WorldWideScience

Sample records for advanced spectroscopic methods

  1. Advances in spectroscopic methods for quantifying soil carbon

    Science.gov (United States)

    Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  2. Spectroscopic chemical analysis methods and apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  3. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses

  4. Advances in Numerical Methods

    CERN Document Server

    Mastorakis, Nikos E

    2009-01-01

    Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.

  5. Imaging spectroscopic analysis at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  6. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  7. Advanced differential quadrature methods

    CERN Document Server

    Zong, Zhi

    2009-01-01

    Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...

  8. Raman and mid-infrared spectroscopic imaging: applications and advancements

    NARCIS (Netherlands)

    Gautam, R.; Samuel, A.; Sil, S.; Chaturvedi, D.; Dutta, A.; Ariese, F.; Umapathy, S.

    2015-01-01

    Using Raman and Mid-Infrared (MIR) spectroscopic imaging techniques one can examine the spatial distribution of various molecular constituents in a heterogeneous sample at a microscopic scale. Raman and MIR spectroscopy techniques provide bond-specific vibrational frequencies to characterize molecul

  9. Studies of Nuclear Fuel by Means of Nuclear Spectroscopic Methods

    OpenAIRE

    Jansson, Peter

    2002-01-01

    The increasing demand for characterization of nuclear fuel, both from an operator and authority point of view, motivates the development of new experimental and, preferable, non-destructive methods. In this thesis, some methods based on nuclear spectroscopic techniques are presented. Various parameters of irradiated fuel are shown to be determined with high accuracy and confidence by utilizing gamma-ray scanning, tomography and passive neutron assay. Specifically, fuel parameters relevant for...

  10. Advances in energy harvesting methods

    CERN Document Server

    Elvin, Niell

    2012-01-01

    Advances in Energy Harvesting Methods presents a state-of-the-art understanding of diverse aspects of energy harvesting with a focus on: broadband energy conversion, new concepts in electronic circuits, and novel materials. This book covers recent advances in energy harvesting using different transduction mechanisms; these include methods of performance enhancement using nonlinear effects, non-harmonic forms of excitation and non-resonant energy harvesting, fluidic energy harvesting, and advances in both low-power electronics as well as  material science. The contributors include a brief liter

  11. A spectroscopic method for determining thickness of quartz wave plate

    Institute of Scientific and Technical Information of China (English)

    Weiwei Feng; Lihuang Lin; Ligang Chen; Huafeng Zhu; Ruxin Li; Zhizhan Xu

    2006-01-01

    A spectroscopic method to determine thickness of quartz wave plate is presented. The method is based on chromatic polarization interferometry. With the polarization-resolved transmission spectrum (PRTS)curve, the phase retardation of quartz wave plate can be determined at a wide spectral range from 200 to2000 nm obviously. Through accurate judgment of extreme points of PRTS curve at long-wave band, the physical thickness of quartz wave plates can be obtained exactly. We give a measuring example and the error analysis. It is found that the measuring precision of thickness is mainly determined by the spectral resolution of spectrometer.

  12. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    Science.gov (United States)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  13. The Young Solar Analogs Project: I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    OpenAIRE

    Gray, R. O.; Saken, J. M.; Corbally, C. J.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F.; Kahvaz, Y.

    2015-01-01

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300 - 1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson $S$ chromospheric activity index ($S_{\\rm MW}$), and describe the meth...

  14. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  15. Advanced methods of fatigue assessment

    CERN Document Server

    Radaj, Dieter

    2013-01-01

    The book in hand presents advanced methods of brittle fracture and fatigue assessment. The Neuber concept of fictitious notch rounding is enhanced with regard to theory and application. The stress intensity factor concept for cracks is extended to pointed and rounded corner notches as well as to locally elastic-plastic material behaviour. The averaged strain energy density within a circular sector volume around the notch tip is shown to be suitable for strength-assessments. Finally, the various implications of cyclic plasticity on fatigue crack growth are explained with emphasis being laid on the DJ-integral approach.   This book continues the expositions of the authors’ well known reference work in German language ‘Ermüdungsfestigkeit – Grundlagen für Ingenieure’ (Fatigue strength – fundamentals for engineers).

  16. Advanced median method for timing jitter compensation

    Institute of Scientific and Technical Information of China (English)

    Wang Chen; Zhu Jiangmiao; Jan Verspecht; Liu Mingliang; Li Yang

    2008-01-01

    Timing jitter is one of the main factors that influence on the accuracy of time domain precision measurement. Timing jitter compensation is one of the problems people concern. Because of the flaws of median method, PDF deconvolution method and synthetic method, we put forward a new method for timing jitter compensation, which is called advanced median method. The theory of the advanced median method based on probability and statistics is analyzed, and the process of the advanced median method is summarized in this paper. Simulation and experiment show that compared with other methods, the new method could compensate timing jitter effectively.

  17. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.

    Science.gov (United States)

    Lee, Kyung-Min; Davis, Jessica; Herrman, Timothy J; Murray, Seth C; Deng, Youjun

    2015-04-15

    Three commercially available vibrational spectroscopic techniques, including Raman, Fourier transform near infrared reflectance (FT-NIR), and Fourier transform infrared (FTIR) were evaluated to help users determine the spectroscopic method best suitable for aflatoxin analysis in maize (Zea mays L.) grain based on their relative efficiency and predictive ability. Spectral differences of Raman and FTIR spectra were more marked and pronounced among aflatoxin contamination groups than those of FT-NIR spectra. From the observations and findings in our current and previous studies, Raman and FTIR spectroscopic methods are superior to FT-NIR method in terms of predictive power and model performance for aflatoxin analysis and they are equally effective and accurate in predicting aflatoxin concentration in maize. The present study is considered as the first attempt to assess how spectroscopic techniques with different physical processes can influence and improve accuracy and reliability for rapid screening of aflatoxin contaminated maize samples.

  18. Spectroscopic calculation of asymmetric top free radicals: method and program

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper sketches out the effective Hamiltonian and basis set adopted in the spectroscopic calcula tion of asymmetric top free radicals, and details the machine implementation of the spectral analysis of asymmetric top free radicals, the design and usage of the program package. To demonstrate the application of this program, analyses have been performed on the far infrared laser magnetic resonance spectrum of 14N16O2( I = 1) and the infrared diode laser spectrum of the v3 band of PO2( I = 1/2) using the program.

  19. The Young Solar Analogs Project. I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    Science.gov (United States)

    Gray, R. O.; Saken, J. M.; Corbally, C. J.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F.; Kahvaz, Y.

    2015-12-01

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300-1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (SMW), and describe the method we use to transform our instrumental indices to SMW without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our "Superstar technique" for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005-0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the "photospheric" indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days-months) and short (minutes to hours

  20. The Young Solar Analogs Project: I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    CERN Document Server

    Gray, R O; Corbally, C J; Briley, M M; Lambert, R A; Fuller, V A; Newsome, I M; Seeds, M F; Kahvaz, Y

    2015-01-01

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300 - 1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson $S$ chromospheric activity index ($S_{\\rm MW}$), and describe the method we use to transform our instrumental indices to $S_{\\rm MW}$ without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum -- the G-band, the Ca I resonance line, and the Hydrogen-$\\gamma$ line -- with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our "Superstar technique" for differential ph...

  1. Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging

    Science.gov (United States)

    Graf, Iulia M.; Su, Jimmy; Yeager, Doug; Amirian, James; Smalling, Richard; Emelianov, Stanislav

    2011-03-01

    Carotid atherosclerosis has been identified as a potential risk factor for cerebrovascular events, but information about its direct effect on the risk of recurrent stroke is limited due to incomplete diagnosis. The combination of vascular ultrasound, strain rate and spectroscopic photoacoustics could improve the timely diagnosis of plaque status and risk of rupturing. Current ultrasound techniques can noninvasively image the anatomy of carotid arteries. The spatio-temporal variation in displacement of different regions within the arterial wall can be derived from ultrasound radio frequency data; therefore an ultrasound based strain rate imaging modality can be used to reveal changes in arterial mechanical properties. Additionally, spectroscopic photoacoustic imaging can provide information on the optical absorption properties of arterial tissue and it can be used to identify the location of specific tissue components, such as lipid pools. An imaging technique combining ultrasound, strain rate and spectroscopic photoacoustics was tested on an excised atherosclerotic rabbit aorta. The ultrasound image illustrates inhomogeneities in arterial wall thickness, the strain rate indicates the arterial segment with reduced elasticity and the spectroscopic photoacoustic image illustrates the accumulation of lipids. The results demonstrated that ultrasound, strain rate and spectroscopic photoacoustic imaging are complementary. Thus the integration of the three imaging modalities advances the characterization of atherosclerotic plaques.

  2. Spectroscopic Methods for the Detection of Organophosphate Pesticides – A Preview

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2013-08-01

    Full Text Available Organophosphate pesticides are the ester forms of phosphoric acid usually considered as secure for agriculture uses due to their relatively fast degradation rates. Organophosphorus pesticides have been extensively used in the area of agriculture to manage insect or pests of a number of economically important crops. Organophosphate pesticides are well-known as the inhibitor of acetylcholinesterase activity, not in insects only, but can also affect the nervous system of other organisms as well as humans. Organophosphorus pesticides are not restricted to anticholinesterase action, but comprise genotoxicity and teratogenicity including other environmental and ecological adverse impact. Such severe health and ecological consequences signify a requirement for a better understanding of the fate of organophosphates in the environment. By kept all these things in mind we have written a review on organophosphorus pesticides. In this review we have previewed the different methods of spectroscopic methods of detection including UV-visible, X-ray, Mass analysis, NMR, electrochemical analysis (sensor based and FTIR. Among all these mass and electrochemical studies were flourished till date and considered as advanced techniques for the analysis of other pesticides also.

  3. Spectroscopic Analysis of Wall Conditioning Methods in NSTX

    Science.gov (United States)

    Forbes, Eleanor; Soukhanovskii, Vlad

    2015-11-01

    Plasma confinement and performance in NSTX are reliant upon well-conditioned plasma facing components (PFCs). Past conditioning techniques used in NSTX include hot and cold boronization, lithium pellet injection (LPI), and lithium evaporation. The influx of hydrogen-containing molecules and radicals can be studied through spectroscopic observation of the hydrogen to deuterium (H/D) intensity ratio in the edge plasma. A code to determine H/D ratios has been developed and tested on known light sources before being applied to data from prior NSTX experiments. In general, boronization was found to reduce the H/D ratio, with further H reduction seen from cold boronization when compared to hot boronization. No correlation between LPI and H/D ratio was observed. Lithium evaporation produced a significant H decrease. In the future this analysis will be applied immediately following NSTX-U pulses to provide data on plasma-surface interactions. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-AC52-07NA27344.

  4. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  5. Advanced reliability methods - A review

    Science.gov (United States)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  6. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  7. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  8. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  9. Principles of Vibrational Spectroscopic Methods and their Application to Bioanalysis

    DEFF Research Database (Denmark)

    Moore, David S.; Jepsen, Peter Uhd; Volka, Karel

    2014-01-01

    successfully applied to the study of adsorption of biomolecules to solid surfaces, involving either attenuated total reflection (ATR) or grazing incidence reflection (GIR) accessories. FTIR microscopy has provided possibilities for the study of proteins in their native environment, such as in serum, whole...... imaging, fiber optic probes for in vivo and in vitro analysis, and methods to obtain depth profile information. The issue of fluorescence interference will be considered from the perspectives of excitation wavelength selection and data treatment. Methods to optimize signal to noise with minimized...

  10. Determination of nitrous oxide concentrations by spectroscopic method

    Science.gov (United States)

    Mirzoeva, Larissa A.; Kiseleva, Margarete S.; Sinelnikova, Galina E.

    1990-08-01

    In the proposed paper an empirical method has been developed for determination of nitrous oxide concentration using the absorption band 2'), in proximity of), 3.87J4m, free from overlapping with absorption bands from other atmospheric gases. The transmission spectra of the atmospheric air are recorded with unresolved rotation-vibration structure. The method is inexpensive, simple and efficient It may be used for determination of enviromental pollution in homogeneous media (laboratory or production plant conditions, ground layer of atmosphere) and of unhomogeneous composistion mixtures when studying the contents of nitrous oxide along slope paths in troposphere and stratosphere.

  11. Advances in structure research by diffraction methods

    CERN Document Server

    Brill, R

    1970-01-01

    Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next

  12. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  13. Fast MR Spectroscopic Imaging Technologies and Data Reconstruction Methods

    Institute of Scientific and Technical Information of China (English)

    HUANGMin; LUSong-tao; LINJia-rui; ZHANYing-jian

    2004-01-01

    MRSI plays a more and more important role in clinical application. In this paper, we compare several fast MRSI technologies and data reconstruction methods. For the conventional phase encoding MRSI, the data reconstruction using FFT is simple. But the data acquisition is very time consuming and thus prohibitive in clinical settings. Up to now, the MRSI technologies based on echo-planar, spiral trajectories and sensitivity encoding are the fastest in data acquisition, but their data reconstruction is complex. EPSI reconstruction uses shift of odd and even echoes. Spiral SI uses gridding FFT. SENSE-SI, a new approach to reducing the acquisition time, uses the distinct spatial sensitivities of the individual coil elements to recover the missing encoding information. These improvements in data acquisition and image reconstruction provide a potential value of metabolic imaging as a clinical tool.

  14. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  15. Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis

    DEFF Research Database (Denmark)

    Jørgensen, Anna; Rantanen, Jukka; Karjalainen, Milja;

    2002-01-01

    PURPOSE: The aim was to follow hydrate formation of two structurally related drugs, theophylline and caffeine, during wet granulation using fast and nondestructive spectroscopic methods. METHODS: Anhydrous theophylline and caffeine were granulated with purified water. Charge-coupled device (CCD......) Raman spectroscopy was compared with near-infrared spectroscopy (NIR) in following hydrate formation of drugs during wet granulation (off-line). To perform an at-line process analysis, the effect of water addition was monitored by NIR spectroscopy and principal components analysis (PCA). The changes...... in the crystal arrangements were verified by using X-ray powder diffraction (XRPD). RESULTS: Hydrate formation of theophylline and caffeine could be followed by CCD Raman spectroscopy. The NIR and Raman spectroscopic results were consistent with each other. NIR revealed the state of water, and Raman spectroscopy...

  16. Structural investigations of humic acid from leonardite by spectroscopic methods and thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, G.; Federico, L.; Asteri, C.; Gallo, R. (Milan University, Milan (Italy). Dept. of Organic and Industrial Chemistry)

    1993-04-01

    Humic acid from leonardite, an immature coal, has been examined by spectroscopic methods (UV-VIS, IR-FT, H-1, P-31, C-13-NMR), mass spectrometry (FAB-MS) and thermal analysis. These techniques provided complementary information. A quantitative C-13-NMR technique was applied to this humic acid: the aromaticity calculated from the NMR data is high, about 76%, in agreement with mass spectrometric and thermal analysis data.

  17. Application of spectroscopic methods in mineralogical and gemmological research of gem tourmalines

    OpenAIRE

    Peter Bačík; Jana Fridrichová; Ján Štubňa; Peter Antal

    2015-01-01

    Faceted tourmaline gemstones obtained from commercial sources as elbaites were studied with non-destructive spectroscopic methods. We applied Raman spectroscopy for mineral identification and UV/Vis/NIR spectroscopy for determination of chromophores. We identified the most of samples as fluor-elbaite to elbaite by Raman spectroscopy except one sample which has likely fluor-dravitic to fluor-uvitic composition. In green elbaitic tourmalines divalent iron is the most significant chromophore. Ye...

  18. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  19. Application and limitations on thermal and spectroscopic methods for shelf-life prediction

    International Nuclear Information System (INIS)

    In medical products, shelf-life after thermoplastic processing and sterilization is important, and ionizing radiation has become a preferred sterilization mode for medical devices. We have employed successfully thermal analytical methods to predict shelf-life for many polyolefin materials. However, as the material of construction becoming more sophisticated: multiphase alloys and blends, multi-layer constructions, etc., issues existed that require clarification as to what extent these methodologies are applicable. We have employed thermal analytical methods in conjunction with other spectroscopic and morphological methods to study the applicability and limitation of these techniques. Results combined with real life and simulated aging experiments will be presented in this article

  20. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  1. Denoising spectroscopic data by means of the improved Least-Squares Deconvolution method

    CERN Document Server

    Tkachenko, A; Tsymbal, V; Aerts, C; Kochukhov, O; Debosscher, J

    2013-01-01

    The MOST, CoRoT, and Kepler space missions led to the discovery of a large number of intriguing, and in some cases unique, objects among which are pulsating stars, stars hosting exoplanets, binaries, etc. Although the space missions deliver photometric data of unprecedented quality, these data are lacking any spectral information and we are still in need of ground-based spectroscopic and/or multicolour photometric follow-up observations for a solid interpretation. Both faintness of most of the observed stars and the required high S/N of spectroscopic data imply the need of using large telescopes, access to which is limited. In this paper, we look for an alternative, and aim for the development of a technique allowing to denoise the originally low S/N spectroscopic data, making observations of faint targets with small telescopes possible and effective. We present a generalization of the original Least-Squares Deconvolution (LSD) method by implementing a multicomponent average profile and a line strengths corre...

  2. Advances in passive-remote and extractive Fourier transform infrared spectroscopic systems

    International Nuclear Information System (INIS)

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in less than one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. We have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant

  3. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  4. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  5. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  6. Application of spectroscopic methods in mineralogical and gemmological research of gem tourmalines

    Directory of Open Access Journals (Sweden)

    Peter Bačík

    2015-06-01

    Full Text Available Faceted tourmaline gemstones obtained from commercial sources as elbaites were studied with non-destructive spectroscopic methods. We applied Raman spectroscopy for mineral identification and UV/Vis/NIR spectroscopy for determination of chromophores. We identified the most of samples as fluor-elbaite to elbaite by Raman spectroscopy except one sample which has likely fluor-dravitic to fluor-uvitic composition. In green elbaitic tourmalines divalent iron is the most significant chromophore. Yellow-green and pink elbaitic tourmaline are coloured by Mn in divalent and trivalent form, respectively. The green colour of dravitic to uvitic tourmaline is the result of absorption caused by V.

  7. Spectroscopic properties of Eu3+ doped YBO3 nanophosphors synthesized by modified co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    A. Szczeszak; S. Lis; V. Nagirnyi

    2011-01-01

    Y1-xEuxBO3 nanophosphors were synthesized by a modified co-precipitation method.The structure of the obtained nanocrystals was determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM).The average crystallite size was calculated from the full-width at half-maximum (FWHM) of the diffraction peaks by the Scherrer equation.The average particles size was 25±10 nm.The spectroscopic properties of the Y1-xEuxBO3 nanoborates were characterized by excitation and emission spectra under UV and VUV excitation.In order to improve colour purity,the chromaticity coordinates were also calculated.

  8. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    Science.gov (United States)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  9. Interaction between bovine serum albumin and Indo-1 using fluorescence spectroscopic method

    Institute of Scientific and Technical Information of China (English)

    Haixin BAI; Cheng YANG; Xiurong YANG

    2008-01-01

    This work attempts to calculate the binding-site number using fluorescence spectroscopic method with bovine serum albumin (BSA) and Indo-1 as proteinand ligand models, respectively. The method for calculat-ing the binding-site number in BSA for Indo-1 was developed based on the relationships between changes in Indo-1 fluorescence intensity and the analytical concen-tration of BSA. The interaction between BSA with Indo-1 was investigated comprehensively using fluorescence techniques as well as fluorescence resonance energy transfer, and the thermodynamic parameters were calculated according to the effect of enthalpy on temperature. Three binding sites in BSA for Indo-1 were revealed, and the distances from Trp212 in BSA to the three binding sites were 2.93, 2.57 and 2.40 nm, respectively. It was also proven that Indo-1 embedded into the three hydrophobic cavities of BSA by hydro-phobic association. This paper provides a reference on calculating the binding-site number in proteins for ligands and studying their interactions by fluorescence spectroscopic methods. In fluorescent quenching experi-ments, fluorescence changes were automatically recorded in real time by combining the Microlab 500 Series Dispenser and PTI fluorescence apparatus.

  10. Possibility of determination of the level of antioxidants in human body using spectroscopic methods

    Science.gov (United States)

    Timofeeva, E.; Gorbunova, E.

    2016-08-01

    In this work, the processes of antioxidant defence against aggressive free radicals in human body were investigated theoretically; and the existing methods of diagnosis of oxidative stress and disturbance of antioxidant activity were reviewed. Also, the kinetics of free radical reactions in the oxidation of luminol and interaction antioxidants (such as chlorophyll in the multicomponent system of plant's leaves and ubiquinone) with the UV radiation were investigated experimentally by spectroscopic method. The results showed that this method is effective for recording the luminescence of antioxidants, free radicals, chemiluminescent reactions and fluorescence. In addition these results reveal new opportunities for the study of the antioxidant activity and antioxidant balance in a multicomponent system by allocating features of the individual components in spectral composition. A creation of quality control method for drugs, that are required for oxidative stress diagnosis, is a promising direction in the development of given work.

  11. A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas

    Institute of Scientific and Technical Information of China (English)

    Niu Tian-Ye; Cao Jin-Xiang; Liu Lei; Liu Jin-Ying; Wang Yan; Wang Liang

    2007-01-01

    In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.

  12. Development of a Prototype Photoacoustic Microscope and Spectroscope and Advanced Semiconductor Material Characterization

    OpenAIRE

    Xu, L.

    2012-01-01

    The thesis can be divided into two parts. In the first part of my thesis, I present the design, construction and test results of a prototype gas-cell Photoacoustic (PA) Spectrometer and Microscope. It is a low cost, non-contact technique, which can be used to characterize semiconductor band-gap structures and subsurface defects. It requires no liquid coupling and no sample surface preparation in advance. The instrument development includes the optical system design, mechani...

  13. SIMULTANEOUS ESTIMATION OF MEFENAMIC ACID AND DICYCLOMINE HYDROCHLORIDE BY SPECTROSCOPIC METHODS

    Directory of Open Access Journals (Sweden)

    D.N. Prajapati et al

    2012-10-01

    Full Text Available A novel, simple, accurate, sensitive, reproducible, economical spectroscopic method was developed and validated for the determination of Mefenamic acid and Dicyclomine hydrochloride in combined dosage form. Three different analytical methods, Absorption correction method, Differential derivative method, Simultaneous equation method were developed for estimation of Dicyclomine hydrochloride(10mg and Mefenamic acid (250mg in tablet dosage form. wavelength for estimation was 223nm for Dicyclomine hydrochloride and 308.60nm for Mefenamic acid in absorption correction method. 211.60nm was Zero crossing point of Mefenamic acid and 308.80nm was Zero crossing point of Dicyclomine hydrochloride which can estimate in differential derivative method. Simultaneous equation method was developed in NaOH which was linear in the range of 1-6µg/ml for Dicyclomine hydrochloride and 25-150µg/ml for Mefenamic acid, the correlation coefficient obtained was nearer to one. The method was validated for linearity, accuracy and precision as per ICH guidelines. The developed and validated method was successfully used for the quantitative analysis of commercially available dosage form.

  14. Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

    Directory of Open Access Journals (Sweden)

    Ryoji Kusaka

    2010-04-01

    Full Text Available We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts and water (guest in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6, benzo-18-crown-6-ether (B18C6 and calix[4]arene (C4A. The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF, mass-selected resonance enhanced multiphoton ionization (REMPI and ultraviolet-ultraviolet hole-burning (UV-UV HB spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes.

  15. In vivo evaluation of the penetration of topically applied drugs into human skin by spectroscopic methods.

    Science.gov (United States)

    Sennhenn, B; Giese, K; Plamann, K; Harendt, N; Kölmel, K

    1993-01-01

    Spectroscopic techniques are reported on which allow to study in vivo the penetration behaviour of topically applied light-absorbing drugs into human skin. Remittance spectroscopy, a purely optical method, provides a good tool in both, skin adaptation by use of a remote viewing head coupled to the spectrometer via optical fibres, and adequate sensitivity for the detection of small amounts of the applied drugs. The measuring depth in the skin is determined by the wavelength-dependent optical penetration depth, which itself depends on light absorption and light scattering. In the UV-spectral region the optical penetration depth is of the order of the thickness of the stratum corneum (UV-A) or of only a superficial part of it (UV-B, UV-C). Fluorescence spectroscopy, another optical method, offers two kinds of drug detection, a direct one in case of self-fluorescent drugs or an indirect one being based on the light absorption of the drug, which may give rise to a screening of the self-fluorescence of the skin itself or of an applied marker. The measuring depth is comparable to that achieved with remittance spectroscopy. A third method is photothermal spectroscopy which is determined by thermal properties of the skin in addition to optical properties. Photothermal spectroscopy is unique in that it allows depth profiles of drug concentration to be measured non-invasively, as the photothermal measuring depth can be changed by varying the modulation frequency of the intensity-modulated incident light. Results of measurements demonstrating the potentials of these spectroscopic methods are presented.

  16. 7 CFR 27.92 - Method of payment; advance deposit.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...

  17. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  18. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  19. Magnetic and Moessbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, V.; Vijayanand, S.; Deka, S.; Joy, P. A., E-mail: pa.joy@ncl.res.in [National Chemical Laboratory, Physical and Materials Chemistry Division (India)

    2008-04-15

    The properties of nanocrystalline Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} synthesized by an auto-combustion method have been investigated by magnetic measurements and Moessbauer spectroscopy. The as-synthesized single phase nanosized ferrite powder is annealed at different temperatures in the range 673-1,273 K to obtain nanoparticles of different sizes. The powders are characterized by powder X-ray diffraction, vibrating sample magnetometer, transmission electron microscopy and Moessbauer spectroscopy. The as-synthesized powder with average particle size of {approx}9 nm is superparamagnetic. Magnetic transition temperature increases up to 665 K for the nanosized powder as compared to the transition temperature of 548 K for the bulk ferrite. This has been confirmed as due to the abnormal cation distribution, as evidenced from room temperature Moessbauer spectroscopic studies.

  20. Detection of DNA hybridization by various spectroscopic methods using the copper tetraphenylporphyrin complex as a probe

    International Nuclear Information System (INIS)

    We are presenting new and highly sensitive hybridization assays. They are based on various spectroscopic methods including resonance light scattering, circular dichroism, ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy, and relies on the interaction of the Cu(II), Ni(II), Mg(II), Co(II), Cd(II), and Zn(II) complexes, respectively, of tetraphenylporphyrin (TPP) with double-strand DNA (dsDNA) and single strand DNA (ssDNA). The interaction results in amplified resonance light scattering (RLS) signals and enables the detection of hybridization without the need for labeling DNA. The RLS signals are strongest in case of the Cu (II)-TPP complex which therefore was selected as the probe. The technique is simple, robust, accurate, and can be completed in less than one hour. (author)

  1. Dual window method for processing spectroscopic optical coherence tomography signals with high spectral and spatial resolution

    Science.gov (United States)

    Robles, Francisco E.; Graf, Robert N.; Wax, Adam

    2009-02-01

    The generation of spectroscopic optical coherence tomography (SOCT) signals suffers from an inherent trade off between spatial and spectral resolution. Here, we present a dual window (DW) method that uses two Gaussian windows to simultaneously obtain high spectral and spatial resolution. We show that the DW method probes the Winger time-frequency distribution (TFD) with two orthogonal windows set by the standard deviation of the Gaussian windows used for processing. We also show that in the limit of an infinitesimally narrow window, combined with a large window, this method is equivalent to the Kirkwood & Richaczek TFD and, if the real part is taken, it is equivalent to the Margenau & Hill (MH) TFD. We demonstrate the effectiveness of the method by simulating a signal with four components separated in depth or center frequency. Six TFD are compared: the ideal, the Wigner, the MH, narrow window short time Fourier transform (STFT), wide window STFT, and the DW. The results show that the DW method contains features of the Wigner TFD, and that it contains the highest spatial and spectral resolution that is free of artifacts. This method can enable powerful applications, including accurate acquisition of the spectral information for cancer diagnosis.

  2. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in...

  3. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  4. Why Video? How Technology Advances Method

    Science.gov (United States)

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  5. A spectroscopic temperature measurement of converging detonations by the emission spectra-matching method

    International Nuclear Information System (INIS)

    The spectroscopic measurement of the temperature of converging detonation by the emission spectrum-matching method was proposed and performed. The combination of gas dynamics parameters was adjusted until the agreement between the calculated profile of artificial spectra and the light emission spectra at the convergence center was obtained. The mixed gas of oxygen and acetylene was used for the experiment. When the mixing ratio of oxygen and acetylene was one to one, and the initial gas pressure was 60 Torr, the behavior of detonation was same as that of cylindrically converging shock waves propagating in the gas of specific heat ratio of 1.28 in the Guderley's theory. The increase of light emission intensity with the increase of molecular density, and the effect of temperature were observed. The effect of pressure broadening was also studied. It was found that the spectrum-matching method is available even for the weak emission or strong broadening. The artificial light emission spectra which agreed with the observed spectra were obtained. (Kato, T.)

  6. Comparability of a Three-Dimensional Structure in Biopharmaceuticals Using Spectroscopic Methods

    Directory of Open Access Journals (Sweden)

    Víctor Pérez Medina Martínez

    2014-01-01

    Full Text Available Protein structure depends on weak interactions and covalent bonds, like disulfide bridges, established according to the environmental conditions. Here, we present the validation of two spectroscopic methodologies for the measurement of free and unoxidized thiols, as an attribute of structural integrity, using 5,5′-dithionitrobenzoic acid (DTNB and DyLight Maleimide (DLM as derivatizing agents. These methods were used to compare Rituximab and Etanercept products from different manufacturers. Physicochemical comparability was demonstrated for Rituximab products as DTNB showed no statistical differences under native, denaturing, and denaturing-reducing conditions, with Student’s t-test P values of 0.6233, 0.4022, and 0.1475, respectively. While for Etanercept products no statistical differences were observed under native (P=0.0758 and denaturing conditions (P=0.2450, denaturing-reducing conditions revealed cysteine contents of 98% and 101%, towards the theoretical value of 58, for the evaluated products from different Etanercept manufacturers. DLM supported equality between Rituximab products under native (P=0.7499 and denaturing conditions (P=0.8027, but showed statistical differences among Etanercept products under native conditions (P<0.001. DLM suggested that Infinitam has fewer exposed thiols than Enbrel, although DTNB method, circular dichroism (CD, fluorescence (TCSPC, and activity (TNFα neutralization showed no differences. Overall, this data revealed the capabilities and drawbacks of each thiol quantification technique and their correlation with protein structure.

  7. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  8. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    Science.gov (United States)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  9. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods

    Science.gov (United States)

    Cai, Changqun; Chen, Xiaoming; Ge, Fei

    2010-07-01

    Multi-spectroscopic methods including resonance light scattering (RLS), ultraviolet spectra (UV), fluorescence spectra, 1H NMR spectroscopy, coupled with thermo-denaturation experiments were firstly used to study the interaction of antitumor drug tamoxifen (TMX) with calf thymus (ctDNA) in acetate buffer solutions (pH 4.55). The interaction of TMX with ctDNA could cause a significant enhancement of RLS intensity, the hyperchromic effect, red shift of absorption spectra and the fluorescence quenching of TMX, indicating that there is an inserting interaction between TMX and ctDNA. This inference was confirmed by 1H NMR spectroscopy. The chemical shift of the benzene proton changes significantly which indicates that TMX could insert into the base pairs of ctDNA. These studies are valuable for a better understanding the mode of TMX-ctDNA interaction further, which are important and useful for designing of new ctDNA targeted drug. And the antitumor drug TMX inserted directly into ctDNA in vitro, which can provide a lot of useful information to explore the development of new and highly effective anti-cancer drugs.

  10. A photo-stimulated spectroscopic method for spatially resolved stress analysis in hetero-epitaxial films

    International Nuclear Information System (INIS)

    In this paper, we have developed a laser-stimulated piezo-spectroscopic method for high-resolution stress analysis in ceramic thin films and coatings, with emphasis placed on correcting the convoluting effect arising from the finite size of the laser probe. A series of 3C-SiC/Si and Al2O3/Si3N4 samples were employed for this purpose, with various film thicknesses and substrate orientation as well. In-depth defocusing scans of selected spectral bands arising from both Raman scattering and fluorescence emission were collected. According to a quantitative measurement of the luminescence/Raman probe response function for each material investigated, a spatial probe deconvolution was carried out, from which the actual residual stress distributions could be retrieved by using a computer-aided data restoration procedure. The validity of the proposed methodology was confirmed by using different spectral stress sensors and by altering the collection configuration. The results show that with the aid of a probe deconvolution procedure, spatially resolved stress analyses can be experimentally carried out, thus greatly reducing the error involved in the averaging effect of the laser probe.

  11. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    Science.gov (United States)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  12. Advanced electromagnetic methods for aerospace vehicles

    Science.gov (United States)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  13. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  14. Dynamical co-existence of excitons and free carriers in perovskite probed by density-resolved fluorescent spectroscopic method

    CERN Document Server

    Wang, Wei; Wang, Xiangyuan; Lv, Yanping; Wang, Shufeng; Wang, Kai; Shi, Yantao; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang

    2016-01-01

    Using transient fluorescent spectra at time-zero, we develop a density-resolved fluorescent spectroscopic method for investigating photoproducts in CH3NH3PbI3 perovskite and related photophysics. The density dependent dynamical co-existence of excitons and free carriers over a wide density range is experimentally observed for the first time. The exciton binding energy (EB) and the effective mass of electron-hole pair can be estimated based on such co-existence. No ionic polarization is found contributing to photophysical behavior. It also solves the conflict between the large experimentally measured EB and the small predicted values. The spectroscopic method also helps to detect the true free carrier density under continuous illumination without the interference of ionic conductivity. Our methods and results profoundly enrich the study and understanding of the photophysics in perovskite materials for photovoltaic applications.

  15. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  16. Advanced mathematical methods in science and engineering

    CERN Document Server

    Hayek, SI

    2010-01-01

    Ordinary Differential EquationsDEFINITIONS LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER LINEAR INDEPENDENCE AND THE WRONSKIAN LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION OF ORDER N WITH CONSTANT COEFFICIENTS EULER'S EQUATION PARTICULAR SOLUTIONS BY METHOD OF UNDETERMINED COEFFICIENTS PARTICULAR SOLUTIONS BY THE METHOD OF VARIATIONS OF PARAMETERS ABEL'S FORMULA FOR THE WRONSKIAN INITIAL VALUE PROBLEMSSeries Solutions of Ordinary Differential EquationsINTRODUCTION POWER SERIES SOLUTIONS CLASSIFICATION

  17. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  18. Chemical Characterization of Riverine Dissolved Organic Matter Using a Combination of Spectroscopic and Pyrolytic Methods

    Science.gov (United States)

    Templier, J.; Derenne, S.

    2006-12-01

    It is now well established that riverine dissolved organic matter (DOM) play a major role in environmental processes. However natural organic matter exhibit different properties depending on their sources and the fractions considered. As a result chemical characterization of DOM has appeared essential for a better understanding of their reactivity. The purpose of this work was to characterize all of the DOM at molecular level, including the non-hydrolysable fraction, which is a major part of this OM. To this aim a new analytical approach had to be considered. A combination of spectroscopic and pyrolytic methods has been applied to various fractions of DOM originating from different catchments (French and Amazonian rivers). The fractions were termed hydrophilic, transphilic and colloids according to the IHSS fractionation procedure, and account for at least 70% of the total dissolved organic carbon. Solid state 13C NMR and FTIR afford information on the nature and relative abundance of the chemical functions occurring in macromolecules. Differential thermogravimetric analysis allows to determine the thermal behaviour of the studied material and hence to optimize analytical pyrolysis conditions. Curie point pyrolysis combined to gas chromatography and mass spectrometry leads to identification of characteristic pyrolysis products, some of them being specific of a macromolecular source. Additional information can be provided by thermochemolysis with tetramethylammonium hydroxide (TMAH). TMAH was shown to allow an increase in the efficiency of the cracking of macromolecular structures and an enhancement of the detection of the polar pyrolysis products especially due to methylation of the alcohol, phenol and acid groups. The results obtained have established the importance of terrestrial contribution to DOM. Hydrophobic fractions mainly originate from lignin-derived units, whereas transphilic fractions mostly contain cellulose units together with lignin derived ones and

  19. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  20. Advanced spectral methods for climatic time series

    Science.gov (United States)

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  1. Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Zhengjun, E-mail: ncczj1112@126.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002 (China)

    2012-10-15

    The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin-BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters ({Delta}G, {Delta}H and {Delta}S) calculated on the basis of different temperatures revealed that the binding of BSA-scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA-scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV-vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated. - Highlights: Black-Right-Pointing-Pointer Binding modes of scopoletin to HSA/BSA have been established. Black-Right-Pointing-Pointer The binding sites on BSA/HSA by scopoletin were discussed. Black-Right-Pointing-Pointer Investigating the structural changes of HSA and BSA in the presence of scopoletin. Black-Right-Pointing-Pointer Energy transfer and the type of the binding forces were investigated for two systems. Black-Right-Pointing-Pointer Influences of common ions on the binding constants of BSA/HSA with scopoletin were investigated.

  2. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    International Nuclear Information System (INIS)

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na+ with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum

  3. Optical spectroscopic methods for probing the conformational stability of immobilised enzymes.

    Science.gov (United States)

    Ganesan, Ashok; Moore, Barry D; Kelly, Sharon M; Price, Nicholas C; Rolinski, Olaf J; Birch, David J S; Dunkin, Ian R; Halling, Peter J

    2009-07-13

    We report the development of biophysical techniques based on circular dichroism (CD), diffuse reflectance infrared Fourier transform (DRIFT) and tryptophan (Trp) fluorescence to investigate in situ the structure of enzymes immobilised on solid particles. Their applicability is demonstrated using subtilisin Carlsberg (SC) immobilised on silica gel and Candida antartica lipase B immobilised on Lewatit VP.OC 1600 (Novozyme 435). SC shows nearly identical secondary structure in solution and in the immobilised state as evident from far UV CD spectra and amide I vibration bands. Increased near UV CD intensity and reduced Trp fluorescence suggest a more rigid tertiary structure on the silica surface. After immobilised SC is inactivated, these techniques reveal: a) almost complete loss of near UV CD signal, suggesting loss of tertiary structure; b) a shift in the amide I vibrational band from 1658 cm(-1) to 1632 cm(-1), indicating a shift from alpha-helical structure to beta-sheet; c) a substantial blue shift and reduced dichroism in the far UV CD, supporting a shift to beta-sheet structure; d) strong increase in Trp fluorescence intensity, which reflects reduced intramolecular quenching with loss of tertiary structure; and e) major change in fluorescence lifetime distribution, confirming a substantial change in Trp environment. DRIFT measurements suggest that pressing KBr discs may perturb protein structure. With the enzyme on organic polymer it was possible to obtain near UV CD spectra free of interference by the carrier material. However, far UV CD, DRIFT and fluorescence measurements showed strong signals from the organic support. In conclusion, the spectroscopic methods described here provide structural information hitherto inaccessible, with their applicability limited by interference from, rather than the particulate nature of, the support material.

  4. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lili [China Pharmaceutical University, Nanjing 210009 (China); The Nursing College of Pingdingshan University, Pingdingshan 467000 (China); Lin, Rui [Yancheng Health Vocational and Technical College, Yancheng 224005 (China); He, Hua, E-mail: dochehua@163.com [China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Sun, Meiling, E-mail: sml-nir@sohu.com [China Pharmaceutical University, Nanjing 210009 (China); Jiang, Li; Gao, Mengmeng [China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na{sup +} with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum.

  5. Transonic wing analysis using advanced computational methods

    Science.gov (United States)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.

  6. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  7. Determination of drug content in semisolid formulations by non-invasive spectroscopic methods: FTIR - ATR, - PAS, - Raman and PDS

    Energy Technology Data Exchange (ETDEWEB)

    Gotter, B; Hein, J; Neubert, R H H [Institute of Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale (Germany); Faubel, W; Heissler, St, E-mail: bernhard.gotter@pharmazie.uni-halle.d [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-03-01

    This study elucidates the potential use of photothermal deflection spectroscopy (PDS), FTIR photoacoustic (FTIR-PAS), FT Raman, and FTIR-attenuated total reflection (FTIR-ATR) spectroscopy as analytical tools for investigating the drug content in semisolid formulations. Regarding the analytical parameters, this study demonstrates the photothermal beam deflection to be definitely comparable to well established spectroscopic methods for this purpose. The correlation coefficients range from 0.990 to 0.999. Likewise, repeatability and limit of detection are comparable.

  8. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of combinatorial methods is proposed to rapidly screen catalyst formulations for the advanced development of aqueous phase oxidation catalysts with greater...

  9. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project is the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with an...

  10. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project will be the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with...

  11. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders;

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities in...

  12. Broadband photon time of flight spectroscopy: advanced spectroscopic analysis for ensuring safety and performance of pharmaceutical tablets

    DEFF Research Database (Denmark)

    Kamran, Faisal; Nielsen, Otto Højager Attermann; Andersson-Engels, Stefan;

    2013-01-01

    We report on extended spectroscopic analysis of pharmaceutical tablets performed with broadband photon time-of-flight absorption/scaring spectroscopy. Precise monitoring of absorption and scattering spectra enables cost-efficient monitoring of key safety and performance parameters of the drugs....

  13. Advanced methods of treatment of hypophysis adenoma

    Directory of Open Access Journals (Sweden)

    Kan Ya.A.

    2011-03-01

    Full Text Available Hypophysis adenomas are mostly spread in the chiasmatic cellular area. They account 18% of all new brain formations, the structure of pituitary adenomas includes prolactinomas in a large number of cases which are manifested by the syndrome of hyperprolactinemia and hormone inactive hypophysis tumours (35%. Somatotropins (13-15% are lower in frequency, the main clinical feature is acromegalia. One can rarely reveal corticotropins (8-10%, gonadotro-pins (7-9% and thyrotropins (1% and their mixed forms. Transsphenoidal surgical interventions are considered to be methods of choice treatment of hypophysis adenomas and other formations in the chiasmatic cellular area. Alternative methods of treatment are conservative. They can be as an addition to microsurgery (radiotherapy

  14. An advanced method of heterogeneous reactor theory

    International Nuclear Information System (INIS)

    Recent approaches to heterogeneous reactor theory for numerical applications were presented in the course of 8 lectures given in JAERI. The limitations of initial theory known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in 1955 as Galanine-Feinberg heterogeneous theory:-matrix from of equations, -lack of consistent theory for heterogeneous parameters for reactor cell, -were overcome by a transformation of heterogeneous reactor equations to a difference form and by a development of a consistent theory for the characteristics of a reactor cell based on detailed space-energy calculations. General few group (G-number of groups) heterogeneous reactor equations in dipole approximation are formulated with the extension of two-dimensional problem to three-dimensions by finite Furie expansion of axial dependence of neutron fluxes. A transformation of initial matrix reactor equations to a difference form is presented. The methods for calculation of heterogeneous reactor cell characteristics giving the relation between vector-flux and vector-current on a cell boundary are based on a set of detailed space-energy neutron flux distribution calculations with zero current across cell boundary and G calculations with linearly independent currents across the cell boundary. The equations for reaction rate matrices are formulated. Specific methods were developed for description of neutron migration in axial and radial directions. The methods for resonance level's approach for numerous high-energy resonances. On the basis of these approaches the theory, methods and computer codes were developed for 3D space-time react or problems including simulation of slow processes with fuel burn-up, control rod movements, Xe poisoning and fast transients depending on prompt and delayed neutrons. As a result reactors with several thousands of channels having non-uniform axial structure can be feasibly treated. (author)

  15. Advanced diagnostic methods for human brucellosis

    OpenAIRE

    Taleski, Vaso; Kunguloski, Dzoko

    2011-01-01

    Brucellosis is a typical zoonotic disease caused by organisms of genus brucella. Humans become infected by ingestion of animal food products, direct contact with infected animals or inhalation of infectious aerosols. Variable symptoms, sub-clinical and atypical infections make diagnosis of human brucellosis difficult. Objective of this paper is to evaluate specificity and sensitivity of different diagnostic methods, on large number of samples, in patients at different stages of...

  16. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders;

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities in topolo......This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  17. Advances in organometallic synthesis with mechanochemical methods.

    Science.gov (United States)

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  18. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    Science.gov (United States)

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  19. Advanced Methods and Applications in Computational Intelligence

    CERN Document Server

    Nikodem, Jan; Jacak, Witold; Chaczko, Zenon; ACASE 2012

    2014-01-01

    This book offers an excellent presentation of intelligent engineering and informatics foundations for researchers in this field as well as many examples with industrial application. It contains extended versions of selected papers presented at the inaugural ACASE 2012 Conference dedicated to the Applications of Systems Engineering. This conference was held from the 6th to the 8th of February 2012, at the University of Technology, Sydney, Australia, organized by the University of Technology, Sydney (Australia), Wroclaw University of Technology (Poland) and the University of Applied Sciences in Hagenberg (Austria). The  book is organized into three main parts. Part I contains papers devoted to the heuristic approaches that are applicable in situations where the problem cannot be solved by exact methods, due to various characteristics or  dimensionality problems. Part II covers essential issues of the network management, presents intelligent models of the next generation of networks and distributed systems ...

  20. Current methods and advances in bone densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmi, G. [Dept. of Radiology, Scientific Inst. ``CSS``, San Giovanni Rotondo (Italy); Glueer, C.C. [Dept. of Radiology, Musculoskeletal Section and Osteoporosis Research Group, Univ. of California, San Francisco, CA (United States); Majumdar, S. [Dept. of Radiology, Musculoskeletal Section and Osteoporosis Research Group, Univ. of California, San Francisco, CA (United States); Blunt, B.A. [Dept. of Radiology, Musculoskeletal Section and Osteoporosis Research Group, Univ. of California, San Francisco, CA (United States); Genant, H.K. [Dept. of Radiology, Musculoskeletal Section and Osteoporosis Research Group, Univ. of California, San Francisco, CA (United States)

    1995-08-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. (orig.)

  1. Current methods and advances in bone densitometry

    Science.gov (United States)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  2. Method and ethics in advancing jury research.

    Science.gov (United States)

    Robertshaw, P

    1998-10-01

    In this article the contemporary problems of the jury and jury research are considered. This is timely, in view of the current Home Office Consultation Paper on the future of, and alternatives to, the jury in serious fraud trials, to which the author has submitted representations on its jury aspects. The research position is dominated by the prohibitions in the Contempt of Court Act 1981. The types of indirect research on jury deliberation which have been achieved within this stricture are outlined. In the USA, direct research of the jury is possible but, for historical reasons, it has been in television documentaries that direct observation of the deliberation process has been achieved. The first issue is discussed and the problems of inauthenticity, 'the observer effect', and of existential invalidity in 'mock' or 'shadow' juries are noted. Finally, the kinds of issues that could be addressed if licensed jury deliberation research was legalized, are proposed. It is also suggested that there are methods available to transcend the problems associated with American direct research. PMID:9808945

  3. LiF - a spectroscopic method for rare earth elements identification

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Beyer, Jan; Jacob, Sandra; Heitmann, Johannes

    2016-04-01

    Laser-induced fluorescence (LiF) has a great potential for the exploration and identification of rare earth elements (REE) in natural environments. This spectroscopic technique can provide an efficient way to secure resource availability, while the economic and ecological costs are reduced. No time-consuming sample preparation and analysis is needed prior to decisions along the raw material processing chain. Such non-destructive approaches allow for a fast access to analytical results and hence, are the basis for an immediate adjustment of processing steps. The method uses the material-specific luminescence emissions that are induced by laser-stimulation of a certain wavelength. The distinct emission lines of REE make them well suited for the development of a LiF-based exploration technique. However, typical REE emission peaks known from the free elements may shift or be masked in natural materials due to their position in the crystal lattice, varying compositions of minerals or other natural conditions such as water content. The natural variability therefore, demands for comprehensive investigations of REE and their spectral characteristics in minerals. To identify those spectral information that are robust and unequivocal, we analyse spectra of REE standards measured in different matrix minerals including phosphates and fluorides. We use variable laser wavelengths from UV (325 nm) to green (532 nm) and a detection range from 340 nm to 1080 nm. Results show spectral characteristics that sort REE in three groups due to: no distinct emission lines, absorption features, distinct luminescence emission lines. Measured in different matrix minerals, we determine shifts for some of the spectral features and some disappear or decline in intensity. Changing the wavelength of the laser allows for a more selective stimulation of REE emissions, especially wavelengths longer than UV can reduce the unspecific emission of all luminescent components of a sample and thus enhance

  4. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  5. Strategy to Promote Active Learning of an Advanced Research Method

    Science.gov (United States)

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  6. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  7. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  8. Application of spectroscopic methods to the study of ionizing radiation effects in polymers

    International Nuclear Information System (INIS)

    In general the interaction of ionizing radiation with polymers generates physic-chemical changes. Aiming to quantity these changes, three spectroscopic analytical techniques were used (UV, IR and EPR) and the chemical corrosion technique was used for three DSTN (CR39, Lexan and Makrofol) which were exposed to two radiation types: electrons and gammas. The effects of radiation are compared. Also a correlation between the UV and Vg results in function of dose is presented. The possible causes of the increase in chemical corrosion are discussed. (Author)

  9. Application of spectroscopic methods to the study of selected geochemical problems

    International Nuclear Information System (INIS)

    Impact craters are products of a complex sequence of events and processes, which include the formation of the crater by a hypervelocity impact of an extraterrestrial body on the surface of the earth and the subsequent modification of the crater by terrestrial processes, such as weathering, erosion, sedimentation, tectonics, or volcanism. Recognition of impact craters as common geological features on the surface of planets is a major conceptual revolution in the earth sciences during recent years. Impact craters can be distinguished by a set of criteria, such as morphology, associated geophysical and geochemical anomalies, and shock metamorphic effects. Some impact craters are known to host economically important mineral deposits and hydrocarbon reserves. Six different spectroscopic methods were used to obtain chemical data on the rocks of the studied areas. These are X-ray Fluorescence Spectroscopy (XRF), Atomic Absorption Spectroscopy (AAS), Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES), Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Thermal Ionization Mass Spectrometry (TIMS). The subject of this study were samples from four different areas, Lake Tana area (north-central Ethiopia), Shakiso area (southern Ethiopia), BP and Oasis impact structures Libya, and the Zhamanshin impact crater, Kazakhstan. Petrographic and geochemical studies show that the Lake Tana and the Gimjabet-Kosober areas are covered by dominantly two main types of volcanic rocks. These are rhyodacitic and alkali basalts. Rhyodacites occur in the area east of Lake Tana, and the alkali basalts cover most of the area within the Lake Tana (e.g., Dek island), and the Gimjabet-Kosober areas. The rare earth element (REE) and incompatible element patterns of rhyodacites east of Lake Tana display evidence of differentiation and crustal contamination. The major, trace, and REE data suggest that the young volcanic rocks of the

  10. Evaluation of vibrational spectroscopic methods to identify and quantify multiple adulterants in herbal medicines.

    Science.gov (United States)

    Rooney, Jeremy S; McDowell, Arlene; Strachan, Clare J; Gordon, Keith C

    2015-06-01

    To counter the growth of herbal medicines adulterated with pharmaceuticals crossing borders, rapid, inexpensive and non-destructive analytical techniques, that can handle complex matrices, are required. Since mid-infrared (MIR), near infrared (NIR) and Raman spectroscopic techniques meet these criteria, their performance in identifying adulterants in seized weightloss herbal medicines is definitively determined. Initially a validated high pressure liquid chromatography methodology was used for reference identification and quantification of the adulterants sibutramine H2O·HCl, fenfluramine HCl and phenolphthalein. Of 38 products, only sibutramine and phenolphthalein were detected by HPLC. The spectroscopic measurements showed Raman was ill-suited due to sample burning and emission while NIR lacked adulterant selectivity. Conversely, MIR demonstrated apt identification performance, which manifested as spectrally meaningful separation based on the presence and type of adulterant during principal component analysis (test set validated). Partial least squares regression models were constructed from the MIR training sets for sibutramine and phenolphthalein - both models fitted the training set data well. Average test set prediction errors were 0.8% for sibutramine and 2.2% for phenolphthalein over the respective concentration ranges of 1.7-11.7% and 0.9-34.4%. MIR is apposite for the screening of anorectic and laxative adulterants and is the most viable technique for wider adulterant screening in herbal medicines. PMID:25863375

  11. The development of high-resolution spectroscopic methods and their use in atomic structure studies

    International Nuclear Information System (INIS)

    This thesis discusses work performed during the last nine years in the field of atomic spectroscopy. Several high-resolution techniques, ranging from quantum beats, level crossings, rf-laser double resonances to nonlinear field atom interactions, have been employed. In particular, these methods have been adopted and developed to deal with fast accelerated atomic or ionic beams, allowing studies of problems in atomic-structure theory. Fine- and hyperfine-structure determinations in the He I and Li I isoelectronic sequences, in 51V I, and in 235U I, II have permitted a detailed comparison with ab initio calculations, demonstrating the change in problems when going towards heavier elements or higher ionization stage. The last part of the thesis is concerned with the fundamental question of obtaining very high optical resolution in the interaction between a fast accelerated atom or ion beam and a laser field, this problem being the core in the continuing development of atomic spectroscopy necessary to challenge the more precise and sophisticated theories advanced. (Auth.)

  12. Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals

    Directory of Open Access Journals (Sweden)

    Ralf Ostendorf

    2016-05-01

    Full Text Available External-cavity quantum cascade lasers (EC-QCL are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a broad gain spectrum and a resonantly driven micro-opto-electro-mechanical (MOEMS scanner with an integrated diffraction grating in Littrow configuration. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets, as well as on hazardous substances, such as explosives. Furthermore, different applications for the EC-QCL technology in spectroscopic sensing are presented. These include the fields of process analysis with on- or even inline capability and imaging backscattering spectroscopy for contactless identification of solid and liquid contaminations on surfaces. Recent progress in trace detection of explosives and related precursors in relevant environments as well as advances in food quality monitoring by discriminating fresh and mold contaminated peanuts based on their MIR backscattering spectrum is shown.

  13. Laser spectroscopy: Assessment of research needs for laser technologies applied to advanced spectroscopic methods

    International Nuclear Information System (INIS)

    This report is organized as follows. Section 2 summarizes the current program of DOE's Office of Health and Environmental Research (OHER) and provides some remarks on low laser science and technology could beneficially impact most of the research programs. Section 3 provides a brief global perspective on laser technology and attempts to define important trends in the field. Similarly, Section 4 provides a global perspective on laser spectroscopy and addresses important trends. Thus, Section 5 focuses on the trends in laser technology and spectroscopy which could impact the OHER mission in significant ways and contains the basis for recommendations made in the executive summary. For those with limited familiarity with laser technology and laser spectroscopy, reference is made to Appendix 1 for a list of abbreviations and acronyms. Appendix 2 can serve a useful review or tutorial for those who are not deeply involved with laser spectroscopy. Even those familiar with laser spectroscopy and laser technology may find it useful to know precisely what the authors of this document mean by certain specialized terms and expressions. Finally, a note on the style of referencing may be appropriate. Whenever possible a book or review articles is referenced as the preferred citation. However, we frequently found it useful to reference a number of individual papers of recent origin or those which were not conveniently found in the review articles

  14. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    Science.gov (United States)

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  15. Method and Tools for Development of Advanced Instructional Systems

    NARCIS (Netherlands)

    Arend, J. van der; Riemersma, J.B.J.

    1994-01-01

    The application of advanced instructional systems (AISs), like computer-based training systems, intelligent tutoring systems and training simulators, is widely spread within the Royal Netherlands Army. As a consequence there is a growing interest in methods and tools to develop effective and efficie

  16. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  17. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  18. Raman Spectroscopic Methods for Classification of Normal and Malignant Hypopharyngeal Tissues: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Parul Pujary

    2011-01-01

    Full Text Available Laryngeal cancer is more common in males. The present study is aimed at exploration of potential of conventional Raman spectroscopy in classifying normal from a malignant laryngopharyngeal tissue. We have recorded Raman spectra of twenty tissues (aryepiglottic fold using an in-house built Raman setup. The spectral features of mean malignant spectrum suggests abundance proteins whereas spectral features of mean normal spectrum indicate redundancy of lipids. PCA was employed as discriminating algorithm. Both, unsupervised and supervised modes of analysis as well as match/mismatch “limit test” methodology yielded clear classification among tissue types. The findings of this study demonstrate the efficacy of conventional Raman spectroscopy in classification of normal and malignant laryngopharyngeal tissues. A rigorous evaluation of the models with development of suitable fibreoptic probe may enable real-time Raman spectroscopic diagnosis of laryngopharyngeal cancers in future.

  19. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  20. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  1. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    Science.gov (United States)

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  2. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  3. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  4. Current advances in diagnostic methods of Acanthamoeba keratitis

    Institute of Scientific and Technical Information of China (English)

    Wang Yuehua; Feng Xianmin; Jiang Linzhe

    2014-01-01

    Objective The objective of this article was to review the current advances in diagnostic methods for Acanthamoeba keratitis (AK).Data sources Data used in this review were retrieved from PubMed (1970-2013).The terms "Acanthamoeba keratitis" and "diagnosis" were used for the literature search.Study selection Data from published articles regarding AK and diagnosis in clinical trials were identified and reviewed.Results The diagnostic methods for the eight species implicated in AK were reviewed.Among all diagnostic procedures,corneal scraping and smear examination was an essential diagnostic method.Polymerase chain reaction was the most sensitive and accurate detection method.Culturing of Acanthamoeba was a reliable method for final diagnosis of AK.Confocal microscopy to detect Acanthamoeba was also effective,without any invasive procedure,and was helpful in the early diagnosis of AK.Conclusion Clinically,conjunction of various diagnostic methods to diagnose AK was necessary.

  5. Study on the interaction between gold nanoparticles and papain by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongke; Chen, Ye; Yan, Changling; Lu, Yan, E-mail: yanlu2001@sohu.com

    2015-01-15

    The interaction between gold nanoparticles and papain was studied by fluorescence, UV–vis absorption and synchronous fluorescence spectroscopic techniques under the physiological conditions. The results showed that the binding of gold nanoparticles to papain was a spontaneous binding process. The fluorescence of papain was strongly quenched by gold nanoparticles. The quenching mechanism was probably a static quenching type with the formation of a ground state complex. The Stern–Volmer quenching constants, the binding constants and the number of binding sites in different temperatures were calculated. The corresponding thermodynamic parameters ΔH,ΔS and ΔG indicated that hydrogen bonding and Van der Waals forces played a key role in the interaction process. Additionally, the conformational change of papain induced by gold nanoparticles was analyzed by UV–vis absorption and synchronous fluorescence spectra. - Highlights: • Spherical and monodispersed gold nanoparticles are synthesized. • The fluorescence of papain is quenched by gold nanoparticles under physiological conditions. • Hydrogen bonding and Van der Waals forces may play an essential role in the binding of gold nanoparticles with papain. • This binding interaction is predominantly enthalpy driven.

  6. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    Science.gov (United States)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  7. Advanced Regression Methods in Finance and Economics: Three Essays

    OpenAIRE

    Hofmarcher, Paul

    2012-01-01

    In this thesis advanced regression methods are applied to discuss and investigate highly relevant research questions in the areas of finance and economics. In the field of credit risk the thesis investigates a hierarchical model which allows to obtain a consensus score, if several ratings are available for each firm. Autoregressive processes and random effects are used to model both a correlation structure between and within the obligors in the sample. The model also allows to validate ...

  8. Advanced applications of boundary-integral equation methods

    International Nuclear Information System (INIS)

    Numerical analysis has become the basic tool for both design and research problems in solid mechanics. The need for accuracy and detail, plus the availablity of the high speed computer has led to the development of many new modeling methods ranging from general purpose structural analysis finite element programs to special purpose research programs. The boundary-integral equation (BIE) method is based on classical mathematical techniques but is finding new life as a basic stress analysis tool for engineering applications. The paper summarizes some advanced elastic applications of fracture mechanics and three-dimensional stress analysis, while referencing some of the much broader developmental effort. Future emphasis is needed to exploit the BIE method in conjunction with other techniques such as the finite element method through the creation of hybrid stress analysis methods. (Auth.)

  9. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  10. Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method

    Science.gov (United States)

    Sreeja, V.; Vijayanand, S.; Deka, S.; Joy, P. A.

    2008-04-01

    The properties of nanocrystalline Ni0.5Zn0.5Fe2O4 synthesized by an auto-combustion method have been investigated by magnetic measurements and Mössbauer spectroscopy. The as-synthesized single phase nanosized ferrite powder is annealed at different temperatures in the range 673 1,273 K to obtain nanoparticles of different sizes. The powders are characterized by powder X-ray diffraction, vibrating sample magnetometer, transmission electron microscopy and Mössbauer spectroscopy. The as-synthesized powder with average particle size of ~9 nm is superparamagnetic. Magnetic transition temperature increases up to 665 K for the nanosized powder as compared to the transition temperature of 548 K for the bulk ferrite. This has been confirmed as due to the abnormal cation distribution, as evidenced from room temperature Mössbauer spectroscopic studies.

  11. Advanced thermal hydraulic method using 3x3 pin modeling

    International Nuclear Information System (INIS)

    Advanced thermal hydraulic methods are being developed as part of the US DOE sponsored Nuclear Hub program called CASL (Consortium for Advanced Simulation of LWRs). One of the key objectives of the Hub program is to develop a multi-physics tool which evaluates neutronic, thermal hydraulic, structural mechanics and nuclear fuel rod performance in rod bundles to support power uprates, increased burnup/cycle length and life extension for US nuclear plants. Current design analysis tools are separate and applied in series using simplistic models and conservatisms in the analysis. In order to achieve key Nuclear Hub objectives a higher fidelity, multi-physics tool is needed to address the challenge problems that limit current reactor performance. This paper summarizes the preliminary development of a multi-physics tool by performing 3x3 pin modeling and making comparisons to available data. (author)

  12. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  13. Characterization of vanadium, manganese and iron model clusters by vibrational and optical spectroscopic methods

    Science.gov (United States)

    Ji, Wenbin

    1999-12-01

    The active ferryl intermediates in the catalytic cycles of heme proteins are subject to interactions from the proximal and distal amino acid residues which control their activities and affect the ν(FeIVO) frequency. The effects of sixth axial ligation, hydrogen bonding, and solvent induced polarization on the resonance Raman (RR) spectra of the ferryl porphyrin analogs, vanadyl (VIVO) porphyrins and their π-cation radicals, are characterized. ν(VIVO) stretching bands for (VO)TMPyP and (VO)PPIX are observed to be sensitive to the pH value of the aqueous solutions, and reveal a number of coexisting 5-coordinate (c) and 6- c vanadyl porphyrins in solution. Moreover, the ν(VIVO) bands for (VO)TMP and (VO)TPP porphyrins upshift to higher frequencies with the formation of their π-cation radicals, in agreement with that of the (VO)OEP radical. For both a1u (OEP) and a2u (TPP, TMP) type radicals, an increased positive charge on the porphyrin reduces the porphyrin --> vanadium electron donation, but enhances the oxo --> V donation. The UV-Vis absorption and RR spectroscopic studies on a series of oxo-bridged vanadium(III) and manganese (III, IV) complexes established spectrostructural correlations that are useful as monitors of the structure of vanadium(III) and manganese(III, IV) centers in biological systems. The linear and bent V-O-V dimers display distinctive RR and absorption spectra. The linear V-O-V bridge displays an intense μ-O --> V charge transfer (CT) absorption band and a strongly enhanced symmetric (νs) or antisymmetric (νas) V-O-V stretching band in RR spectra, depending upon terminal ligands. In contrast, the bent bridge shows two μ-O --> V CT bands and both νs and νas V- O-V stretches are observed in RR spectra. These νs and νas vibrations are used to indicate that the vanadium(III) oxo-bridged dimer intercalates with DNA. The Mn-O-Mn vibrational frequencies in the 400-700 cm -1 region of the oxo-bridged manganese(III, IV) dimers, trimers, and

  14. Methods and advances in the study of aeroelasticity with uncertainties

    Institute of Scientific and Technical Information of China (English)

    Dai Yuting; Yang Chao

    2014-01-01

    Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertainty in the modeling of structures and aerodynamics, has been a hot topic in the last decades. In this paper, advances of the analysis and design in aeroelasticity with uncertainty are summarized in detail. According to the non-probabilistic or probabilistic uncer-tainty, the developments of theories, methods and experiments with application to both robust and probabilistic aeroelasticity analysis are presented, respectively. In addition, the advances in aeroelastic design considering either probabilistic or non-probabilistic uncertainties are introduced along with aeroelastic analysis. This review focuses on the robust aeroelasticity study based on the structured singular value method, namely the l method. It covers the numerical calculation algo-rithm of the structured singular value, uncertainty model construction, robust aeroelastic stability analysis algorithms, uncertainty level verification, and robust flutter boundary prediction in the flight test, etc. The key results and conclusions are explored. Finally, several promising problems on aeroelasticity with uncertainty are proposed for future investigation.

  15. Development of advanced nodal diffusion methods for modern computer architectures

    International Nuclear Information System (INIS)

    A family of highly efficient multidimensional multigroup advanced neutron-diffusion nodal methods, ILLICO, were implemented on sequential, vector, and vector-concurrent computers. Three-dimensional realistic benchmark problems can be solved in vectorized mode in less than 0.73 s (33.86 Mflops) on a Cray X-MP/48. Vector-concurrent implementations yield speedups as high as 9.19 on an Alliant FX/8. These results show that the ILLICO method preserves essentially all of its speed advantage over finite-difference methods. A self-consistent higher-order nodal diffusion method was developed and implemented. Nodal methods for global nuclear reactor multigroup diffusion calculations which account explicitly for heterogeneities in the assembly nuclear properties were developed and evaluated. A systematic analysis of the zero-order variable cross section nodal method was conducted. Analyzing the KWU PWR depletion benchmark problem, it is shown that when burnup heterogeneities arise, ordinary nodal methods, which do not explicitly treat the heterogeneities, suffer a significant systematic error that accumulates. A nodal method that treats explicitly the space dependence of diffusion coefficients was developed and implemented. A consistent burnup-correction method for nodal microscopic depletion analysis was developed

  16. Advanced applications of boundary-integral equation methods

    International Nuclear Information System (INIS)

    The BIE (boundary integral equation) method is based on the numerical solution of a set of integral constraint equations which couple boundary tractions (stresses) to boundary displacements. Thus the dimensionality of the problem is reduced by one; only boundary geometry and data are discretized. Stresses at any set of selected interior points are computed following the boundary solution without any further numerical approximations. Thus, the BIE method has inherently greater resolution capability for stress gradients than does the finite element method. Conversely, the BIE method is not efficient for problems involving significant inhomogeneity such as in multi-thin-layered materials, or in elastoplasticity. Some progress in applyiing the BIE method to the latter problem has been made but much more work remains. Further, the BIE method is only optional for problems with significant stress risers, and only when boundary stresses are most important. Interior stress calculations are expensive, per point, and can drive the solution costs up rapidly. The current report summarizes some of the advanced elastic applications of fracture mechanics and three-dimensional stress analysis, while referencing some of the much broader developmental effort. Future emphasis is needed to exploit the BIE method in conjunction with other techniques such as the finite element method through the creation of hybrid stress analysis methods

  17. FTIR SPECTROSCOPIC METHOD FOR QUANTITATIVE ANALYSIS OF CILNIDIPINE IN TABLET DOSAGE FORM

    OpenAIRE

    Ashish Patel; Arti Panchal; Viral Patel; Akhil Nagar

    2015-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid and direct measurement of Cilnidipine in pharmaceutical drugs. Cilnidipine is newly discovered and very effective antihypertensive drug. Cilnidipine can be determined by various methods and now we are adding a new one that uses a Fourier transform infrared spectrophotometric technique. The method involves the measurement of absorbance of carbonyl group (C=O) peak at 1697 cm-1. The proposed method was validat...

  18. A rapid method for peroxide value determination in edible oils based on flow analysis with Fourier transform infrared spectroscopic detection.

    Science.gov (United States)

    Ruíz, A; Ayora Cañada, M J; Lendl, B

    2001-02-01

    The development of an automated, rapid and highly precise method for determination of the peroxide value in edible oils based on a continuous flow system and Fourier transform infrared (FTIR) spectroscopic detection is described. The sample stream was mixed with a solvent mixture consisting of 25% (v/v) toluene in hexanol which contained triphenylphosphine (TPP). The hydroperoxides present in the sample reacted stoichiometrically with TPP to give triphenylphosphine oxide (TPPO) which has a characteristic and intense absorption band at 542 cm-1. A 10% (m/v) TPP solution in the solvent mixture and a 100 cm reaction coil were necessary for complete reaction. FTIR transmission spectra were recorded using a flow cell equipped with CsI windows having an optical pathlength of 100 microns. By using tert-butyl hydroperoxide spiked oil standards and evaluation of the band formed at 542 cm-1 a linear calibration graph covering the range 1-100 PV (peroxide value; mequiv O2 kg-1 oil) was obtained. The relative standard deviation was 0.23% (n = 11) and the throughput 24 samples h-1. The developed system was also applied to the determination of PV in olive, sunflower and corn oils, showing good agreement with the official reference method of the European Community which is based on titration using organic solvents. The results obtained clearly show that the developed method is superior to the standard wet chemical method, hence suggesting its application in routine analysis and quality control. PMID:11235111

  19. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples.

    Science.gov (United States)

    Mabood, Fazal; Hussain, Z; Haq, H; Arian, M B; Boqué, R; Khan, K M; Hussain, K; Jabeen, F; Hussain, J; Ahmed, M; Alharasi, A; Naureen, Z; Hussain, H; Khan, A; Perveen, S

    2016-01-15

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80s, the optimal reaction temperature is 160°C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  20. Fine analysis on advanced detection of transient electromagnetic method

    Institute of Scientific and Technical Information of China (English)

    Wang Bo; Liu Shengdong; Yang Zhen; Wang Zhijun; Huang Lanying

    2012-01-01

    Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5%,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.

  1. Advances on methods for mapping QTL in plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Ming

    2006-01-01

    Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized.Then, some new methods, including mapping multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly described. Finally, some future prospects are proposed, including how to dig novel genes in the germplasm resource, map expression QTL (eQTL) by the use of all markers,phenotypes and micro-array data, identify QTL using genetic mating designs and detect viability loci. The purpose is to direct plant geneticists to choose a suitable method in the inheritance analysis of quantitative trait and in search of novel genes in germplasm resource so that more potential genetic information can be uncovered.

  2. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  3. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  4. Advanced Methods in Black-Hole Perturbation Theory

    CERN Document Server

    Pani, Paolo

    2013-01-01

    Black-hole perturbation theory is a useful tool to investigate issues in astrophysics, high-energy physics, and fundamental problems in gravity. It is often complementary to fully-fledged nonlinear evolutions and instrumental to interpret some results of numerical simulations. Several modern applications require advanced tools to investigate the linear dynamics of generic small perturbations around stationary black holes. Here, we present an overview of these applications and introduce extensions of the standard semianalytical methods to construct and solve the linearized field equations in curved spacetime. Current state-of-the-art techniques are pedagogically explained and exciting open problems are presented.

  5. Advanced applications of boundary-integral equation methods

    International Nuclear Information System (INIS)

    Numerical analysis has become the basic tool for both design and research problems in solid mechanics. The boundary-integral equation (BIE) method is based on classical mathematical techniques but is finding new life as a basic stress analysis tool for engineering applications. The BIE method is based on the numerical solution of a set of integral constraint equations which couple boundary tractions (stresses) to boundary displacements. Thus the dimensionality of the problem is reduced by one; only boundary geometry and data are discretized. Stresses at any set of selected interior points are computed following the boundary solution without any further numerical approximations. Thus, the BIE method has inherently greater resolution capability for stress gradients than does the finite element method. Conversely, the BIE method is not efficient for problems involving significant inhomogeneity such as in multi-thin-layered materials, or in elastoplasticity. Some progress in applying the BIE method to the latter problem has been made but much more work remains. Further, the BIE method is only optional for problems with significant stress risers, and only when boundary stresses are more important. Interior stress calculations are expensive, per point, and can drive the solution costs up rapidly. The current report summarizes some of the advanced elastic applications of fracture mechanics and three-dimensional stress analysis, while referring some of the much broader developmental effort. (Auth.)

  6. DEVELOPMENT AND VALIDATION OF UV SPECTROSCOPIC METHOD FOR THE QUICK ESTIMATION OF GINGEROL FROM ZINGIBER OFFICINALE RHIZOME EXTRACT

    Directory of Open Access Journals (Sweden)

    Shinde Sachin K

    2012-05-01

    Full Text Available Ginger (Zingiber officinale Roscoe Family- Zingiberaceae, have been used in Chinese and Indian folk medicine for centuries. There are no reported UV‐visible methods for quick estimation of this extract, which is necessary in the development of suitable formulations for this drug. Hence, a simple UV spectroscopic method was developed for direct estimation of this extract. Ginger rhizome extract obtained from simple maceration process. Calibration curve of rhizome extract was prepared in methanol on three consecutive days at λmax 281.40 nm. The absorbance values (mean of three determinations with their standard deviations at different concentration in the range of 20‐100 μg/ml was determined. Extract was found to obey Beer‐Lambert’s law in the concentration range of 20‐100 μg/ml with regression coefficient (r2 values 0.9995. The regression equations were calculated as y = 0.0097x + 0.0132 for methanol. The developed calibration curve was validated for intra‐day and inter‐day variations as per ICH Q2A guideline and was found to be a stable method.

  7. Spectroscopic method for the determination of the ionic site concentration in solvent polymeric membranes and membrane plasticizers.

    Science.gov (United States)

    Gyurcsányi, Robert E; Lindner, Erno

    2002-08-15

    The built-in site density of either fixed sites or mobile hydrophobic ion sites determines whether a membrane is permselective for cations or anions of the sample. The molar ratio of the ionophore to the intrinsic or added ionic sites in an ion-selective membrane significantly influences the potentiometric response of ionophore-based electrodes. Consequently, full knowledge of the "site inventory" in an ion-selective membrane maybe essential when new, uncharacterized polymers or plasticizers are implemented for ion-selective electrode fabrication. A simple spectroscopic method was developed for the fast and accurate determination of the ionic site concentration (covalently attached functionalized groups or impurities) in plasticized polymeric membranes and membrane plasticizers. The method is based on the determination of the degree of protonation of hydrogen ion-selective chromoionophores incorporated into these membranes or dissolved in the membrane plasticizers. In electroneutral membranes, the concentration of the positively charged, protonated ionophore and the total concentration of negative sites are equal. The method was applied for the determination of ionic sites (both positively and negatively charged) in PVC materials (different purity grade, and bearing various functional groups), polyurethanes (aliphatic, aromatic, and polycarbonate-based), and selected Fluka plasticizers (2-nitrophenyl octyl ether and 2-ethylhexyl sebacate). The technique proved to be appropriate for fast quantification of ionic impurities in hydrophobic, optically transparent materials.

  8. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO2 pellet-pins. The advanced PHWR fuels are UO2-PuO2 (≤ 2 per cent), ThO2-PuO2 (≤ 4 per cent) and ThO2-U233O2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO2, PuO2 and ThO2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  9. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  10. FTIR SPECTROSCOPIC METHOD FOR QUANTITATIVE ANALYSIS OF CILNIDIPINE IN TABLET DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Ashish Patel

    2015-07-01

    Full Text Available A Fourier transform infrared (FT-IR spectrometric method was developed for the rapid and direct measurement of Cilnidipine in pharmaceutical drugs. Cilnidipine is newly discovered and very effective antihypertensive drug. Cilnidipine can be determined by various methods and now we are adding a new one that uses a Fourier transform infrared spectrophotometric technique. The method involves the measurement of absorbance of carbonyl group (C=O peak at 1697 cm-1. The proposed method was validated for pharmaceuticals in tablet form and %RSD was found to be less than two with recovery levels 99.8-102.5 and 99.8- 101.4 as per absorbance and peak area respectively.

  11. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    Science.gov (United States)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  12. Spectrophotometric method for the determination, validation, spectroscopic and thermal analysis of diphenhydramine in pharmaceutical preparation

    Science.gov (United States)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2010-09-01

    A sensitive, simple and rapid spectrophotometric method was developed for the determination of diphenhydramine in pharmaceutical preparation. The method was based on the charge-transfer complex of the drug, as n-electron donor, with 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), as π-acceptor. The formation of this complex was also confirmed by UV-vis, FTIR and 1H NMR spectra techniques and thermal analysis. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The linearity range for concentrations of diphenhydramine was found to be 12.5-150 μg/mL with acceptable correlation coefficients. The detection and quantification limits were found to be 2.09 and 6.27 μg/mL, respectively. The proposed and references methods were applied to the determination of drug in syrup. This preparation were also analyzed with an reference method and statistical comparison by t- and F-tests revealed that there was no significant difference between the results of the two methods with respect to mean values and standard deviations at the 95% confidence level.

  13. A validated near-infrared spectroscopic method for methanol detection in biodiesel

    Science.gov (United States)

    Paul, Andrea; Bräuer, Bastian; Nieuwenkamp, Gerard; Ent, Hugo; Bremser, Wolfram

    2016-06-01

    Biodiesel quality control is a relevant issue as biodiesel properties influence diesel engine performance and integrity. Within the European metrology research program (EMRP) ENG09 project ‘Metrology for Biofuels’, an on-line/at-site suitable near-infrared spectroscopy (NIRS) method has been developed in parallel with an improved EN14110 headspace gas chromatography (GC) analysis method for methanol in biodiesel. Both methods have been optimized for a methanol content of 0.2 mass% as this represents the maximum limit of methanol content in FAME according to EN 14214:2009. The NIRS method is based on a mobile NIR spectrometer equipped with a fiber-optic coupled probe. Due to the high volatility of methanol, a tailored air-tight adaptor was constructed to prevent methanol evaporation during measurement. The methanol content of biodiesel was determined from evaluation of NIRS spectra by partial least squares regression (PLS). Both GC analysis and NIRS exhibited a significant dependence on biodiesel feedstock. The NIRS method is applicable to a content range of 0.1% (m/m) to 0.4% (m/m) of methanol with uncertainties at around 6% relative for the different feedstocks. A direct comparison of headspace GC and NIRS for samples of FAMEs yielded that the results of both methods are fully compatible within their stated uncertainties.

  14. Methods and Systems for Advanced Spaceport Information Management

    Science.gov (United States)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  15. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  16. Development and validation spectroscopic methods for the determination of lomefloxacin in bulk and pharmaceutical formulations

    Science.gov (United States)

    El-Didamony, A. M.; Hafeez, S. M.

    2016-01-01

    Four simple, sensitive spectrophotometric and spectrofluorimetric methods (A-D) for the determination of antibacterial drug lomefloxacin (LMFX) in pharmaceutical formulations have been developed. Method A is based on formation of ternary complex between Pd(II), eosin and LMFX in the presence of methyl cellulose as surfactant and acetate-HCl buffer pH 4.0. Spectrophotometrically, under the optimum conditions, the ternary complex showed absorption maximum at 530 nm. Methods B and C are based on redox reaction between LMFX and KMnO4 in acid and alkaline media. In indirect spectrophotometry method B the drug solution is treated with a known excess of KMnO4 in H2SO4 medium and subsequent determination of unreacted oxidant by reacting it with safronine O in the same medium at λmax = 520 nm. Direct spectrophotometry method C involves treating the alkaline solution of LMFX with KMnO4 and measuring the bluish green product at 604 nm. Method D is based on the chelation of LMFX with Zr(IV) to produce fluorescent chelate. At the optimum reaction conditions, the drug-metal chelate showed excitation maxima at 280 nm and emission maxima at 443 nm. The optimum experimental parameters for the reactions have been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drug in pharmaceutical preparations with good recoveries.

  17. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    Science.gov (United States)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  18. State-of-the-art in analytical characterization of high purity solid samples by different spectroscopic methods

    Indian Academy of Sciences (India)

    S S Grazhulene

    2005-07-01

    Facilities and some results of several spectroscopic methods which have potential applications in the field of analysis of solid high purity substances and which have been elaborated in Russia, will be discussed in this paper. Laser nondispersive atomic fluorescence method with glow discharge cathode sputtering atomiser, may be used for trace element determination as well as a tool for the investigation of technological processes, viz. deposition of thin films. Investigations on reduction of a background level in the new hollow cathode ion source for mass-spectrometry have been carried out. Laser mass spectrometry with tandem laser mass reflectron is successfully designed and applied for gaseous impurities determination in high pure silicon with limit of detection of 10-3–10-5 ppm wt. Several results of the layer-by-layer and bulk trace analysis of solids by high resolution mass spectrometry with radio frequency powered glow discharge ion source with the limits of detection at 10-1–10-3 ppm wt will be presented here. The traditional arc and spark emission technique still finds considerable use. One of the examples considered in the paper is the analysis of metalfullerenes. To overcome the calibration problem the fluorination process inside the electrode crater using zinc fluoride has been investigated.

  19. Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    Directory of Open Access Journals (Sweden)

    B. Xiang

    2013-07-01

    Full Text Available We present a novel spectral method to measure atmospheric carbon dioxide (CO2 with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument – ABsolute Carbon dioxide (ABC is developed using this new approach. The instrument has a one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide.

  20. New Infrared spectroscopic methods for tumor diagnosis and medicinal plants analytics

    International Nuclear Information System (INIS)

    This work was done to verify the feasibility of infrared spectroscopy as a method for tumor diagnosis and medicinal plants analysis. The method of IR imaging has been successfully used for the diagnosis of prostate-, bladder- and oral squamous cell carcinoma as well as for localization of different ingredients of plant roots. All measurements have been done with a resolution down to 1,2 µm. As a non-invasive method, IR imaging can be used for qualitative analysis of 2-dimensional chemical structures and distribution of these substances in plant roots. It was found that IR imaging can be used for detecting cancer-affected areas in tissue-samples. For more profound results, IR-imaging has to be combined with chemometric evaluation methods like multi- and univariate data analysis. Measurements applying that combination of methods allow the identification of cancer-affected areas of tissue-samples of prostate-, bladder- and oral squamous cell carcinoma as well as an illustration of the local distribution of components like carbon-hydrates, proteins, lipids, amides and nucleic acids in samples from Urtica dioica, Phytolacca americana, Levisticum officinale, Primula veris, Cimicifuga racemosa and Gentiana lutea. All research was done by using state of the art technology for IR-imaging and image processing. It was found that IR-imaging can be used for localizing dissolved substances in roots of medical plants with a high resolution down to 1,2 µm. This work shows that different species of Polygala can be identified using FT-NIR and FT-IR spectroscopy. Future developments of more sophisticated and powerful detectors will help to establish IR-imaging as an objective technology for diagnostics of cancer as well as a method in the field of research on medical plants and botany in general. (author)

  1. The Self-Heating Effect of Quantum Cascade Lasers Based on a Spectroscopic Method

    Institute of Scientific and Technical Information of China (English)

    WEI Lin; LI Ai-Zhen; ZHANG Yong-Gang; LI Yao-Yao

    2009-01-01

    We investigate the self-heating effect of mid-infrared quantum cascade lasers by using a direct-based pulse injecting current and spectroscopy method.Based on the characterization system,the thermal characteristics of gas source MBE grown 8.4μm InP-based GaInAs/AlInAs DFB-QCLs are evaluated.The method and characterization system are also useful in evaluating the therma/characteristics of other types of mid-infrared diode lasers.

  2. 8th seminar on spectroscopic methods in environmental monitoring. Book of abstracts

    International Nuclear Information System (INIS)

    Out of 28 short communications contained in the book of abstracts, 2 items were inputted to the INIS system. These deal with the use of X-ray fluorescence spectroscopy in trace analysis and the current development in radon detection methods. (Z.S.)

  3. SIMULTANEOUS ESTIMATION OF IRBESARTAN AND ATORVASTATIN BY FIRST ORDER DERIVATIVE SPECTROSCOPIC METHOD IN THEIR SYNTHETIC MIXTURE

    Directory of Open Access Journals (Sweden)

    ParasVirani

    2015-02-01

    Full Text Available The present manuscript describe simple, sensitive, rapid, accurate, precise and economical first derivative spectrophotometric method for the simultaneous determination of Irbesartan(IRB and Atorvastatin (ATR in synthetic mixture. The derivative spectrophotometric method was based on the determination of both the drugs at their respective zero crossing point (ZCP. The first order derivative spectra was obtained in methanol and the determinations were made at 225.20 nm (ZCP of IAtorvastatin for Irbesartan and 308.15 nm (ZCP of Irbesartan for Atorvastatin. The linearity was obtained in the concentration range of succinate 5-30 μg/ml for Irbesartan and 5- 30 μg/ml for Atorvastatin Succinate. The mean recovery was 99.25 and 99.65% for Irbesartan and Atorvastatin succinate, respectively. The method was found to be simple, sensitive, accurate and precise and was applicable for the simultaneous determination of Irbesartan and Atorvastatin in synthetic mixture. The results of analysis have been validated statistically and by recovery studies.The proposed method is recommended for routine analysis since they are rapid,simple, accurate and also sensitive and specific by no heating and no organic solvent extraction.

  4. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

    Science.gov (United States)

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEON(LA)) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEON(LA) with an additional protein corona formed by bovine serum albumin (SEON(LA-BSA)) and commercially available Rienso(®) particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  5. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  6. Spectroscopic studies of biologically active coumarin laser dye: Evaluation of dipole moments by solvatochromic shift method

    Science.gov (United States)

    Koppal, V. V.; Muddapur, G. V.; Patil, N. R.; Melavanki, R. M.

    2016-05-01

    In this paper we attempted to record absorption and emission spectra of 2-acetyl-3H-benzo[f]chromen-3-one [2AHBC] laser dye in different solvents of varying polarities to investigate its solvatochromic behavior. The two electronic states dipole moments of 2AHBC are calculated using solvatochromic spectral shifts which are correlated with dielectric constant (ɛ) refractive index (n) of various solvents. A systematic approach is made to estimate ground and excited state dipole moments on the basis of different solvent correlation methods like Bilot-Kawski equations, Lippert-Mataga, Bakhsheiv, Kawaski-Chamma-Viallet and Reichardt methods. Dipole moments in the excited state was found to be higher than the ground state by confirming π→π* transition.

  7. Determining spectroscopic redshifts by using k nearest neighbor regression. I. Description of method and analysis

    Science.gov (United States)

    Kügler, S. D.; Polsterer, K.; Hoecker, M.

    2015-04-01

    Context. In astronomy, new approaches to process and analyze the exponentially increasing amount of data are inevitable. For spectra, such as in the Sloan Digital Sky Survey spectral database, usually templates of well-known classes are used for classification. In case the fitting of a template fails, wrong spectral properties (e.g. redshift) are derived. Validation of the derived properties is the key to understand the caveats of the template-based method. Aims: In this paper we present a method for statistically computing the redshift z based on a similarity approach. This allows us to determine redshifts in spectra for emission and absorption features without using any predefined model. Additionally, we show how to determine the redshift based on single features. As a consequence we are, for example, able to filter objects that show multiple redshift components. Methods: The redshift calculation is performed by comparing predefined regions in the spectra and individually applying a nearest neighbor regression model to each predefined emission and absorption region. Results: The choice of the model parameters controls the quality and the completeness of the redshifts. For ≈90% of the analyzed 16 000 spectra of our reference and test sample, a certain redshift can be computed that is comparable to the completeness of SDSS (96%). The redshift calculation yields a precision for every individually tested feature that is comparable to the overall precision of the redshifts of SDSS. Using the new method to compute redshifts, we could also identify 14 spectra with a significant shift between emission and absorption or between emission and emission lines. The results already show the immense power of this simple machine-learning approach for investigating huge databases such as the SDSS.

  8. Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    Directory of Open Access Journals (Sweden)

    B. Xiang

    2013-02-01

    Full Text Available We present a novel spectral method to measure atmospheric carbon dioxide (CO2 with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument – ABsolute Carbon dioxide (ABC is developed using this new approach. The instrument has one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide.

  9. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  10. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    Directory of Open Access Journals (Sweden)

    Friedrich RP

    2015-06-01

    Full Text Available Ralf P Friedrich,1 Christina Janko,1 Marina Poettler,1 Philipp Tripal,1 Jan Zaloga,1 Iwona Cicha,1 Stephan Dürr,1,2 Johannes Nowak,3 Stefan Odenbach,3 Ioana Slabu,4 Maik Liebl,4 Lutz Trahms,4 Marcus Stapf,5 Ingrid Hilger,5 Stefan Lyer,1 Christoph Alexiou1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, 2Department of Otorhinolaryngology, Head and Neck Surgery, Section of Phoniatrics and Pediatric Audiology, University hospital Erlangen, Erlangen, 3Technische Universität Dresden, Chair of Magnetofluiddynamics, Measuring and Automation Technology, Dresden, 4Physikalisch-Technische Bundesanstalt Berlin, Berlin, 5Department of Radiology, Division of Diagnostic and Interventional Radiology, Experimental Radiology, University hospital Jena, Jena, Germany Abstract: Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of superparamagnetic iron oxide nanoparticles (SPIONs, safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human

  11. Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods

    International Nuclear Information System (INIS)

    The interaction of CdSe/CdS quantum dots (QDs) with Herring sperm-DNA (hs-DNA) has been studied by UV-vis spectroscopy and electrochemical method. Cu(phen)22+/1+ (phen = 1, 10-phenanthroline) was used as an indicator for electroactive dsDNA or ssDNA. The apparent association constant has been deduced (4.94 x 103 M-1 and 2.39 x 102 M-1) from the absorption spectral changes of the dsDNA-QDs and ssDNA-QDs. The results of dissociation method suggest that Cu(phen)22+/1+ is more easily dissociated from dsDNA or ssDNA modified gold electrode (dsDNA/Au or dsDNA/Au) in presence of QDs. The dissociation rate constant (k) of Cu(phen)22+/1+ on dsDNA/Au is 4.48 times higher than that in absence of QDs, while k is 2.34 times higher than that in absence of QDs on ssDNA/Au in Tris buffer with low ionic strength (pH 7.0, 0.5 mM NaCl). The results illuminate that hs-DNA has high affinity for QDs due to electrostatic force, hydrogen bonds, and van der Waals interactions, and the binding force of QDs with dsDNA is stronger than ssDNA.

  12. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    Science.gov (United States)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  13. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    crystal. Time-resolved X-ray data collected at pH's of 4, 7 and 9 demonstrate that pH alters the kinetics of the PYP photocycle dramatically. At pH 4 the photocycle lasts almost one order of magnitude longer in time compared to pH 7. The final intermediate that accumulates at both pH 7 and pH 4 is absent at pH 9. Results from the dose- and the pH-dependent time-resolved crystallographic experiments show that it is imperative to carefully control the conditions under which time-resolved data are collected. With these considerations we collected a comprehensive time-series from nanoseconds to seconds at 14 different temperature settings from -40 °C to 70 °C. Results from time-resolved crystallography are corroborated by employing time-resolved absorption spectroscopy. For this, absorption spectra on crystals and solution are collected by a fast micro-spectrophotometer custom-designed in our lab. We identify kinetic phases of the PYP photocycle at all 14 temperature settings. Relaxation times associated with these phases are temperature-dependent and can be fit by the Van't Hoff-Arrhenius equation. Kinetic modeling yields entropy and enthalpy values at the barriers of the activation solely from the time-resolved crystallographic data. With this, we advance crystallography to a new frontier: the determination of free energy surfaces. Investigating enzymatic reactions can be challenging, because they are non-cyclic. After one turnover product must be washed away and substrate must be reloaded. A promising approach for routine application can be envisioned at the new 4th generation X-ray sources, such as X-ray free electron lasers (XFELs). With our results we set the scene to comprehensively investigate all kinds of enzymatic reactions with these instruments.

  14. Analysis of binding interaction between (-)-epigallocatechin (EGC) and β-lactoglobulin by multi-spectroscopic method

    Science.gov (United States)

    Wu, Xuli; Wu, Hui; Liu, Meixia; Liu, Zhigang; Xu, Hong; Lai, Furao

    2011-11-01

    The binding interaction between (-)-epigallocatechin (EGC) with bovine β-lactoglobulin (βLG) was investigated by fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy methods. The binding parameters were determined by Stern-Volmer equation and the thermodynamic parameters were calculated according to the van't Hoff equation. The results suggested that βLG was bound by EGC, which resulted in change of native conformation of βLG. van der Waals interactions and hydrogen bonding probably played major roles in the binding process. Our study is helpful for further elucidation of binding interactions between catechins with milk proteins, which would contribute to the development of novel milk products.

  15. Analysis of Equilibrium and Kinetics of Chromium-Fluoride Complexation from Spectroscopic Data via Chemometrics Methods

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The complexation of Cr3+ with F- undergoes a multistep reversible process. An approach to research the involved equilibria and kinetics using suitable chemometrics methods to the online measured UV-Vis spectra is proposed. By investigating the equilibrium spectra of the complexes at different molar ratios of M to L(metal to ligand) and 50 ℃, the result of Principal Component Analysis(PCA) shows that three complexes, ML, ML2 and ML3, can be formed under the research conditions. The spectrum of each complex was then analyzed and the accumulated equilibrium constants were calculated by applying Target Testing Factor Analysis(TTFA). Meanwhile, a reactive intermediate was observed before the formation of MLx during the specific kinetic study at 15 ℃. The equilibrium constant and spectrum of the intermediate as well as the rate constants were all resolved by using TTFA.

  16. MIR Spectroscopic Method for Detection of {sup 14}CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang-Hoon; Kim, Yonghee; Kim, Taek-Soo; Lee, Lim; Park, Hyunmin; Cha, Yong-Ho; Lim, Gwon; Jeong, Do-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The laser based detection technique is one possible method for real-time detection. But, it is typically available in the visible and NIR(near infrared) regions where the molecular absorption cross sections are too small. In the case of {sup 14}CO{sub 2}, the abundance is too low, and therefore, it is hard to detect it in visible and NIR regions even by using the sensitive detection techniques. We introduced the laser-based technique for the detection of {sup 14}CO{sub 2} in gaseous effluent in nuclear industry. We demonstrated the OA-ICOS in MIR region, and observed the small absorption signal equivalent to the 10 ppb abundance of target isotopologue. But the system requires higher reliability and sensitivity for the real application. We hope that it can be an alternative for the {sup 14}CO{sub 2} in the nuclear industry.

  17. Vibrational spectroscopic methods for the overall quality analysis of washing powders.

    Science.gov (United States)

    Bittner, L K; Schönbichler, S A; Schmutzler, M; Lutz, O M D; Huck, C W

    2016-02-01

    The aim of this study was to compare and evaluate the ability of near infrared- (NIR), Raman- and attenuated-total-reflection infrared (ATR-IR) spectroscopy as tools for the identification of washing powder brands as well as for an overall quantitative analysis of all ingredients of the analyzed laundry detergents. The laundry detergents used in this work were composed of 22 different ingredients. For this purpose, principal component analysis (PCA) cluster models and partial least-squares (PLS) regression models were developed and different data pre-processing algorithms such as standard-normal-variate (SNV), multiplicative scatter correction (MSC), first derivative BCAP (db1), second derivative smoothing (ds2), smoothing Savitzky Golay 9 points (sg9) as well as different normalization procedures such as normalization between 0 and 1 (n01), normalization unit length (nle) or normalization by closure (ncl) were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the number of principal components (PCs), regression coefficient (r), Bias, Standard error of prediction (SEP), ratio performance deviation (RPD) and range error ratio (RER) for each calibration model. For each of the 22 ingredients separate calibration models were developed. Raman spectroscopy was suitable for the analysis of only two ingredients (dye transfer inhibitor 1 and surfactant 6) and it was not possible to record all Raman spectra due to high fluorescence. NIR and ATR-IR are powerful methods to analyze washing detergents with low numbers of PCs being necessary, regression coefficients of only little below 1, small Biases and SEPs compared to the range and high RPDs and RERs. PMID:26653457

  18. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods.

    Science.gov (United States)

    Cyrański, Michał K; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jarosław J; Zukowska, Grazyna Z; Sporzyński, Andrzej

    2008-03-28

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293 K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Moller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science. PMID:18376948

  19. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    International Nuclear Information System (INIS)

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 μm in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 μm for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air

  20. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Gamby, Jean [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)], E-mail: jean.gamby@upmc.fr; Pailleret, Alain [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France); Clodic, Carol Boucher; Pradier, Claire-Marie [Universite Pierre et Marie Curie - Paris 6, CNRS-UMR 7609, Laboratoire de Reactivite de Surface, 4 Place Jussieu, Case Courrier 178, 75252 Paris Cedex 05 (France); Tribollet, Bernard [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)

    2008-12-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 {mu}m in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 {mu}m for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air.

  1. Advanced methods for the study of PWR cores

    International Nuclear Information System (INIS)

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  2. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  3. Chemometric optimization of the robustness of the near infrared spectroscopic method in wheat quality control.

    Science.gov (United States)

    Pojić, Milica; Rakić, Dušan; Lazić, Zivorad

    2015-01-01

    A chemometric approach was applied for the optimization of the robustness of the NIRS method for wheat quality control. Due to the high number of experimental (n=6) and response variables to be studied (n=7) the optimization experiment was divided into two stages: screening stage in order to evaluate which of the considered variables were significant, and optimization stage to optimize the identified factors in the previously selected experimental domain. The significant variables were identified by using fractional factorial experimental design, whilst Box-Wilson rotatable central composite design (CCRD) was run to obtain the optimal values for the significant variables. The measured responses included: moisture, protein and wet gluten content, Zeleny sedimentation value and deformation energy. In order to achieve the minimal variation in responses, the optimal factor settings were found by minimizing the propagation of error (POE). The simultaneous optimization of factors was conducted by desirability function. The highest desirability of 87.63% was accomplished by setting up experimental conditions as follows: 19.9°C for sample temperature, 19.3°C for ambient temperature and 240V for instrument voltage. PMID:25281098

  4. Study on interaction of Ligupurpuroside A with bovine serum albumin by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Liang-liang [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); Xu, Hong, E-mail: xuhong@szu.edu.cn [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); Huang, Feng-wen; Li, Yi; Xiao, Jie; Xiao, Hua-feng; Ying, Ming; Tian, Sheng-li; Yang, Zhen; Liu, Gang; Hu, Zhang-li [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); He, Zhen-dan, E-mail: hezhendan@126.com [School of Medicine, Shenzhen University, Shenzhen 518060 (China); Zhou, Kai [Shenzhen Marine Environment and Resource Monitoring Center, Shenzhen 518060 (China)

    2014-10-15

    The interaction of Ligupurpuroside A with bovine serum albumin (BSA) has been investigated by fluorescence spectra, UV–vis absorption spectra, three-dimensional (3D) fluorescence spectra, synchronous fluorescence spectra and circular dichroism (CD) spectra along with a molecular docking method. The fluorescence experiments indicate that Ligupurpuroside A can quench the intrinsic fluorescence of BSA through a combined quenching way at the low concentration of Ligupurpuroside A, and a static quenching procedure at the high concentration. The thermodynamic analysis suggests that hydrogen bonds and van der Waals forces are the main forces between BSA and Ligupurpuroside A. According to the theory of Förster's non-radiation energy transfer, the binding distance between BSA and Ligupurpuroside A was calculated to be 2.73 nm, which implies that energy transfer occurs between BSA and Ligupurpuroside A. All these experimental results have been validated by the protein–ligand docking studies which show that Ligupurpuroside A binds to the residues located in the hydrophobic cavity on subdomain IIA of BSA. In addition, conformation change of BSA was observed from three-dimensional fluorescence spectra, synchronous fluorescence spectra and circular dichroism spectra under experimental conditions. - Highlights: • The interaction of Ligupurpuroside A with BSA was investigated. • The fluorescence quenching of BSA induced by Ligupurpuroside A is a combined quenching process. • The main interaction forces were hydrogen bonds and van der Waals forces. • Ligupurpuroside A binding results in a decrease in α-helix.

  5. Estimating Spectroscopic Redshifts by Using k Nearest Neighbors Regression I. Description of Method and Analysis

    CERN Document Server

    Kügler, S D; Hoecker, M

    2014-01-01

    Context: In astronomy, new approaches to process and analyze the exponentially increasing amount of data are inevitable. While classical approaches (e.g. template fitting) are fine for objects of well-known classes, alternative techniques have to be developed to determine those that do not fit. Therefore a classification scheme should be based on individual properties instead of fitting to a global model and therefore loose valuable information. An important issue when dealing with large data sets is the outlier detection which at the moment is often treated problem-orientated. Aims: In this paper we present a method to statistically estimate the redshift z based on a similarity approach. This allows us to determine redshifts in spectra in emission as well as in absorption without using any predefined model. Additionally we show how an estimate of the redshift based on single features is possible. As a consequence we are e.g. able to filter objects which show multiple redshift components. We propose to apply ...

  6. Comparison of advanced iterative reconstruction methods for SPECT/CT

    International Nuclear Information System (INIS)

    Aim: Corrective image reconstruction methods which produce reconstructed images with improved spatial resolution and decreased noise level became recently commercially available. In this work, we tested the performance of three new software packages with reconstruction schemes recommended by the manufacturers using physical phantoms simulating realistic clinical settings. Methods: A specially designed resolution phantom containing three 99mTc lines sources and the NEMA NU-2 image quality phantom were acquired on three different SPECT/CT systems (General Electrics Infinia, Philips BrightView and Siemens Symbia T6). Measurement of both phantoms was done with the trunk filled with a 99mTc-water solution. The projection data were reconstructed using the GE's Evolution for Bone registered, Philips Astonish registered and Siemens Flash3D registered software. The reconstruction parameters employed (number of iterations and subsets, the choice of post-filtering) followed theses recommendations of each vendor. These results were compared with reference reconstructions using the ordered subset expectation maximization (OSEM) reconstruction scheme. Results: The best results (smallest value for resolution, highest percent contrast values) for all three packages were found for the scatter corrected data without applying any post-filtering. The advanced reconstruction methods improve the full width at half maximum (FWHM) of the line sources from 11.4 to 9.5 mm (GE), from 9.1 to 6.4 mm (Philips), and from 12.1 to 8.9 mm (Siemens) if no additional post filter was applied. The total image quality control index measured for a concentration ratio of 8:1 improves for GE from 147 to 189, from 179. to 325 for Philips and from 217 to 320 for Siemens using the reference method for comparison. The same trends can be observed for the 4:1 concentration ratio. The use of a post-filter reduces the background variability approximately by a factor of two, but deteriorates significantly the

  7. 近红外光谱快速鉴别抗艾滋病药物%Near-infrared spectroscopic methods for rapid identification of anti-HIV drugs

    Institute of Scientific and Technical Information of China (English)

    周景岳; 尹利辉; 张学博; 高延甲; 卢京光; 金少鸿

    2012-01-01

    Objective:To develop near - infrared spectroscopic rapid methods for the anti - HIV drugs from different manufacturers. Method:The spectra of the samples collected by near - infrared spectrometer were selected to establish conformity test or correlation coefficient methods to identify the anti - HIV drugs. Results:The anti - HIV drugs from different manufacturers are well distinguished by the established near - infrared spectroscopic methods. Conclusion:The near - infrared spectroscopic methods can be used as an alternative method for the rapid identifica tion of the anti - HIV drugs from different manufacturers.%目的:建立鉴别不同厂家间抗艾滋病药物近红外快速检验方法.方法:采用近红外光谱仪采集样品光谱,建立一致性检验模型或相关系数模型,以区分不同厂家间的抗艾滋病药物.结果:对市场抽样的抗艾滋病药物样品,建立的近红外模型可以有效地区分.结论:所建立的近红外分析模型可以作为快速鉴别不同厂家间抗艾滋病药物的参考方法.

  8. Characterization of interaction between isoliquiritigenin and bovine serum albumin: Spectroscopic and molecular docking methods

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie-hua, E-mail: shijh@zjut.edu.cn [College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032 (China); State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Jing; Zhu, Ying-yao; Chen, Jun [College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032 (China)

    2014-01-15

    The intermolecular interaction between isoliquiritigenin (ISL) and bovine serum albumin (BSA) under imitated physiological conditions was investigated using fluorescence, circular dichromism (CD) and molecular docking methods. The results revealed that the fluorescence quenching of BSA at 338 nm by ISL resulted from the formation of ISL–BSA complex. The number of binding sites (n) for ISL binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding ISL to BSA, ISL was close to Tyr residue than Trp residue, the binding of ISL to BSA induced a slight change in conformation of BSA but the BSA still retains its secondary structure, the binding process of ISL with BSA is spontaneous, and ISL could be inserted into the hydrophobic cavity of BSA (Site I) in the binding process of ISL with BSA. The enthalpic change (ΔH{sup 0}) and entropic change (ΔS{sup 0}) in the process of interaction of BSA with ISL were –116.74 kJ mol{sup –1} and –286.32 J mol{sup –1} K{sup –1}, respectively, indicating that the main interaction forces of ISL with BSA were Van der Waals and hydrogen bonding interactions. And, it can be suggested from the molecular docking results that the flexibility of ISL plays an important role in increasing the stability of the whole system upon association of ISL with BSA. -- Highlights: • ISL binds to hydrophobic cavity (site I) in BSA and forms 1:1 complex with it. • The fluorescence quenching of BSA induced by ISL is static quenching. • ISL binding results in a decreased α-helix. • The main interaction forces were Van der Waals and hydrogen bonding interactions. • The flexibility of ISL plays an important role in increasing the ISL–BSA stability.

  9. Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation

    Science.gov (United States)

    Marković, Svetlana; Tošović, Jelena; Dimitrić Marković, Jasmina M.

    2016-07-01

    Although chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) is a dietary polyphenol known for its pharmacological and nutritional properties, its structural features have not been completely elucidated. This is the first study whose aim is to contribute to clarification of the 5CQA structure by comparing the experimental and simulated IR, Raman, 1H NMR, 13C NMR, and UV spectra. For this purpose, a comprehensive conformational analysis of 5CQA was performed to reveal its most stable conformations in the gas-state and solution (DMSO and methanol). The lowest-energy conformers were used to predict the spectra at two levels of theory: B3LYP-D3/and M06-2X/6-311+G(d,p) in combination with the CPCM solvation model. Both methods provide very good agreement between all experimental and simulated spectra, thus indicating correct arrangement of the atoms in the 5CQA molecule. The quinic moiety is characterized with directed hydrogen bonds, where the carboxylic hydrogen is not oriented towards the carbonyl oxygen of the carboxylic group, but towards the oxygen of the proximate hydroxyl group. In the gas-state the lowest-energy conformers are characterized with the O4sbnd H4 ⋯ O9‧ hydrogen bond, whereas in the solvated state the structures with the O4sbnd H4 ⋯ O10‧ hydrogen bond prevail. Knowing the fine structural details, i.e. the proper conformation of 5CQA, provides a solid base for all further investigations related to this compound.

  10. Exploration of Porphyrin-based Semiconductors for Negative Charge Transport Applications Using Synthetic, Spectroscopic, Potentiometric, Magnetic Resonance, and Computational Methods

    Science.gov (United States)

    Rawson, Jeffrey Scott

    Organic pi-conjugated materials are emerging as commercially relevant components in electronic applications that include transistors, light-emitting diodes, and solar cells. One requirement common to all of these functions is an aptitude for accepting and transmitting charges. It is generally agreed that the development of organic semiconductors that favor electrons as the majority carriers (n-type) lags behind the advances in hole transporting (p-type) materials. This shortcoming suggests that the design space for n-type materials is not yet well explored, presenting researchers with the opportunity to develop unconventional architectures. In this regard, it is worth noting that discrete molecular materials are demonstrating the potential to usurp the preeminent positions that pi-conjugated polymers have held in these areas of organic electronics research. This dissertation describes how an extraordinary class of molecules, meso-to-meso ethyne-bridged porphyrin arrays, has been bent to these new uses. Chapter one describes vis-NIR spectroscopic and magnetic resonance measurements revealing that these porphyrin arrays possess a remarkable aptitude for the delocalization of negative charge. In fact, the miniscule electron-lattice interactions exhibited in these rigid molecules allow them to host the most vast electron-polarons ever observed in a pi-conjugated material. Chapter two describes the development of an ethyne-bridged porphyrin-isoindigo hybrid chromophore that can take the place of fullerene derivatives in the conventional thin film solar cell architecture. Particularly noteworthy is the key role played by the 5,15-bis(heptafluoropropyl)porphyrin building block in the engineering of a chromophore that, gram for gram, is twice as absorptive as poly(3-hexyl)thiophene, exhibits a lower energy absorption onset than this polymer, and yet possesses a photoexcited singlet state sufficiently energetic to transfer a hole to this polymer. Chapter three describes

  11. Standard test method for nondestructive assay of special nuclear material holdup using Gamma-Ray spectroscopic methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes gamma-ray methods used to nondestructively measure the quantity of 235U, or 239Pu remaining as holdup in nuclear facilities. Holdup occurs in all facilities where nuclear material is processed, in process equipment, in exhaust ventilation systems and in building walls and floors. 1.2 This test method includes information useful for management, planning, selection of equipment, consideration of interferences, measurement program definition, and the utilization of resources (1, 2, 3, 4). 1.3 The measurement of nuclear material hold up in process equipment requires a scientific knowledge of radiation sources and detectors, transmission of radiation, calibration, facility operations and error analysis. It is subject to the constraints of the facility, management, budget, and schedule; plus health and safety requirements; as well as the laws of physics. The measurement process includes defining measurement uncertainties and is sensitive to the form and distribution of the material...

  12. Radiation Mitigation Methods for Advanced Readout Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in the development of advanced instruments and instrument components for planetary science missions. Specifically, an area of importance in...

  13. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    Science.gov (United States)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  14. Probing of possible olanzapine binding site on human serum albumin: Combination of spectroscopic methods and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shahlaei, Mohsen, E-mail: mohsenshahlaei@yahoo.com [Nano drug delivery research Center, Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rahimi, Behnoosh [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Student research committee, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Sadrjavadi, Komail [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-02-15

    Human serum albumin (HSA)-drug binding affinity is one of the major factors that determine the pharmacokinetics, halftime and bioavailability of drugs in various tissues. In the present study, the interaction of olanzapine (OLZ), a thienobenzodiazepine drug, administered for the treatment of schizophrenia and bipolar disorder, with HSA has been studied using spectroscopic methods such as ultraviolet absorbance, fluorescence and FTIR combined with computational procedures. Analyzing of the Stern–Volmer quenching data showed only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. Thermodynamic analyses showed enthalpy change (ΔH°) and entropy change (ΔS°) were 28.03±3.42 kJ mol{sup −1} and −25.52±11.52 J mol{sup −1} K{sup −1}, respectively. Molecular docking results suggested the hydrophobic residues such as Val{sub 216}, Leu{sub 327}, Ala{sub 350} and polar residues such as Glu{sub 354} play an important role in the drug binding. Decrement in α-helix content of the protein upon OLZ binding was also confirmed by evidences provided by molecular dynamics simulation as well as FTIR spectroscopy. - Highlights: • Leu{sub 327}, Ala{sub 350} as well as hydrophilic residues of HSA play an important role in the binding reaction. • The drug has only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. • The drug binds near to site I.

  15. Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic Diethylene Glycol (DEG) contaminant in glycerin based cough syrup

    OpenAIRE

    Ahmed, M. Khalique; McLeod, Michael P.; Nézivar, Jean; Giuliani, Allison W.

    2010-01-01

    Recently there have been reports of the contamination of cough syrups with Diethylene Glycol (DEG). The consumption of such cough syrups has devastating effects on the health. In this paper we report evidence that Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopic techniques are viable, simple, cost effective, rapid and fool proof methods for the identification and quantification of DEG in glycerin based cough syrups. The FT-IR and NIR spectra of the glycerin based cough...

  16. Methods for integrating optical fibers with advanced aerospace materials

    Science.gov (United States)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  17. Regenerative medicine: advances in new methods and technologies.

    Science.gov (United States)

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology. PMID:19865067

  18. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  19. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  20. Electrochemical test methods for advanced battery and semiconductor technology

    Science.gov (United States)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  1. Development and Applications of Advanced Electronic Structure Methods

    Science.gov (United States)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  2. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  3. Advanced Methods for Treatment of Organic Compounds Contamined Water

    OpenAIRE

    PREDESCU Andra; A.Predescu; Ecaterina MATEI

    2009-01-01

    The progress recorded in the field of science and advanced engineering at nanometric scale supplies largeopportunities for more efficient (from the point of view of the costs) and more ecological approach of the processes ofwater purifying. This paper delivers a short description of the possibilities of using advanced materials in purifying thecontamined water with toxic metallic ions, organic and anorganic compounds. The opportunities and challenges werealso emphasized when nanomaterials wer...

  4. Advanced Methods for Treatment of Organic Compounds Contamined Water

    Directory of Open Access Journals (Sweden)

    PREDESCU Andra

    2009-08-01

    Full Text Available The progress recorded in the field of science and advanced engineering at nanometric scale supplies largeopportunities for more efficient (from the point of view of the costs and more ecological approach of the processes ofwater purifying. This paper delivers a short description of the possibilities of using advanced materials in purifying thecontamined water with toxic metallic ions, organic and anorganic compounds. The opportunities and challenges werealso emphasized when nanomaterials were used for the surface, underground and industrial used waters treatment.

  5. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  6. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  7. Advanced Methods of Observing Surface Plasmon Polaritons and Magnons

    Science.gov (United States)

    Moghaddam, Abolghasem Mobaraki

    Available from UMI in association with The British Library. Requires signed TDF. The primary objectives of this thesis are the investigation of the theoretical and experimental aspects of the design and construction of advanced techniques for the excitation of surface plasmon-polaritons, surface magneto -plasmon-polaritons and surface magnons. They involve on -line observation of these phenomena and to accomplish these goals, analytical studies of the characteristic behaviour of these phenomena have been undertaken. For excitations of surface plasmon- and surface magneto-plasmon-polaritons the most robust and conventional configuration, namely Prism-Medium-Air, coupled to a novel angle scan (prism spinning) method was employed. The system to be described here can automatically measure the reflectivity of a multilayer system over a range of angles that includes the resonance angle in an Attenuated Total Reflection (ATR) experiment. The computer procedure that controls the system is quite versatile so that it allows any right-angle prism of different angle or refractive index to be utilised. It also provided probes to check for optical alignment within the system. Moreover, it performs the angular scan many times and then averages the results in order to reduce the environmental and other possible sources of noise within the system. The mechanical side of the system is unique and could eventually be adopted as a marketable piece of equipment. It consists of a turntable for holding the prism-sample assembly and a drive motor in conjunction with a servo-potentiometer whose output not only operates the turntable but also sends a signal to a computer to measure accurately its position. The interface unit enables a computer to control automatically an angular scan ATR experiment for measuring the resonance reflectivity spectrum of a multilayer system. The interface unit uses an H-bridge switch formed by four bipolar power transistor and two small signal MOSFETs to convert

  8. A Method for Increasing Elders' Use of Advance Directives.

    Science.gov (United States)

    Luptak, Marilyn K.; Boult, Chad

    1994-01-01

    Studied effectiveness of intervention to help frail elders to record advance directives (ADs). In collaboration with physicians and lay volunteer, social worker provided information/counseling to elderly subjects, families, and proxies in series of visits to geriatric evaluation and management clinic. Seventy-one percent of subjects recorded ADs.…

  9. Design of advanced industrial furnaces using numerical modeling method

    OpenAIRE

    Dong, Wei

    2000-01-01

    This doctoral thesis describes the fundamentals ofmathematical modeling for the industrial furnaces and boilersand presents the results from the numerical simulations of sometypical applications in advanced industrial furnaces andboilers. The main objective of this thesis work is to employcomputational fluid dynamics (CFD) technology as an effectivecomputer simulation tool to study and develop the newcombustion concepts, phenomena and processes in advancedindustrial furnaces and boilers. The ...

  10. Advancing multilevel thinking and methods in HRM research

    NARCIS (Netherlands)

    Renkema, Maarten; Meijerink, Jeroen; Bondarouk, Tanya

    2016-01-01

    Purpose Despite the growing belief that multilevel research is necessary to advance HRM understanding, there remains a lack of multilevel thinking – the application of principles for multilevel theory building. The purpose of this paper is to propose a systematic approach for multilevel HRM research

  11. Conceptual frameworks and methods for advancing invasion ecology.

    Science.gov (United States)

    Heger, Tina; Pahl, Anna T; Botta-Dukát, Zoltan; Gherardi, Francesca; Hoppe, Christina; Hoste, Ivan; Jax, Kurt; Lindström, Leena; Boets, Pieter; Haider, Sylvia; Kollmann, Johannes; Wittmann, Meike J; Jeschke, Jonathan M

    2013-09-01

    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.

  12. 78 FR 16513 - Application of Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex...

    Science.gov (United States)

    2013-03-15

    ... Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex Detection of Transfusion... protein based pathogen and blood cell antigen detection methods and to discuss the scientific pathways to... HUMAN SERVICES Food and Drug Administration Application of Advances in Nucleic Acid and Protein...

  13. Experiences from introduction of peer-to-peer teaching methods in Advanced Biochemistry E2010

    DEFF Research Database (Denmark)

    Brodersen, Ditlev; Etzerodt, Michael; Rasmussen, Jan Trige

    2012-01-01

    During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics.......During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics....

  14. Applications of spectroscopic methods to the characterization of the ablation clouds of pellets in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Koubiti, M.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R. [PIIM UMR 6633 CNRS-Universite de Provence, F-13397 Marseille Cedex 20 (France); Goto, M.; Morita, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2011-07-01

    In the field of magnetic fusion research, pellet injection is considered as a major technique for deep plasma fuelling and plasma control by mitigation of edge instabilities. Pellet injection is planned for ITER as the primary core fuelling system. For such major purposes, pellets made of hydrogen or its isotopes are used. In addition, some other purposes are achievable using pellets made from other materials like carbon, aluminium, molybdenum, titanium and so on. In the Large Helical Device (LHD), pellets are used to characterize the transport of impurities. Investigating the ablation clouds of different pellets injected in LHD using spectroscopic measurements may allow to improve our understanding of the physics of the ablation of pellets injected in magnetic fusion devices. A spectroscopic technique based on the emission line intensities and broadening has been previously applied to carbon pellets before its generalization to other pellets. In this paper we illustrate this technique for the case of aluminium pellets. Using data from LHD, it has been shown that line intensities can bring valiant information allowing the characterization of the cloud surrounding the pellet core inside the plasma. For carbon pellets it was mandatory to take into account of radiation absorption effects on some lines. The data investigated here were obtained from LHD where different pellets were injected in the device in the aim of realizing high ion temperature plasmas

  15. Advanced 3D inverse method for designing turbomachine blades

    Energy Technology Data Exchange (ETDEWEB)

    Dang, T. [Syracuse Univ., NY (United States)

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  16. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  17. The Riemann Conjecture and the advanced Calculus Methods for Physics

    OpenAIRE

    Botelho, Luiz. C. L.

    2009-01-01

    We present a set of lectures on topics of advanced calculus in one real and complex variable with several new results and proofs on the subject, specially with detailed proof-always missing in the literature - of the Cissoti explicitly integral formula conformally representing a polygon onto a disc.Besides we present-in the paper appendix-a new study embodied with a mathematical physicist perspective,on the famous Riemann conjecture on the zeros of the Zeta function, reducing its proof to a c...

  18. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, FBRs are to be developed as the main of future nuclear power generation in Japan, and when the development is advanced, it is positivity aimed at building up the plutonium utilization system using FBRs superior to the uranium utilization system with LWRs. Also it was decided that it is necessary to exert incessant effort for the development of FBRs under the proper cooperation system of the government and people for a considerable long period, and as for the concrete development, hereafter, the deliberation is advanced by the expert subcommittee on FBR development project of the Atomic Energy Commission in succession. The subcommittee was founded in May, 1986, to carry out the deliberation on the long term promotion measures for the development of FBRs, the promotion measures for the research and development, the evaluation and examination of the basic specification of a demonstration FBR, the promotion measures for the international cooperation and other important matters related to the development of FBRs. The construction of the prototype FBR 'Monju' is in progress aiming at the criticality in 1992, and the start of construction of a demonstration FBR is expected in the latter half of 1990s. The situation around the development of FBRs, the fundamentals for promoting the research and development, and the subjects of the research and development are reported. (Kako, I.)

  19. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  20. Advances In Burnup Credit Criticality Safety Analysis Methods And Applications

    International Nuclear Information System (INIS)

    An International Workshop on “Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition” organized by the Nuclear Safety Council of Spain (CSN) in cooperation with the International Atomic Energy Agency (IAEA) was held at Córdoba, Spain, on October 27– 30, 2009. The objectives of this workshop were to identify the benefits that accrue from recent improvements of the burnup credit (BUC) analysis methodologies, to analyze the implications of applying improved BUC methodologies, focusing on both the safety-related and operational aspects, and to foster the exchange of international experience in licensing and implementation of BUC applications. In the paper on hand the attention is focused on the improvements of BUC analysis methodologies. (author)

  1. Recent advances in neutral particle transport methods and codes

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Y.Y.

    1996-06-01

    An overview of ORNL`s three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned.

  2. Advances in microfluidics-based experimental methods for neuroscience research.

    Science.gov (United States)

    Park, Jae Woo; Kim, Hyung Joon; Kang, Myeong Woo; Jeon, Noo Li

    2013-02-21

    The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.

  3. Comparison of Advanced Distillation Control Methods, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  4. Spectroscopically Unlocking Exoplanet Characteristics

    Science.gov (United States)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  5. Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications

    OpenAIRE

    Martin Greve; Katja Wöckner-Kluwe; Moustafa Abdel-Maksoud; Thomas Rung

    2012-01-01

    The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without comprom...

  6. Advanced RF-KO slow-extraction method for the reduction of spill ripple

    CERN Document Server

    Noda, K; Shibuya, S; Uesugi, T; Muramatsu, M; Kanazawa, M; Takada, E; Yamada, S

    2002-01-01

    Two advanced RF-knockout (RF-KO) slow-extraction methods have been developed at HIMAC in order to reduce the spill ripple for accurate heavy-ion cancer therapy: the dual frequency modulation (FM) method and the separated function method. As a result of simulations and experiments, it was verified that the spill ripple could be considerably reduced using these advanced methods, compared with the ordinary RF-KO method. The dual FM method and the separated function method bring about a low spill ripple within standard deviations of around 25% and of 15% during beam extraction within around 2 s, respectively, which are in good agreement with the simulation results.

  7. Sulfato Complex Formation of V(V) and V(IV) in Pyrosulfate Melts Investigated by Potentiometry and Spectroscopic Methods

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    1999-01-01

    By combined potentiometric, ESR and VIS/NIR spectroscopic measurements the coordination of SO4,2- to V(IV) and V(V) in M2S2O7-M2SO4-V2O5 (M=K and Cs) melts, respectively under SO2(g) and O2(g) atmospheres at 450 - 470 °C, has been investigated. The results for both systems are in accordance...... obtained, as well as characteristic EPR parameters and molar absorptivities for the complexes. In addition, the mole fractions of M2SO4 in the M2S2O7-M2SO4/SO2(g) systems saturated with M2SO4 were found to be 0.05019 for M = K at 450 C and 0.07002 for M = Cs at 470°C, respectively....

  8. Spectroscopic studies on 9H-carbazole-9-(4-phenyl) boronic acid pinacol ester by DFT method

    Science.gov (United States)

    Sas, E. B.; Kurt, M.; Can, M.; Horzum, N.; Atac, A.

    2016-08-01

    9H-Carbazole-9-(4-phenyl) boronic acid pinacol ester (9-CPBAPE) molecule was investigated by FT-IR, Raman, UV-vis, 1H and 13C NMR spectra. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H, 13C NMR and UV-vis spectra were recorded in dimethyl sulfoxide (DMSO) solution. The results of theoretical calculations for the spectra of the title molecule were compared with the experimental spectra. The highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential (MEP) analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G (d,p) basis set calculations using the Gaussian 09 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analyses were performed using GaussSum 2.2 program.

  9. Adherence to Scientific Method while Advancing Exposure Science

    Science.gov (United States)

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  10. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [London Centre for Nanotechnology and Department of Chemistry, University College London, London (United Kingdom); Martinez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Alavi, Ali [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kresse, Georg [Faculty of Physics and Center for Computational Materials Science, Department of Physics, University of Vienna, Sensengasse 8/12, A-1090 Vienna (Austria); Manby, Frederick R. [Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  11. Features of methods of advancement of information product in network the Interne

    Directory of Open Access Journals (Sweden)

    Oksentyuk, Roman Andriyovych

    2011-05-01

    Full Text Available In the article the features of construction of world network are considered the Internet as one of types of modern innovative technologies in marketing. His role is exposed in the modern world of entrepreneurial activity, most widespread methods of advancement of product by internet marketing. Pointed suggestion from advancement of informative product in a network the Internet.

  12. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    International Nuclear Information System (INIS)

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science

  13. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R. [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  14. Review: Advances in delta-subsidence research using satellite methods

    Science.gov (United States)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  15. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  16. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  17. Comparative study of various PKINIT methods used in Advanced Kerberos

    Directory of Open Access Journals (Sweden)

    Shital S. Thorat,

    2010-10-01

    Full Text Available Traditional authentication method is password, but it cannot resist dictionary and playback attack. Thus, applications, which send an unencrypted password over the network, are extremely vulnerable. Kerberos can be used as a solution to these network security problems. The Kerberos protocol with public key cryptography may help client to prove its identity to a server (and vice-versa across an insecurenetwork connection. This paper shows comparative study of various PKINIT methods used in Kerberos with their results.

  18. Critical review of advanced decontamination methods and their application and selection of methods suitable for disposal decontamination

    International Nuclear Information System (INIS)

    The report is structured as follows: (i) Critical review of advanced decontamination methods (chemical methods; electrochemical methods; mechanical methods - high-pressure water jet, abrasive methods, ultrasonic methods); (ii) Effective management of the entire decontamination process; (iii) Proposal for advanced decontamination methods suitable for disposal decontamination; and (iv) Effect of decontamination on waste management. It is concluded that (i) No single universal method exists for efficient decontamination of different materials, so a combination of methods must be used; (ii) The decontamination process should be optimised so that its cost should not exceed the cost of contaminated material handling without decontamination. The following methods were selected for additional examination: dry abrasive blasting, chemical decontamination, and ultrasonic decontamination. (P.A.)

  19. Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications

    Directory of Open Access Journals (Sweden)

    Martin Greve

    2012-01-01

    Full Text Available The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without compromising the predictive accuracy. Accordingly, the viscous method is used to calculate the global flow field, while the inviscid method predicts the forces acting on the propeller. The corresponding reaction forces are employed as body forces to mimic the propeller influence on the viscous flow field. Examples included refer to simple verification cases for an isolated propeller blade, open-water validation simulations for a complete propeller, and more challenging investigations of a manoeuvring vessel in seaways. Reported results reveal a fair predictive agreement between the coupled approach and fully viscous simulations and display the efficiency of the coupled approach.

  20. Recent Advances in IR and UV/VIS Spectroscopic Characterization of the C76 and C84 Isomers of D2 Symmetry

    Directory of Open Access Journals (Sweden)

    Tamara Jovanović

    2014-01-01

    Full Text Available The stable isomers of the higher fullerenes C76 and C84 with D2 symmetry as well as the basic fullerenes C60 and C70 were isolated from carbon soot and characterized by the new and advanced methods, techniques, and processes. The validity of several semiempirical, ab initio, and DFT theoretical calculations in predicting the general pattern of IR absorption and the vibrational frequencies, as well as the molecular electronic structure of the C76 and C84 isomers of D2 symmetry, is confirmed, based on recent experimental results. An excellent correlation was found between the previously reported theoretical data and the recently obtained experimental results for these molecules over the relevant spectral range for the identification of fullerenes. These results indicate that there are no errors in the calculations in the significant spectral regions, the assumptions that were based on previous comparisons with partial experimental results. Isolated fullerenes are important for their applications in electronic and optical devices, solar cells, optical limiting, sensors, polymers, nanophotonic materials, diagnostic and therapeutic agents, health and environment protection, and so forth.

  1. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  2. A Novel Advanced Heap Corruption and Security Method

    Directory of Open Access Journals (Sweden)

    Arundhati Walia

    2012-05-01

    Full Text Available Heap security has been a major concern since the past two decades. Recently many methods have been proposed to secure heap i.e. to avoid heap overrun and attacks. The paper describes a method suggested to secure heap at the operating system level. Major emphasis is given to Solaris operating systems dynamic memory manager. When memory is required dynamically during runtime, the SysVmalloc acts as a memory allocator.Vmalloc allocates the chunks of memory in the form of splay tree structure. A self adjusting binary tree structure is reviewed in the paper, moreover major security issue to secure heap area is also suggested in the paper.

  3. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  4. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  5. Recent advances in chemical engineering. Tracers and tracing methods

    International Nuclear Information System (INIS)

    The first congress on 'tracers and tracing methods' has taken place in Nancy in November 1998. It has been a successful national event with more than 100 participants and 65 presentations. The applications of radiotracers in different industries have been studied. The target participants were the researchers, engineers and technologists of various industrial and research sectors

  6. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...

  7. Advances in methods for colour marking of mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Loonen, J.A.C.M.; Takken, W.

    2013-01-01

    Background: Different techniques are available for colour marking insects and each technique may be suitable for different insect species. Mosquitoes can be marked to determine population size, distribution and flight distance or distinguish closely related species. In this study, two methods of col

  8. Advancing Analytical Methods for Characterization of Anionic Carbohydrate Biopolymers

    OpenAIRE

    Langeslay, Derek Joseph

    2013-01-01

    The focus of this dissertation is on the development of improved analytical methods for the characterization of anionic carbohydrate biopolymers. Our goal is to extract important information from complex mixtures of heterogeneous polysaccharides by characterizing their substituent oligosaccharides in terms of monosaccharide composition and primary and secondary structure. This work focuses on the application of two major analytical platforms: spectroscopy and chromatography. The development ...

  9. Method of public support evaluation for advanced NPP deployment

    International Nuclear Information System (INIS)

    Public support of nuclear power could be fully recovered only if the public would, from the very beginning of the new power source selection process, receive transparent information and was made a part of interactive dialogue. The presented method was developed with the objective to facilitate the complex process of the utilities - public interaction. Our method of the public support evaluation allows to classify designs of new nuclear power plants taking into consideration the public attitude to continued nuclear power deployment in the Czech Republic as well as the preference of a certain plant design. The method is based on the model with a set of probabilistic input metrics, which permits to compare the offered concepts with the reference one, with a high degree of objectivity. This method is a part of the more complex evaluation procedure applicable for the new designs assessment that uses the computer code ''Potencial'' developed at the NRI Rez plc. The metrics of the established public support criteria are discussed. (author)

  10. Origins, Methods and Advances in Qualitative Meta-Synthesis

    Science.gov (United States)

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  11. Advanced discretizations and multigrid methods for liquid crystal configurations

    Science.gov (United States)

    Emerson, David B.

    Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In

  12. Advance of Therapeutic Methods for Malignant Pleural Effusion

    Institute of Scientific and Technical Information of China (English)

    XU Tao-tao

    2016-01-01

    Malignant pleural effusion (MPE) is a condition caused by primary malignant tumors in the pleura or other malignant tumors metastasis to the pleura. It is also one of common serious complications of middle-late malignant tumor, which has severe impact on the quality of life, even threatening the life of the patients. The selection of treatments for MPE depends on many factors, including the symptoms, performance status, primary tumor types, response to systemic therapy, and degree of lung recruitment maneuvers (LRM) after drainage of pleural effusion. Generally, the treatment methods include thoracentesis, indwelling pleural catheter, pleurodesis, intrapleural injection of drugs, chemotherapy, radiotherapy, anti-angiogenesis therapy, surgery, and thermotherapy. With the in-depth study on pathogenesis of MPE, the treatments of MPE have continuous improvements. This study mainly reviewed the treatment methods for MPE so as to provide the basis for clinical practice in the future.

  13. Numerical modeling of spray combustion with an advanced VOF method

    Science.gov (United States)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  14. Advanced Finite Element Method for Nano-Resonators

    CERN Document Server

    Zschiedrich, L; Kettner, B; Schmidt, F

    2006-01-01

    Miniaturized optical resonators with spatial dimensions of the order of the wavelength of the trapped light offer prospects for a variety of new applications like quantum processing or construction of meta-materials. Light propagation in these structures is modelled by Maxwell's equations. For a deeper numerical analysis one may compute the scattered field when the structure is illuminated or one may compute the resonances of the structure. We therefore address in this paper the electromagnetic scattering problem as well as the computation of resonances in an open system. For the simulation efficient and reliable numerical methods are required which cope with the infinite domain. We use transparent boundary conditions based on the Perfectly Matched Layer Method (PML) combined with a novel adaptive strategy to determine optimal discretization parameters like the thickness of the sponge layer or the mesh width. Further a novel iterative solver for time-harmonic Maxwell's equations is presented.

  15. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  16. Advance of Therapeutic Methods for Malignant Pleural Effusion

    Directory of Open Access Journals (Sweden)

    Tao-tao XU

    2016-06-01

    Full Text Available Malignant pleural effusion (MPE is a condition caused by primary malignant tumors in the pleura or other malignant tumors metastasis to the pleura. It is also one of common serious complications of middle-late malignant tumor, which has severe impact on the quality of life, even threatening the life of the patients. The selection of treatments for MPE depends on many factors, including the symptoms, performance status, primary tumor types, response to systemic therapy, and degree of lung recruitment maneuvers (LRM after drainage of pleural effusion. Generally, the treatment methods include thoracentesis, indwelling pleural catheter, pleurodesis, intrapleural injection of drugs, chemotherapy, radiotherapy, anti-angiogenesis therapy, surgery, and thermotherapy. With the in-depth study on pathogenesis of MPE, the treatments of MPE have continuous improvements. This study mainly reviewed the treatment methods for MPE so as to provide the basis for clinical practice in the future.

  17. An Advanced Method of Congestion Management for Optimal Energy Pricing

    OpenAIRE

    Nappu, Muhammad Bachtiar; Saha, Tapan Kumar

    2010-01-01

    The authors in this paper introduce schemes for incremental cost-based energy pricing model to deal with congestion including losses and transmission usage tariff, but simplify the method and have acceptable transparency so that it may correctly generate economic signal to the market participants. In this manuscript, a new scheme is presented to briefly review the main idea behind the LMP calculation, and further discuss the techniques used to incorporate transmission usage tariff into the...

  18. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  19. Advanced Systems Biology Methods in Drug Discovery and Translational Biomedicine

    OpenAIRE

    Jun Zou; Ming-Wu Zheng; Gen Li; Zhi-Guang Su

    2013-01-01

    Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networ...

  20. Statistical methods of discrimination and classification advances in theory and applications

    CERN Document Server

    Choi, Sung C

    1986-01-01

    Statistical Methods of Discrimination and Classification: Advances in Theory and Applications is a collection of papers that tackles the multivariate problems of discriminating and classifying subjects into exclusive population. The book presents 13 papers that cover that advancement in the statistical procedure of discriminating and classifying. The studies in the text primarily focus on various methods of discriminating and classifying variables, such as multiple discriminant analysis in the presence of mixed continuous and categorical data; choice of the smoothing parameter and efficiency o

  1. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods.

    Science.gov (United States)

    Lebrón-Paler, Ariel; Pemberton, Jeanne E; Becker, Bridget A; Otto, William H; Larive, Cynthia K; Maier, Raina M

    2006-11-15

    The acid dissociation constant in water for a monorhamnolipid mixture extracted from Pseudomonas aeruginosa ATCC 9027 has been determined using potentiometry and two spectroscopic approaches at concentrations below and above the critical micelle concentration (cmc). Potentiometric titrations resulted in pKa values ranging from 4.28 +/- 0.16 to 5.50 +/- 0.06 depending on concentration. 1H NMR spectrochemical titrations at concentrations below the cmc revealed a pKa value of 4.39 +/- 0.06. ATR-FT-IR spectrochemical titrations on solutions well above the cmc gave a pKa value of 4.84 +/- 0.05. The value of 4.28 for the free rhamnolipid molecule for concentrations below the cmc differs markedly from that reported previously. However, the pKa of 5.50 for surface-adsorbed and solution aggregates correlates closely to that previously reported. Differences in these pKa values are rationalized in terms of the pH- and concentration-dependent aggregation behavior of rhamnolipids in aqueous solution.

  2. Sequential Events in the Irreversible Thermal Denaturation of Human Brain-Type Creatine Kinase by Spectroscopic Methods

    Directory of Open Access Journals (Sweden)

    Yan-Song Gao

    2010-06-01

    Full Text Available The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK thermal denaturation were studied by differential scanning calorimetry (DSC, CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK. The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  3. Advanced Signal Processing Methods Applied to Digital Mammography

    Science.gov (United States)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  4. Advances in the Discrete Element Method for drilling mechanics problems

    OpenAIRE

    Oñate Ibáñez de Navarra, Eugenio; Arrufat Garcia, Ferran; Zárate Araiza, José Francisco; Ubach Fuentes, Pere-Andreu; Gandikota, Varadaraju; Ring, Lev

    2013-01-01

    We present recent developments in the Discrete Element method (DEM) for analysis of drilling mechanics problems typical in the oil and gas industry. A new local DEM constitutive model able to predict the non-linear behavior of soft and hard soils and rock under loads inducing multi-fracture of the material is presented. The DEM model is validated on the analysis of triaxial tests on cement and concrete samples and then applied to the study of drill-bit mechanics. Applications of the DEM and a...

  5. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  6. Advancing Methods in Research on Asian American Children and Youth.

    Science.gov (United States)

    Yoshikawa, Hirokazu; Mistry, Rashmita; Wang, Yijie

    2016-07-01

    Asian American children and youth constitute at the same time an immigrant group, a set of ethnic groups, and a set of cultural groups. Research on these populations can therefore take on one or more of these perspectives. This article provides guidance for research methods in three areas: (a) conceptualizing and assessing migration-related factors, (b) assessing ethnicity and national origin, and (c) using culturally and contextually relevant measures. Methodological recommendations are made for each area, with attention to small-scale studies with community samples as well as large-scale data sets. In addition, this article recommends researchers attend to within-group variations (i.e., intersections of ethnicity, generational status, gender, class, sexuality), the embeddedness of individual development in context, and specificity of developmental periods. PMID:27392797

  7. Advancing Telephone Focus Groups Method Through the Use of Webinar

    Directory of Open Access Journals (Sweden)

    Eunice Chong

    2015-10-01

    Full Text Available Telephone focus groups have been increasingly popular in public health research and evaluation. One of the main concerns of telephone focus groups is the lack of nonverbal cues among participants, which could limit group interactions and dynamics during the focus group discussion. To overcome this limitation, we supplemented telephone focus groups with webinar technology in a recent evaluation of a provincial public health program in Ontario, Canada. In this article, we share the methods used and our experiences in conducting telephone focus groups supplemented with webinar technology, including advantages and challenges. Our experience will inform other researchers who may consider using telephone focus groups with webinars in future research and evaluation.

  8. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  9. Advances in Modal Analysis Using a Robust and Multiscale Method

    Directory of Open Access Journals (Sweden)

    Frisson Christian

    2010-01-01

    Full Text Available Abstract This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  10. Advances in Isolation Methods for Spermatogonial Stem Cells.

    Science.gov (United States)

    Zhang, Rui; Sun, Jin; Zou, Kang

    2016-02-01

    Stem cell research has led to many remarkable achievements in recent years, but progress in the study of spermatogonial stem cells (SSCs) has been relatively slow, partly due to the slow development of techniques for spermatogonial stem cell isolation. The major accomplishments of SSC sorting and identification occurred approximately 10 years ago, and since that time, these techniques have been widely used without major improvements. In this article, we briefly introduce the biological properties of SSCs before reviewing the development of sorting techniques for SSCs in the past decades. We then summarize recent achievements in SSC sorting and finally discuss the advantages and disadvantages of SSC isolation methods, to provide new insight into techniques and research related to spermatogonial stem cells and promote the development of reproductive biology.

  11. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  12. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  13. An evolutionary method for synthesizing technological planning and architectural advance

    Science.gov (United States)

    Cole, Bjorn Forstrom

    In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (final graph-based genetic algorithm. This algorithm is then implemented in a design code called Sindri, which leverages a commercial design tool named Pacelab. The first chapters of this thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that the appropriate technological antecedents are accounted for in developing the projection. The third chapter of the thesis compiles a series of observations and philosophical considerations into a series of research questions. Some research questions are then answered with further thought, observation, and reading, leading to conjectures on the problem. The remainder require some form of experimentation, and so are used to formulate hypotheses. Falsifiability conditions are then generated from those hypotheses, and used to get the development of experiments to be performed, in this case on a computer upon various conditions of use of a genetic algorithm. The fourth chapter of the thesis walks through the formulation of a method to attack the problem of strategically choosing an architecture. This method is designed to

  14. Application of CFD methods for advanced site assessment and micrositing

    Energy Technology Data Exchange (ETDEWEB)

    Strack, M; Riedel, V.; Dutilleux, P. [DEWI German Wind Energy Inst., Wilhelmshaven (Germany)

    2006-07-01

    The DEWI Institute in Germany is in the process of testing a computational fluid dynamic (CFD) method for the site assessment of wind farms. This presentation provided details of flow model testing conducted at the institute and at 2 wind farms in Austria and Spain. Wind profile verification processes are tested at the institute through the use of 130 metre mast, which was selected to verify flow models as it has several years of data which has been extensively evaluated and checked. The verification procedures tested on the mast were then evaluated at a wind farm in Austria with a complex site comprised of steep slopes, large height differences and important terrain structures. Mast measurements at the farm ranged between 50 and 65 m, and sonic detection and ranging (SODAR) measurements were available at 4 different locations. Wind direction at the meteorological masts was determined to be 326.7 degrees and 331.0 degrees. A comparison with SODAR measurements showed considerable variation of energy yield. Flow simulation studies showed a mean deviation of 2.3 per cent, while calculations by the Wind Atlas Analysis and Application Program (WAsP) showed a deviation of 9.1 per cent. The investigation revealed that there were very complex flow patterns at the site, which the flow simulation was able to reproduce. Results of the investigation indicated that very high wind direction resolutions were required to achieve an accurate flow simulation. WaSP was not applicable for the extrapolation of measurement on hub height to the wind turbines. CFD simulation results at a wind farm in Spain with complex terrain showed a percentage error between 0.4 per cent and 6 per cent, and a mean absolute error of between 2.3 per cent and 2.5 per cent. A verification of turbulence intensity results showed an absolute percentage error of between 0 and 7 per cent, and a mean absolute error of between 1.8 and 2.2 per cent. The method allowed wind and turbulence fields to be simulated over

  15. Advances in methods for measuring patterns of endemic plant diversity

    Directory of Open Access Journals (Sweden)

    Jihong Huang

    2013-01-01

    Full Text Available Endemism, the restriction of a taxon’s distribution to a specified geographical area, is central to the study of biogeography. Understanding endemism not only concerns a number of evolutionary and biogeographical issues, but also plays an important role in maintaining biodiversity and in the selection of priority areas for conservation. In recent years, various measures and analytical methods have been used to investigate patterns of endemism for various taxa from different regions. The emergence of these new measurements has benefited from the construction of phylogenetic trees and the implementation of data from spatial statistics. Some of these measures, such as phylogenetic diversity, phylogenetic endemism, and biogeographically weighted evolutionary distinctiveness deserve much more attention. Here, we review progress in the methodology used to measure the distribution patterns of endemism. These metrics have generally developed from a single time or space perspective to space-time united patterns. Specifically, the metrics include species richness, phylogenetic diversity and evolutionary distinctiveness, plus all there in combination as well as the weight of species range size. Moreover, we propose that studies on the distribution patterns of Chinese endemic taxa should pay attention to species diversity, phylogenetic diversity, species β-diversity, and phylogenetic β-diversity. In particular, model simulation analysis should be emphasized and implemented during investigations. These studies will provide fundamental knowledge for comprehensive recognition of scale-induced differences and for the detection of mechanisms underlying the distribution patterns of endemic taxa, and therefore provide theoretical support for biodiversity conservation.

  16. Towards advanced welding methods for the ITER vacuum vessel sectors

    International Nuclear Information System (INIS)

    The problem of joining the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) sectors, considering the tolerance requirements of the blanket attachments, and the time required for TIG welding, continues to stimulate EU R and D into power beam welding techniques which can yield fewer passes, less welding time and lower distortion. The previous work on reduced pressure e-beam welding showed that penetration varied with position, fit-up, distance and pressure and single-pass weld control was deemed to be not reliable enough so the work direction changed to an all-e-beam welding procedure where the root weld is carried out with rest-current-control and the fill passes by wire-fill. In addition, a novel method of increasing the possible single-pass weld thickness for overhead positions is investigated demonstrated and now patented. Another solution may be offered with wire-fill NdYAG laser welding, which has demonstrated useable and stable results and proved improved performance over TIG. Preliminary work has shown even further advantages with the introduction of hybrid MIG/Laser welding

  17. A deeper look into magnetic nanostructures using advanced scattering methods

    Indian Academy of Sciences (India)

    T H Brückel; E Kentzinger; S Mattauch; A Paul; U Rücker; J Voigt

    2008-11-01

    Magnetic thin film systems and laterally patterned magnetic media are the basis of spintronic devices for information technology. In this contribution, we will show that neutron scattering under grazing incidence with polarization analysis is able to provide unique depth resolved information on magnetization, magnetic correlations and magne-tization dynamics relevant for basic and applied research on nanostructured magnetic materials. It is well established that specular neutron reflectivity with polarization analysis from thin film systems and multilayers provides layer-resolved information on interface rough-ness and on the laterally averaged magnetization. Off-specular diffuse scattering with polarization analysis gives access to lateral correlations, i.e. the detailed interface morphology, the magnetic order of nanoscale objects (stripes or islands), the magnetic fluctuations or domain structure. Depending on the scattering geometry – reflectometry or grazing incidence small angle neutron scattering (GISANS) – correlations on lateral length scales from the nanometer up to the 100 micrometer range become accessible. Close to total reflection, kinematical scattering theory breaks down and dynamical effects have to be taken into account. Simulations in the distorted wave Born approximation (DWBA) allow one to extract quantitative parameters for a statistical model description. On several examples we will demonstrate the power of the method – from the magnetic fluctuations in remanent sputtered films via the magnetic structure of rare earth multilayers with competing interactions to the remagnetization process of exchange bias systems or the domain structures of laterally patterned giant magnetoresistance multilayers. Finally we will give an outlook on what will be possible on next generation instruments such as the magnetism reflectometer MARIA of the Juelich Centre for Neutron Science (JCNS) at FRM-II.

  18. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    CERN Document Server

    Powell, Jade; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A

    2016-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the im...

  19. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  20. Raman spectroscopic method for the determination of medroxyprogesterone acetate in a pharmaceutical suspension: validation of quantifying abilities, uncertainty assessment and comparison with the high performance liquid chromatography reference method.

    Science.gov (United States)

    De Beer, T R M; Baeyens, W R G; Vermeire, A; Broes, D; Remon, J P; Vervaet, C

    2007-04-25

    An alternative fast and non-destructive validated Raman spectroscopic analytical procedure, requiring no sample preparation, was compared with the industrially applied HPLC reference method (Pfizer Manufacturing Belgium) for the quantitative determination of medroxyprogesterone acetate (MPA) in DepoProvera suspensions (150 mg mL(-1), Pfizer). The Raman calibration model was developed by plotting the peak intensity of the baseline-corrected and normalized spectral band (corrected by external standard measurements) between 1595 and 1620 cm(-1) against known MPA concentrations in standards. At this band, no spectral interferences from the suspension medium are observed. The most suitable model for the calibration data (straight line or higher order polynomial) was determined by evaluating the fit and predictive properties of the models. In a second step, the developed Raman spectroscopic analytical method was validated by calculating the accuracy profile on the basis of the analysis results of validation samples. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, as the aim of the alternative method is to replace the destructive, time-consuming HPLC method, requiring sample preparation, it needs to be demonstrated that the new Raman method performs at least as good as the HPLC method. Therefore, the performance (precision and bias) of both methods was compared. A second order polynomial calibration curve through the calibration data supplies the best predictive properties and gives an acceptable fit. From the accuracy profile, it was concluded that at the target concentration (150 mg mL(-1)), 95 out 100 future routine measurements will be included within the acceptance limits (5%). Comparison of the alternative method with the reference method at the target concentration indicates that the Raman method performs at least as good as the HPLC method for precision (repeatability and intermediate precision) and bias

  1. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  2. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  3. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    International Nuclear Information System (INIS)

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×103, 3.8×103 and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry

  4. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  5. Assessment of the variations in fat content in normal liver using a fast MR imaging method in comparison with results obtained by spectroscopic imaging.

    Science.gov (United States)

    Irwan, Roy; Edens, Mireille A; Sijens, Paul E

    2008-04-01

    A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%.

  6. An efficient, maintenance free and approved method for spectroscopic control and monitoring of blend uniformity: The moving F-test.

    Science.gov (United States)

    Besseling, Rut; Damen, Michiel; Tran, Thanh; Nguyen, Thanh; van den Dries, Kaspar; Oostra, Wim; Gerich, Ad

    2015-10-10

    Dry powder mixing is a wide spread Unit Operation in the Pharmaceutical industry. With the advent of in-line Near Infrared (NIR) Spectroscopy and Quality by Design principles, application of Process Analytical Technology to monitor Blend Uniformity (BU) is taking a more prominent role. Yet routine use of NIR for monitoring, let alone control of blending processes is not common in the industry, despite the improved process understanding and (cost) efficiency that it may offer. Method maintenance, robustness and translation to regulatory requirements have been important barriers to implement the method. This paper presents a qualitative NIR-BU method offering a convenient and compliant approach to apply BU control for routine operation and process understanding, without extensive calibration and method maintenance requirements. The method employs a moving F-test to detect the steady state of measured spectral variances and the endpoint of mixing. The fundamentals and performance characteristics of the method are first presented, followed by a description of the link to regulatory BU criteria, the method sensitivity and practical considerations. Applications in upscaling, tech transfer and commercial production are described, along with evaluation of the method performance by comparison with results from quantitative calibration models. A full application, in which end-point detection via the F-test controls the blending process of a low dose product, was successfully filed in Europe and Australia, implemented in commercial production and routinely used for about five years and more than 100 batches. PMID:26257268

  7. The development and features of the Spanish prehospital advanced triage method (META) for mass casualty incidents.

    Science.gov (United States)

    Arcos González, Pedro; Castro Delgado, Rafael; Cuartas Alvarez, Tatiana; Garijo Gonzalo, Gracia; Martinez Monzon, Carlos; Pelaez Corres, Nieves; Rodriguez Soler, Alberto; Turegano Fuentes, Fernando

    2016-01-01

    This text describes the process of development of the new Spanish Prehospital Advanced Triage Method (META) and explain its main features and contribution to prehospital triage systems in mass casualty incidents. The triage META is based in the Advanced Trauma Life Support (ATLS) protocols, patient's anatomical injuries and mechanism of injury. It is a triage method with four stages including early identification of patients with severe trauma that would benefit from a rapid evacuation to a surgical facility and introduces a new patient flow by-passing the advanced medical post to improve evacuation. The stages of triage META are: I) Stabilization triage that classifies patients according to severity to set priorities for initial emergency treatment; II) Identifying patients requiring urgent surgical treatment, this is done at the same time than stage I and creates a new flow of patients with high priority for evacuation; III) Implementation of Advanced Trauma Life Support protocols to patients previously classified according to stablished priority; and IV) Evacuation triage, stablishing evacuation priorities in case of lacks of appropriate transport resources. The triage META is to be applied only by prehospital providers with advanced knowledge and training in advanced trauma life support care and has been designed to be implemented as prehospital procedure in mass casualty incidents (MCI). PMID:27130042

  8. PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data

    OpenAIRE

    Sun, Xiaoyun; Hong, Pengyu; Kulkarni, Meghana; Kwon, Young; Perrimon, Norbert

    2013-01-01

    Background: Tandem affinity purification coupled with mass-spectrometry (TAP/MS) analysis is a popular method for the identification of novel endogenous protein-protein interactions (PPIs) in large-scale. Computational analysis of TAP/MS data is a critical step, particularly for high-throughput datasets, yet it remains challenging due to the noisy nature of TAP/MS data. Results: We investigated several major TAP/MS data analysis methods for identifying PPIs, and developed an advanced method, ...

  9. Setting health research priorities using the CHNRI method: IV. Key conceptual advances

    Directory of Open Access Journals (Sweden)

    Igor Rudan

    2016-06-01

    Full Text Available Child Health and Nutrition Research Initiative (CHNRI started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007–2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances.

  10. Human-system safety methods for development of advanced air traffic management systems

    International Nuclear Information System (INIS)

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems (author) (ml)

  11. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.

    Science.gov (United States)

    Ruka, Dianne R; Sangwan, Parveen; Garvey, Christopher J; Simon, George P; Dean, Katherine M

    2015-08-18

    Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal.

  12. DEVELOPMENT AND VALIDATION OF UV SPECTROSCOPIC METHOD FOR THE DETERMINATION OF METFORMIN HYDROCHLORIDE IN TABLET DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Reatul Karim et al

    2012-09-01

    Full Text Available A simple, economic, sensitive, precise and accurate UV spectrophotometric method was developed and validated for quantification of Metformin hydrochloride in bulk and in tablet dosage form. Adequate drug solubility and maximum assay sensitivity was found in 0.01N sodium hydroxide at 233nm. Calibration graph constructed at 233nm was linear in concentration range of 1-25μg/ml with correlation coefficient of 0.9998. The method was validated as per ICH guidelines in terms of linearity (within 1-25µg/ml, accuracy (% recovery, precision (inter-day and intraday, specificity and robustness. The limit of detection (LOD and limit of quantification (LOQ were found to be 0.2226µg/ml and 0.6745µg/ml respectively. Therefore, the proposed method is suitable and can be adopted for the determination of Metformin hydrochloride from pharmaceutical dosage form in routine quality control analysis.

  13. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  14. An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments

    NARCIS (Netherlands)

    Choe, E.; Meer, van der F.; Rossiter, D.; Salm, van der C.; Kim, K.W.

    2010-01-01

    This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to e

  15. On determining the optical properties and layer structure from spectroscopic ellipsometric data using automated artifact minimization method

    Energy Technology Data Exchange (ETDEWEB)

    Budai, J., E-mail: jbudai@titan.physx.u-szeged.hu [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Farkas, B.; Horváth, Z.L. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Semilab Semiconductor Physics Laboratory Co. Ltd., Prielle Kornélia str. 2., H-1117 Budapest (Hungary); Geretovszky, Zs. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary)

    2014-09-30

    An ellipsometric analysis method is presented and applied to simulated and measured ellipsometric data. It is shown that the Kramers–Kronig consistency of numerically inverted dielectric curves is lost, if interference related structures are present in the inverted dielectric function. Based on this observation, the root mean square of the self consistency curve is found to be appropriate to find the Kramers–Kronig consistent dielectric function, which belongs to a physically correct layer structure. Furthermore, it is shown that the effect of restricted photon energy range, typical to real life ellipsometric measurements, can be handled by adding an integration constant and one or two Sellmeier oscillators, whose parameters are fitted, to the Kramers–Kronig integrated dielectric function. The limitations of the method are also discussed, both on simulated and measured data. - Highlights: • An improved artifact minimization method is presented for ellipsometry analysis. • Numerically inverted ε{sub 1}, ε{sub 2} pairs are ranked via their Kramers–Kronig consistency. • The ε{sub 1}, ε{sub 2} pair showing the least structured self consistency curve is accepted. • Self consistency curves are compared in terms of their root mean square. • The method is tested on simulated and experimentally measured ellipsometric data.

  16. Fat and Moisture Content in Chinese Fried Bread Sticks: Assessment and Rapid Near-Infrared Spectroscopic Method Development

    Directory of Open Access Journals (Sweden)

    Zhuqing Xiao

    2013-01-01

    Full Text Available Fried bread sticks (FBS are one of the most widely consumed deep fried food products in China. Understanding the fat and moisture content in FBS will help consumers make healthy food choices as well as assist food processors to provide FBS with desirable quality. Rapid Fourier transform near-infrared methods (FT-NIR were developed for determining fat and moisture content in FBS collected from 123 different vendors in Shanghai, China. FBS samples with minimum sample preparation (either finely or coarsely ground were used for NIR analyses. Spectra of FBS were treated with different mathematic pretreatments before being used to build models between the spectral information and fat (7.71%–30.89% or moisture (17.39%–32.65% content in FBS. Finely ground samples may lead to slightly more robust PLS models, but the particle sizes of ground FBS samples did not seriously affect the predictability of the models with appropriate mathematical treatments. The fat and moisture content in FBS predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (fat, R2=0.965; moisture, R2=0.983, which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of fat and moisture content in FBS.

  17. Resolution of Ternary Mixture of Aspirin, Atorvastatin, and Clopidogrel by Chemometric-Assisted UV Spectroscopic and Liquid Chromatography Methods

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohamed Issa

    2013-01-01

    Full Text Available Two chemometrics-assisted UV spectrophotometric methods were proposed for the resolution of ternary mixtures without any chemical pretreatment. The first method is based on modification of H-point standard addition method which permits simultaneous analysis of three species from a unique calibration set by making the simultaneous addition of the three analytes. Quotient between the spectra of aspirin, atorvastatin, and clopidogrel was obtained and the results showed that simultaneous determination of aspirin, atorvastatin, and clopidogrel can be obeyed in the linear range 2.5–20 μg mL−1 of aspirin, 2.5–17.5 μg mL−1 of atorvastatin, and 2.5–20 μg mL−1 of clopidogrel in ternary mixture. The second method is based on the combination of the first derivative spectra and Cramer's matrix rule. In the matrix calculation, clopidogrel has zero crossing point at 316.8 and 212 nm, while for atorvastatin the zero crossing point at 250 nm where the matrix is greatly simplified and easily solved. The linear concentration ranges were 2.5–20 μg mL−1 aspirin, 2.5–17.5 μg mL−1 atorvastatin and 2.5–20 μg mL−1 clopidogrel in ternary mixtures. The results proved that the simultaneous determination of aspirin, atorvastatin, and clopidogrel could be obeyed. Both methods were applied for capsules containing the three ingredients and results were in good concordance with alternative liquid chromatography.

  18. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    International Nuclear Information System (INIS)

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid

  19. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Alshikh Mohamad, Yassin, E-mail: yassinm@mail.ru; Atassi, Yomen; Moussa, Zafer

    2015-09-15

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid.

  20. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    Science.gov (United States)

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-01

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated.

  1. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    Science.gov (United States)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  2. Advanced airflow distribution methods for reduction of personal exposure to indoor pollutants

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kosonen, Risto; Melikov, Arsen;

    2016-01-01

    The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow ...

  3. Assessment of the variations in fat content in normal liver using a fast MR imaging method in comparison with results obtained by spectroscopic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Irwan, Roy [University Medical Center Groningen, Radiology, Groningen (Netherlands); Toshiba Medical Systems Europe, Zoetermeer (Netherlands); Edens, Mireille A. [University of Groningen, Epidemiology, Groningen (Netherlands); Sijens, Paul E. [University Medical Center Groningen, Radiology, Groningen (Netherlands)

    2008-04-15

    A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%. (orig.)

  4. Advances in methods and algorithms in a modern quantum chemistry program package.

    Science.gov (United States)

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces. PMID:16902710

  5. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  6. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  7. [Isolation and identification methods of enterobacteria group and its technological advancement].

    Science.gov (United States)

    Furuta, Itaru

    2007-08-01

    In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.

  8. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    Science.gov (United States)

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Neutral particle transport based on the advanced method of characteristics (MOCHA)

    International Nuclear Information System (INIS)

    The paper describes the development of MOCHA, the advanced method of characteristics, based on the CHAR and ANEMONA codes, and its applications in a number of assembly and cell calculations. The MOCHA presents an attempt to satisfy the need imposed by the advanced reactor designs by providing the computational ability to account for all heterogeneities within the fuel assembly, the capability of general multi-dimensional geometry simulation, the flexibility in energy-group structure, the capability of multi-assembly simulation, accurate burn-up calculation, and linearly anisotropic scattering approximation

  10. The photoacoustic spectroscopic investigations of the surface preparation of ZnSe crystals with the use of the optimization methods

    Science.gov (United States)

    Chrobak, Ł.; Maliński, M.; Zakrzewski, J.; Strzałkowski, K.

    2010-02-01

    This paper shows results of the photoacoustic (PA) spectral studies, with the microphone detection, of a series of ZnSe crystals with differently prepared surfaces. All samples exhibited the surface absorption connected with defects states located on their surfaces. The quality of the surface preparation is expressed by the surface absorption coefficient spectra of the samples times the thickness of a damaged layer. In this paper both theoretical and experimental photoacoustic amplitude and phase spectra as also the corresponding computed surface and volume optical absorption coefficient spectra of the samples with differently prepared surfaces are presented and discussed. The procedure of computations of the volume and surface absorption spectra with the use of the optimization method is presented in the paper too.

  11. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  12. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    Science.gov (United States)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  13. Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods.

    Science.gov (United States)

    Fang, Fang; Pan, Dong-Qi; Qiu, Min-Jie; Liu, Ting-Ting; Jiang, Min; Wang, Qi; Shi, Jie-Hua

    2016-09-01

    To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA-BSA complex. The number of binding sites (n) and the binding constant for MPA-BSA complex are ~1 and 4.6 × 10(3)  M(-1) at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG(0) , ΔH(0) and ΔS(0) in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II'') of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α-helix structure. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  15. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA.

  16. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Kukuk, Guido M.; Block, Wolfgang; Willinek, Winfried A.; Schild, Hans H.; Traeber, Frank [University of Bonn, Department of Radiology, Bonn (Germany); Hittatiya, Kanishka; Fischer, Hans-Peter [University of Bonn, Department of Pathology, Bonn (Germany); Sprinkart, Alois M. [University of Bonn, Department of Radiology, Bonn (Germany); Ruhr-University, Institute of Medical Engineering, Bochum (Germany); Eggers, Holger [Philips Research Europe, Hamburg (Germany); Gieseke, Juergen [University of Bonn, Department of Radiology, Bonn (Germany); Philips Healthcare, Best (Netherlands); Moeller, Philipp; Spengler, Ulrich; Trebicka, Jonel [University of Bonn, Department of Internal Medicine I, Bonn (Germany)

    2015-10-15

    To compare systematically quantitative MRI, MR spectroscopy (MRS), and different histological methods for liver fat quantification in order to identify possible incongruities. Fifty-nine consecutive patients with liver disorders were examined on a 3 T MRI system. Quantitative MRI was performed using a dual- and a six-echo variant of the modified Dixon (mDixon) sequence, calculating proton density fat fraction (PDFF) maps, in addition to single-voxel MRS. Histological fat quantification included estimation of the percentage of hepatocytes containing fat vesicles as well as semi-automatic quantification (qHisto) using tissue quantification software. In 33 of 59 patients, the hepatic fat fraction was >5 % as determined by MRS (maximum 45 %, mean 17 %). Dual-echo mDixon yielded systematically lower PDFF values than six-echo mDixon (mean difference 1.0 %; P < 0.001). Six-echo mDixon correlated excellently with MRS, qHisto, and the estimated percentage of hepatocytes containing fat vesicles (R = 0.984, 0.967, 0.941, respectively, all P < 0.001). Mean values obtained by the estimated percentage of hepatocytes containing fat were higher by a factor of 2.5 in comparison to qHisto. Six-echo mDixon and MRS showed the best agreement with values obtained by qHisto. Six-echo mDixon, MRS, and qHisto provide the most robust and congruent results and are therefore most appropriate for reliable quantification of liver fat. (orig.)

  17. Characterization of the interactions of human serum albumin (HSA), gatifloxacin, and metronidazole using spectroscopic and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li, E-mail: fuli668@126.com; Liu, Xiu-fen; Zhou, Qiu-xiang; Zhang, Ji-xiang; Dong, Jing-ya; Wang, Jian-fang

    2014-05-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is an important carrier for many drugs. Understanding HSA-drug interactions is critical in being able to interpret the distribution and acting mechanisms of these drugs, which is particularly important in the case of multi-drug therapy. In this study, we investigated the interactions between HSA and two commonly used antibiotics, gatifloxacin (GFLX) and metronidazole (MET), in Tris–HCl buffer solution (pH=7.4). The efficacy of the individual drugs (GFLX or MET) and the efficacy of a combination of GFLX and MET were measured using fluorescence spectroscopy, UV absorption spectroscopy, and electrochemical methods. Our results demonstrated that GFLX and MET have a synergistic effect. Briefly, one drug decreased the binding stability with HSA of the other drug, thus increasing the concentration of free drug at the action sites. The interaction of drugs with HSA is a process of complex-formation static quenching. There is approximately one binding site between HSA and the drug (GFLX or MET). The binding distance, r, between the drug and HSA was determined on the basis of the theory of Forster-type non-radiative energy transfer. It was shown that the interaction between the two drugs increased the r-value. Using thermodynamic parameters, we found that the binding of drug-HSA interactions is mainly controlled by electrostatic force. Analysis of the synchronous fluorescence spectrum suggested that the interactions between the drugs have important effects on protein conformation. In conclusion, combining GFLX and MET enhances treatment efficacy. Our study provides a basis to understand the mechanism of the interaction of MET, GFLX and HSA in the human body. - Highlights: • The synergistic effects between MET and GFLX were founed. • The type of interaction between the drugs and HSA was identified.

  18. Balancing of linkages and robot manipulators advanced methods with illustrative examples

    CERN Document Server

    Arakelian, Vigen

    2015-01-01

    In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.

  19. Vibration Theory, Vol. 4:advanced methods in stochastic dynamics of non-linear systems

    OpenAIRE

    Iwankiewicz, R.; Nielsen, Søren R. K.

    1999-01-01

    This text is based on the lecture notes for the courses on advanced methods in stochastic dynamics of non-linear systems taught in November 1994, February 1995 and December 1997 for Ph.D. students at the Department of Building Technology and Structural Engineering at Aalborg University and in 1999 for postgraduate students and academic staff members at the school of Mechanical Engineering of the University of the Witwatersrand, Johannesburg. The book covers, in authors belief, the most import...

  20. Methods for assessing quality characteristics of non-grain starch staples. (Part 4. Advanced methods.)

    OpenAIRE

    Bainbridge, Z.; Tomlins, K.; Wellings, K; Westby, A.

    1996-01-01

    This manual sets out in a four-part publication the main methods necessary to evaluate the quality characteristics of nongrain starch staple (NGSS) food crops (cassava, sweet potato, banana, plantain, yam and cocoyam) and their processed products. It is designed to be a reference source and laboratory guide for food analysis laboratories and those concerned with the quality of NGSS. It is hoped that the provision of this manual and its active promotion through workshops will assist in the upt...

  1. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  2. Development and application of a probabilistic evaluation method for advanced process technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  3. Advanced computational methods for the assessment of reactor core behaviour during reactivity initiated accidents. Final report

    International Nuclear Information System (INIS)

    The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.

  4. Advanced calculational methods for power reactors and LWR core design parameters

    International Nuclear Information System (INIS)

    The purpose of the Specialists Meeting on Advanced Calculational Methods for Power Reactors, held in Cadarache, France, 10-14 September 1990, was to provide a forum for reviewing and discussing selected core physics of water cooled reactors (including high convertors). New methods of advanced calculation for advanced fuels and complex geometries of next generation reactors with a high level of accuracy were discussed and the importance of supercomputing and on-line monitoring was also acknowledged. The meeting was attended by about 60 participants from 20 countries who presented 30 papers. The Technical Committee Meeting on LWR Core Design Parameters, held in Rez, former Czechoslovakia, 7-11 October 1991, provided an opportunity for participants to exchange their experience on reactor physics aspects of benchmark calculations of various lattices, methods for core parameter calculations, core monitoring and in-core fuel management. At the Workshop there were further discussions related to the benchmark problems, homogenization techniques and cross-section representations. Thirty-five papers were presented by about 43 participants from 19 countries. A separate abstract was prepared for each of the mentioned papers. Refs, figs and tabs

  5. Development and validation of a laser-induced breakdown spectroscopic method for ultra-trace determination of Cu, Mn, Cd and Pb metals in aqueous droplets after drying.

    Science.gov (United States)

    Aras, Nadir; Yalçın, Şerife

    2016-03-01

    The present study reports a fast and accurate methodology for laser-induced breakdown spectroscopic, LIBS, analysis of aqueous samples for environmental monitoring purposes. This methodology has two important attributes: one is the use of a 300nm oxide coated silicon wafer substrate (Si+SiO2) for the first time for manual injection of 0.5 microliter aqueous metal solutions, and two is the use of high energy laser pulses focused outside the minimum focus position of a plano convex lens at which relatively large laser beam spot covers the entire droplet area for plasma formation. Optimization of instrumental LIBS parameters like detector delay time, gate width and laser energy has been performed to maximize atomic emission signal of target analytes; Cu, Mn, Cd and Pb. Under the optimal conditions, calibration curves were constructed and enhancements in the LIBS emission signal were obtained compared to the results of similar studies given in the literature. The analytical capability of the LIBS technique in liquid analysis has been improved. Absolute detection limits of 1.3pg Cu, 3.3pg Mn, 79pg Cd and 48pg Pb in 0.5 microliter volume of droplets were obtained from single shot analysis of five sequential droplets. The applicability of the proposed methodology to real water samples was tested on the Certified Reference Material, Trace Metals in Drinking Water, CRM-TMDW and on ICP multi-element standard samples. The accuracy of the method was found at a level of minimum 92% with relative standard deviations of at most 20%. Results suggest that 300nm oxide coated silicon wafer has an excellent potential to be used as a substrate for direct analysis of contaminants in water supplies by LIBS and further research, development and engineering will increase the performance and applicability of the methodology. PMID:26717813

  6. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    Science.gov (United States)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔGCdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  7. Spectroscopic methods for authentification. An overview. Analytical methods for the authentification of agro-food products. Gembloux (Belgium. 20 Oct 1999.

    Directory of Open Access Journals (Sweden)

    Belton P.

    2000-01-01

    Full Text Available An analysis by the probability shows the criterion that an analysis method has to satisfy to allow the authentication of a product. There are two distinct ways of achieving this criterion. It defines two groups for the classification of authenticatication methods: those in which information is concentrated into few data points and those in which information is spread across many data points.The reason for requiring authenticity testing allows to choose between these two groups. The nature of the sample will then specify the appropriate method.

  8. Spectroscopic methods for authentification. An overview. Analytical methods for the authentification of agro-food products. Gembloux (Belgium). 20 Oct 1999.

    OpenAIRE

    Belton P.

    2000-01-01

    An analysis by the probability shows the criterion that an analysis method has to satisfy to allow the authentication of a product. There are two distinct ways of achieving this criterion. It defines two groups for the classification of authenticatication methods: those in which information is concentrated into few data points and those in which information is spread across many data points.The reason for requiring authenticity testing allows to choose between these two groups. The nature of ...

  9. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  10. Recent Advances in the Microscopic Calculations of Level Densities by the Shell Model Monte Carlo Method

    CERN Document Server

    Alhassid, Y; Liu, S; Mukherjee, A; Nakada, H

    2014-01-01

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (i) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (ii) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes $^{59-64}$Ni and of a heavy deformed rare-earth nucleus $^{162}$Dy and found them to be in close agreement with various experimental data sets.

  11. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Takenori [Univ. of Tsukuba, Ibaraki (Japan). Institute of Engineering Mechanics

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  12. Palliative care in advanced dementia; A mixed methods approach for the development of a complex intervention

    Directory of Open Access Journals (Sweden)

    Tookman Adrian

    2008-07-01

    Full Text Available Abstract Background There is increasing interest in improving the quality of care that patients with advanced dementia receive when they are dying. Our understanding of the palliative care needs of these patients and the natural history of advanced disease is limited. Many people with advanced dementia have unplanned emergency admissions to the acute hospital; this is a critical event: half will die within 6 months. These patients have complex needs but often lack capacity to express their wishes. Often carers are expected to make decisions. Advance care planning discussions are rarely performed, despite potential benefits such more consistent supportive healthcare, a reduction in emergency admissions to the acute hospital and better resolution of carer bereavement. Design/Methods We have used the MRC complex interventions framework, a "bottom-up" methodology, to develop an intervention for patients with advanced dementia and their carers aiming to 1 define end of life care needs for both patients and carers, 2 pilot a palliative care intervention and 3 produce a framework for advance care planning for patients. The results of qualitative phase 1 work, which involved interviews with carers, hospital and primary care staff from a range of disciplines, have been used to identify key barriers and challenges. For the exploratory trial, 40 patients will be recruited to each of the control and intervention groups. The intervention will be delivered by a nurse specialist. We shall investigate and develop methodology for a phase 3 randomised controlled trial. For example we shall explore the feasibility of randomisation, how best to optimise recruitment, decide on appropriate outcomes and obtain data for power calculations. We will evaluate whether the intervention is pragmatic, feasible and deliverable on acute hospital wards and test model fidelity and its acceptability to carers, patients and staff. Discussion Results of qualitative phase 1 work

  13. Radiochemical methods and spectroscopical analyses for investigating the catalytic effects of 2-methyltetrahydro-anthraquinone and phenanthraquinone in wood pulp production using the soda additive method

    International Nuclear Information System (INIS)

    The studies were to show whether 2-methyltetrahydroanthraquinone or phenanthraquinone, two additives obtainable at low cost, will have a suitable catalytic effect on the delignification using the soda additive pulping method. For this purpose, soda cookings have been made in a 7 l rotary autoclave. The results have shown that 2-MeTHAQ is by far the better catalytic agent. Further experiments have been made to investigate the mode of action of the redox additives, intended to reveal further characteristics which can be correlated with the knowledge obtained from the preceding soda cookings. The analysis shows that there is a connection between the analytical lignin characteristics and the effectiveness of quinoid additives. (orig./PW)

  14. An advanced method of activity determination of large area beta emitting sources

    International Nuclear Information System (INIS)

    The presented advanced method of activity determination of large area beta emitting sources is based on a version of efficiency tracing method using a test foil placed between the source and a conventional large area detector. It is shown that the total efficiency of the measuring system may depend on a dimensionless parameter derived from the difference in count rates caused by inserting the test foil while other disturbing effects are mostly reduced or compensated. - Highlights: • Efficiency tracing transmission method of beta activity determination. • Efficiency determined by means of a parameter independent of initial absorption conditions. • Parameter is derived from two counting results obtained with using a test foil. • Particularly useful for calibration and measurement of radionuclide standard sources

  15. Advances in Gas Chromatographic Methods for the Identification of Biomarkers in Cancer

    Directory of Open Access Journals (Sweden)

    Konstantinos A. Kouremenos, Mikael Johansson, Philip J. Marriott

    2012-01-01

    Full Text Available Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology.

  16. Computational methods to extract meaning from text and advance theories of human cognition.

    Science.gov (United States)

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA.

  17. Construction of the first advanced BWRs with giant crawler crane module method

    International Nuclear Information System (INIS)

    The construction of No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., which are the first advanced BWRs of 1356 MW capacity and the largest class in the world, is advanced smoothly, aiming at the start of commercial operation in 1996 and 1997. The ABWR was developed aiming at further heightening the safety, operation performance and economic efficiency, and also for the construction, new construction methods were adopted and achieved effects. Hitachi Ltd. utilizes large crawler cranes up to the maximum limit, and expands the application of large section module method, and efforts are exerted for shortening the construction period, improving quality, and securing safety in the construction works. The planning and the investigation of the installation of large section module were carried out by utilizing CAD, exchanging the design information and expanding the cooperation in execution with architecture companies, in this way, the efficiency and the quality were improved. Hitachi Ltd. has promoted the construction of the turbine facilities of No. 6 plant and the nuclear reactor facilities of No. 7 plant. As the features of No. 6 and 7 plant construction, the reduction of the building size by installing internal pumps, the steel-lined reinforced concrete containment vessels and so on are mentioned. The construction schedule, and the methods of construction for No. 6 turbine building and No. 7 reactor building are reported. (K.I.)

  18. Advanced digital speckle correlation method for strain measurement and nondestructive testing

    Science.gov (United States)

    Jin, Guan-chang; Bao, Nai-Keng; Chung, Po Sheun

    1997-03-01

    An advanced digital speckle correlation method (DSCM) is presented in this paper. The advantages of this method will not only improve the processing speed but also increase the measuring accuracy. Some mathematics tools are derived and a powerful computing program is developed for further applications. A new feature of the measuring sensitivity of DSCM that can be varied by different amplification of the optical arrangement is first presented. This advantage may be superior to those available in other optical metrology methods like Electronic Speckle Pattern Interferometry (ESPI) in micro-deformation measurements. The applications of strain measurement and nondestructive testing are described and the advantages of DSCM are obvious. Some examples of material behavior measurement and plastic strain measurement are presented. Due to the high sensitivity of DSCM, another potential application in nondestructive testing (NDT) is also described in this paper. From the application examples given, this advanced DSCM proves to be a new and effective optical strain sensing technique especially for small objects or micro-deformation measurements.

  19. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    Science.gov (United States)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  20. Sperm preparation: state-of-the-art-physiological aspects and application of advanced sperm preparation methods

    Institute of Scientific and Technical Information of China (English)

    Ralf Henkel

    2012-01-01

    For assisted reproduction technologies (ART),numerous techniques were developed to isolate spermatozoa capable of fertilizing oocytes.While early methodologies only focused on isolating viable,motile spermatozoa,with progress of ART,particularly intracytoplasmic sperm injection (ICSI),it became clear that these parameters are insufficient for the identification of the most suitable spermatozoon for fertilization.Conventional sperm preparation techniques,namely,swim-up,density gradient centrifugation and glass wool filtration,are not efficient enough to produce sperm populations free of DNA damage,because these techniques are not physiological and not modeled on the stringent sperm selection processes taking place in the female genital tract.These processes only allow one male germ cell out of tens of millions to fuse with the oocyte.Sites of sperm selection in the female genital tract are the cervix,uterus,uterotubal junction,oviduct,cumulus oophorus and the zona pellucida.Newer strategies of sperm preparation are founded on:(i) morphological assessment by means of‘motile sperm organelle morphological examination (MSOME)'; (ii) electrical charge; and (iii) molecular binding characteristics of the sperm cell.Whereas separation methods based on electrical charge take advantage of the sperm's adherence to a test tube surface or separate in an electrophoresis,molecular binding techniques use Annexin V or hyaluronic acid (HA) as substrates.Techniques in this category are magnet-activated cell sorting,Annexin V-activated glass wool filtration,flow cytometry and picked spermatozoa for ICSI (PICSI) from HA-coated dishes and HA-containing media.Future developments may include Raman microspectrometry,confocal light absorption and scattering spectroscopic microscopy and polarization microscopy.

  1. Crystal grains alignment of SmBCO film by advanced TFA-MOD method

    International Nuclear Information System (INIS)

    We grew SmBa2Cu3O7-y (SmBCO) films on LaAlO3 (LAO) single crystalline substrates by an advanced TFA-MOD method and discussed the effects of process conditions such as oxygen partial pressure in the crystallization step on the crystal grains alignment of SmBCO film. Oxygen partial pressure affected strongly on the orientation of SmBCO film. Formation of a-axis crystal grains of the SmBCO was suppressed, and, at the same time, c-axis crystal grains of the SmBCO increased with decreasing the oxygen concentration

  2. Development of an advanced method for expansion due to compression testing

    International Nuclear Information System (INIS)

    For the purpose of detailed and precise descriptions of pellet-cladding mechanical interaction (PCMI), the advanced EDC test method was developed based on the modification of the conventional EDC test. The employment of ring-shaped specimens together with metallic inner pellet allows to obtain reproducible and less-error experimental results on strains along hoop and axial directions directly. The setup is even capable to be exposed to high temperature experiments which has not yet achieved by the conventional EDC tests. (author)

  3. Advances in research methods for information systems research data mining, data envelopment analysis, value focused thinking

    CERN Document Server

    Osei-Bryson, Kweku-Muata

    2013-01-01

    Advances in social science research methodologies and data analytic methods are changing the way research in information systems is conducted. New developments in statistical software technologies for data mining (DM) such as regression splines or decision tree induction can be used to assist researchers in systematic post-positivist theory testing and development. Established management science techniques like data envelopment analysis (DEA), and value focused thinking (VFT) can be used in combination with traditional statistical analysis and data mining techniques to more effectively explore

  4. INVESTIGATIONS OF THE FLOW INTO A STORAGE TANK BY MEANS OF ADVANCED EXPERIMENTAL AND THEORETICAL METHODS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    Advanced experimental methods were applied to study flow structures of a water jet entering a tank from the bottom. A squared experimental glass tank with a volume of about 140 l was used. Above the inlet pipe a flat plate was installed, as shown in the figure. The goal of the investigations is t...... investigations the validated CFD models can be utilized to develop more accurate simulation tank models for performance studies of solar domestic hot water systems and to enhance the geometry of inlet devices for solar storage tanks....

  5. Spectroscopic Dosimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analysis of Phase I test data demonstrates that the Photogenics Spectroscopic Dosimeter will detect neutron energies from 0.8 up to 600 MeV. The detector...

  6. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya

    2016-07-14

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2•xH2O, Zn2(bdc)2•xH2O, HKUST-1 and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Thereby paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  7. SIS 2013 Statistical Conference “Advances in Latent Variables. Methods, Models and Applications”

    CERN Document Server

    Brentari, Eugenio; Qannari, El; Advances in Latent Variables : Methods, Models and Applications

    2015-01-01

    The book, belonging to the series “Studies in Theoretical and Applied Statistics – Selected Papers from the Statistical Societies”, presents a peer-reviewed selection of contributions on relevant topics organized by the editors on the occasion of the SIS 2013 Statistical Conference "Advances in Latent Variables. Methods, Models and Applications", held at the Department of Economics and Management of the University of Brescia from June 19 to 21, 2013. The focus of the book is on advances in statistical methods for analyses with latent variables. In fact, in recent years, there has been increasing interest in this broad research area from both a theoretical and an applied point of view, as the statistical latent variable approach allows the effective modeling of complex real-life phenomena in a wide range of research fields. A major goal of the volume is to bring together articles written by statisticians from different research fields, which present different approaches and experiences related to the...

  8. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  9. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    Science.gov (United States)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  10. A New Method for Impossible Differential Cryptanalysis of 8-Round Advanced Encryption Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; HU Yupu; WEI Yongzhuang

    2006-01-01

    This paper first presents an impossible differential property for 5-round Advanced Encryption Standard (AES) with high probability. Based on the property and the impossible differential cryptanalytic method for the 5-round AES, a new method is proposed for cryptanalyzing the 8-round AES-192 and AES-256. This attack on the reduced 8-round AES-192 demands 2121 words of memory, and performs 2148 8-round AES-192 encryptions. This attack on the reduced 8-round AES-256 demands 2153 words of memory, and performs 2180 8-round AES-256 encryptions. Furthermore, both AES-192 and AES-256 require about 298 chosen plaintexts for this attack, and have the same probability that is only 2-3 to fail to recover the secret key.

  11. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    Science.gov (United States)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  12. The Second Development Method and Application Based on Ansys in Advanced Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    SUN Yuantao; WANG Shaomei; ZHAO Zhangyan

    2006-01-01

    The computer aided engineering is aiming at the numerical simulation-the important link in the advanced digital manufacturing. Its second development based on Ansys platform can be carried out often. In common, the Visual Basic and APDL are important development tools and are applied in the product design at the same time. In the paper, the secondary development flow and method based on Ansys is described. The parameter design and analysis process of the bridge girder erecting equipment is carried on with Ansys software and its secondary development tools-APDL and Visual Basics, including the interact between the mode of Ansys batch solving and Visual Basic. The method speeds up design and enhances the product the quality and the performance.

  13. Advanced experimental applications for x-ray transmission gratings Spectroscopy using a novel grating fabrication method

    CERN Document Server

    Hurvitz, G; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-01-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses Focused-Ion-Beam (FIB) technology to fabricate high-quality free standing grating bars on Transmission Electron Microscopy grids (TEM-grid). High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  14. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    Science.gov (United States)

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  15. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    Science.gov (United States)

    Klimenko, S.; Vedovato, G.; Drago, M.; Salemi, F.; Tiwari, V.; Prodi, G. A.; Lazzaro, C.; Ackley, K.; Tiwari, S.; Da Silva, C. F.; Mitselmakher, G.

    2016-02-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for transients with the initial GW detectors, it uses significantly improved algorithms, which enhance both the low-latency searches with rapid localization of GW events for the electromagnetic follow-up and high confidence detection of a broad range of the transient GW sources. In this paper, we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independently from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization, and helps identification of the source origin.

  16. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    CERN Document Server

    Klimenko, S; Drago, M; Salemi, F; Tiwari, V; Prodi, G A; Lazzaro, C; Tiwari, S; Da Silva, F; Mitselmakher, G

    2015-01-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for the transients with the initial GW detectors, it uses significantly improved algorithms, which enable both the low-latency searches with rapid localization of GW events for the electro-magnetic followup and high confidence detection of a broad range of the transient GW sources. In the paper we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independent from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization and helps identification of the source origin.

  17. Advanced methods for the study of PWR cores; Les methodes d'etudes avancees pour les coeurs de REP

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M.; Salvatores, St.; Ferrier, A. [Electricite de France (EDF), Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F. [FRAMATOME ANP, 92 - Paris La Defence (France); Chauliac, C. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Johner, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Cohen, Ch

    2003-07-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  18. Combining geoelectrical and advanced lysimeter methods to characterize heterogeneous flow and transport under unsaturated transient conditions

    Science.gov (United States)

    Wehrer, M.; Skowronski, J.; Binley, A. M.; Slater, L. D.

    2013-12-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous - or preferential - flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we applied systematically varied input flow boundary conditions, resembling natural precipitation events. We simultaneously measured the breakthrough of a conservative tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct ground-truthing of soil moisture and pore fluid resistivity changes estimated noninvasively using ERT. We were able to image both the advancing infiltration front and the advancing tracer front using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long term displacement of the solute front was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process

  19. A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

    Directory of Open Access Journals (Sweden)

    Emilio Z. Barcelos

    2014-11-01

    Full Text Available In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes’ conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu’s method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms.

  20. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    Science.gov (United States)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  1. Application of optical spectroscopic techniques for disease diagnosis

    Science.gov (United States)

    Saha, Anushree

    Optical spectroscopy, a truly non-invasive tool for remote diagnostics, is capable of providing valuable information on the structure and function of molecules. However, most spectroscopic techniques suffer from drawbacks, which limit their application. As a part of my dissertation work, I have developed theoretical and experimental methods to address the above mentioned issues. I have successfully applied these methods for monitoring the physical, chemical and biochemical parameters of biomolecules involved in some specific life threatening diseases like lead poisoning and age-related macular degeneration (AMD). I presented optical studies of melanosomes, which are one of the vital organelles in the human eye, also known to be responsible for a disease called age-related macular degeneration (AMD), a condition of advanced degeneration which causes progressive blindness. I used Raman spectroscopy, to first chemically identify the composition of melanosome, and then monitor the changes in its functional and chemical behavior due to long term exposure to visible light. The above study, apart from explaining the role of melanosomes in AMD, also sets the threshold power for lasers used in surgeries and other clinical applications. In the second part of my dissertation, a battery of spectroscopic techniques was successfully applied to explore the different binding sites of lead ions with the most abundant carrier protein molecule in our circulatory system, human serum albumin. I applied optical spectroscopic tools for ultrasensitive detection of heavy metal ions in solution which can also be used for lead detection at a very early stage of lead poisoning. Apart from this, I used Raman microspectroscopy to study the chemical alteration occurring inside a prostate cancer cell as a result of a treatment with a low concentrated aqueous extract of a prospective drug, Nerium Oleander. The experimental methods used in this study has tremendous potential for clinical

  2. Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods

    Science.gov (United States)

    Toschi, I.; Rodríguez-Gonzálvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A.

    2015-02-01

    This paper discusses a methodology to evaluate the precision and the accuracy of a commercial Mobile Mapping System (MMS) with advanced statistical methods. So far, the metric potentialities of this emerging mapping technology have been studied in few papers, where generally the assumption that errors follow a normal distribution is made. In fact, this hypothesis should be carefully verified in advance, in order to test how well the Gaussian classic statistics can adapt to datasets that are usually affected by asymmetrical gross errors. The workflow adopted in this study relies on a Gaussian assessment, followed by an outlier filtering process. Finally, non-parametric statistical models are applied, in order to achieve a robust estimation of the error dispersion. Among the different MMSs available on the market, the latest solution provided by RIEGL is here tested, i.e. the VMX-450 Mobile Laser Scanning System. The test-area is the historic city centre of Trento (Italy), selected in order to assess the system performance in dealing with a challenging and historic urban scenario. Reference measures are derived from photogrammetric and Terrestrial Laser Scanning (TLS) surveys. All datasets show a large lack of symmetry that leads to the conclusion that the standard normal parameters are not adequate to assess this type of data. The use of non-normal statistics gives thus a more appropriate description of the data and yields results that meet the quoted a-priori errors.

  3. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    Science.gov (United States)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  4. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    Science.gov (United States)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  5. Advances and applications of binding affinity prediction methods in drug discovery.

    Science.gov (United States)

    Parenti, Marco Daniele; Rastelli, Giulio

    2012-01-01

    Nowadays, the improvement of R&D productivity is the primary commitment in pharmaceutical research, both in big pharma and smaller biotech companies. To reduce costs, to speed up the discovery process and to increase the chance of success, advanced methods of rational drug design are very helpful, as demonstrated by several successful applications. Among these, computational methods able to predict the binding affinity of small molecules to specific biological targets are of special interest because they can accelerate the discovery of new hit compounds. Here we provide an overview of the most widely used methods in the field of binding affinity prediction, as well as of our own work in developing BEAR, an innovative methodology specifically devised to overtake some limitations in existing approaches. The BEAR method was successfully validated against different biological targets, and proved its efficacy in retrieving active compounds from virtual screening campaigns. The results obtained so far indicate that BEAR may become a leading tool in the drug discovery pipeline. We primarily discuss advantages and drawbacks of each technique and show relevant examples and applications in drug discovery.

  6. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  7. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    Science.gov (United States)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  8. Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers

    Science.gov (United States)

    Colin, T. A.

    1995-07-01

    This paper reviews advances in methods for estimating fluvial transport of suspended sediment and nutrients. Research from the past four years, mostly dealing with estimating monthly and annual loads, is emphasized. However, because this topic has not appeared in previous IUGG reports, some research prior to 1990 is included. The motivation for studying sediment transport has shifted during the past few decades. In addition to its role in filling reservoirs and channels, sediment is increasingly recognized as an important part of fluvial ecosystems and estuarine wetlands. Many groups want information about sediment transport [Bollman, 1992]: Scientists trying to understand benthic biology and catchment hydrology; citizens and policy-makers concerned about environmental impacts (e.g. impacts of logging [Beschta, 1978] or snow-fences [Sturges, 1992]); government regulators considering the effectiveness of programs to protect in-stream habitat and downstream waterbodies; and resource managers seeking to restore wetlands.

  9. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  10. Good practices in development of advanced assembly/core calculation methods and implementations of AEGIS/SCOPE2

    International Nuclear Information System (INIS)

    This paper reviews the history of development of AEGIS/SCOPE2, an advanced in-core fuel management code for PWRs. The initial project, development of a proto-type code, was started in 1996 as a feasibility study of the advanced calculation method/algorithm for advanced computation environments such as distributed parallel computers like PC-clusters which are commonly used nowadays. With success of development of the prototype code, a production-level advanced core calculation code, SCOPE2, was developed followed by AEGIS, an advanced assembly calculation code. These codes have been developed on the basis of the object-oriented programming approach and the agile software development. The authors extracted the key factors for success of the project as good practices from the viewpoint of code design, implementation, project management and verification and validation. Those practices are universal and may be applicable to any projects in the future. (author)

  11. A grid matrix-based Raman spectroscopic method to characterize different cell milieu in biopsied axillary sentinel lymph nodes of breast cancer patients.

    Science.gov (United States)

    Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R

    2016-01-01

    Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms.

  12. A grid matrix-based Raman spectroscopic method to characterize different cell milieu in biopsied axillary sentinel lymph nodes of breast cancer patients.

    Science.gov (United States)

    Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R

    2016-01-01

    Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms. PMID:26552923

  13. Advanced 3D-CAD Design Methods in Education and Research

    Directory of Open Access Journals (Sweden)

    Patrick Rossbacher

    2009-12-01

    Full Text Available The integration of advanced virtual engineering methods into 3D-CAD based development processes leads to increased requirements, concerning the software packages as well as regarding the applied procedures and strategies. Modern IT- based engineering tools offer much more than the conventional development methodologies in component creation and digital mock-up processes. The trend definitely goes into the direction of simultaneous CAE - support during the layout and design phases, attendant quality and structural management and the implementation of external data sources and receivers into the product development. It is up to the engineers to tap the full potential of virtual engineering processes regarding time reduction, error prevention in early phases and through technical modifications, whereas the applied methods and strategies represent a key factor on the way to efficient progresses. The present publication includes an assessment and evaluation of modern 3D-CAD based development processes and discusses future prospects in the field of virtual engineering. On the basis of parametric geometry generation, different methods and tools, which are able to increase the efficiency in virtual development processes, will be introduced and compared.

  14. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    Science.gov (United States)

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. PMID:25624245

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  16. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  17. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Katrahalli, Umesha [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Jaldappagari, Seetharamappa, E-mail: j_seetharam@rediffmail.co [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Kalanur, Shankara S. [Department of Chemistry, Karnatak University, Dharwad 580 003 (India)

    2010-02-15

    The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant 'K' was found to be 7.06x10{sup 3} M{sup -1} at 296 K. The value of 'n' close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.

  18. Warm Dense Matter and Strongly Coupled Plasmas Created by Intense Heavy Ion Beams and XUV-Free Electron Laser: An Overview of Spectroscopic Methods

    International Nuclear Information System (INIS)

    High density plasma physics, radiation emission/scattering and related atomic physics, spectroscopy and diagnostics are going to make large steps forward due to new experimental facilities providing beams of intense heavy ions and X/XUV free electron laser radiation. These facilities are currently being established at GSI-Darmstadt and DESY-Hamburg in Germany to access new and complementary parameter regimes for basic research which have never been obtained in laboratories so far: homogenous benchmark samples near solid density and temperatures from eV up to keV. This will provide important impact to many disciplines like astrophysics, atomic physics in dense environments, dense and strongly coupled plasma effects, radiation emission, equation of state. The spectroscopic analysis of the radiation emission plays a key role in this research to investigate the dynamics of electric fields in multi-particle coupled Coulomb systems and the modification of plasma statistics

  19. Surface Renewal: An Advanced Micrometeorological Method for Measuring and Processing Field-Scale Energy Flux Density Data

    OpenAIRE

    McElrone, Andrew J.; Shapland, Thomas M.; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L.

    2013-01-01

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory o...

  20. Modified stabilization method for the tibial tuberosity advancement technique: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Bruno Testoni Lins

    2009-04-01

    Full Text Available The present study aimed to determine biomechanical alterations resultant from a modification in the fixation method of the tibial tuberosity advancement technique (TTA, originally described for stabilization of the cranial cruciate-deficient stifle. Ten adult mongrel dogs weighing 25-30kg were used. After euthanasia, performed for reasons unrelated to this study, the hind limbs were distributed into two groups: G1 operated (n=10 and G2 control (n=10, represented by the contralateral limb. The operated hind limbs were orthopedically, goniometrically and radiographically evaluated, sequentially at four moments: moment 1, in intact joints; moment 2, after cranial cruciate desmotomy; moment 3, after surgical stabilization of the stifle joint using modified TTA; and moment 4, after caudal cruciate ligament desmotomy. The tibial tuberosity was stabilized by one shaft screw craniocaudally and a titanium cage inserted at the osteotomy site. The position of the patellar tendon at 90° in relation to the tibial plateau allowed cranial tibial thrust force neutralization, despite cranial drawer motion maintenance in all dogs. The biomechanical tests confirm the viability of the tibial tuberosity fixation method and support future clinical trials to validate the technique.

  1. ARN Training on Advance Methods for Internal Dose Assessment: Application of Ideas Guidelines

    International Nuclear Information System (INIS)

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. The IDEAS Guidelines provide a method to harmonize dose evaluations using criteria and flow chart procedures to be followed step by step. The EURADOS Working Group 7 'Internal Dosimetry', in collaboration with IAEA and Czech Technical University (CTU) in Prague, promoted the 'EURADOS/IAEA Regional Training Course on Advanced Methods for Internal Dose Assessment: Application of IDEAS Guidelines' to broaden and encourage the use of IDEAS Guidelines, which took place in Prague (Czech Republic) from 2-6 February 2009. The ARN identified the relevance of this training and asked for a place for participating on this activity. After that, the first training course in Argentina took place from 24-28 August for training local internal dosimetry experts. This paper resumes the main characteristics of this activity. (authors)

  2. NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules

    CERN Document Server

    Ens, Werner

    1991-01-01

    A NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules was held at Minaki Lodge, Minaki, Ontario, Canada, from 24 to 28 June 1990. The workshop was hosted by the time-of-flight group of the Department of Physics at the University of Manitoba, and was attended by 64 invited participants from around the world. Twenty-nine invited talks were given and 19 papers were presented as posters. Of the 48 contributions, 38 are included in these proceedings. The conference was organized to study the rapidly changing field of mass spectrometry of biomolecules. Particle-induced desorption (especially with MeV particles) has been the most effective method of producing molecular ions from biomolecules. An important part of the workshop was devoted to recent developments in this field, particularly to progress in understanding the fundamentals of the desorption process. In this respect, the meeting was similar to previous conferences in Marburg, FRG (1978); Paris, F (1980); Uppsala...

  3. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  4. Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method

    International Nuclear Information System (INIS)

    additional insight in and more relevant information for every comparative analysis of energy conversion systems, both at a global and a local level. In the paper, traditional and advanced exergy analysis methods are briefly discussed and EEA theoretical foundations and details for its application are described in detail. Methods: The method converts not only material and energy flows, but externalities as well (labour, capital and environmental costs) into flows of equivalent primary exergy, so that all exchanges between the system and the environment can be completely accounted for on a rigorous thermodynamic basis. The current emphasis decision makers and by public opinion alike seem to be placing on sustainability generates the need for continue research in the field of systems analysis, and a preliminary review confirms that exergy may constitute a coherent and rational basis for developing global and local analysis methods. Moreover, extended exergy accounting possesses some specific and peculiar characteristics that make it more suitable for life-cycle and cradle-to-grave (or well-to-wheel) applications. Results: Taxonomy for the classification of exergy-based methods is proposed. A novel assessment of the EEA method is provided, its advantages and drawbacks are discussed and areas in need of further theoretical investigation are identified. Conclusions: Since EEA is a life-cycle method, it is argued that it represents an improvement with regard to other current methods, in that it provides additional insight into the phenomenological aspects of any “energy conversion chain”. The paper demonstrates that the Extended Exergy cost function can be used within the traditional and very well formalized Thermoeconomic framework, replacing the economic cost function in order to evaluate and optimize the consumption of resources of a system in a more complete and rational way. Practical implications: This paper contains some specific proposals as to the further development

  5. Developing Advanced Seismic Imaging Methods For Characterizing the Fault Zone Structure

    Science.gov (United States)

    Zhang, Haijiang

    2015-04-01

    Here I present a series of recent developments on seismic imaging of fault zone structure. The goals of these advanced methods are to better determine the physical properties (including seismic velocity, attenuation, and anisotropy) around the fault zone and its boundaries. In order to accurately determine the seismic velocity structure of the fault zone, we have recently developed a wavelet-based double-difference seismic tomography method, in which the wavelet coefficients of the velocity model, rather than the model itself, are solved using both the absolute and differential arrival times. This method takes advantage of the multiscale nature of the velocity model and the multiscale wavelet representation property. Because of the velocity model is sparse in the wavelet domain, a sparsity constraint is applied to tomographic inversion. Compared to conventional tomography methods, the new method is both data- and model-adaptive, and thus can better resolve the fault zone structure. In addition to seismic velocity property of the fault zone, seismic anisotropy and attenuation properties are also important to characterize the fault zone structure. For this reason, we developed the seismic anisotropy tomography method to image the three-dimensional anisotropy strength model of the fault zone using shear wave splitting delay times between fast and slow shear waves. The applications to the San Andreas fault around Parkfield, California and north Anatolian fault in Turkey will be shown. To better constrain the seismic attenuation structure, we developed a new seismic attenuation tomography method using measured t* values for first arrival body waves, in which the structures of attenuation and velocity models are similar through the cross-gradient constraint. Seismic tomography can, however, only resolve the smooth variations in elastic properties in Earth's interior. To image structure at length scales smaller than what can be resolved tomographically, including

  6. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  7. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  8. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  9. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    Science.gov (United States)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  10. Dual-probe spectroscopic fingerprints of defects in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth;

    2014-01-01

    (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual......Recent advances in experimental techniques emphasize the usefulness of multiple scanning probe techniques when analyzing nanoscale samples. Here, we analyze theoretically dual-probe setups with probe separations in the nanometer range, i.e., in a regime where quantum coherence effects can......-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet display Fano-type resonances with a strong dependence on the edge geometry of the perforation....

  11. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  12. Detecting method of subjects' 3D positions and experimental advanced camera control system

    Science.gov (United States)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  13. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    Science.gov (United States)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  14. REVA Advanced Fuel Design and Codes and Methods - Increasing Reliability, Operating Margin and Efficiency in Operation

    Energy Technology Data Exchange (ETDEWEB)

    Frichet, A.; Mollard, P.; Gentet, G.; Lippert, H. J.; Curva-Tivig, F.; Cole, S.; Garner, N.

    2014-07-01

    Since three decades, AREVA has been incrementally implementing upgrades in the BWR and PWR Fuel design and codes and methods leading to an ever greater fuel efficiency and easier licensing. For PWRs, AREVA is implementing upgraded versions of its HTP{sup T}M and AFA 3G technologies called HTP{sup T}M-I and AFA3G-I. These fuel assemblies feature improved robustness and dimensional stability through the ultimate optimization of their hold down system, the use of Q12, the AREVA advanced quaternary alloy for guide tube, the increase in their wall thickness and the stiffening of the spacer to guide tube connection. But an even bigger step forward has been achieved a s AREVA has successfully developed and introduces to the market the GAIA product which maintains the resistance to grid to rod fretting (GTRF) of the HTP{sup T}M product while providing addition al thermal-hydraulic margin and high resistance to Fuel Assembly bow. (Author)

  15. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation.

    Science.gov (United States)

    Boulton, Stephen; Melacini, Giuseppe

    2016-06-01

    The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems. PMID:27111288

  16. Control of lightness and firmness of cold and reheated frankfurter-type sausages using different spectroscopic methods applied to raw batter.

    Science.gov (United States)

    Egelandsdal, B; Dingstad, G I; Tøgersen, G; Hildrum, K I

    2007-03-01

    Muscle types and collagen, fat, and muscle protein minus collagen were varied in cooked frankfurter-type sausages made from beef and pork meat as well as pork backfat. The content of collagen was fixed at preset levels with pork rind. The amount of total muscle protein in the sausages varied between 5.9% and 11.9% and the fat between 16.1% and 22.1%. The collagen content varied between 1.3% and 4%. Spectroscopic measurements (near-infrared reflectance spectra 1100 to 2500 nm; front-face autofluorescence emission spectra 360 to 640 nm) on raw batters were used to predict the amounts of total muscle protein minus collagen, collagen, myoglobin, and fat (biochemical components), L* values from a Minolta chromameter, and firmness of cold (22 degrees C) and reheated sausages (60 degrees C). Lightness of sausages was most accurately determined from the batter data with a Minolta chromameter or the autofluorescence measurement system. Firmness of cold sausages could be described by the amounts of biochemical components plus the type of muscle used in the sausage. The 2nd-best approach was to use the shape of the near-infrared spectra to determine firmness. This was possible as the shape of near-infrared spectra depended on total protein content, and total protein content largely determined the firmness of cold sausages. If the sausages were reheated to 60 degrees C, near-infrared spectroscopy alone determined firmness of the sausages with a lower accuracy than a combined solution of fluorescence and near-infrared spectroscopy. The 2 spectroscopic techniques could thus be used to estimate the amount of biochemical components in sausages. Once these components were known, firmness could be calculated from a model between the amounts of biochemical components and firmness. For reheated sausages, as opposed to cold ones, there was a need to differentiate between collagen and the other muscle proteins in order to determine firmness. This was optimally achieved by using both

  17. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  18. Quantifying export flows of used electronics: advanced methods to resolve used goods within trade data.

    Science.gov (United States)

    Duan, Huabo; Miller, T Reed; Gregory, Jeremy; Kirchain, Randolph

    2014-03-18

    There is limited convincing quantitative data on the export of used electronics from the United States (U.S.). Thus, we advance a methodology to quantify the export flows of whole units of used electronics from the U.S. using detailed export trade data, and demonstrate the methodology using laptops. Since used electronics are not explicitly identified in export trade data, we hypothesize that exports with a low unit value below a used-new threshold specific to a destination world region are used. The importance of using the most disaggregated trade data set available when resolving used and new goods is illustrated. Two detailed U.S. export trade data sets were combined to arrive at quantities and unit values for each port, mode of transport, month, trade partner country, and trade code. We add rigor to the determination of the used-new threshold by utilizing both the Neighborhood valley-emphasis method (NVEM) and published sales prices. This analysis found that 748 to 1199 thousand units of used laptops were exported from the U.S. in 2010, of which 78-81% are destined for non-OECD countries. Asia was found to be the largest destination of used laptop exports across all used-new threshold methods. Latin American and the Caribbean was the second largest recipient of these exports. North America and Europe also received used laptops from the U.S. Only a small fraction of used laptops was exported to Africa. However, these quantities are lower bound estimates because not all shipments of used laptops may be shipped using the proper laptop trade code. Still, this approach has the potential to give insight into the quantity and destinations of the exports if applied to all used electronics product types across a series of years.

  19. 8th Czechoslovak spectroscopic conference. Abstracts

    International Nuclear Information System (INIS)

    Volume 3 of the conference proceedings contains abstracts of 17 invited papers, 101 poster presentations and 7 papers of instrument manufacturers, devoted to special spectroscopic techniques including X-ray microanalysis, X-ray spectral analysis, Moessbauer spectrometry, mass spectrometry, instrumental activation analysis and other instrumental radioanalytical methods, electron spectrometry, and techniques of environmental analysis. Sixty abstracts were inputted in INIS. (A.K.)

  20. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  1. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...... in technology and principles that could be applied to new and improved applications of this promising technique. As an example we describe a recent cooperation between Grundfos, DTU and Intarsia Optics to measure live bacterial cells in drinking water....

  2. Interaction of α-cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; He, Jiawei; Wu, Di; Wang, Jing; Yan, Jin; Li, Hui, E-mail: lihuilab@sina.com

    2015-08-15

    α-Cyperone, as the main constituent of Cyperus rotundus, is a sesquiterpene ketone. In this work, LigandFit and CDOCKER docking programs of Discovery Studio 3.1 were used to preliminarily estimate and further confirm the binding sites of α-cyperone. LigandFit results showed that α-cyperone is mainly bound in subdomain IIA. This finding was further confirmed by CDOCKER results. Site marker competitive experimental results also suggested that α-cyperone contains the same binding site as warfarin. Software simulation results further revealed that α-cyperone is mainly bound in subdomain IIA. Site marker competitive experiment results are consistent with simulation results. 3D fluorescence and CD spectroscopy results indicated that the native conformation of HSA molecule is affected by the presence of α-cyperone. - Highlights: • This work carried out by adopting molecular docking and spectroscopic studies. • Discovery studio 3.1 was used for estimating the binding sites. • The insertion of α-cyperone molecule caused the microenvironment of HSA changed. • The native conformation of HSA was changed during binding with α-cyperone.

  3. Study on the interaction between methyl jasmonate and the coiled-coil domain of rice blast resistance protein Pi36 by spectroscopic methods

    Science.gov (United States)

    Liu, Xin Q.; Zhang, Dan; Zhang, Xiang M.; Wang, Chun T.; Liu, Xue Q.; Tan, Yan P.; Wu, Yun H.

    2012-03-01

    Interaction between the coiled-coil domain of rice blast resistance protein Pi36 and methyl-jasmonate (MeJA) was studied by fluorescence and UV-vis spectroscopic techniques. The quenching mechanism of fluorescence of MeJA by this domain was discussed to be a static quenching procedure. Fluorescence quenching was explored to measure the number of binding sites n and apparent binding constants K. The thermodynamics parameters ΔH, ΔG, ΔS were also calculated. The results indicate the binding reaction was not entropy-driven but enthalpy-driven, and hydrophobic binding played major role in the interaction. The binding sites of MeJA with the coiled-coil structural domain of rice blast resistance protein Pi36 were found to approach the microenvironment of both Tyr and Trp by the synchronous fluorescence spectrometry. The distance r between donor (the coiled-coil domain of rice blast resistance protein Pi36) and acceptor (MeJA) was obtained according to Förster theory of non-radioactive energy transfer.

  4. Dielectric properties and X-ray photoelectron spectroscopic studies of niobium oxide thin films prepared by direct liquid injection chemical vapor deposition method

    International Nuclear Information System (INIS)

    Niobium oxide thin films were grown by direct liquid injection chemical vapor deposition using Nb(OC2H5)5 precursor. Influence of reactant's molar ratios [oxygen:Nb(OC2H5)5] and deposition temperatures on films properties such as growth rate, stoichiometry, crystal structure, morphology, dielectric constant and leakage current were studied. Films start crystallizing above 340 °C in O2 atmosphere and become crystalline at 400 °C. The surface roughness of weakly crystalline and crystalline films was significantly affected by deposition temperatures and reactant's molar ratios. It was found that decrease in surface roughness improved leakage current. X-ray photoelectron spectroscopic studies showed that films were in different oxidation states (Nb2+, Nb4+ and Nb5+). The dielectric constants of films were improved by increasing oxygen ratios. At ratio (150:1), the film showed high dielectric constant value (47) at 340 °C and leakage current density of 2.0 × 10−5 A/cm2 (at 3 V). - Highlights: • High dielectric constant (47) of Nb2O5 thin film with chemical vapor deposition • The change in morphology as a function of growth temperature and O2 molar ratio • A stoichiometric Nb2O5 phase and smooth surface show better electrical properties

  5. Classification methods for noise transients in advanced gravitational-wave detectors

    CERN Document Server

    Powell, Jade; Cuoco, Elena; Heng, Ik Siong; Cavaglia, Marco

    2015-01-01

    Noise of non-astrophysical origin will contaminate science data taken by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) and Advanced Virgo gravitational-wave detectors. Prompt characterization of instrumental and environmental noise transients will be critical for improving the sensitivity of the advanced detectors in the upcoming science runs. During the science runs of the initial gravitational-wave detectors, noise transients were manually classified by visually examining the time-frequency scan of each event. Here, we present three new algorithms designed for the automatic classification of noise transients in advanced detectors. Two of these algorithms are based on Principal Component Analysis. They are Principal Component Analysis for Transients (PCAT), and an adaptation of LALInference Burst (LIB). The third algorithm is a combination of an event generator called Wavelet Detection Filter (WDF) and machine learning techniques for classification. We test these algorithms on simu...

  6. Advances in data analytic methods for evaluating treatment outcome and mechanisms of change: introduction to the special issue

    NARCIS (Netherlands)

    Compton, S.N.; Rosenfield, D.; Hofmann, S.G.; Smits, J.A.J.

    2014-01-01

    This series of articles, which provide an overview of several advanced statistical methods for evaluating treatment outcomes and mechanisms of change, makes up the first research methods–oriented special issue to appear in the Journal of Consulting and Clinical Psychology. Like most active areas of

  7. Development of advanced radioactivity control method (ARCOM) in LWR primary systems

    International Nuclear Information System (INIS)

    In the commercial Light-Water Reactors (LWRs), dose rate reduction is one of the most important subjects. So far, much effort has been spent in research and development to reduce the dose rate. At present, zinc injection seems the most effective technology to reduce the dose rate not only in BWRs (Boiling Water Reactors) but also in PWRs (Pressurized Water Reactors). The authors consider that further reduction of the dose rate would be beneficial to utilities. In the present paper, an Advanced Radioactivity Control Method (ARCOM) is proposed. ARCOM is addition of organic chemical compounds into LWR primary systems. ARCOM is a common technology which may be applied to BWRs and PWRs. It is expected that ARCOM prevents corrosion products from depositing on fuel cladding surface and suppresses deposition of radioactive corrosion products on surface of structural materials. Several specimens of Inconel 600 (I600) and type 316L stainless steels (SS316L) were prefilmed under PWR conditions. From the immersion tests of the prefilmed specimens in various dispersant solutions at room temperature, PAA(16,000) (Polyacrylic acid, weight-average molecular weight 16,000) was selected as the most effective dispersant under PWR conditions. Growth of oxide film on I600 was suppressed in the presence of PAA(16,000) at 320°C. Thermal decomposition of PAA(16,000) at 320°C was investigated. Thermal decomposition of PAA(16,000) is slow, and little products were found after 3 h. The major product is acetate, after 24 h. (author)

  8. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  9. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    Science.gov (United States)

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology.

  10. AREVA NP's advanced Thermal Hydraulic Methods for Reactor Core and Fuel Assembly Design

    International Nuclear Information System (INIS)

    AREVA NP, two converged sub-channel codes have been defined: the homogenous equilibrium model (HEM) code COBRA-FLX and the multi fluid field code F-COBRA-TF. Apart from the sub-channel codes and some smaller specialized codes computational fluid dynamic (CFD) codes are the second important pillar of the AREVA TH code strategy. In the last decade big improvements in the available codes were made and the computing power increased dramatically. Consequently CFD became a reliable and robust tool; thanks to the increased computing power the size of the efficiently calculable models became large enough to be interesting for TH application in fuel assemblies. The main potential of CFD originates from the fact that CFD can predict TH quantities directly, based on the geometric information stored in a computer aided design (CAD) file for mechanic design, the tabulated fluid properties and the desired operating parameters. Hence CFD can be seen as a tool which can be used to perform virtual TH experiments. But unlike experiments where often the access is limited to few TH quantities, CFD provides the comprehensive local TH information and valuable insight into length scales smaller than sub-channels cross sections. Thus, CFD cannot only be used to directly determine the interesting quantities, but also to complement experiments and sub-channel code analysis as well as to support further development of sub-channel codes. AREVA NP's TH methods and codes development strategy follows thus two main streams: 1. Updating and improving the sub-channel codes in order to meet the advanced customer and licensing requirements like improved physical modeling, more detailed information, more flexibility, etc. The recent developments cover the following domains: a. Improved/ Advanced Physics; b. Improved Coding/ Advanced Algorithm. Objective: faster code allowing to perform more calculations or to calculate large models (Pin-by-Pin full core calculations steady state and transient); c

  11. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion.

  12. Technological advances in site-directed spin labeling of proteins

    OpenAIRE

    Hubbell, Wayne L.; López, Carlos J.; Altenbach, Christian; Yang, Zhongyu

    2013-01-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of pr...

  13. Numerical Simulation of Independent Advance of Ore Breaking in the Non-pillar Sublevel Caving Method

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chuan-bo; YAO Ying-kang; GUO Liao-wu; YIN Xiao-peng; FAN Xiao-feng; SHANG Ying

    2007-01-01

    The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using ANSYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were 1:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.

  14. Advanced containment methods for the treatment of Perthes disease: Salter plus varus osteotomy and triple pelvic osteotomy.

    Science.gov (United States)

    Wenger, Dennis R; Pandya, Nirav K

    2011-09-01

    The goal of intervention in Legg-Calvé-Perthes disease has been to prevent femoral head deformation by containing the head within the acetabulum, using it as a mold for guiding femoral head development. With appropriate proximal femoral morphology, premature arthritis can hopefully be avoided. Both nonsurgical and surgical methods of treatment have evolved over time, from abduction casts and braces to advanced surgical containment methods, which are now the mainstay of treatment. The purpose of this study is to briefly review the evolution of surgical treatment of Legg-Calvé-Perthes disease, and to concentrate on 2 advanced surgical containment methods: combined Salter innominate osteotomy with femoral varus osteotomy and triple pelvic osteotomy.

  15. AGAPE-ET: An Advanced HRA Method Integrating Errors of Omission (EOO) and Errors of Commission (EOC)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2007-01-15

    The objective of this project is to develop an advanced HRA framework or methodology that integrates the standard HRA method and the EOC analysis method in a single framework under emergency situations. Through the study, an advanced, integrated HRA method, which is named AGAPE-ET standing for Advanced Guidelines for Analysing Prospective human Events in Emergency Tasks, that can analyse human erroneous events involving EOCs and EOOs in accident scenarios of nuclear power plants. According to the basic structure of the emergency operating procedures (EOP) of the nuclear power plants, the AGAPE-ET method is composed of largely two parts, i.e. (1) group 1: analysis of the human erroneous events that might be caused from an initial diagnosis failure, and (2) group 2: analysis of the human erroneous events that could occur during event responses after a success in an initial diagnosis. The subjects of the group 1 can be single initiating events and the multiple events that could occur prior to the event diagnosis by the operators. For the group 2, accident scenarios are classified into 3 cases according to the situational characteristics of the human involvement, and analysis methods are suggested for each of the cases. In addition, the applicability and effectiveness of the AGAPE-ET framework has been verified through a pilot study for a small-loss of coolant accident (SLOCA). According to the application to the SLOCA event, the risk impact of a diagnosis failure is seen to be relatively high.

  16. Spectroscopic ellipsometer for ultra thin film

    Science.gov (United States)

    Akashika, Kumiko; Shiota, Shuji; Yamaguchi, Shinji; Horie, Masahiro; Kobayashi, Masayoshi

    2008-03-01

    As semiconductor technology has advanced, the films have become thinner and changed to multi-layer films, such as gate dielectric construction. To deal with these trends, we are continuing development of our spectroscopic ellipsometer with elliptical polarization. We chose a Rotating-Analyzer Ellipsometer (RAE) configuration. The incident light in this type of device is usually polarized linearly, because polarizers do not disperse the light. But the incident light in the ellipsometer described in this paper is elliptical, which has a nearly circular polarization. In this paper, we introduce a technique for solving the dispersion problem.

  17. Monitoring of infrastructural sites by means of advanced multi-temporal DInSAR methods

    Science.gov (United States)

    Vollrath, Andreas; Zucca, Francesco; Stramondo, Salvatore

    2013-10-01

    With the launch of Sentinel-1, advanced interferometric measurements will become more applicable then ever. The foreseen standard Wide Area Product (WAP), with its higher spatial and temporal resolution than comparable SAR missions, will provide the basement for the use of new wide scale and multitemporal analysis. By now the use of SAR interferometry methods with respect to risk assessment are mainly conducted for active tectonic zones, plate boundaries, volcanoes as well as urban areas, where local surface movement rates exceed the expected error and enough pixels per area contain a relatively stable phase. This study, in contrast, aims to focus on infrastructural sites that are located outside cities and are therefore surrounded by rural landscapes. The stumbling bock was given by the communication letter by the European Commission with regard to the stress tests of nuclear power plants in Europe in 2012. It is mentioned that continuously re-evaluated risk and safety assessments are necessary to guarantee highest possible security to the European citizens and environment. This is also true for other infrastructural sites, that are prone to diverse geophysical hazards. In combination with GPS and broadband seismology, multitemporal Differential Interferometric SAR approaches demonstrated great potential in contributing valuable information to surface movement phenomenas. At this stage of the project, first results of the Stamps-MTI approach (combined PSInSAR and SBAS) will be presented for the industrial area around Priolo Gargallo in South East Sicily by using ENVISAT ASAR IM mode data from 2003-2010. This area is located between the Malta Escarpment fault system and the Hyblean plateau and is prone to earthquake and tsunami risk. It features a high density of oil refineries that are directly located at the coast. The general potential of these techniques with respect to the SENTINEL-1 mission will be shown for this area and a road-map for further improvements

  18. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    Science.gov (United States)

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  19. Spectroscopic Mode Identification in Slowly Pulsating Subdwarf-B Stars

    CERN Document Server

    Schoenaers, C

    2008-01-01

    Mode identification is crucial for an asteroseismological study of any significance. Contrarily to spectroscopic techniques, methods such as period-fitting and multi-colour photometry do not provide a full reconstruction of non-radial pulsations. We present a new method of spectroscopic mode identification and test it on time-series of synthetic spectra appropriate for pulsating subdwarf-B stars. We then apply it to the newly discovered slowly pulsating subdwarf-B star HD 4539.

  20. A Comparison of Near- and Mid-Infrared Spectroscopic Methods for the Analysis of Several Nutritionally Important Chemical Substances in the Chinese Yam (Dioscorea opposita): Total Sugar, Polysaccharides, and Flavonoids.

    Science.gov (United States)

    Zhuang, Hua; Ni, Yongnian; Kokot, Serge

    2015-04-01

    The Chinese yam (Dioscorea opposita) is a basic food in Asia and especially China. Consequently, an uncomplicated, reliable method should be available for the analysis of the quality and origin of the yams. Thus, near-infrared (NIR) and mid-infrared (mid-IR) spectroscopic methods were developed to discriminate among Chinese yam samples collected from four geographical regions. The yam samples were analyzed also for total sugar, polysaccharides, and flavonoids. These three analytes were used to compare the performance of the analytical methods. Overlapping spectra were resolved using chemometrics methods. Such spectra were compared qualitatively using principal component analysis (PCA) and quantitatively using partial least squares (PLS) and least squares-support vector machine (LS-SVM) models. We discriminated among the four sets of yam data using PCA, and the NIR data performed somewhat better than the mid-IR data. We constructed the PLS and LS-SVM calibration models for the prediction of the three key variables, and the LS-SVM model produced better results. Also, the NIR prediction model produced better outcomes than the mid-IR prediction model. Thus, both infrared (IR) techniques performed well for the analysis of the three key analytes, and the samples were qualitatively discriminated according to their provinces of origin. Both techniques may be recommended for the analysis of Chinese yams, although the NIR technique would be preferred. PMID:25742643

  1. Assessment of the variations in fat content in normal liver using a fast MR imaging method in comparison with results obtained by spectroscopic imaging

    NARCIS (Netherlands)

    Irwan, Roy; Edens, Mireille A.; Sijens, Paul E.

    2008-01-01

    A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers an

  2. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    Science.gov (United States)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  3. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    OpenAIRE

    Bruno, Thomas J.; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can...

  4. Disposal of NPP wastes by all-round service based on most advanced methods

    International Nuclear Information System (INIS)

    The all-round service includes waste conditioning with stationary and non-stationary facilities in conjunction with the MOSTRAM system. Optimum radwaste treatment involves the application of incineration, high-pressure compaction, separation of radionuclides, advanced cementation, cast-tank and container technology. The service also covers testing of the final storage drums produced for their storability in the KONRAD facility, comprehensive documentation, and the intermediate storage and transport of raw wastes and conditioned radwaste. (DG)

  5. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    Science.gov (United States)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with

  6. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  7. Evaluation des méthodes chimiques, spectroscopiques et chromatographiques utilisables pour l'identification des polluants pétroliers en mer Evaluation of Chemical, Spectroscopic and Chromatographic Methods Used to Identify Offshore Oil Pollutants

    Directory of Open Access Journals (Sweden)

    Albaigés J.

    2006-11-01

    Full Text Available Dans cet article on passe en revue les différentes méthodes utilisables pour l'identification des principaux polluants pétroliers de la mer par l'analyse quantitativé de leurs « marqueurs passifs x (soufre, azote, nickel, vanadium, paraffine et asphaltènes et la détermination d'autres caractéristiques intrinsèques. II s'agit de méthodes chimiques, spectroscop iques (infrarouge, ultraviolette et chromatographiques (chromatographie en phase gazeuse à haute résolution avec détection par ionisation de flamme, photométrie de flamme et capture d'électrons. Les mesures ont concerné une grande variété de produits susceptibles de polluer la côte méditerranéenne espagnole - pétrole brut des gisements offshore d'Amposta et de Castellôn; - pétroles bruts importés traités dans les raffineries côtières (Boscan, Es Sider, Kuwait, Arabian light, etc.; - fractions lourdes provenant de ces raffineries (fuel-cils, asphaltes, lubrifiants; - polluants réels; - échantillons altérés artificiellement en laboratoire afin de mettre en évidence l'action progressive des éléments naturels. On a trouvé que les méthodes les plus intéressantes étaient : - le dosage chimique du soufre, du nickel et du vanadium; - la spectroscopie infrarouge; - la chromatographie en phase gazeuse à haute résolution avec détection par ionisation et photométrie de flamme. This article reviews the different methods that con be used to identify the leading petroleum pollutants of the sea by quantitative analysis of their a passive markers » (sulfur, nitrogen, nickel, vanadium, paraffin, asphaltenes and by determining other intrinsic properties. These methods are chemical, spectroscopic (infrared, ultraviolet and chromatographic (high-resolution gas chromatography with flame ionization detection, flame photometry and electron capture. Measurements were made of a great variety of products capable of polluting the Spanish Mediterranean coast, including

  8. Diffusion-weighted magnetic resonance imaging during radiotherapy of locally advanced cervical cancer - Treatment response assessment using different segmentation methods

    DEFF Research Database (Denmark)

    Haack, Søren; Tanderup, Kari; Kallehauge, Jesper Folsted;

    2015-01-01

    distribution of ADC values. This study evaluates: 1) different segmentation methods; and 2) how they affect assessment of tumor ADC value during RT. MATERIAL AND METHODS: Eleven patients with locally advanced cervical cancer underwent MRI three times during their RT: prior to start of RT (PRERT), two weeks......2-weighted MR images using the Jaccard similarity index (JSI). ADC values from segmented volumes were compared and changes of ADC values during therapy were evaluated. RESULTS: Significant difference between the four volumes (GTV, DWIcluster, DWISD4 and DWIregion) was found (p

  9. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  10. Spectroscopic investigations on NO+(X1∑+, a3∑+,A1Ⅱ) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-Ping; Cheng Xin-Lu; Zhang Hong; Yang Xiang-Dong

    2011-01-01

    Three low-lying electronic states (X1∑+, a3∑+, and A1Ⅱ) of NO+ ion are studied using the complete active space self-consistent-field (CASSCF) method followed by highly accurate valence internally contracted multi-reference configuration interaction (MRCI) approach in combination of the correlation-consistent sextuple basis set augmented with diffuse functions, aug-cc-pV6Z. The potential energy curves (PECs) of the NO+(X1∑+, a3∑+, A1Ⅱ) are calculated. Based on the PECs, the spectroscopic parameters Re, De, ωe, ωeXe, αe, Be, and D0 are reproduced, which are in excellent agreement with the available measurements. By numerically solving the radial Schr(o)dinger equation of nuclear motion using the Numerov method, the first 20 vibrational levels, inertial rotation and centrifugal distortion constants of NO+(X1∑+, a3∑+, A1Ⅱ) ion are derived when the rotational quantum number J is equal to zero (J = 0)for the first time, which accord well with the available measurements. Finally, the analytical potential energy functions of these states are fitted, which are used to accurately derive the first 20 classical turning points when J = 0. These results are compared in detail with those of previous investigations reported in the literature.

  11. Advances in numerical methods for the solution of population balance equations for disperse phase systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.) of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods) for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADQMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM) and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods are discussed in the final section,based on their individual merits and current state of development of the field.

  12. Advances in numerical methods for the solution of population balance equations for disperse phase systems

    Institute of Scientific and Technical Information of China (English)

    SU JunWei; GU ZhaoLin; XU X.Yun

    2009-01-01

    Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.)of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods)for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADOMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM)and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods ere discussed in the final section,based on their individual merits and current state of development of the field.

  13. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges

    Science.gov (United States)

    Ruiz-Villanueva, Virginia; Piégay, Hervé; Gurnell, Angela A.; Marston, Richard A.; Stoffel, Markus

    2016-09-01

    Large wood is an important physical component of woodland rivers and significantly influences river morphology. It is also a key component of stream ecosystems. However, large wood is also a source of risk for human activities as it may damage infrastructure, block river channels, and induce flooding. Therefore, the analysis and quantification of large wood and its mobility are crucial for understanding and managing wood in rivers. As the amount of large-wood-related studies by researchers, river managers, and stakeholders increases, documentation of commonly used and newly available techniques and their effectiveness has also become increasingly relevant as well. Important data and knowledge have been obtained from the application of very different approaches and have generated a significant body of valuable information representative of different environments. This review brings a comprehensive qualitative and quantitative summary of recent advances regarding the different processes involved in large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First, some key definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are reviewed; in particular, how measurements and modeling can be combined to integrate our understanding of how large wood moves through and is retained within river systems. Throughout, we present a quantitative and integrated meta-analysis compiled from different studies and geographical regions. Finally, we conclude by highlighting areas of particular research importance and their likely future trajectories, and we consider a particularly underresearched area so as to stress the future challenges for large wood research.

  14. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    sufficient to allow the retrieval of additional atmospheric parameters such as the aerosol optical thickness of the volcanic plume. Thus, the SRT-DOAS approach provides a great advancement in the ability to assess and improve the accuracy of SO2 emission rates determined from UV remote sensing instruments. The impact of the new methodology is far-reaching, as other volcanic volatile emissions are often calculated by scaling remotely determined SO2 emission rates by the respective X/SO2 concentration ratios; therefore emission rates of such constituents would be equally affected.

  15. A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC

    NARCIS (Netherlands)

    A. Torres-Knoop; S.P. Balaji; T.J.H. Vlugt; D. Dubbeldam

    2014-01-01

    Two state-of-the-art simulation methods for computing adsorption properties in porous materials like zeolites and metal-organic frameworks are compared: the configurational bias Monte Carlo (CBMC) method and the recently proposed continuous fractional component Monte Carlo (CFCMC) method. We show th

  16. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer.

  17. New validated liquid chromatographic and chemometrics-assisted UV spectroscopic methods for the determination of two multicomponent cough mixtures in syrup.

    Science.gov (United States)

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-01-01

    Multivariate spectrophotometric calibration and liquid chromatographic (LC) methods were applied to the determination of 2 multicomponent mixtures containing diprophylline, guaiphenesin, methylparaben, and propylparaben (Mixture 1), or clobutinol, orciprenaline, saccharin sodium, and sodium benzoate (Mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least-squares regression (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in 0.1 M HCl. Analytical figures of merit such as sensitivity, selectivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC separation was achieved on a reversed-phase C18 analytical column by using isocratic elution with 20 mM potassium dihydrogen phosphate, pH 3.3-acetonitrile (55 + 45, v/v) as the mobile phase and UV detection at 260 and 220 nm for Mixture 1 and Mixture 2, respectively. The proposed methods were validated and successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations. PMID:18376584

  18. Inhibitors for the hepatitis C virus RNA polymerase explored by SAR with advanced machine learning methods.

    Science.gov (United States)

    Weidlich, Iwona E; Filippov, Igor V; Brown, Jodian; Kaushik-Basu, Neerja; Krishnan, Ramalingam; Nicklaus, Marc C; Thorpe, Ian F

    2013-06-01

    Hepatitis C virus (HCV) is a global health challenge, affecting approximately 200 million people worldwide. In this study we developed SAR models with advanced machine learning classifiers Random Forest and k Nearest Neighbor Simulated Annealing for 679 small molecules with measured inhibition activity for NS5B genotype 1b. The activity was expressed as a binary value (active/inactive), where actives were considered molecules with IC50 ≤0.95 μM. We applied our SAR models to various drug-like databases and identified novel chemical scaffolds for NS5B inhibitors. Subsequent in vitro antiviral assays suggested a new activity for an existing prodrug, Candesartan cilexetil, which is currently used to treat hypertension and heart failure but has not been previously tested for anti-HCV activity. We also identified NS5B inhibitors with two novel non-nucleoside chemical motifs. PMID:23608107

  19. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    Science.gov (United States)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  20. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    OpenAIRE

    Amit Banerjee; Banerjee, S S

    2014-01-01

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance char...

  1. Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment

    International Nuclear Information System (INIS)

    Within the framework of the generation IV Sodium Fast Reactors, the safety in case of severe accidents is assessed. From this statement, CEA has developed a new physical tool to model the accident initiated by the Total Instantaneous Blockage (TIB) of a sub-assembly. This TIB simulator depends on many uncertain input parameters. This paper aims at proposing a global methodology combining several advanced statistical techniques in order to perform a global sensitivity analysis of this TIB simulator. The objective is to identify the most influential uncertain inputs for the various TIB outputs involved in the safety analysis. The proposed statistical methodology combining several advanced statistical techniques enables to take into account the constraints on the TIB simulator outputs (positivity constraints) and to deal simultaneously with various outputs. To do this, a space-filling design is used and the corresponding TIB model simulations are performed. Based on this learning sample, an efficient constrained Gaussian process metamodel is fitted on each TIB model outputs. Then, using the metamodels, classical sensitivity analyses are made for each TIB output. Multivariate global sensitivity analyses based on aggregated indices are also performed, providing additional valuable information. Main conclusions on the influence of each uncertain input are derived. - Highlights: • Physical-statistical tool for Sodium Fast Reactors TIB accident. • 27 uncertain parameters (core state, lack of physical knowledge) are highlighted. • Constrained Gaussian process efficiently predicts TIB outputs (safety criteria). • Multivariate sensitivity analyses reveal that three inputs are mainly influential. • The type of corium propagation (thermal or hydrodynamic) is the most influential

  2. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP

  3. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF

    Science.gov (United States)

    Kose, E.; Bardak, F.; Atac, A.; Karabacak, M.; Cipiloglu, M. A.

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. 1H and 13C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm-1 and 4000-400 cm-1, respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10° and molecular energy profile was calculated from 0° to 360°. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion-1 and anion-2 forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program.

  4. Standard test method for determination of impurities in plutonium: acid dissolution, ion exchange matrix separation, and inductively coupled plasma-atomic emission spectroscopic (ICP/AES) analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...

  5. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  6. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Luskin, Mitchell [University of Minnesota

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  7. Advanced computational methods for nodal diffusion, Monte Carlo, and S(sub N) problems

    Science.gov (United States)

    Martin, W. R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. An alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  8. Photometric and spectroscopic investigation of TW Draconis

    CERN Document Server

    Zejda, M; Harmanec, P; Slechta, M; Mikulasek, Z; Zverko, J; Svoboda, P; Krticka, J

    2010-01-01

    Context. TW Draconis is one of the best studied Algol-type eclipsing binaries. There is significant evidence for miscellaneous physical processes between interacting binary components manifesting themselves by period and light curve changes. Aims. Obtaining new set of photometric and spectroscopic observations, we analysed them together with the older spectroscopic and photometric data to build model of this eclipsing system with respect to observed changes of O-C diagram and light curve. Methods. Reduction of new spectra was carried out in the IRAF and SPEFO programs. Radial velocities were determined manually using SPEFO, by CCF using the Zverko's code and from the program KOREL. Orbital elements were derived with the FOTEL program and via disentangling with KOREL. The final combined solution was obtained with the programs PHOEBE and FOTEL. Results. Photometry shows small irregularities in light curves as a results of pulsating of one component and spot activity. Using net of KOREL outputs we found the mass...

  9. Are your spectroscopic data being used?

    Science.gov (United States)

    Gordon, Iouli E.; Potterbusch, Megan R.; Bouquin, Daina; Erdmann, Christopher C.; Wilzewski, Jonas S.; Rothman, Laurence S.

    2016-09-01

    The issue of availability of data and their presentation in spectroscopic publications is discussed. Different current practices are critically reviewed from the point of view of potential users, government policies, and merit of success of the authors. Indeed, properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. Examples based on the statistical analyses of the articles published in the Journal of Molecular Spectroscopy will be shown. We will discuss different methods including supplementary materials to the Journals, public-curated databases and also new tools that can be utilized by spectroscopists.

  10. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amit; Banerjee, S. S., E-mail: satyajit@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 (India)

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ∼0.9 nms{sup −1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  11. Glycolic acid assisted one-step synthesis of Cu-Ni-Fe metal oxide nanocomposites by sol-gel-combustion method: Structural, spectroscopic and magnetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Manish [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad 211004 (India); Ojha, Animesh K., E-mail: animesh_r1776@rediffmail.com [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad 211004 (India); Chaubey, S. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad 211004 (India); Sharma, Prashant K.; Pandey, Avinash C. [Nanophosphor Application Centre, University of Allahabad, Allahabad 211002 (India)

    2010-04-15

    The present article reports the synthesis of copper, nickel and iron-based metal oxide nanocomposites by sol-gel method using disproportion of Cu(II) and Fe(III) in basic media. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), differential scanning calorimetery (DSC)/thermogravemetric analysis (TGA), field-emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM) and vibrating sample magnetometer (VSM). The XRD patterns of nanocomposites confirm the presence of spinel, CuO and FeO phases. The particle size of the nanocomposite has been calculated using HR-TEM micrographs and found to be in the range of 10-120 nm. The magnetic properties of nanocomposites were measured at room temperature. The values of saturation magnetization (Ms) and remanent magnetization (Mr) were increasing with increase of iron concentration.

  12. Spectroscopic properties of KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals studied by Brillouin and Raman scattering methods

    Science.gov (United States)

    Kasprowicz, D.; Runka, T.; Szybowicz, M.; Drozdowski, M.; Majchrowski, A.; Michalski, E.; Żmija, J.

    2006-07-01

    KGd(WO 4) 2 single crystals, pure and doped with holmium ions Ho 3+ at 0.5 and 1% concentrations were investigated by Brillouin and Raman scattering methods. Polarized Raman spectra of KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals have been measured at room temperature. The assignment of the Raman-active A g and B g modes have been performed. Brillouin spectra were collected for the acoustic phonons propagating in [100], [001], [101], [-101], [110], [-110], [011] and [0-11] directions in KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals at room temperature. Obtained results have been discussed in terms of the influence of the doping concentration on the lattice dynamics and crystal structure.

  13. Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.--Improved taxane isolation by accelerated quality control and process surveillance.

    Science.gov (United States)

    Gudi, Gennadi; Krähmer, Andrea; Koudous, Iraj; Strube, Jochen; Schulz, Hartwig

    2015-10-01

    Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design. PMID:26078126

  14. Comparative ab initio studies on the molecular structure and spectroscopic properties of FeF2: Single reference versus multireference methods.

    Science.gov (United States)

    Solomonik, Victor G; Stanton, John F; Boggs, James E

    2008-06-28

    The electronic excitation energies, molecular geometry, quadratic force fields, and vibrational frequencies in the ground (5)Delta(g) and low-lying excited (5)Sigma(g) (+) and (5)Pi(g) electronic states of iron difluoride are studied at sophisticated levels of theory. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess relativistic, are used that range in quality from triple-zeta to quintuple-zeta. These are augmented by additional diffuse functions (on fluorine atoms) and tight functions (on all atoms) for the description of core-valence correlation and utilized to determine complete basis set molecular properties. The quality of electron correlation treatment using conventional single reference coupled cluster methods CCSD and CCSD(T) is compared to that attained at the multiconfigurational quasidegenerate second-order perturbation theory (CASSCF+MCQDPT2) and the electron attachment equation-of-motion coupled cluster (EOMEA-CCSD) levels. Spin-orbit coupling effects are studied by the SO-MCQDPT2 method using the full Breit-Pauli spin-orbit operator. Effects of spin contamination in the coupled cluster molecular calculations are carefully analyzed. Results of the single reference CCSD(T) and multireference calculations are found to be in a remarkable agreement. The calculations indicate that the EOMEA-CC approach provides a suitable tool for an accurate treatment of FeF(2) and other systems where delicate electron correlation effects have to be carefully dealt with. The inclusion of relativistic effects is shown to be necessary for an accurate description of the molecular geometry and excitation energies of FeF(2). The results of calculations are in good agreement with the experimental data available. The predicted FeF(2) molecular properties are compared to those of the related FeF(3). PMID:18601314

  15. Spectroscopic classification of supernova candidates

    Science.gov (United States)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  16. Recent Research Advances in the Risk Assessment Method of an Underground Pressure Pipeline

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper reviews the risk assessment method of an underground pressure pipeline, introduces the risk assessment method of expert grading, fuzzy integrative assessment, probabilistic risk assessment and extenics assessment in an underground pressure pipeline. Moreover, it puts forward the developing orientation of risk assessment.

  17. New Advances in the Trojan Horse Method as an Indirect Approach to Nuclear Astrophysics

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartà, R.

    2013-05-01

    With the introduction of the Trojan Horse Method, nuclear cross sections between charged particles at astrophysical energies can now be measured. Here the basic features of the method are recalled together with recent results relevant for Nuclear Astrophysics. New applications in connection with plasma physics and industrial energy production are discussed.

  18. Advances in the Use of Neuroscience Methods in Research on Learning and Instruction

    Science.gov (United States)

    De Smedt, Bert

    2014-01-01

    Cognitive neuroscience offers a series of tools and methodologies that allow researchers in the field of learning and instruction to complement and extend the knowledge they have accumulated through decades of behavioral research. The appropriateness of these methods depends on the research question at hand. Cognitive neuroscience methods allow…

  19. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  20. The role of Cd and Ga in the Cu(In,Ga)S{sub 2}/CdS heterojunction studied with X-ray spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin E.

    2010-08-15

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S{sub 2}/CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S{sub 2} (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S{sub 2}/CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S{sub 2}/CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S{sub 2} conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot

  1. The role of Cd and Ga in the Cu(In,Ga)S2/CdS heterojunction studied with X-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S2/CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S2 (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S2/CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S2/CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S2 conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot be CdS as this is readily

  2. Advanced methods for light trapping in optically thin silicon solar cells

    Science.gov (United States)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  3. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  4. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods

    Science.gov (United States)

    Dalbouha, S.; Senent, M. L.; Komiha, N.; Domínguez-Gómez, R.

    2016-09-01

    Various astrophysical relevant molecules obeying the empirical formula C2H3NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH3NCO), methyl cyanate (CH3OCN), methyl fulminate (CH3ONC), and acetonitrile N-oxide (CH3CNO). A CH3CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH3CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  5. Compatibility Studies of Atorvastatin Calcium with Selected Excipients By Means of Thermal and FT-IR Spectroscopic Methods for the Development of Immediate Release Tablet

    Directory of Open Access Journals (Sweden)

    Bipul Nath

    2016-05-01

    Full Text Available The objectives of present investigation is to evaluate the compatibility of Atorvastatin calcium with immediate release excipients and to optimize the tablet which release is best comparable with innovator product by varying different super disintegrants. Various excipients used were sodium starch glycollate, cross carmellose sodium, cross-povidone, lactose, micro crystalline cellulose, mannitol, sodium lauryl sulfate, magnesium stearate, and stearic acid. Thermal characterization of the drug was done by DSC and FT-IR. From the DSC studies, the excipients such as microcrystalline cellulose (Avicel 101, magnesium stearate, mannitol, sodium lauryl sulfate were found to have physical interactions with Atorvastatin. Immediate release tablet was prepared by direct compression method and its release profile was compared with the marketed IR tablet. The prepared tablet have conform the pharmacopoeial limit for hardness, thickness, friability, weight variation and content uniformity. Formulation F11 containing two super disintegrants have shown the disintegration time less than 25 sec and better dissolution than all other formulations releasing more than 80% of the drug after 20 minutes. Kinetic data reveals that the drug release follows best order by Higuchi model, followed by korsemeyer peppas, zero order and first order mechanisms. The results of accelerated stability studies as per ICH guidelines indicated that the tablet was stable as there were no any significant physical changes after the study.

  6. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    International Nuclear Information System (INIS)

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar+ laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm-1, which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm2. It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group

  7. Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment - An application of three different spectroscopic methods

    International Nuclear Information System (INIS)

    The present paper describes changes in soil organic carbon (SOC) and extractable humic acids (HAs) in a long-term field experiment with different tillage treatments (minimum tillage (MT), reduced tillage (RT) and conventional tillage (CT)). This field experiment is located in the east of Vienna in a Pannonian climate and it was started in 1988. The methodological approach included elemental analyses, FT-IR, 13C NMR and fluorimetric measurements. Both MT and RT revealed significant depth gradients of yields of extractable HAs. In CT no depth gradient was observable, neither for HA yields nor for observed molecular characteristics. This indicated a destruction of the gradient by mixing of the soil in CT. Especially MT showed an increase of aromatic moieties with depth, suggesting an increased humification of HAs in the lower soil layers. Gradients with similar trends were indicated for the carbonylic, the amidic and probably the hydroxylic groups in HAs extracted from MT and RT samples. The data revealed with FT-IR and solid-state 13C NMR spectroscopy were convincing, plausible and meaningful, the highly sensitive fluorescence spectroscopy was limited because of strong quenching by inner filter effects, compromising data reliability. However, the fluorescence results based on a defined HAs concentration (and comparing soils from the same site) were in line with results from the other methods (13C NMR and FT-IR). As a consequence, the influence of tillage treatments can be followed by absence or presence of depth gradients of the according molecular characteristics in extracted HAs

  8. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    Science.gov (United States)

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. PMID:21813258

  9. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany); Gersonde, I [Institute of Medical Physics and Laser Medicine, Charite University Hospital, Berlin (Germany); Meinke, M [Institute of Medical Physics and Laser Medicine, Charite University Hospital, Berlin (Germany); Sterry, W [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany); Lademann, J [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany)

    2005-08-07

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar{sup +} laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm{sup -1}, which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm{sup 2}. It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group.

  10. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods

    Science.gov (United States)

    Sherin Percy Prema Leela, J.; Hemamalini, R.; Muthu, S.; Al-Saadi, Abdulaziz A.

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm-1 and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  11. The effect of pH on the interaction between Eu3+ ions and short single-stranded DNA sequence, studied with electrochemical, spectroscopic and computational methods

    International Nuclear Information System (INIS)

    For the first time, interaction of short single-stranded DNA (ssDNA) sequence with Eu3+ was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and UV–vis spectroscopy. The results show that interaction between Eu3+ ions and ssDNA is related to solution pH and pKa of ssDNA bases and have different binding mode at different pHs. It's clear that, at pH 3.7, only phosphate groups of ssDNA can interact with Eu3+ ions, because in this pH ssDNA bases are totally protonated. But at higher pH (5.5), some of ssDNA bases can interact with Eu3+ ions, too. Computational studies were done and confirm the result of experimental data. The agreement mutually verifies the accuracy of the methods. - Highlights: ► For the first time the electrochemical behavior of Eu3+ was investigated. ► The interaction of Eu3+ ion with a ssDNA was studied. ► The results showed Eu3+ binds to ssDNA mainly by electrostatic binding at pH 3.7. ► At higher pH (> 5.5) the nucleotide bases also contribute in the interaction.

  12. Spectroscopic and molecular modeling methods to investigate the interaction between 5-Hydroxymethyl-2-furfural and calf thymus DNA using ethidium bromide as a probe.

    Science.gov (United States)

    Zhu, Jinhua; Chen, Lanlan; Dong, Yingying; Li, Jiazhong; Liu, Xiuhua

    2014-04-24

    In this work, the interaction of 5-Hydroxymethyl-2-furfural (5-HMF) with calf thymus DNA (ctDNA) under simulated physiological conditions (Tris-HCl buffer of pH 7.40), was explored by UV absorption spectroscopy, fluorescence spectroscopy and molecular modeling method, using ethidium bromide (EB) as a fluorescence probe of DNA. The fluorescence quenching mechanism of EB-ctDNA by 5-HMF was confirmed to be a static quenching, which derived from the formation of a new complex. The binding constants of 5-HMF with DNA in the presence of EB were calculated to be 2.17×10(3), 4.24×10(3) and 6.95×10(3) L mol(-1) at 300, 305 and 310 K, respectively. The calculated thermodynamic parameters, enthalpy change ΔH and entropy change ΔS, suggested that both hydrophobic interactions and hydrogen bonds played a predominant role in the binding of 5-HMF to DNA. According to the UV absorption spectroscopy and melting temperature (Tm) curve results, the binding mode of 5-HMF with DNA was indicative of a non-intercalative binding, which was supposed to be a groove binding. The molecular modeling results showed that 5-HMF could bind into the hydrophobic region of ctDNA and supported the conclusions obtained from the above experiments.

  13. One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method

    Science.gov (United States)

    Srivastava, Sangeeta; Gupta, Preeti; Sethi, Arun; Singh, Ranvijay Pratap

    2016-08-01

    A novel Curcumin-NSAIDs prodrug 4-((1E, 3Z, 6E)-3-hydroxy-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,3-trienyl)-2-methoxyphenyl-2-(4-isobutylphenyl) propanoate (2) derivative was synthesized by Steglich esterification in high yield and characterized with the help of 1H, 13C NMR, 1H-1H COSY, UV, FT-IR spectroscopy and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using two different basis set 6-31G (d, p) and 6-311G (d, p). Conformational analysis of 2 was carried out to determine the most stable conformation. Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global and local reactivity descriptors were calculated to study the reactive site within molecule. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability value has been calculated to describe the nonlinear optical (NLO) property of the synthesized compound. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity.

  14. Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods

    OpenAIRE

    Kyaw Zeyar Myint; Xiang-Qun Xie

    2010-01-01

    This paper provides an overview of recently developed two dimensional (2D) fragment-based QSAR methods as well as other multi-dimensional approaches. In particular, we present recent fragment-based QSAR methods such as fragment-similarity-based QSAR (FS-QSAR), fragment-based QSAR (FB-QSAR), Hologram QSAR (HQSAR), and top priority fragment QSAR in addition to 3D- and nD-QSAR methods such as comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA), Topome...

  15. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  16. GTOC8: Results and Methods of ESA Advanced Concepts Team and JAXA-ISAS

    CERN Document Server

    Izzo, Dario; Märtens, Marcus; Getzner, Ingmar; Nowak, Krzysztof; Heffernan, Anna; Campagnola, Stefano; Yam, Chit Hong; Ozaki, Naoya; Sugimoto, Yoshihide

    2016-01-01

    We consider the interplanetary trajectory design problem posed by the 8th edition of the Global Trajectory Optimization Competition and present the end-to-end strategy developed by the team ACT-ISAS (a collaboration between the European Space Agency's Advanced Concepts Team and JAXA's Institute of Space and Astronautical Science). The resulting interplanetary trajectory won 1st place in the competition, achieving a final mission value of $J=146.33$ [Mkm]. Several new algorithms were developed in this context but have an interest that go beyond the particular problem considered, thus, they are discussed in some detail. These include the Moon-targeting technique, allowing one to target a Moon encounter from a low Earth orbit; the 1-$k$ and 2-$k$ fly-by targeting techniques, enabling one to design resonant fly-bys while ensuring a targeted future formation plane% is acquired at some point after the manoeuvre ; the distributed low-thrust targeting technique, admitting one to control the spacecraft formation plane...

  17. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    Science.gov (United States)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  18. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  19. Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods

    Directory of Open Access Journals (Sweden)

    Kyaw Zeyar Myint

    2010-10-01

    Full Text Available This paper provides an overview of recently developed two dimensional (2D fragment-based QSAR methods as well as other multi-dimensional approaches. In particular, we present recent fragment-based QSAR methods such as fragment-similarity-based QSAR (FS-QSAR, fragment-based QSAR (FB-QSAR, Hologram QSAR (HQSAR, and top priority fragment QSAR in addition to 3D- and nD-QSAR methods such as comparative molecular field analysis (CoMFA, comparative molecular similarity analysis (CoMSIA, Topomer CoMFA, self-organizing molecular field analysis (SOMFA, comparative molecular moment analysis (COMMA, autocorrelation of molecular surfaces properties (AMSP, weighted holistic invariant molecular (WHIM descriptor-based QSAR (WHIM, grid-independent descriptors (GRIND-based QSAR, 4D-QSAR, 5D-QSAR and 6D-QSAR methods.

  20. Advancing methods for reliably assessing motivational interviewing fidelity using the motivational interviewing skills code.

    Science.gov (United States)

    Lord, Sarah Peregrine; Can, Doğan; Yi, Michael; Marin, Rebeca; Dunn, Christopher W; Imel, Zac E; Georgiou, Panayiotis; Narayanan, Shrikanth; Steyvers, Mark; Atkins, David C

    2015-02-01

    The current paper presents novel methods for collecting MISC data and accurately assessing reliability of behavior codes at the level of the utterance. The MISC 2.1 was used to rate MI interviews from five randomized trials targeting alcohol and drug use. Sessions were coded at the utterance-level. Utterance-based coding reliability was estimated using three methods and compared to traditional reliability estimates of session tallies. Session-level reliability was generally higher compared to reliability using utterance-based codes, suggesting that typical methods for MISC reliability may be biased. These novel methods in MI fidelity data collection and reliability assessment provided rich data for therapist feedback and further analyses. Beyond implications for fidelity coding, utterance-level coding schemes may elucidate important elements in the counselor-client interaction that could inform theories of change and the practice of MI.

  1. Development of advanced methods and related software for human reliability evaluation within probabilistic safety analyses

    International Nuclear Information System (INIS)

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Analysis (PSA). The first part of this report consists of an overview of types of human behaviour and human error including the effect of significant performance shaping factors on human reliability. Particularly with regard to safety assessments for nuclear power plants a lot of HRA methods have been developed. The most important of these methods are presented and discussed in the report, together with techniques for incorporating HRA into PSA and with models of operator cognitive behaviour. Based on existing HRA methods the concept of a software system is described. For the development of this system the utilization of modern programming tools is proposed; the essential goal is the effective application of HRA methods. A possible integration of computeraided HRA within PSA is discussed. The features of Expert System Technology and examples of applications (PSA, HRA) are presented in four appendices. (orig.)

  2. Advancing methods for reliably assessing motivational interviewing fidelity using the motivational interviewing skills code.

    Science.gov (United States)

    Lord, Sarah Peregrine; Can, Doğan; Yi, Michael; Marin, Rebeca; Dunn, Christopher W; Imel, Zac E; Georgiou, Panayiotis; Narayanan, Shrikanth; Steyvers, Mark; Atkins, David C

    2015-02-01

    The current paper presents novel methods for collecting MISC data and accurately assessing reliability of behavior codes at the level of the utterance. The MISC 2.1 was used to rate MI interviews from five randomized trials targeting alcohol and drug use. Sessions were coded at the utterance-level. Utterance-based coding reliability was estimated using three methods and compared to traditional reliability estimates of session tallies. Session-level reliability was generally higher compared to reliability using utterance-based codes, suggesting that typical methods for MISC reliability may be biased. These novel methods in MI fidelity data collection and reliability assessment provided rich data for therapist feedback and further analyses. Beyond implications for fidelity coding, utterance-level coding schemes may elucidate important elements in the counselor-client interaction that could inform theories of change and the practice of MI. PMID:25242192

  3. Advanced transonic fan design procedure based on a Navier-Stokes method

    Energy Technology Data Exchange (ETDEWEB)

    Rhie, C.M.; Zacharias, R.M.; Hobbs, D.E.; Sarathy, K.P.; Biederman, B.P.; Lejambre, C.R.; Spear, D.A. (United Technologies Corp., East Hartford, CT (United States))

    1994-04-01

    A fan performance analysis method based upon three-dimensional steady Navier-Stokes equations is presented in this paper. Its accuracy is established through extensive code validation effort. Validation data comparisons ranging from a two-dimensional compressor cascade to three-dimensional fans are shown in this paper to highlight the accuracy and reliability of the code. The overall fan design procedure using this code is then presented. Typical results of this design process are shown for a current engine fan design. This new design method introduces a major improvement over the conventional design methods based on inviscid flow and boundary layer concepts. Using the Navier-Stokes design method, fan designers can confidently refine their designs prior to rig testing. This results in reduced rig testing and cost savings as the bulk of the iteration between design and experimental verification is transferred to an iteration between design and computational verification.

  4. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    CERN Document Server

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  5. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  6. Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment - An application of three different spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tatzber, Michael [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan Strasse 82, 1190 Vienna (Austria)], E-mail: michael.tatzber@boku.ac.at; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian [Austrian Agency for Health and Food Safety, Vienna, Spargelfeldstrasse 191, 1226 Vienna (Austria); Haberhauer, Georg [ARC Seibersdorf research GmbH, Department of Environmental Research, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan Strasse 82, 1190 Vienna (Austria)

    2008-11-15

    The present paper describes changes in soil organic carbon (SOC) and extractable humic acids (HAs) in a long-term field experiment with different tillage treatments (minimum tillage (MT), reduced tillage (RT) and conventional tillage (CT)). This field experiment is located in the east of Vienna in a Pannonian climate and it was started in 1988. The methodological approach included elemental analyses, FT-IR, {sup 13}C NMR and fluorimetric measurements. Both MT and RT revealed significant depth gradients of yields of extractable HAs. In CT no depth gradient was observable, neither for HA yields nor for observed molecular characteristics. This indicated a destruction of the gradient by mixing of the soil in CT. Especially MT showed an increase of aromatic moieties with depth, suggesting an increased humification of HAs in the lower soil layers. Gradients with similar trends were indicated for the carbonylic, the amidic and probably the hydroxylic groups in HAs extracted from MT and RT samples. The data revealed with FT-IR and solid-state {sup 13}C NMR spectroscopy were convincing, plausible and meaningful, the highly sensitive fluorescence spectroscopy was limited because of strong quenching by inner filter effects, compromising data reliability. However, the fluorescence results based on a defined HAs concentration (and comparing soils from the same site) were in line with results from the other methods ({sup 13}C NMR and FT-IR). As a consequence, the influence of tillage treatments can be followed by absence or presence of depth gradients of the according molecular characteristics in extracted HAs.

  7. Advances in the Simultaneous Multiple Surface optical design method for imaging and non-imaging applications

    OpenAIRE

    Wang, Lin

    2012-01-01

    Classical imaging optics has been developed over centuries in many areas, such as its paraxial imaging theory and practical design methods like multi-parametric optimization techniques. Although these imaging optical design methods can provide elegant solutions to many traditional optical problems, there are more and more new design problems, like solar concentrator, illumination system, ultra-compact camera, etc., that require maximum energy transfer efficiency, or ultra-compact optical stru...

  8. Advances in the Use of Neuroscience Methods in Research on Learning and Instruction

    OpenAIRE

    De Smedt, Bert

    2014-01-01

    Cognitive neuroscience offers a series of tools and methodologies that allow researchers in the field of learning and instruction to complement and extend the knowledge they have accumulated through decades of behavioral research. The appropriateness of these methods depends on the research question at hand. Cognitive neuroscience methods allow researchers to investigate specific cognitive processes in a very detailed way, a goal in some but not all fields of the learning sciences. This value...

  9. Advanced experimental applications for x-ray transmission gratings Spectroscopy using a novel grating fabrication method

    OpenAIRE

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-01-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses Focused-Ion-Beam (FIB) technology to fabricate high-quality free standing grating bars on Transmission Electron Microscopy grids (TEM-grid). High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100...

  10. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [ORNL; Williams, Mark L [ORNL; Leal, Luiz C [ORNL; Dunn, Michael E [ORNL; Khuwaileh, Bassam A. [North Carolina State University; Wang, C [North Carolina State University; Abdel-Khalik, Hany [North Carolina State University

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncertainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark experiments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBEs and differential cross section data simultaneously.

  11. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    Science.gov (United States)

    Arbanas, G.; Williams, M. L.; Leal, L. C.; Dunn, M. E.; Khuwaileh, B. A.; Wang, C.; Abdel-Khalik, H.

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimator (INSURE) module of the AMPX cross section processing system [M.E. Dunn and N.M. Greene, "AMPX-2000: A Cross-Section Processing System for Generating Nuclear Data for Criticality Safety Applications," Trans. Am. Nucl. Soc. 86, 118-119 (2002)]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncertainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore, we have incorporated integral benchmark experiments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way and how it could be used to optimize uncertainties of IBEs and differential cross section data simultaneously. We itemize contributions to the cost of differential data measurements needed to define a realistic cost function.

  12. PREVENTING LITHOGRAPHY-INDUCED MAVERICK YIELD EVENTS WITH A DISPENSE SYSTEM ADVANCED EQUIPMENT CONTROL METHOD

    Institute of Scientific and Technical Information of China (English)

    Jennifer Broggin

    2012-01-01

    As semiconductor manufacturers march to thedrum beat of Moore's Law there is very little roomfor yield maverieks, especially those that can beprevented. Critical process errors are costly andphotolithography is one of the few processes insemiconductor manufacturing where there is anopportunity to correct errors. Small changes inphotoresist-dispensed volume may have severeimpact on film thickness uniformity and can ulti-mately affect patterning It is important to monitorphoto dispense conditions to detect real-timeevents that may have a direct negative impact onprocess yield and be able to react to these eventsas quickly as possible.This paper presents an evaluation of the IntelliGen Mini, a photoresist dispense system manufacturedby Entegris, Inc. This system utilizes advancedequipment control software, known as dispenseconfirmation, to detect variations in photo dis-pense. These variations, caused by bubbles inthe dispense line, valve errors and accidentally-changed chemistries can all create maverick yieldevents that can go undetected until metrology,defeet inspection or wafer final testThe ability of an advanced dispense system todetect events and create alerts is a very powerfultool, but it can be most effective when that infor-mation is collected and analyzed by an automatedsystem. In a modern fabricator this is most likely astatistical process control chart that is monitoringa track's progress and is ready to stop the trackwhen a maverick event occurs or alert personnelto trends they may not otherwise catch with otherinline ntetrology data. Dispense confirmation,when Combined with networking capabilities,can meet this need.After a brief description of the pump, data from sim-ulated yield-affecting events will be examined toevaluate the IntelliGen Mini's ability to detect them.This discussion will eonclude with a brief analysisof the ultilnate time and cost savings of utilizingdispense confirmation with networking capabilitiesto detect and eliminate poorly

  13. AN ADVANCED QOS ANALYSIS AND EVALUATION METHOD FOR MOBILE INTERNET ACCESS

    Directory of Open Access Journals (Sweden)

    F. Beritelli1

    2016-06-01

    Full Text Available The paper proposes a new method for the analysis and evaluation of the Quality of Service (QoS in a mobile Internet access scenario. In particular, the paper proposes a throughput evaluation method based on PathChirp algorithm. The end-to-end bandwidth was estimated by means of the Self Loading of Periodic Streams (SloPS technique. The obtained measurements were then analyzed by estimating the degree of correlation with other parameters that characterize the data transmission such as power, round trip time, etc. Finally, in order to have greater spatial resolution performance guaranteed by an Internet service provider, a 3D reconstruction method based on using drones is proposed and some preliminary results are discussed.

  14. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions

    Science.gov (United States)

    Froese Fischer, Charlotte; Godefroid, Michel; Brage, Tomas; Jönsson, Per; Gaigalas, Gediminas

    2016-09-01

    Multiconfiguration wave function expansions combined with configuration interaction methods are a method of choice for complex atoms where atomic state functions are expanded in a basis of configuration state functions. Combined with a variational method such as the multiconfiguration Hartree–Fock (MCHF) or multiconfiguration Dirac–Hartree–Fock (MCDHF), the associated set of radial functions can be optimized for the levels of interest. The present review updates the variational MCHF theory to include MCDHF, describes the multireference single and double process for generating expansions and the systematic procedure of a computational scheme for monitoring convergence. It focuses on the calculations of energies and wave functions from which other atomic properties can be predicted such as transition rates, hyperfine structures and isotope shifts, for example.

  15. The Spectroscopic Diversity of Type Ia Supernovae

    CERN Document Server

    Blondin, S; Kirshner, R P; Mandel, K S; Berlind, P; Calkins, M; Challis, P; Garnavich, P M; Jha, S W; Modjaz, M; Riess, A G; Schmidt, B P

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a consistent manner, making data set well suited for studies of SN Ia spectroscopic diversity. We study the spectroscopic and photometric properties of SN Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SN Ia with broader lines. Based on the evolution of the characteristic Si II 6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ~0 to ~400 km/s/day considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B-V color at maximum light than reported by Foley et al., owing to a more ...

  16. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  17. Final Report: Advanced Methods for Accessing and Disseminating Nuclear Data, August 13, 1996 - March 15, 1999

    International Nuclear Information System (INIS)

    Scientific Digital Visions, Inc. developed methods of accessing and dissemination nuclear data contained within the databases of the National Data Center (NNDC) at the Brookhaven National Laboratory supporting a long standing and important DOE Program to provide scientists access to NNDC Databases. The NNDC participated as a partner in this effort

  18. Resampling Methods Revisited: Advancing the Understanding and Applications in Educational Research

    Science.gov (United States)

    Bai, Haiyan; Pan, Wei

    2008-01-01

    Resampling methods including randomization test, cross-validation, the jackknife and the bootstrap are widely employed in the research areas of natural science, engineering and medicine, but they lack appreciation in educational research. The purpose of the present review is to revisit and highlight the key principles and developments of…

  19. Prediction Study of Tunnel Collapse Risk in Advance based on Efficacy Coefficient Method and Geological Forecast

    Directory of Open Access Journals (Sweden)

    QIU Daohong

    2014-08-01

    Full Text Available Collapse is one of the most common accidents in underground constructions. Risk evaluation is the method of measuring the risk of chamber collapse. To ensure the safety of construction, a risk evaluation model of tunnel collapse based on an efficacy coefficient method and geological prediction was put forward. Based on the comprehensive analysis of collapse factors, five main factors including rock uniaxial compressive strength, surrounding rock integrated coefficient, state of discontinuous structural planes, the angle between tunnel axis and major structural plane and underground water were chosen as the risk evaluation indices of tunnel collapse. The evaluation indices were quantitatively described by using TSP203 system and core-drilling to establish the risk early warning model of tunnel collapse based on the basic principle of the efficacy coefficient method. The model established in this research was applied in the collapse risk recognition of Kiaochow Bay subsea tunnel in Qingdao, China. The results showed that the collapse risk recognition method presents higher prediction accuracy and provided a new idea for the risk prediction of tunnel collapse.

  20. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices.

    Science.gov (United States)

    Cui, Xin-Yi; Xiang, Ping; He, Rui-Wen; Juhasz, Albert; Ma, Lena Q

    2016-05-01

    Cleanup goals for sites contaminated with persistent organic pollutants (POPs) are often established based on total contaminant concentrations. However, mounting evidence suggests that understanding contaminant bioavailability in soils is necessary for accurate assessment of contaminant exposure to humans via oral ingestion pathway. Animal-based in vivo tests have been used to assess contaminant bioavailability in soils; however, due to ethical issues and cost, it is desirable to use in vitro assays as alternatives. Various in vitro methods have been developed, which simulate human gastrointestinal (GI) tract using different digestion fluids. These methods can be used to predict POP bioavailability in soils, foods, and indoor dust after showing good correlation with in vivo animal data. Here, five common in vitro methods are evaluated and compared using PAHs and PBDEs as an example of traditional and emerging POPs. Their applications and limitations are discussed while focusing on method improvements and future challenges to predict POP bioavailability in different matrices. The discussions should shed light for future research to accurately assess human exposure to POPs via oral ingestion pathway. PMID:26921590