have been obtained simultaneously over several seconds at q95 4.5 The confinement of these plasmas is lower than in the previous campaign but these discharges display 'quasi steady state' characteristic. In order to improve the confinement of these discharges, several parameters have been varied such as plasma volume, triangularity and βp itself, showing no significant benefit. Configurations using non-inductive current drive to produce stable higher confinement plasmas are being developed. A 'deep' shear reversal configuration has been established, and initial data are presented. (author). 5 refs, 7 figs
Objectives and design of the JT-60 superconducting tokamak
International Nuclear Information System (INIS)
A fully superconducting tokamak named as JT-60SC is designed for the modification program of JT-60 to enhance economical and environmental attractiveness in tokamak fusion reactors. JT-60SC aims at realizing high-beta steady-state operation in the use of low radio-activation ferritic steel in low ν and ρ regime relevant to the reactor plasmas. Objectives, research issues, plasma control schemes and a conceptual design for JT-60SC are presented. (author)
Advanced control of the Tokamak plasma shape and position by the quick response power supply
International Nuclear Information System (INIS)
The research on large tokamaks to get high parameter plasmas has been greatly extended. However, a number of engineering problems such as plasma vertical instability and unexpected pulse termination are still serious. For this reason the control of poloidal field power supplies employed to maintain the plasma in stable equilibrium with complex X points around plasma have been more and more important. Hybrid matrix control of shape and position for changing plasmas and development of the quick response power amplifier are reported. (author). 2 refs.; 6 figs.; 1 tab
International Nuclear Information System (INIS)
It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase
International Nuclear Information System (INIS)
An assembly of soft x-ray pulse height analyzer system, based on silicon drift detector (SDD), has been successfully established on the experimental advanced superconducting tokamak (EAST) to measure the spectrum of soft x-ray emission (E=1-20 keV). The system, including one 15-channel SDD linear array, is installed on EAST horizontal port C. The time-resolved radial profiles of electron temperature and Kα intensities of metallic impurities have been obtained with a spatial resolution of around 7 cm during a single discharge. It was found that the electron temperatures derived from the system are in good agreement with the values from Thomson scattering measurements. The system can also be applied to the measurement of the long pulse discharge for EAST. The diagnostic system is introduced and some typical experimental results obtained from the system are also presented.
Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K
2016-04-01
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. PMID:27131668
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015. PMID:26026520
Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.
2016-04-01
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.
International Nuclear Information System (INIS)
Effect of gas puffing from electron-side and ion-side on lower hybrid wave (LHW)-plasma is investigated in experimental advanced superconductive tokamak for the first time. Experimental results with different gas flow rates show that electron density at the grill is higher in the case of gas puffing from electron-side; consequently, a lower reflection coefficient is observed, suggesting better effect of puffing from electron-side on LHW-plasma. The difference in edge density between electron- and ion-side cases suggests that local ionization of puffed gas plays a dominant role in affecting the density at the grill due to different movement direction of ionized electrons and that part of gas has been locally ionized near the gas pipe before diffusing into the grill region. Such difference could be enlarged and important in ITER due to the improvement of plasma parameters and LHW power
International Nuclear Information System (INIS)
The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable. (author)
Energy Technology Data Exchange (ETDEWEB)
Han, X.; Liu, X.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Hu, L. Q.; Gao, X. [Institution of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)
2014-07-15
A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.
Energy Technology Data Exchange (ETDEWEB)
Yamura, Masayuki; Hirai, Toshinori; Kitajima, Mika; Hayashida, Yoshiko; Ikushima, Ichiro; Yamashita, Yasuyuki [Graduate School of Medical Sciences, Kumamoto University, Department of Diagnostic Radiology, Kumamoto (Japan); Korogi, Yukunori [University of Occupational and Environmental Health, School of Medicine, Department of Radiology, Kitakyushu (Japan); Endo, Fumio [Kumamoto University, Department of Pediatrics,Graduate School of Medical Sciences, Kumamoto (Japan)
2005-03-01
Hypothalamic hamartomas are relatively rare, non-neoplastic congenital malformations. With conventional MR images alone, small hypothalamic hamartomas may be difficult to diagnose because of artifacts from cerebrospinal fluid. We present the usefulness of three-dimensional constructive interference in steady state sequence for evaluating small hypothalamic hamartomas in three pediatric patients. (orig.)
An implicit steady-state initialization package for the RELAP5 computer code
International Nuclear Information System (INIS)
A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model
Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of “convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Integrated modelling of DEMO-FNS current ramp-up scenario and steady-state regime
Dnestrovskij, A. Yu.; Kuteev, B. V.; Bykov, A. S.; Ivanov, A. A.; Lukash, V. E.; Medvedev, S. Yu.; Sergeev, V. Yu.; Sychugov, D. Yu.; Khayrutdinov, R. R.
2015-06-01
An approach to the integrated modelling of plasma regimes in the projected neutron source DEMO-FNS based on different codes is developed. The consistency check of the steady-state regime is carried out, namely, the possibility of the plasma current ramp-up, acceptance of growth rates of MHD modes in the steady-state regime, heat loads to the wall and divertor plates and neutron yield value. The following codes are employed for the integrated modelling. ASTRA transport code for calculation of plasma parameters in the steady-state regime, NUBEAM Monte Carlo code for NBI incorporated into the ASTRA code, DINA free boundary equilibrium and evolution code, SPIDER free boundary equilibrium and equilibrium reconstruction code, KINX ideal MHD stability code, TOKSTAB rigid shift vertical stability code, edge and divertor plasma B2SOLPS5.2 code and Semi-analytic Hybrid Model (SHM) code for self-consistent description of the core, edge and divertor plasmas based on the experimental scaling laws. The consistent steady-state regime for the DEMO-FNS plasma and the plasma current ramp-up scenario are developed using the integrated modelling approach. Passive copper coils are suggested to reduce the plasma vertical instability growth rate to below ˜30 s-1.The outer divertor operation in the ‘high-recycling’ regime is numerically demonstrated with a maximal heat flux density of 7-9 MW m-2 that is technically acceptable.
International Nuclear Information System (INIS)
The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author)
Non-steady state effects in diurnal 180 discrimination by Picea sitchensis branches in the field.
Seibt, U; Wingate, L; Berry, J A; Lloyd, J
2006-05-01
We report diurnal variations in 18O discrimination (18 delta) during photosynthesis (18 delta A) and respiration (18 delta R) of Picea sitchensis branches measured in branch chambers in the field. These observations were compared with predicted 18 delta (18 delta pred) based on concurrent measurements of branch gas exchange to evaluate steady state and non-steady state (NSS) models of foliage water 18O enrichment for predicting the impact of this ecosystem on the Delta 18O of atmospheric CO2. The non-steady state approach substantially improved the agreement between 18 delta pred and observed 18 delta (18 delta obs) compared with the assumption of isotopic steady state (ISS) for the Delta 18O signature of foliage water. In addition, we found direct observational evidence for NSS effects: extremely high apparent 18 delta values at dusk, dawn and during nocturnal respiration. Our experiments also show the importance of bidirectional foliage gas exchange at night (isotopic equilibration in addition to the net flux). Taken together, neglecting these effects leads to an underestimation of daily net canopy isofluxes from this forest by up to 30%. We expect NSS effects to be most pronounced in species with high specific leaf water content such as conifers and when stomata are open at night or when there is high relative humidity, and we suggest modifications to ecosystem and global models of delta 18O of CO2. PMID:17087476
Formulation of Non-steady-state Dust Formation Process in Astrophysical Environments
Nozawa, Takaya
2013-01-01
The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f_{con}, and average radius a_{ave} of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule tau_{coll} is much smaller than the timescale tau_{sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lo...
Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A closed form solution to the problem of steady state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...
Elimination of thermodynamically infeasible loops in steady-state metabolic models.
Schellenberger, Jan; Lewis, Nathan E; Palsson, Bernhard Ø
2011-02-01
The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results. PMID:21281568
Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading
Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.
2015-09-01
The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].
Parallel shooting methods for finding steady state solutions to engine simulation models
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2007-01-01
Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set as...
Modeling of steady-state flow in heated (BWR) parallel channels
International Nuclear Information System (INIS)
The FIBWR computer code has been developed to predict the distributions of quality and void fraction in Boiling Water Reactors. This study describes the analytical methodology used to solve the conservation equations of continuity, momentum and energy in steady-state, heated, parallel channel, two-phase flow. 11 refs
Variational Principle for Non-Equilibrium Steady States of the XX Model
Matsui, T
2003-01-01
We show that non-equilibrium steady states of the one dimensional exactly solved XY model can be characterized by the variational principle of free energy of a long range interaction and that they cannot be a KMS state for any C$^*$-dynamical system.
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Experimental and numerical analysis of the steady-state behaviour of a beam system with impact
Vorst, E.L.B. van de; Heertjes, M.F.; Campen, D.H. van; Kraker, A. de; Fey, R.H.B.
1998-01-01
In this paper the steady state behaviour of a beam system with a periodically moving support and an elastic stop is analysed both numerically and experimentally. In the numerical analysis a continuous model for the elastic stop is used based on the contact force law of Hertz. The beam is modelled us
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...
Effect of vacuum conditions on the operation of a steady-state plasma engine
International Nuclear Information System (INIS)
The features of a steady-state plasma engine (SPE) operating in a vacuum chamber are considered. A review is given of papers that elucidate the effect of the gas pressure in the vacuum chamber on the discharge current, jet thrust, and efficiency of the engine. The effect on the SPE operation of the negative ions created by the target bombardment is discussed
DEFF Research Database (Denmark)
Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann;
2008-01-01
The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...
Energy Technology Data Exchange (ETDEWEB)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins
Ingersoll, Christine M.; Strollo, Christen M.
2007-01-01
The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.
Thin Film Equations with Soluble Surfactant and Gravity: Modeling and Stability of Steady States
Escher, Joachim; Laurençot, Philippe; Walker, Christoph
2010-01-01
A thin film on a horizontal solid substrate and coated with a soluble surfactant is considered. The governing degenerate parabolic equations for the film height and the surfactant concentrations on the surface and in the bulk are derived using a lubrication approximation when gravity is taken into account. It is shown that the steady states are asymptotically stable.
Steady-State Clinical Pharmacokinetics of Bupropion Extended-Release In Youths
Daviss, W. Burleson; Perel, James M.; Birmaher, Boris; Rudolph, George R.; Melhem, Imad; Axelson, David A.; Brent, David A.
2006-01-01
Objective: To examine in children and adolescents the 24-hour, steady-state clinical pharmacokinetics of an extended-release (XL) formulation of bupropion (Wellbutrin XL). Method: Subjects were six male and four female patients (ages 11.5-16.2 years) prescribed bupropion XL in morning daily doses of either 150 mg (n = 5) or 300 mg (n = 5) for at…
Radioactivity computation of steady-state and pulsed fusion reactors operation
International Nuclear Information System (INIS)
Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices
International Nuclear Information System (INIS)
Theoretical and experimental performances in steady state conditions of the prototype modules and the commercial unit of the Phenix Steam Generator were compared. It is shown that, as early as 1969, our computer code allowed us a fair prediction of the required heat transfer area, and of the full load performance of the Phenix Steam Generator. (author)