Sample records for advanced solid rocket

  1. The Advanced Solid Rocket Motor (United States)

    Mitchell, Royce E.


    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  2. The Advanced Solid Rocket Motor (United States)

    Mitchell, Royce E.


    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  3. NASA's Advanced solid rocket motor (United States)

    Mitchell, Royce E.


    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  4. NASA's Advanced solid rocket motor (United States)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  5. Advanced Solid Rocket Launcher and Its Evolution (United States)

    Morita, Yasuhiro; Imoto, Takayuki; Habu, Hiroto; Ohtsuka, Hirohito; Hori, Keiichi; Koreki, Takemasa; Fukuchi, Apollo; Uekusa, Yasuyuki; Akiba, Ryojiro

    The research on next generation solid propellant rockets is actively underway in various spectra. JAXA is developing the Advanced Solid Rocket (ASR) as a successor to the M-V launch vehicle, which was utilized over past ten years for space science programs including planetary missions. ASR is a result of the development of the next generation technology including a highly intelligent autonomous check-out system, which is connected to not only the solid rocket but also future transportation systems. It is expected to improve the efficiency of the launch system and double the cost performance. Far beyond this effort, the passion of the volunteers among the industry-government-academia cooperation has been united to establish the society of the freewheeling thinking “Next generation Solid Rocket Society (NSRS)”. It aims at a larger revolution than what the ASR provides so that the order of the cost performance is further improved. A study of the Low melting temperature Thermoplastic Propellant (LTP) is now at the experimental stage, which is expected to reform the manufacturing process of the solid rocket propellant and lead to a significant increase in cost performance. This paper indicates the direction of the big flow towards the next generation solid-propellant rockets: the concept of the intelligent ASR under development; and the innovation behind LTP.

  6. Wind Tunnel Tests on Aerodynamic Characteristics of Advanced Solid Rocket (United States)

    Kitamura, Keiichi; Fujimoto, Keiichiro; Nonaka, Satoshi; Irikado, Tomoko; Fukuzoe, Moriyasu; Shima, Eiji

    The Advanced Solid Rocket is being developed by JAXA (Japan Aerospace Exploration Agency). Since its configuration has been changed very recently, its aerodynamic characteristics are of great interest of the JAXA Advanced Solid Rocket Team. In this study, we carried out wind tunnel tests on the aerodynamic characteristics of the present configuration for Mach 1.5. Six test cases were conducted with different body configurations, attack angles, and roll angles. A six component balance, oilflow visualization, Schlieren images were used throughout the experiments. It was found that, at zero angle-of-attack, the flow around the body were perturbed and its drag (axial force) characteristics were significantly influenced by protruding body components such as flanges, cable ducts, and attitude control units of SMSJ (Solid Motor Side Jet), while the nozzle had a minor role. With angle-of-attack of five degree, normal force of CNα = 3.50±0.03 was measured along with complex flow features observed in the full-component model; whereas no crossflow separations were induced around the no-protuberance model with CNα = 2.58±0.10. These values were almost constant with respect to the angle-of-attack in both of the cases. Furthermore, presence of roll angle made the flow more complicated, involving interactions of separation vortices. These data provide us with fundamental and important aerodynamic insights of the Advanced Solid Rocket, and they will be utilized as reference data for the corresponding numerical analysis.

  7. Advanced Computer Science on Internal Ballistics of Solid Rocket Motors (United States)

    Shimada, Toru; Kato, Kazushige; Sekino, Nobuhiro; Tsuboi, Nobuyuki; Seike, Yoshio; Fukunaga, Mihoko; Daimon, Yu; Hasegawa, Hiroshi; Asakawa, Hiroya

    In this paper, described is the development of a numerical simulation system, what we call “Advanced Computer Science on SRM Internal Ballistics (ACSSIB)”, for the purpose of improvement of performance and reliability of solid rocket motors (SRM). The ACSSIB system is consisting of a casting simulation code of solid propellant slurry, correlation database of local burning-rate of cured propellant in terms of local slurry flow characteristics, and a numerical code for the internal ballistics of SRM, as well as relevant hardware. This paper describes mainly the objectives, the contents of this R&D, and the output of the fiscal year of 2008.

  8. Propellant development for the Advanced Solid Rocket Motor (United States)

    Landers, L. C.; Stanley, C. B.; Ricks, D. W.


    The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.

  9. Environmental impact statement Space Shuttle advanced solid rocket motor program (United States)


    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  10. Overview of the manufacturing sequence of the Advanced Solid Rocket Motor (United States)

    Chapman, John S.; Nix, Michael B.


    The manufacturing sequence of NASA's new Advanced Solid Rocket Motor, developed as a replacement of the Space Shuttle's existing Redesigned Solid Rocket Motor, is overviewed. Special attention is given to the case preparation, the propellant mix/cast, the nondestructuve evaluation, the motor finishing, and the refurbishment. The fabrication sequences of the case, the nozzle, and the igniter are described.

  11. Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program (United States)


    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.

  12. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction (United States)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.


    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  13. Solid propellant rocket motor (United States)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)


    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  14. Introduction of laser initiation for the 48-inch Advanced Solid Rocket Motor (ASRM) test motors at Marshall Space Flight Center (MSFC) (United States)

    Zimmerman, Chris J.; Litzinger, Gerald E.


    The Advanced Solid Rocket Motor is a new design for the Space Shuttle Solid Rocket Booster. The new design will provide more thrust and more payload capability, as well as incorporating many design improvements in all facets of the design and manufacturing process. A 48-inch (diameter) test motor program is part of the ASRM development program. This program has multiple purposes for testing of propellent, insulation, nozzle characteristics, etc. An overview of the evolution of the 48-inch ASRM test motor ignition system which culminated with the implementation of a laser ignition system is presented. The laser system requirements, development, and operation configuration are reviewed in detail.

  15. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.


    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  16. Advanced Flow Analysis Tools for Transient Solid Rocket Motor Simulations Project (United States)

    National Aeronautics and Space Administration — The challenges of designing, developing, and fielding man-rated propulsion systems continue to increase as NASA's mission moves forward with evolving solid...

  17. Nanoparticles for solid rocket propulsion (United States)

    Galfetti, L.; DeLuca, L. T.; Severini, F.; Meda, L.; Marra, G.; Marchetti, M.; Regi, M.; Bellucci, S.


    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  18. Feasibility of an advanced thrust termination assembly for a solid propellant rocket motor (United States)


    A total of 68 quench tests were conducted in a vented bomb assembly (VBA). Designed to simulate full-scale motor operating conditions, this laboratory apparatus uses a 2-inch-diameter, end-burning propellant charge and an insulated disc of consolidated hydrated aluminum sulfate along with the explosive charge necessary to disperse the salt and inject it onto the burning surface. The VBA was constructed to permit variation of motor design parameters of interest; i.e., weight of salt per unit burning surface area, weight of explosive per unit weight of salt, distance from salt surface to burning surface, incidence angle of salt injection, chamber pressure, and burn time. Completely satisfactory salt quenching, without re-ignition, occurred in only two VBA tests. These were accomplished with a quench charge ratio (QCR) of 0.023 lb salt per square inch of burning surface at dispersing charge ratios (DCR) of 13 and 28 lb of salt per lb of explosive. Candidate materials for insulating salt charges from the rocket combustion environment were evaluated in firings of 5-inch-diameter, uncured end-burner motors. A pressed, alumina ceramic fiber material was selected for further evaluation and use in the final demonstration motor.

  19. Solid Rocket Booster-Illustration (United States)


    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  20. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ. (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.


    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  1. Reducing Thrusts In Solid-Fuel Rockets (United States)

    Bement, Laurence J.


    Thrust-terminating system conceived to reduce thrust of solid-propellant rocket motor in controlled manner such that thrust loads not increased or decreased beyond predictable levels. Concept involves explosively cutting opposing venting pairs in case of rocket motor above nozzles to initiate venting of chamber and reduction of thrust. Vents sized and numbered to control amount and rate of reduction in thrust.

  2. Environmentally compatible solid rocket propellants (United States)

    Jacox, James L.; Bradford, Daniel J.


    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  3. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  4. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  5. Specific Impulses Losses in Solid Propellant Rockets (United States)


    to use the collision function form proposed by Golovin to simplify this production term: 4C><=) <P- .: Accordingly: m hence, by integration: Now, we...November 21, 1940 in Paris, Seine. VFirst Thesis. "Contribution to the Study of Specific i Impulse Loss in Solid Propellant Rockets." Second Thesis

  6. Ignition transient analysis of solid rocket motor (United States)

    Han, Samuel S.


    Measurement data on the performance of Space Shuttle Solid Rocket Motor show wide variations in the head-end pressure changes and the total thrust build-up during the ignition transient periods. To analyze the flow and thermal behavior in the tested solid rocket motors, a 1-dimensional, ideal gas flow model via the SIMPLE algorithm was developed. Numerical results showed that burning patterns in the star-shaped head-end segment of the propellant and the erosive burning rate are two important factors controlling the ignition transients. The objective of this study is to extend the model to include the effects of aluminum particle commonly used in solid propellants. To treat the effects of aluminum-oxide particles in the combustion gas, conservation of mass, momentum, and energy equations for the particles are added in the numerical formulation and integrated by an inter-phase-slip algorithm.

  7. Atmospheric scavenging of solid rocket exhaust effluents (United States)

    Fenton, D. L.; Purcell, R. Y.


    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  8. Solid Rocket Launch Vehicle Explosion Environments (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.


    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  9. The Chameleon Solid Rocket Propulsion Model (United States)

    Robertson, Glen A.


    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  10. Innovative Metallized Formulations for Solid Rocket Propulsion

    Institute of Scientific and Technical Information of China (English)

    Luigi T DeLUCA; Luciano GALFETTI; Filippo MAGGI; Giovanni COLOMBO; Alice REINA; Stefano DOSSI; Daniele CONSONNI; Melissa BRAMBILLA


    Several metallized solid rocket propellants,AP/Metal/HTPB in the ratio 68/18/1 4,were experimentally analyzed at the Space Propulsion Laboratory of Politecnico di Milano.Effects of the metals (micrometric and nanometric Al,B,Mg,and a variety of dual metals) on the performance of the propellant were studied and contrasted to a conventional micrometric aluminum (30 μm average grain size) taken as reference.It is shown that the propellant microstructure plays a fundamental role in controlling the critical aggregation/agglomeration phenomena occurring below and near the burning surface.Two specific effects of microstructure in terms of steady burning rate and average agglomerate size are illustrated.

  11. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado


    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  12. Facility for cold flow testing of solid rocket motor models (United States)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold


    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  13. The development of space solid rocket motors in China (United States)

    Jianding, Huang; Dingyou, Ye


    China has undertaken to research and develop composite solid propellant rocket motors since 1958. At the request of the development of space technology, composite solid propellant rocket motor has developed from small to large, step by step. For the past thirty eight years, much progress has made, many technical obstacles, such as motor design, case materials and their processing technology, propellant formulations and manufacture, nozzles and thrust vector control, safe ignition, environment tests, nondestructive inspection and quality assurance, static firing test and measurement etc. have been solved. A serial of solid rocket motors have been offered for China's satellites launch. The systems of research, design, test and manufacture of solid rocket motors have been formed.

  14. Rocket Engine Innovations Advance Clean Energy (United States)


    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  15. Measuring Combustion Advance in Solid Propellants (United States)

    Yang, L. C.


    Set of gauges on solid-propellant rocket motor with electrically insulating case measures advance of combustion front and local erosion rates of propellant and insulation. Data furnished by gauges aid in motor design, failure analysis, and performance prediction. Technique useful in determining propellant uniformity and electrical properties of exhaust plum. Gauges used both in flight and on ground. Foilgauge technique also useful in basic research on pulsed plasmas or combustion of solids.

  16. On the history of the development of solid-propellant rockets in the Soviet Union (United States)

    Pobedonostsev, Y. A.


    Pre-World War II Soviet solid-propellant rocket technology is reviewed. Research and development regarding solid composite preparations of pyroxyline TNT powder is described, as well as early work on rocket loading calculations, problems of flight stability, and aircraft rocket launching and ground rocket launching capabilities.

  17. Manufacturing Advanced Channel Wall Rocket Liners Project (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  18. Burn Rate Modelling of Solid Rocket Propellants (Short Communication

    Directory of Open Access Journals (Sweden)

    A.R. Kulkarni


    Full Text Available A generalised model of burning of a solid rocket propellant based on kinetics of propellant hasbeen developed. A complete set of variables has been formed after examining the existing models.Buckingham theorem provides the functional form of the model, such that the existing models are thesubcases of this generalised model. This proposed model has been validated by an experimental data.

  19. Stratospheric aluminum oxide. [possibly from solid-fuel rocket exhausts (United States)

    Brownlee, D. E.; Tomandl, D.; Ferry, G. V.


    Balloons and U-2 aircraft were used to collect micrometer-sized stratospheric aerosols. It was discovered that for the past 6 years at least, aluminum oxide spheres have been the major stratospheric particulate in the size range from 3 to 8 micrometers. The most probable source of the spheres is the exhaust from solid-fuel rockets.

  20. STS-27 Atlantis, OV-104, solid rocket booster (SRB) inspection (United States)


    Engineers, kneeling inside a hollow solid rocket booster (SRB), closely inspect the SRB segments and seams in the Kennedy Space Center (KSC) rotation and processing facility. The SRB will be used on STS-27 Atlantis, Orbiter Vehicle (OV) 104. The booster segments were transported via rail car from Morton Thiokol's Utah manufacturing plant. View provided by KSC with alternate number KSC-88PC-492.

  1. Storable Hypergolic Solid Fuel for Hybrid Rocket Engines

    Directory of Open Access Journals (Sweden)

    R. V. Singh


    Full Text Available A solid fuel was synthesised by condensing aniline with furfuraldehyde. The product was directly cast in the rocket motor casing. After curing a hard solid mass was obtained. This was found to have good hypergolicity with RFNA (Red Fuming Nitric Acid, good storability at room temperature and the mechanical properties. The paper presented the techniques of casting, ignition delay measurements and indicates the future programme for this study.

  2. Particle behavior in solid propellant rockets (United States)

    Netzer, D. W.; Diloreto, V. D.; Dubrov, E.


    The use of holography, high speed motion pictures, light scattering measurements, and post-fire particle collection/scanning electron microscopic examination to study the combustion of composite solid propellants is discussed. The relative advantages and disadvantages of the different experimental techniques for obtaining two-phase flow characteristics within the combustion environment of a solid propellant grain are evaluated. Combustion bomb studies using high speed motion pictures and post-fire residue analysis were completed for six low metal content propellants. Resolution capabilities and the relationships between post-fire residue and motion picture data are determined. Initial testing using a holocamera together with a 2D windowed motor is also described.

  3. Effect of Temperature on Mechanical Properties of Solid Rocket Propellants

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar


    Full Text Available Mechanical properties of solid rocket propellants are dependent on temperature. Any change in temperature brings significant change in the tensile strength, percentage elongation, and elastic modulus of the propellant. Different classes of operational solid rocket propellants namely extruded double-base propellants, composite, extruded composite and nitrarte ester polyester propellants were evaluated at different temperatures in the operating range of the rockets and missiles preferably in the range of –50 oC to +55 oC. It was observed that for each class of propellant, as temperature reduces, propellant becomes hard. This is depicted by increase in elastic modulus and tensile strength of the material. However, trend of percentage elongation is not very uniform. Extruded double-base propellants show less percentage elongation (around 1 per cent at reduced temperature (–50 oC probably due to brittleness. So is the trend with case-bonded composite propellants. However, reverse trend is exhibited by cartridge-loaded composite propellants and nitrate ester polyester propellants. Such propellants show higher percentage elongation (6 per cent for CLCP and 35 per cent for NEPE at reduced temperature (–50 oC. This makes such propellants tough and more area under stress-strain curve at reduced temperature is observed.Defence Science Journal, 2011, 61(6, pp.529-533, DOI:

  4. MEMS-Based Solid Propellant Rocket Array Thruster (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  5. Thermal Barriers Developed for Solid Rocket Motor Nozzle Joints (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.


    Space shuttle solid rocket motor case assembly joints are sealed with conventional O-ring seals that are shielded from 5500 F combustion gases by thick layers of insulation and by special joint-fill compounds that fill assembly splitlines in the insulation. On a number of occasions, NASA has observed hot gas penetration through defects in the joint-fill compound of several of the rocket nozzle assembly joints. In the current nozzle-to-case joint, NASA has observed penetration of hot combustion gases through the joint-fill compound to the inboard wiper O-ring in one out of seven motors. Although this condition does not threaten motor safety, evidence of hot gas penetration to the wiper O-ring results in extensive reviews before resuming flight. The solid rocket motor manufacturer (Thiokol) approached the NASA Glenn Research Center at Lewis Field about the possibility of applying Glenn's braided fiber preform seal as a thermal barrier to protect the O-ring seals. Glenn and Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and by using a braided carbon fiber thermal barrier that would resist any hot gases that the J-leg does not block.

  6. Advanced materials for radiation-cooled rockets (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven


    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  7. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN


    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  8. Development of Thermal Barriers For Solid Rocket Motor Nozzle Joints (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.


    Joints in the Space Shuttle solid rocket motors are sealed by O-rings to contain combustion gases inside the rocket that reach pressures of up to 900 psi and temperatures of up to 5500 F. To provide protection for the O-rings, the motors are insulated with either phenolic or rubber insulation. Gaps in the joints leading up to the O-rings are filled with polysulfide joint-fill compounds as an additional level of protection. The current RSRM nozzle-to-case joint design incorporating primary, secondary, and wiper O-rings experiences gas paths through the joint-fill compound to the innermost wiper O-ring in about one out of every seven motors. Although this does not pose a safety hazard to the motor, it is an undesirable condition that NASA and rocket manufacturer Thiokol want to eliminate. Each nozzle-to-case joint gas path results in extensive reviews and evaluation before flights can be resumed. Thiokol and NASA Marshall are currently working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design that has been used successfully in the field and igniter joint. They are also planning to incorporate the NASA Glenn braided carbon fiber thermal barrier into the joint. The thermal barrier would act as an additional level of protection for the O-rings and allow the elimination of the joint-fill compound from the joint.

  9. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling (United States)

    Moore, Carleton J.


    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  10. Solid Rocket Fuel Constitutive Theory and Polymer Cure (United States)

    Ream, Robert


    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  11. Magnetic bearings: A key technology for advanced rocket engines? (United States)

    Girault, J. PH.


    For several years, active magnetic bearings (AMB) have demonstrated their capabilities in many fields, from industrial compressors to control wheel suspension for spacecraft. Despite this broad area, no significant advance has been observed in rocket propulsion turbomachinery, where size, efficiency, and cost are crucial design criteria. To this respect, Societe Europeenne de Propulsion (SEP) had funded for several years significant efforts to delineate the advantages and drawbacks of AMB applied to rocket propulsion systems. Objectives of this work, relative technological basis, and improvements are described and illustrated by advanced turbopump layouts. Profiting from the advantages of compact design in cryogenic environments, the designs show considerable improvements in engine life, performances, and reliability. However, these conclusions should still be tempered by high recurrent costs, mainly due to the space-rated electronics. Development work focused on this point and evolution of electronics show the possibility to decrease production costs by an order of magnitude.

  12. Sensitivity of solid rocket propellants for card gap test

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Eishu; Oyumi, Yoshio (Japan Defense Agency, Tokyo (Japan). Technical Research and Development Inst.)


    Card gap test, which is standardized in Japan Explosives Society, was modified in order to apply it to solid rocket propellants and carried out to evaluate sensitivities against shock stimuli. Solid propellants tested here were mainly azide polymer composite propellants, which contained ammonium nitrate (AN) as a main oxidizer. Double base propellant, composed nitroglycerin and nitrocellulose (NC), and ammonium perchlorate (AP)-based composite propellants. It is found that the sensitivity was dominated by the oxidizer characteristics. AP- and AN-based propellant had less sensitivity and HMX-based propellant showed higher sensitivity, and the adding of NC and TMETN contributed to worse sensitive for the card gap test. Good relationship was obtained between the card gap sensitivity and the oxygen balance of propellants tested here. (orig.)

  13. Internal Flow Simulation of High-Performance Solid Rockets using a k-ωTurbulence Model

    Institute of Scientific and Technical Information of China (English)



    @@ For technological reasons many high-performance solid rocket motors are made from segmented propellant grains with non-uniform port geometry. In this paper parametric studies have been carried out to examine the geometric dependence of transient flow features in solid rockets with non-uniform ports. Numerical computations have been carried out in an inert simulator of solid propellant rocket motor with the aid of a standard k-ω turbulence model. It was seen that the damping of the temperature fluctuation is faster in solid rocket with convergent port than with divergent port geometry. We inferred that the damping of the flow fluctuations using the port geometry is a meaningful objective for the suppression and control of the instability and/or pressure/thrust oscillations during the starting transient of solid rockets.

  14. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success (United States)

    Moore, D. R.; Phelps, W. J.


    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  15. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success (United States)

    Moore, Dennis R.; Phelps, Willie J.


    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large

  16. Powder metallurgy bearings for advanced rocket engines (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.


    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  17. Exploring the Solid Rocket Boosters and Properties of Matter (United States)

    Moffett, Amy


    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  18. Scale Effects on Solid Rocket Combustion Instability Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix


    Full Text Available The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.

  19. Ecological effects and environmental fate of solid rocket exhaust (United States)

    Nimmo, B.; Stout, I. J.; Mickus, J.; Vickers, D.; Madsen, B.


    Specific target processes were classified as to the chemical, chemical-physical, and biological reactions and toxic effects of solid rocket emissions within selected ecosystems at Kennedy Space Center. Exposure of Citris seedlings, English peas, and bush beans to SRM exhaust under laboratory conditions demonstrated reduced growth rates, but at very high concentrations. Field studies of natural plant populations in three diverse ecosystems failed to reveal any structural damage at the concentration levels tested. Background information on elemental composition of selected woody plants from two terrestrial ecosystems is reported. LD sub 50 for a native mouse (peromysous gossypinus) exposed to SRM exhaust was determined to be 50 ppm/g body weight. Results strongly indicate that other components of the SRM exhaust act synergically to enhance the toxic effects of HCl gas when inhaled. A brief summary is given regarding the work on SRM exhaust and its possible impact on hatchability of incubating bird eggs.

  20. Design and Experimental Study on Spinning Solid Rocket Motor (United States)

    Xue, Heng; Jiang, Chunlan; Wang, Zaicheng

    The study on spinning solid rocket motor (SRM) which used as power plant of twice throwing structure of aerial submunition was introduced. This kind of SRM which with the structure of tangential multi-nozzle consists of a combustion chamber, propellant charge, 4 tangential nozzles, ignition device, etc. Grain design, structure design and prediction of interior ballistic performance were described, and problem which need mainly considered in design were analyzed comprehensively. Finally, in order to research working performance of the SRM, measure pressure-time curve and its speed, static test and dynamic test were conducted respectively. And then calculated values and experimental data were compared and analyzed. The results indicate that the designed motor operates normally, and the stable performance of interior ballistic meet demands. And experimental results have the guidance meaning for the pre-research design of SRM.

  1. The 260: The Largest Solid Rocket Motor Ever Tested (United States)

    Crimmins, P.; Cousineau, M.; Rogers, C.; Shell, V.


    Aerojet in the mid 1960s, under contract to NASA, built and static hot fire tested the largest solid rocket motor (SRM) in history for the purpose of demonstrating the feasibility of utilizing large SRMs for space exploration. This program successfully fabricated two high strength steel chambers, loaded each with approximately 1,68 million pounds of propellant, and static test fired these giants with their nozzles up from an underground silo located adjacent to the Florida everglades. Maximum thrust and total impulse in excess of 5,000,000 lbf and 3,470,000,000 lbf-sec were achieved. Flames from the second firing, conducted at night, were seen over eighty miles away. For comparative purposes: the thrust developed was nearly 100 times that of a Minuteman III second stage and the 260 in.-dia cross-section was over 3 times that of the Space Shuttle SRM.

  2. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters (United States)

    Zook, Lee M.


    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  3. Rocket

    Directory of Open Access Journals (Sweden)

    K. Karmarkar


    Full Text Available The rockets of World War II represented, not the invention of a new weapon, but the modernization of a very old one. As early as 1232 A.D, the Chinese launched rockets against the Mongols. About a hundred years later the knowledge of ledge of rockets was quite widespread and they were used to set fire to buildings and to terrorize the enemy. But as cannon developed, rockets declined in warfare. However rockets were used occasionally as weapons till about 1530 A.D. About this time improvements in artillery-rifled gun barrel and mechanism to absorb recoil-established a standard of efficiency with which rockets could not compare until World War II brought pew conditions

  4. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen


    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  5. Thermodynamic cycle analysis of solid propellant air-turbo-rocket

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang; CHEN Yu-chun; TU Qiu-ye; ZHANG Hong; CAI Yuan-hu


    Solid propellant air-turbo-rocket (SPATR) is an air-breathing propulsion system. A numerical model of performance and characteristics analysis for SPATR was presented and the corresponding computer program was written according to the operation characteristics of SPATR. The influence on the SPATR performance at design point caused by the gas generator exit parameters and compressor pressure ratio had been computed and analyzed in detail. The off-design perform-ance of SPATR at sea level and high altitude had also been computed. The performance of thrust and specific impulse for SPATR with different solid propellant had been compared at off-design points, and the off-design performance comparison had been made between fuel-rich and oxygen-rich. The computation results indicated that SPATR operates within wide range of Maeh number (0 ~3) and altitude (0~12 km), and SPATR possesses high specific thrust (1 200 N/(kg/s)) and high specific impulse (7000 N/ (kg/s)) when fuel-air ratio of combustor equals fuel-air ratio.

  6. Solid Rocket Booster (SRB) Flight System Integration at Its Best (United States)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.


    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed

  7. Materials for advanced rocket engine turbopump turbine blades (United States)

    Chandler, W. T.


    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  8. Maturation of Structural Health Management Systems for Solid Rocket Motors Project (United States)

    National Aeronautics and Space Administration — Solid rocket motor cases are subject to a variety of external environmental and loading conditions from cradle-to-grave. These conditions can significantly impact...

  9. NDE of Space Shuttle Solid Rocket Motor field joint (United States)

    Johnston, Patrick H.

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  10. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing (United States)

    Gamwell, W. R.; Murphy, N. C.


    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  11. Lidar measurements of solid rocket propellant fire particle plumes. (United States)

    Brown, David M; Brown, Andrea M; Willitsford, Adam H; Dinello-Fass, Ryan; Airola, Marc B; Siegrist, Karen M; Thomas, Michael E; Chang, Yale


    This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air.

  12. Shuttle Redesigned Solid Rocket Motor aluminum oxide investigations (United States)

    Blomshield, Fred S.; Kraeutle, Karl J.; Stalnaker, Richard A.


    During the launch of STS-54, a 15 psi pressure blip was observed in the ballistic pressure trace of one of the two Space Shuttle Redesigned Solid Rocket Motors (RSRM). One possible scenario for the observed pressure increase deals with aluminum oxide slag formation in the RSRM. The purpose of this investigation was to examine changes which may have occurred in the aluminum oxide formation in shuttle solid propellant due to changes in the ammonium perchlorate. Aluminum oxide formation from three propellants, all having the same formulation, but containing ammonium perchlorate from different manufacturers, will be compared. Three methods have been used to look for possible differences among the propellants. The first method was to examine window bomb movies of the propellants burning at 100, 300 and 600 psia. The motor operating pressure during the pressure blip was around 600 psia. The second method used small samples of propellant which were fired in a combustion bomb which quenched the burning aluminum particles soon after they left the propellant surface. The bomb was fired in both argon and Nitrogen atmospheres at various pressures. Products from this device were examined by optical microscopy. The third method used larger propellant samples fired into a particle collection device which allowed the aluminum to react and combust more completely. This device was pressurized with Nitrogen to motor operating pressures. The collected products were subdivided into size fractions by screening and sedimentation and analyzed optically with an optical microscope. the results from all three methods indicate very small changes in the size distribution of combustion products.

  13. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3 (United States)

    Susko, M.


    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  14. Viscoelastic Modelling of Solid Rocket Propellants using Maxwell Fluid Model

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar


    Full Text Available Maxwell fluid model consisting of a spring and a dashpot in series is applied for viscoelastic characterisation of solid rocket propellants. Suitable values of spring constant and damping coefficient wereemployed by least square variation of errors for generation of complete stress-strain curve in uniaxial tensile mode for case-bonded solid propellant formulations. Propellants from the same lot were tested at different strain rates. It was observed that change in spring constant, representing elastic part was very small with strain rate but damping constant varies significantly with variation in strain rate. For a typical propellant formulation, when strain rate was raised from 0.00037/s to 0.185/s, spring constant K changed from 5.5 MPato 7.9 MPa, but damping coefficient D was reduced from 1400 MPa-s to 4 MPa-s. For all strain rates, stress-strain curve was generated using Maxwell model and close matching with actual test curve was observed.This indicates validity of Maxwell fluid model for uniaxial tensile testing curves of case-bonded solid propellant formulations. It was established that at higher strain rate, damping coefficient becomes negligible as compared to spring constant. It was also observed that variation of spring constant is logarithmic with strain rate and that of damping coefficient follows power law. The correlation coefficients were introduced to ascertain spring constants and damping coefficients at any strain rate from that at a reference strain rate. Correlationfor spring constant needs a coefficient H, which is function of propellant formulation alone and not of test conditions and the equation developeds K2 = K1 + H ´ ln{(de2/dt/(de1/dt}. Similarly for damping coefficient D also another constant S is introduced and prediction formula is given by D2 = D1 ´ {(de2/dt/(de1/dt}S.Evaluating constants H and S at different strain rates validate this mathematical formulation for differentpropellant formulations

  15. Advanced Tactical Booster Technologies: Applications for Long-Range Rocket Systems (United States)


    System HIMARS [3] which can employ the MGM- 140 Army Tactical Missile System (ATacMS) solid propellant missile [4] to achieve the required range...launcher. 15. SUBJECT TERMS solid rocket; optimisation; artillery 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...the volumetrically constrained environment of a land-based launcher. Keywords— solid rocket; optimisation; artillery I. INTRODUCTION The Australian

  16. Advanced mechanics of solids

    CERN Document Server

    Bruhns, Otto T


    Mechanics, and in particular, the mechanics of solids, forms the basis of all engi­ neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt­ ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per­ ceived as difficult. On the other hand, they always also declared that the preoccu­ pation with mechanics made an essential c...

  17. Ballistic anomalies in solid rocket motors due to migration effects (United States)

    Pröbster, M.; Schmucker, R. H.

    Double base and composite propellants are generally used for rocket motors, whereby double base propellants basically consist of nitrocellulose plasticized with an explosive plasticizer, mostly nitroglycerine, and in some cases with an additional inert plasticizer and ballistic additives. Composite propellants consist of an oxidizer like ammonium perchlorate and of aluminum, binder and plasticizer and often contain liquid or solid burning rate catalysts. A common feature of both propellants is that they contain smaller or larger amounts of chemically unbonded liquid species which tend to migrate. If these propellants loose part of the plasticizer by migration into the insulation layer, not only will there be a change in mechanical propellant properties but also the bond between propellant and insulation may degrade. However, depending on the severity of these effects, the change in the ballistic properties of the propellant grain caused by plasticizer migration may be of even more importance. In the past, most emphasis was placed on the behaviour of end-burning configurations. However, more recent theoretical and experimental studies revealed that not only for end-burning grain configurations but also for internal burning configurations there is a common effect which is responsible for ballistic anomalies: migration of liquid species from the propellant into the insulation. By using a plasticizer equilibrated insulation in an internal burning configuration the liquid species migration and thus the previously observed ballistic anomalies are avoided. Using this approach for end-burning configurations provides similar positive results. The various factors affecting plasticizer migration are studied and discussed, and several methods to prevent liquid species migration are described as well as methods to obtain plasticizer resistant insulations.


    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, three dimensional modelling of extrusion forming of a double base solid rocket propellant is performed on Ansys® finite element simulation package. For the purpose of initial model construction and later comparisons with elastoviscoplastik model, the solid propellant is assumed to obey the elastic-plastic material response during the direct extrusion process. Taking into account the contact surface behavior with Coulomb friction and geometric and material nonlinearities, an incremental large large strain solution methodology has been adapted in the simulation. The hydrostatic pressure, stress, strain, and displacement values during extrusion of the solid rocket propellant are obtained from the simulation.

  19. Multi-Dimensional Combustion Instability Analysis of Solid Propellant Rocket Motors. (United States)


    RI D-R159 314 MULTI-DIMENSIONAL COMBUSTION INSTABLITY ANALYSIS OF 1/1 I SOLID PROPELLANT ROCK.. (U) ALABAMA UNIY IN HUNTSVILLE I DEPT OF MECHANICAL...STANDARDS MlICROCOPY RESOLUTION TEST CHART 0 0 0 03 V.%% f iSR.TR. 85-0567 NULTI-DIMNSIONAL COMBUSTION INSTABILITY ANALYSIS OF SOLID PROPELLANT ROCKET...analysis of solid propellant rocket motors. This research was motivated by the need for im- provement of the current practice in combustion instability

  20. Mathematical Modelling of In-Chamber Processes in Hydrocombined Propellant Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    Nikolai A. Obukhov


    Full Text Available The special conditions of employment of commercial rockets in the sea environment has opened up new possibilities of improving motor performance. The interesting method suggests supplying water into the running motor. This paper reports the calculations and experiments carried out with solid propellant model setups. The results prove the validity of the proposed method and allow the refinement of calculation techniques for the prediction of solid rocket motor performance characteristics. The serviceability of the solid propellant charges working in combination with water is demonstrated. A mathematical model is proposed for the operation of a hydrocombined propellant motor with water and powdered additives applied to the combustion chamber."

  1. Solid rocket motor fire tests: Phases 1 and 2 (United States)

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.


    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General

  2. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.


    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  3. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines


    Zhukov Ilya S.; Borisov Boris V.; Bondarchuk Sergey S.; Zhukov Alexander S.


    On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  4. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya S.


    Full Text Available On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  5. Advances in Solid State Physics

    CERN Document Server

    Kramer, B


    The present volume 45 of Advances in Solid-State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft in the World Year of Physics 2005, the Einstein Year, which was held from 4 - 11 March 2005 in Berlin, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2005 not only in Germany but also internationally. It is ''nanoscience'', namely the physics of quantum dots and wires, electrical transport, optical properties, spin transport in nanostructures, and magnetism on the nanoscale, that is of central interest to the physics community. Also, soft matter and biological systems are covered.

  6. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf


    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  7. Development of an advanced rocket propellant handler's suit (United States)

    Doerr, DonaldF.


    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability, and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the

  8. Development of high temperature materials for solid propellant rocket nozzle applications (United States)

    Manning, C. R., Jr.; Lineback, L. D.


    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  9. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning (United States)


    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  10. Thermographic inspection of solid-fuel rocket booster field joint components (United States)

    Thompson, Karen G.; Crisman, Elton M.


    Thermographic nondestructive evaluation techniques were investigated for possible application on Space Shuttle solid rocket booster field joint hardware. This investigation included evaluation of the clevis and tang mating surfaces for scratches and measurement of grease film thickness. The field joint insulation system was inspected for voids and disbonds.

  11. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf


    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  12. Solid propellant processing factor in rocket motor design (United States)


    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  13. Research on Instantaneous Thrust Measurement for Attitude-control Solid Rocket Motor

    Institute of Scientific and Technical Information of China (English)

    OUYANG Hua-bing; WANG Jian-ping; LIN Feng; XU Wen-gan


    In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.

  14. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics (United States)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie


    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf


    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  16. Estimation of Pressure Index and Temperature Sensitivity Coefficient of Solid Rocket Propellants by Static Evaluation

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar


    Full Text Available Burning rate of a solid rocket propellant depends on pressure and temperature. Conventional strand burner and Crawford bomb test on propellant strands was conducted to assess these dependent parameters. However, behaviour of propellant in rocket motor is different from its behaviour in strand form. To overcome this anomaly, data from static evaluation of rocket motor was directly used for assessment of these burningrate controlling parameters. The conventional empirical power law (r=aoexp[p{T-To}]Pn was considered and a method was evolved for determination of pressure index (n and temperature sensitivity coefficient (p of burning rate for solid rocket propellants from static evaluation data. Effect of pressure index and temperature sensitivity coefficient on firing curve is also depicted. Propellant grain was fired in progressive mode to cover a very wide pressure range of 50 kg/cm2 to 250 kg/cm2 and propellant burning rate index was calculated to be 0.32 in the given pressure range. Propellant grain was fired at +35 °C and –20 °C temperatures and temperature sensitivity coefficient of burning rate was calculated to be 0.27 % per °C. Since both the values were evaluated from realised static evaluation curves, these are more realistic and accurate compared to data generated by conventional methods.Defence Science Journal, 2009, 59(6, pp.666-669, DOI:

  17. Characterisation of Materials used in Flex Bearings of Large Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    CH.V. Ram Mohan


    Full Text Available Solid rocket motors are propulsion devices for both satellite launchers and missiles, which require guidance and steering to fly along a programmed trajectory and to compensate for flight disturbances. A typical solid rocket motor consists of motor case, solid propellant grain, motor insulation, igniter and nozzle. In most solid rocket motors, thrust vector control (TVC is required. One of the most efficient methods of TVC is by flex nozzle system. The flex nozzle consists of a flexible bearing made of an elastomeric material alternating with reinforcement rings of metallic or composite material. The material characterisation of AFNOR 15CDV6 steel and the natural rubber-based elastomer developed for use in flex nozzle are discussed. This includes testing, modelling of the material, selection of a material model suitable for analysis, and the validation of material model.Defence Science Journal, 2011, 61(3, pp.264-269, DOI:

  18. Discrimination for ablative control mechanism in solid-propellant rocket nozzle

    Institute of Scientific and Technical Information of China (English)


    The ablation in solid-propellant rocket nozzle is a coupling process resulted by chemistry, heat and mass transfer. Based on the heat and mass transfer theory, the aero-thermo-dynamic, and thermo-chemical kinetics, the thermal-chemical ablation model is established. Simulations are completed on the heat flow field and chemical ablation in the nozzle with different concentrations, frequency factors and activation energy of H2. The calculation results show that the concentration and the activation energy of H2 can provoke the transformation of control mechanism, whereas the influence brought by the frequency factor of H2 is feeble under a high-temperature and high-pressure combustion circumstance. The discrimination for ablative control mechanism is dependent on both concentration and activation energy of H2. This study will be useful in handling ablation and thermal protection problem in the design of solid-propellant rocket.

  19. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine (United States)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.


    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  20. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.


    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  1. Probabilistic Fracture Mechanics and Optimum Fracture Control Analytical Procedures for a Reusable Solid Rocket Motor Case (United States)

    Hanagud, S.; Uppaluri, B.


    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis is used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects of failure prevention plans such as nondestructive inspection and the material erosion between missions are also considered in the developed procedure for selection of design variables. The reliability-based procedure can be modified to consider other similar structures of reusable space vehicle systems with different failure prevention plans.

  2. Combustion Stability Assessments of the Black Brant Solid Rocket Motor (United States)

    Fischbach, Sean


    The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.

  3. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material (United States)

    Nelson, Linda; Jarzen, David


    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  4. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoying; Chen Huandong


    This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE) considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM) to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6μm. Conditions at wavelengths 2.7μm and 4.3μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases sig-nificantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radi-ation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radi-ation intensity at wavebands 2.7–3.0μm and 4.2–4.6μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  5. Advanced Deuterium Fusion Rocket Propulsion For Manned Deep Space Missions

    CERN Document Server

    Winterberg, Dr Friedwardt


    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite well possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion, can there be refueled. To obtain a high thrust with a high specific impulse, favors the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of propulsion system in space would be very high, but it can also be developed on earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, rather than deuterium-tritium ...

  6. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun


    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  7. Development of a miniature solid propellant rocket motor for use in plume simulation studies (United States)

    Baran, W. J.


    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  8. State Machine Modeling of the Space Launch System Solid Rocket Boosters (United States)

    Harris, Joshua A.; Patterson-Hine, Ann


    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  9. Mechanical characterization of composite solid rocket propellant based on hydroxy-terminated polybutadiene

    Directory of Open Access Journals (Sweden)

    Gligorijević Nikola I.


    Full Text Available This paper presents the procedure of uniaxial mechanical characterization of composite solid rocket propellant based on hydroxy-terminated polybutadiene (HTPB, whose mechanical properties strongly depend on temperature, strain rate, natural aging and accumulated damage. A method of processing data is presented in order to determine time-temperature shift factor and master curves for tensile strength, ultimate strain and relaxation modulus, depending on reduced time. Functional dependences of these features represent an input for structural analysis of a rocket motor propellant grain. The effects of natural aging on the mechanical properties are also considered. [Projekat Ministarstva nauke Republike Srbije, br. TR 36050: Research and development of unmanned aircraft in support of traffic infrastructure monitoring

  10. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems (United States)

    Woodis, W. R.; Runkle, R. E.


    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  11. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels (United States)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.


    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  12. Introduction to rocket science and engineering

    CERN Document Server

    Taylor, Travis S


    What Are Rockets? The History of RocketsRockets of the Modern EraRocket Anatomy and NomenclatureWhy Are Rockets Needed? Missions and PayloadsTrajectoriesOrbitsOrbit Changes and ManeuversBallistic Missile TrajectoriesHow Do Rockets Work? ThrustSpecific ImpulseWeight Flow RateTsiolkovsky's Rocket EquationStagingRocket Dynamics, Guidance, and ControlHow Do Rocket Engines Work? The Basic Rocket EngineThermodynamic Expansion and the Rocket NozzleExit VelocityRocket Engine Area Ratio and LengthsRocket Engine Design ExampleAre All Rockets the Same? Solid Rocket EnginesLiquid Propellant Rocket Engines

  13. Simulation of an advanced techniques of ion propulsion Rocket system (United States)

    Bakkiyaraj, R.


    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  14. Ignition of Liquid Fuel Spray and Simulated Solid Rocket Fuel by Photoignition of Carbon Nanotube Utilizing a Camera Flash (United States)


    Badakhshan A1 , Danczyk S. A.2, Wirth D.3 and Pilon L. 3 Abstract We have studied the ignition of fuel sprays and simulated solid rocket fuels (SRF...photoignition of solid oxidizer/CNT mixtures exposed to a flash of light. The flash source was a commercial studio flash lamp with a rated maximum

  15. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.


    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  16. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  17. Environmental Impact Statement Space Shuttle Advanced Solid Rocket Motor Program (United States)


    Total 930 765 370 610 Other (commuters) 70 60 30 50 Local Area Total 1000 825 400 660 Inmigrating Workers 1000 825 400 660 Total 2000 1650 800 1320...760 Others (commuters) 360 280 140 225 Local Area Total 1560 1230 620 985 Inmigrating Workers 340 270 140 215 Total 1900 1500 760 1200 Numbers have...those who inmigrated for tile project. This was done to levelize the residential patterns jf all the workers, both construction and operational, ratner

  18. Navier-Stokes analysis of solid propellant rocket motor internal flows (United States)

    Sabnis, J. S.; Gibeling, H. J.; Mcdonald, H.


    A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot.

  19. Internal Ballistic Code for Solid Rocket Motors using Minimum Distance Function for Grain Burnback

    Directory of Open Access Journals (Sweden)

    Afroz Javed


    Full Text Available A computer code has been developed for internal ballistic performance evaluation of solid rocket motors, using minimum distance function (MDF approach for prediction of geometry evolution. This method can handle any complex geometry without the need to define different geometrical shapes and their evolution as used in several existing analytical geometry evolution-based methodologies. The code is validated with both experimental results published in literature, as well as for solid rocket motors of tactical and strategic missiles and a very good match is obtained with static test results. The output of the code gives p-t (pressure-time curve as well as the detailed parameters of the flow along the axial direction, and geometries in the form of mesh file, which can be further used as input to codes for CFD analysis.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.181-188, DOI:

  20. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors (United States)

    Yang, H. Q.; West, Jeff


    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  1. Application of advanced coating techniques to rocket engine components (United States)

    Verma, S. K.


    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  2. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design (United States)

    Ables, Brett


    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  3. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  4. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George


    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  5. Prediction of rocket plume radiative heating using backward Monte-Carlo method (United States)

    Wang, K. C.


    A backward Monte-Carlo plume radiation code has been developed to predict rocket plume radiative heating to the rocket base region. This paper provides a description of this code and provides sample results. The code was used to predict radiative heating to various locations during test firings of 48-inch solid rocket motors at NASA Marshall Space Flight Center. Comparisons with test measurements are provided. Predictions of full scale sea level Redesigned Solid Rocket Motor (RSRM) and Advanced Solid Rocket Motor (ASRM) plume radiative heating to the Space Shuttle external tank (ET) dome center were also made. A comparison with the Development Flight Instrumentation (DFI) measurements is also provided.

  6. Regarding the evaluation of the solid rocket propellant response function to pressure coupling

    Directory of Open Access Journals (Sweden)

    Ioan ION


    Full Text Available High frequency combustion instabilities imply a major risk for the solid rocket motor stableworking and they are directly linked to the propellant response to chamber pressure coupling. Thisarticle discusses a laboratory testing method for the measurement and evaluation of the pressurecoupled response for non-metalized propellants in a first stage. Experimental researches were donewith an adequate setup, built and improved in our lab, able to evaluate the propellant response byinterpreting the pressure oscillations damping in terms of propellant response. Our paper aims atdefining a linearized one-dimensional flow study model to analyze the disturbed operation of the solidpropellant rocket motors. Based on the applied model we can assert that the real part of propellantresponse is a function of the oscillations damping, acoustic energy in the motor chamber and variouslosses in the burning chamber. The imaginary part of propellant response mainly depends on thenormalized pulsation, on the burning chamber gas column and on the pressure oscillations frequency.Our research purpose was obviously to minimize the risk of the combustion instabilities effects on therocket motors working, by experimental investigations using jet modulating techniques and sustainedby an interesting study model based on the perturbation method.

  7. Ozone depletion in the plume of a solid-fuelled rocket

    Directory of Open Access Journals (Sweden)

    B. C. Krüger

    Full Text Available The local effects of the emission of a solid-fuelled rocket on the stratospheric ozone concentration have been investigated by photochemical model calculations. A one-dimensional horizontal model has been applied which calculates the trace gas composition at a single atmospheric altitude spatially resolved around the exhaust plume. Different cases were tested for the emissions of the Space Shuttle concerning the composition of the exhaust and the effects of heterogeneous reactions on atmospheric background aerosol.

    The strongest depletion of ozone is achieved when a high amount of the emitted chlorine is Cl2. If it is purely HCl, the effect is smallest, though in this case the heterogeneous reactions show their largest influence. From the results it may be estimated whether ozone depletion caused by rocket launches can be detected by satellite instruments. It appears that the chance of coincidental detection of such an event is rather small.

  8. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System (United States)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)


    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  9. Scale Effects on Quasi-Steady Solid Rocket Internal Ballistic Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix


    Full Text Available The ability to predict with some accuracy a given solid rocket motor’s performance before undertaking one or several costly experimental test firings is important. On the numerical prediction side, as various component models evolve, their incorporation into an overall internal ballistics simulation program allows for new motor firing simulations to take place, which in turn allows for updated comparisons to experimental firing data. In the present investigation, utilizing an updated simulation program, the focus is on quasi-steady performance analysis and scale effects (influence of motor size. The predicted effects of negative/positive erosive burning and propellant/casing deflection, as tied to motor size, on a reference cylindrical-grain motor’s internal ballistics, are included in this evaluation. Propellant deflection has only a minor influence on the reference motor’s internal ballistics, regardless of motor size. Erosive burning, on the other hand, is distinctly affected by motor scale.

  10. Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression

    Directory of Open Access Journals (Sweden)

    David R. Greatrix


    Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.

  11. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches (United States)


    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  12. Numerical Simulation of a Dual Pulse Solid Rocket Motor Flow Field

    Directory of Open Access Journals (Sweden)

    Afroz Javed


    Full Text Available Numerical simulations are carried out for the internal flow field of a dual pulse solid rocket motor port to understand the flow behaviour. Three dimensional Reynolds Averaged Navier Stokes equations are solved alongwith shear stress transport turbulence model using commercial code. The combustion gas is assumed as a mixture of alumina and gases and single phase flow calculations are done with the thermo chemical properties provided for the mixture. The simulation captures all the essential features of the flow field. The flow accelerates through the pulse separation device (PSD port and high temperature and high velocity gas is seen to impinge the motor wall near the PSD port. The overall total pressure drop through motor port and through PSD is found to be moderate.Defence Science Journal, 2012, 62(6, pp.369-374, DOI:

  13. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique (United States)

    Baum, J. D.; Levine, J. N.


    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  14. New discrimination method for ablative control mechanism in solid-propellant rocket nozzle

    Institute of Scientific and Technical Information of China (English)


    A reasonable discrimination method for ablative control mechanism in solid-propellant rocket nozzle can improve the calculation accuracy of ablation rate. Based on the different rate constants for reactions of C with H2O and CO2,a new discrimination method for ablative control mechanism,which comprehensively considers the influence of nozzle surface temperature and gas component concentration,is presented. Using this new discrimination method,calculations were performed to simulate the nozzle throat insert ablation. The numerical results showed that the calculated ablation rate,which was more close to the measured values,was less than the value calculated by diffusion control mechanisms or by double control mechanisms. And H2O was proved to be the most detrimental oxidizing species in nozzle ablation.

  15. Preliminary design and optimization of slotted tube grain for solid rocket motor

    Institute of Scientific and Technical Information of China (English)


    In this paper,design and optimization technique of slotted tube grain for solid rocket motors has been discussed.In doing so,the design objectives and constraints have been set,geometric parameters identified,performance prediction parameters calculated,thereafter preliminary designs completed and finally optimal design reached.Geometric model for slotted tube grain configuration has been developed.Average thrust has been taken as the objective function with constraints of burning time,mass of propellant,fixed length and diameter of chamber case.Lumped parameter method has been used for calculating the performance prediction parameters.A set of preliminary designs has been completed and an analysis of these results conducted.Although all the preliminary results fulfill the design requirements in terms of objective function and constraints,however in order tO attain the optimal design,Sequen-tial quadratic programming optimization technique has been adopted.As the slotted tube grain ge-ometry is totally dependent upon various independent variables and each of these variables has a bearing on explicit characteristic of grain designing,hence affects of the independent variables on performance parameters have been examined,thus variation laws have been developed.Basing on the variation laws and the analysis of preliminary design results,upper and lower limits have been defined for the independent geometric variables and an initial guess provided for conducting optimi-zation.Resuhs attained exhibits that an optimal result has been attained and the value of objective function has been maximized.All the design constraint limits have also been met while ensuring sound values of volumetric loading fraction,web fraction and neutrality.This methodology of design and optimization of slotted tube grain for solid rocket motors can be used by engineers as a reference guide for actual design and engineering purposes.

  16. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket (United States)

    Heitkotter, Robert H


    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  17. Recent advances in solid phase peptide synthesis


    White, P.D.


    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  18. High temperature reformation of aluminum and chlorine compounds behind the Mach disk of a solid-fuel rocket exhaust (United States)

    Park, C.


    Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.

  19. Advances in tunable solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.


    Continuing problems in solid-state lasers including low efficiency and lack of frequency diversity have limited their applicability in past years. Through recent materials technological developments, both of these problems are starting to be solved. Many new tunable lasers operating at wavelengths ranging from 650 nm to have been demonstrated in the laboratory, and applications now are being considered for space and terrestrial remote sensors. Comparable progress also has been made towards more efficient solid-state lasers, for example, new neodymium (Nd) lasers having 6% overall efficiency. These advances in solid-state lasers depend on the interplay between the fields of materials science and lasers. To develop this association between the two disciplines, an Optical Society of America (OSA) topical meeting on Tunable Solid State lasers was held in Zigzag, Oreg. As well as covering research and development of tunable lasers based on ion-doped dielectric solids, this meeting discussed crystal growth and laser applications. Also included were rare earth laser sources operating at new wavelengths, an expansion in the agenda from the first meeting, held last year in May in Arlington, Va.

  20. Studies on Stress-Strain Curves of Aged Composite Solid Rocket Propellants

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar


    Full Text Available Mechanical property evaluation of composite solid rocket propellants is used as a quick quality control tool for propellant development and production. However, stress-strain curves from uni-axial tensile testing can be utilised to assess the shelf-life of propellants also. Composite propellants (CP of two varieties cartridge-loaded (CLCP and case-bonded (CBCP are utilized in rocket and missile applications. Both classes of propellants were evaluated for mechanical properties namely tensile strength, modulus and percentage elongation using specimens conforming to ASTM D638 type IV at different ageing time. Both classes of propellants show almost identical variation in various mechanical properties with time. Tensile strength increases with time for both classes of propellants and percentage elongation reduces. Initial modulus is also found to decrease with time. Tensile strength is taken as degradation criteria and it is observed that CLCP has slower degradation rate than CBCP. This is because of two facts–(i higher initial tensile strength of CLCP (1.39 MPa compared to CBCP (0.665 MPa and (ii lower degradation rate of CLCP (0.0014 MPa/day with respect to CBCP (0.0025 MPa/day. For the studied composite propellants, a degradation criterion in the form of percentage change in tensile strength is evaluated and shelf life for different degradation criteria is tabulated for quick reference.Defence Science Journal, 2012, 62(2, pp.90-94, DOI:

  1. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2 (United States)

    Sforzini, R. H.; Foster, W. A., Jr.


    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  2. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package (United States)

    Stefanski, Philip L.


    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  3. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender


    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  4. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME) (United States)


    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  5. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    Directory of Open Access Journals (Sweden)

    S. Saha


    Full Text Available Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations compare closely with the literarture data. The growth rate of pressure oscillations of a cylindrical grain solid rocket motor is determined for different response functions at the fundamental longitudinal frequency. It is observed that for response function more than a critical value, the motor exhibits exponential growth rate of pressure oscillations.

  6. Experimental determination of the particle sizes in a subscale motor for application to the Ariane 5 solid rocket booster (United States)

    Traineau, J. C.; Kuentzmann, P.; Prevost, M.; Tarrin, P.; Delfour, A.

    The knowledge of the aluminum oxide particle size distribution inside the combustion chamber of a solid propellant rocket motor is an important factor for assessing the combustion stability or the slag mass accumulation in the motor. A representative subscale motor for the Ariane 5 P230 Solid Rocket Booster (SRB), in which helium is injected to quench the condensed phase reactions, has been designed and manufactured. Its use for combustion stability purpose has given the aluminum oxide particle size distribution in conditions representative of the actual Ariane 5 SRB. The experimental techniques, optical and particle capturing, have been found to give results in good agreement. A stretched distribution, with particles ranging from 1 micron to 120 microns and a maximum around 45 microns, has been demonstrated.

  7. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan


    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  8. Design and optimization of solid rocket motor Finocyl grain using simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Ali Kamran; LIANG Guo-zhu


    The research effort outlined the application of a computer aided design (CAD)-centric technique to the design and optimization of solid rocket motor Finocyl (fin in cylinder) grain using simulated annealing.The proper method for constructing the grain configuration model, ballistic performance and optimizer integration for analysis was presented. Finoeyl is a complex grain configuration, requiring thirteen variables to define the geometry. The large number of variables not only complicates the geometrical construction but also optimization process. CAD representation encapsulates all of the geometric entities pertinent to the grain design in a parametric way, allowing manipulation of grain entity (web), performing regression and automating geometrical data calculations. Robustness to avoid local minima and efficient capacity to explore design space makes simulated annealing an attractive choice as optimizer. It is demonstrated with a constrained optimization of Finocyl grain geometry for homogeneous, isotropic propellant, uniform regression, and a quasi-steady, bulk mode internal ballistics model that maximizes average thrust for required deviations from neutrality.

  9. Analysis of pressure blips in aft-finocyl solid rocket motor (United States)

    Di Giacinto, M.; Favini, B.; Cavallini, E.


    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.

  10. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    Directory of Open Access Journals (Sweden)

    David Greatrix


    Full Text Available The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.

  11. Study of plasticizer diffusion in a solid rocket motor´s bondline

    Directory of Open Access Journals (Sweden)

    Juliano Libardi


    Full Text Available This work aims to determine the diffusion coefficient of the plasticizers dibutyl phthalate (DBP, dioctyl phthalate (DOP and dioctyl azelate (DOZ on the internal insulating layer of solid rocket motors. These plasticizers are originally present in the layers of rubber, liner and propellant, respectively. This species are not chemically bonded and tend to diffuse from propellant to insulating and vice versa. A computer program based on the mathematical model of Fick’s second Law of diffusion was developed to perform the calculus from the concentration data obtained by gas chromatographic (GC analyses. The samples were prepared with two different adhesive liners; one conventional (LHNA and the other with barrier properties (LHNT. A common feature of both liners was that they were synthesized by the reaction of hydroxyl-terminated polybutadiene (HTPB and diisocyanates. However, a bond promoter was used to increase the crosslink density of the LHNT liner and to improve its performance as barrier against the diffusion. The effects of the diffusion of the plasticizers were also investigated by hardness analyses, which were executed on samples aged at room temperature and at 80ºC. The results showed an increase trend for the samples aged at room temperature and an opposite behavior for the tests carried out at 80ºC.

  12. Solid propellant rocket motor internal ballistics performance variation analysis, phase 3 (United States)

    Sforzini, R. H.; Foster, W. A., Jr.; Murph, J. E.; Adams, G. W., Jr.


    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads.

  13. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling (United States)

    Clayton, J. Louie


    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  14. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary (United States)

    Liou, Larry C.


    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  15. Advanced Materials and Solids Analysis Research Core (AMSARC) (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  16. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.


    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  17. Asbestos Free Insulation Development for the Space Shuttle Solid Propellant Rocket Motor (RSRM) (United States)

    Allred, Larry D.; Eddy, Norman F.; McCool, A. A. (Technical Monitor)


    Asbestos has been used for many years as an ablation inhibitor in insulating materials. It has been a constituent of the AS/NBR insulation used to protect the steel case of the RSRM (Reusable Solid Rocket Motor) since its inception. This paper discusses the development of a potential replacement RSRM insulation design, several of the numerous design issues that were worked and processing problems that were resolved. The earlier design demonstration on FSM-5 (Flight Support Motor) of the selected 7% and 11% Kevlar(registered) filled EPDM (KF/EPDM) candidate materials was expanded. Full-scale process simulation articles were built and FSM-8 was manufactured using multiple Asbestos Free (AF) components and materials. Two major problems had to be overcome in developing the AF design. First, bondline corrosion, which occurred in the double-cured region of the aft dome, had to be eliminated. Second, KF/EPDM creates high levels of electrostatic energy (ESE), which does not readily dissipate from the insulation surface. An uncontrolled electrostatic discharge (ESD) of this surface energy during many phases of production could create serious safety hazards. Numerous processing changes were implemented and a conductive paint was developed to prevent exposed external insulation surfaces from generating ESE/ESD. Additionally, special internal instrumentation was incorporated into FSM-8 to record real-time internal motor environment data. These data included inhibitor insulation erosion rates and internal thermal environments. The FSM-8 static test was successfully conducted in February 2000 and much valuable data were obtained to characterize the AF insulation design.

  18. Time-Accurate Computational Fluid Dynamics Simulation of a Pair of Moving Solid Rocket Boosters (United States)

    Strutzenberg, Louise L.; Williams, Brandon R.


    Since the Columbia accident, the threat to the Shuttle launch vehicle from debris during the liftoff timeframe has been assessed by the Liftoff Debris Team at NASA/MSFC. In addition to engineering methods of analysis, CFD-generated flow fields during the liftoff timeframe have been used in conjunction with 3-DOF debris transport methods to predict the motion of liftoff debris. Early models made use of a quasi-steady flow field approximation with the vehicle positioned at a fixed location relative to the ground; however, a moving overset mesh capability has recently been developed for the Loci/CHEM CFD software which enables higher-fidelity simulation of the Shuttle transient plume startup and liftoff environment. The present work details the simulation of the launch pad and mobile launch platform (MLP) with truncated solid rocket boosters (SRBs) moving in a prescribed liftoff trajectory derived from Shuttle flight measurements. Using Loci/CHEM, time-accurate RANS and hybrid RANS/LES simulations were performed for the timeframe T0+0 to T0+3.5 seconds, which consists of SRB startup to a vehicle altitude of approximately 90 feet above the MLP. Analysis of the transient flowfield focuses on the evolution of the SRB plumes in the MLP plume holes and the flame trench, impingement on the flame deflector, and especially impingment on the MLP deck resulting in upward flow which is a transport mechanism for debris. The results show excellent qualitative agreement with the visual record from past Shuttle flights, and comparisons to pressure measurements in the flame trench and on the MLP provide confidence in these simulation capabilities.

  19. Advancing the State-of-the-Practice for Liquid Rocket Engine Injector Design (United States)

    Tucker, P. K.; Kenny, R. J.; Richardson, B. R.; Anderso, W. E.; Austin, B. J.; Schumaker, S. A.; Muss, J. A.


    Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers

  20. Rocket propulsion elements

    CERN Document Server

    Sutton, George P


    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  1. Filled Ethylene-propylene Diene Terpolymer Elastomer as ThermalInsulator for Case-bonded Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    C. M. Bhuvaneswari


    Full Text Available Ethylene-propylene diene terpolymer (EPDM-based insulation system is being globallyused for case-bonded solid rocket motors. A study was undertaken using EPDM as base polymer,blended with hypalon and liquid EPDM and filled with fibrous and non-fibrous fillers. Theseformulations were evaluated as rocket motor insulation system. The basic objective of the studywas to develop an insulation system based on EPDM for case-bonded applications. A series ofrocket motor insulator compositions based on EPDM, filled with particulate and fibrous fillerslike precipitated silica, fumed silica, aramid, and carbon fibres have been studied for mechanical,rheological, thermal, and interface properties. Compositions based on particulate fillers wereoptimised for the filler content. Comparatively, fumed silica was found to be superior as fillerin terms of mechanical and interface properties. Addition of fibrous filler (5 parts improved thepeel strength, and reduced the thermal conductivity and erosion rate. All the compositions wereevaluated for sulphur and peroxide curing. Superior mechanical properties were achieved forsulphur-cured products, whereas peroxide-cured products exhibited an excellent ageing resistance.Rocket motors were insulated with optimised composition and propellant cast, and the motorswere evaluated by conducting static test in end-burning mode.Defence Science Journal, 2008, 58(1, pp.94-102, DOI :

  2. Quality assurance and control in the production and static tests of the solid rocket boosters for the Space Shuttle (United States)

    Cerny, O. F.


    The paper surveys the various aspects of design and overhaul of the solid rocket boosters. It is noted that quality control is an integral part of the design specifications. Attention is given to the production process which is optimized towards highest quality. Also discussed is the role of the DCA (Defense Contract Administration) in inspecting the products of subcontractors, noting that the USAF performs this role for prime contractors. Fabrication and construction of the booster is detailed with attention given to the lining of the booster cylinder and the mixing of the propellant and the subsequent X-ray inspection.

  3. Numerical simulation of multi-phase combustion flow in solid rocket motors with metalized propellant%Nmerical simulation of multi-phase combustion flow in solid rocket motors with metalized propellant

    Institute of Scientific and Technical Information of China (English)

    SHAFQAT Wahab; XIE Kan; LIU Yu


    Multi-phase flow field simulation has been performed on solid rocket motor and effect of multi-phases on the performance prediction of the solid rocket motor(SRM)is in- vestigation.During the combustion of aluminized propellant,the aluminum particles in the propellant melt and form liquid aluminum at the burning propellant surface.So the flow within the rocket motor is multi phase or two phase because it contains droplets and smoke particles of Al2O3.Flow simulations have been performed on a large scale motor,to observe the effect of the flowfield on the chamber and nozzle as well.Uniform particles diameters and Rosin-Rammler diameter distribution method that is based on the assumption that an expo- nential relationship exists between the droplet diameter,d and mass fraction of droplets with diameter greater than d have been used for the simulation of different distribution of Al2O3 droplets present in SRM.Particles sizes in the range of 1-1 00μm are used,as being the most common droplets.In this approach the complete range of particle sizes is divided into a set of discrete size ranges,each to be defined by single stream that is part of the group.Roe scheme-flux differencing splitting based on approximate Riemann problem has been used to simulate the effects of the multi-phase flowfeild.This is second order upwind scheme in which flux differencing splitting method is employed.To cater for the turbulence effect, Spalart-Allmaras model has been used.The results obtained show the great sensitivity of this diameters distribution and particles concentrations to the SRM flow dynamics,primarily at the motor chamber and nozzle exit.The results are shown with various sizes of the parti- cles concentrations and geometrical configurations including models for SRM and nozzle.The analysis also provides effect of multi-phase on performance prediction of solid rocket motor.

  4. Hazard Studies for Solid Propellant Rocket Motors (Etude des Risque pour les Moteurs-Fusees a Propergols Solides) (United States)


    iss"ues de certaines elutdes ri~certes sut Ic comnportemnent des materiaux 6crgctiques. lii~’Urco-elcrecurqui i6iodie les pliuimrniues (IC r6icion...rocket motors should be restrained to avoid launching due to a propulsive reaction. However, the restraining and suspension methods should not

  5. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers Project (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  6. An Evaluation Of Rocket Parameters

    Directory of Open Access Journals (Sweden)

    J. N. Beri


    Full Text Available The dependence of conventional parameters of internal ballistics of Solid Propellant Rockets using external burning cruciform charge, on the geometry of charge aad rocket motor is discussed and results applied in a special case.

  7. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors (United States)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.


    Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations

  8. ASAS = NASA's Advanced Solid-state Array Spectroradiometer: 1988 -2000 (United States)

    U.S. Geological Survey, Department of the Interior — The Advanced Solid-State Array Spectroradiometer (ASAS) data collection contains data collected by the ASAS sensor flown aboard NASA aircraft. A fundamental use of...

  9. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.


    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  10. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  11. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition) (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  12. Solid amine-boranes as high performance hypergolic hybrid rocket fuels (United States)

    Pfeil, Mark A.

    Hypergolic hybrid rockets have the potential of providing systems that are simple, reliable, have high performance, and allow for energy management. Such a propulsion system can be applied to fields that need a single tactical motor with flexible mission requirements of either high speed to target or extended loitering. They also provide the possibility for alternative fast response dynamic altitude control systems if ignition delays are sufficiently short. Amines are the traditional fuel of choice when selecting a hypergolic combination as these tend to react readily with both nitric acid and dinitrogen tertroxide based oxidizers. It has been found that the addition of a borane adduct to an amine fuel tends to reduce the ignition delay by up to an order of magnitude with white fuming nitric acid (WFNA). The borane addition has resulted in fuels with very short ignition delays between 2-10 ms - the fastest times for an amine based fuel reacting with nitric acid based oxidizers. The incorporation of these amine-boranes, specifically ethylenediamine bisborane (EDBB), into various fuel binders has also been found to result in ignition delays between 3-10 ms - the fastest times again for amine based fuels. It was found that the addition of a borane to an amine increased theoretical performance of the amine resulting in high performance fuels. The amine-borane/fuel binder combinations also produced higher theoretical performance values than previously used hypergolic hybrid rockets. Some of the theoretical values are on par or higher than the current toxic liquid hypergolic fuels, making amine boranes an attractive replacement. The higher performing amine-borane/fuel binder combinations also have higher performance values than the traditional rocket fuels, excluding liquid hydrogen. Thus, amine-borane based fuels have the potential to influence various area in the rocket field. An EDBB/ferrocene/epoxy fuel was tested in a hypergolic hybrid with pure nitric acid as the

  13. Laser cooling in solids: advances and prospects (United States)

    Seletskiy, Denis V.; Epstein, Richard; Sheik-Bahae, Mansoor


    This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

  14. Recent advances in laser cooling of solids (United States)

    Nemova, Galina; Kashyap, Raman


    The recent achievements devoted to cooling of solids with a laser are presented in this paper. We discuss the latest results of traditional laser cooling of solids based on rare earth ions and new techniques based on colloidal lead-salt quantum dots doped in a glass host, laser cooling in Tm3+-doped oxy-fluoride glass ceramic. Relatively short (microsecond) lifetime of the excited level of the PbSe QDs compared to the millisecond lifetime of the excited level of RE ions allows an acceleration of the cooling process and provides an opportunity to use new materials with higher phonon energy as hosts, which are normally considered unsuitable for cooling with RE ions. Another new approach to the laser cooling problem based on super-radiance has been considered in this paper. The advantages of optical refrigeration with rare earth doped semiconductors, in which not only optically active electrons of the 4f shell but the valence and conduction bands of the host material are involved in cooling cycle is discussed. It is shown that involving the valence and conduction bands of the host in the cooling cycle allows the pump wavelength to be shorter than mean fluorescence wavelength. Raman laser cooling of solids as well as observation of spontaneous Brillouin cooling have been presented.

  15. Navier-Stokes calculation of solid-propellant rocket motor internal flowfields (United States)

    Hsieh, Kwang-Chung; Yang, Vigor; Tseng, Jesse I. S.


    A comprehensive numerical analysis has been carried out to study the detailed physical and chemical processes involved in the combustion of homogeneous propellant in a rocket motor. The formulation is based on the time-dependent full Navier-Stokes equations, with special attention devoted to the chemical reactions in both gas and condensed phases. The turbulence closure is achieved using both the Baldwin-Lomax algebraic model and a modified k-epsilon two-equation scheme with a low Reynolds number and near-wall treatment. The effects of variable thermodynamic and transport properties are also included. The system of governing equations are solved using a multi-stage Runge-Kutta shceme with the source terms treated implicitly. Preliminary results clearly demonstrate the presence of various combustion regimes in the vicinity of propellant surface. The effects of propellant combustion on the motor internal flowfields are investigated in detail.

  16. Velocity-coupled flow oscillations in a simulated solid-propellant rocket environment (United States)

    Yang, Vigor; Hsieh, Kwang-Chung; Tseng, Jesse I. S.


    A comprehensive numerical analysis has been carried out to study the unsteady flowfields in a simulated rocket-motor environment. The model is based on the time-dependent compressible Navier-Stokes equations with a two-equation turbulence closure scheme. Various important aspects of the coupling between acoustic oscillations and mean flowfields, including flow reversal, modification of transport properties, etc., are addressed. Results indicate that multi-dimensional effects play important roles in determining local flow structures and wave characteristics. In much of the domain, acoustic velocity nodal points are observed in the near-wall region. The classical one-dimensional theory fails to describe several important mechanisms associated with velocity-induced flow instabilities.

  17. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender


    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  18. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender


    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  19. A Dose Escalation Study in Adult Patients With Advanced Solid Malignancies (United States)


    Advanced Solid Tumors With Alterations of FGFR1, 2 and or 3; Squamous Lung Cancer With FGFR1 Amplification; Bladder Cancer With FGFR3 Mutation or Fusion; Advanced Solid Tumors With FGFR1 Amplication; Advanced Solid Tumors With FGFR2 Amplication; Advanced Solid Tumors With FGFR3 Mutation

  20. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor (United States)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang


    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  1. 弹箭用先进复合材料研究进展%Research Progress of Advanced Composite in Rocket and Missile

    Institute of Scientific and Technical Information of China (English)

    马开宝; 高守臻; 李大勇; 辛全友; 罗长宏; 王晓立; 庞旭堂


    介绍了弹箭用先进复合材料的分类,分析了各类不同的轻质复合材料和热防护复合材料的应用现状及种类,结合弹箭武器应用阐明了先进复合材料的发展趋势.%Classifications of advanced composites in rocket and missile were described. The varieties of different lightweight composites and thermal insulating composites and their current situation of research and application were analyzed completely. Development trends of advanced composites in rocket and missile were introduced finally.

  2. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  3. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi


    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  4. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs (United States)

    Godfrey, B.; Majdalani, J.


    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  5. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)


    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  6. Advanced Solid State Lighting for AES Deep Space Hab Project (United States)

    Holbert, Eirik


    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  7. The development of a solid-state hydrogen sensor for rocket engine leakage detection (United States)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  8. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups (United States)

    Cross, Robert


    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  9. Transient Burning Rate Model for Solid Rocket Motor Internal Ballistic Simulations

    Directory of Open Access Journals (Sweden)

    David R. Greatrix


    Full Text Available A general numerical model based on the Zeldovich-Novozhilov solid-phase energy conservation result for unsteady solid-propellant burning is presented in this paper. Unlike past models, the integrated temperature distribution in the solid phase is utilized directly for estimating instantaneous burning rate (rather than the thermal gradient at the burning surface. The burning model is general in the sense that the model may be incorporated for various propellant burning-rate mechanisms. Given the availability of pressure-related experimental data in the open literature, varying static pressure is the principal mechanism of interest in this study. The example predicted results presented in this paper are to a substantial extent consistent with the corresponding experimental firing response data.

  10. Advanced technologies available for future solid propellant grains (United States)

    Thépénier, Jean; Fonblanc, Gilles


    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: Computer-aided method for the preliminary grain design Advanced models for SRM operating and performance predictions

  11. Performance of a UTC FW-4S solid propellant rocket motor under the command effects of simulated altitude and rotational spin (United States)

    Merryman, H. L.; Smith, L. R.


    One United Technology Center FW-4S solid-propellant rocket motor was fired at an average simulated altitude of 103,000 ft while spinning about its axial centerline at 180 rpm. The objectives of the test program were to determine motor altitude ballistic performance including the measurement of the nonaxial thrust vector and to demonstrate structural integrity of the motor case and nozzle. These objectives are presented and discussed.

  12. Application Analysis of Multi-functional Structure Design for Solid Rocket%多功能结构在固体火箭上的应用分析

    Institute of Scientific and Technical Information of China (English)

    曹莉; 介党阳; 熊楚杨; 徐嘉


    It was very limited to realize light-weight design for solid rocket adopting traditional mechanical structure optimization method. Due to the design philosophy of mechanical, electrical, thermal integration, multi-functional structure design broke a new path for solid rocket performance promotion. The method and thought of multi-functional structure design were introduced systematically. Combining with the development of a new onboard recording equipment prototype, the application prospect of multi-functional structure was discussed deeply on solid rocket area.%为实现固体火箭轻质化设计,采用传统机械结构优化的方法能力十分有限。多功能结构优化设计方法,由于采用机、电、热一体化的系统工程级设计思路,为提升火箭整体性能开辟了一个全新的方向。介绍多功能结构设计方法及思路,结合一种新型箭载记录设备原型样机的研制,对多功能结构在固体火箭领域应用的前景进行深入探讨。

  13. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis (United States)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.


    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  14. Real-time radiography of Titan IV Solid Rocket Motor Upgrade (SRMU) static firing test QM-2

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, K.W.; Curnow, G.M.; Perkins, D.E.; Schneberk, D.J.; Costerus, B.W.; La Chapell, M.J.; Turner, D.E.; Wallace, P.W.


    Real-time radiography was successfully applied to the Titan-IV Solid Rocket Motor Upgrade (SRMU) static firing test QM-2 conducted February 22, 1993 at Phillips Laboratory, Edwards AFB, CA. The real-time video data obtained in this test gave the first incontrovertible evidence that the molten slag pool is low (less than 5 to 6 inches in depth referenced to the bottom of the aft dome cavity) before T + 55 seconds, builds fairly linearly from this point in time reaching a quasi-equilibrium depth of 16 to 17 inches at about T + 97 seconds, which is well below the top of the vectored nozzle, and maintains that level until T + 125 near the end motor burn. From T + 125 seconds to motor burn-out at T + 140 seconds the slag pool builds to a maximum depth of about 20 to 21 inches, still well below the top of the nozzle. The molten slag pool was observed to interact with motions of the vectored nozzle, and exhibit slosh and wave mode oscillations. A few slag ejection events were also observed.

  15. Nuclear magnetic resonance imaging of solid rocket propellants at 14.1 T. (United States)

    Maas, W E; Merwin, L H; Cory, D G


    Proton NMR images of solid propellant materials, consisting of a polybutadiene binder material filled with 82% solid particles, have been obtained at a magnetic field strength of 14.1 T and at a resolution of 8.5 x 8.5 micron. The images are the first of elastomeric materials obtained at a proton frequency of 600 MHz and have the highest spatial resolution yet reported. The images display a high contrast and are rich in information content. They reveal the distribution of individual filler particles in the polymer matrix as well as a thin polymer film of about 10-30 micron which is found to surround some of the larger filler particles.

  16. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster (United States)

    Verderaime, V.


    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  17. Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case (United States)

    Kapp, J. R.


    The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.

  18. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy. (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F


    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  19. Design of Multi-Propellant Star Grains for Solid Propellant Rockets

    Directory of Open Access Journals (Sweden)

    S. Krishnan


    Full Text Available A new approach to solve the geometry-problem of solid propellant star is presented. The basis of the approach is to take the web-thickness (a ballistic as well as a geometrical property as the characteristic length. The nondimensional characteristic parameters representing diameter, length, slenderness-ratio, and ignitor accommodation of the grain are all identified. Many particular cases of star configurations (from the configurations of single propellant to those of four different propellants can be analysed through the identified characteristic parameters. A better way of representing the single-propellant-star-performance in a design graph is explained. Two types of dual propellant grains are analysed in detail. The first type is characterised by its two distinct stages of burning (initially by single propellant burning and then by dual propellant burning; the second type has the dual propellant burning throughout. Suitability of the identified characteristic parameters to an optimisation study is demonstrated through examples.

  20. Advanced Solid State Lighting for Human Evaluation Project (United States)

    Zeitlin, Nancy; Holbert, Eirik


    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  1. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles (United States)

    Martin, J. A.


    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  2. Advanced Conventional Armaments Technology Panel Report Supplement: Cannon and Rocket Parametric Tradeoff Analyses (United States)


    Coilgun ) CAP (Plasma Augmented Combustion Gun) ET (Electrothermal Gun) PAR (Plasma Armature Railgun with CAP Injector) SAR (Solid Armature Railgun) The...capable of destroying main battle tanks, is questionable. A second issue is assuring the accuracy of the projectile. Given that these are unguided...bullets, firing at a maximum slant range of 6500 meters, hitting a relatively small point target such as a vehicle is an exceptional feat. A final issue

  3. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George


    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  4. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu


    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  5. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle


    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  6. Rocket Flight. (United States)

    Van Evera, Bill; Sterling, Donna R.


    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  7. Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto


    Full Text Available A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R-N-(para-toluenesulfonyl-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.

  8. Technology Method Design of Assembly and Testing for Solid Propellant Rocket Engine of Aviation Seat%航空座椅固体火箭发动机装配及检测工艺技术设计

    Institute of Scientific and Technical Information of China (English)



    本文对航空座椅某型固体火箭发动机部装、总装及检测、试验、包装技术难点等进行了工艺分析;介绍了固体火箭发动机装配全过程工艺流程、检测、试验方法及注意事项等,对于同类及新型火箭发动机的装配制造过程具有良好的借鉴、推广应用意义。%Aiming at the difficulty of solid propellant rocket engine of aviation seat to assembly, testing and packaging technology, the assembly, testing process and method for solid propellant rocket engine were introduced. It can be regarded as reference with application for solid propellant rocket engine assembly process.

  9. Advanced Flow Analysis Tools for Transient Solid Rocket Motor Simulations Project (United States)

    National Aeronautics and Space Administration — The goals of reducing total cost and increasing reliability and safety of access to space continue to be top priorities for NASA. The most immediate propulsion...

  10. Draft Environmental Impact Statement. Space Shuttle Advanced Solid Rocket Motor Program (United States)


    Parish 40 30 20 20 Study Area Total 930 765 370 610 Other (commuters 70 60 30 50 Local Area Toldl 1000 825 400 660 Inmigrating Workers 1000 825 400...620 985 Inmigrating Workers 340 270 140 215 Total 1900 1500 760 1200 Numbers have been rounded. 4-49 in the study area (see Tables 4-3 and 4-4), then

  11. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II Project (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  12. RADEM: An Air Launched, Rocket Demonstrator for Future Advanced Launch Systems (United States)

    Parkinson, R. C.; Skorodelov, V. A.; Serdijk, I. I.; Neiland, V. Ya.


    Critical features associated with future reusable launch vehicles include reduction of turn around effort, use of integral liquid hydrogen tanks, advanced structures and thermal protection, and re-usable LOx-hydrogen propulsion with low maintenance overheads. Many doubts associated with such designs could be removed by a sub-orbital demonstrator. An air launched vehicle would fulfil many of the objectives for such demonstration. British Aerospace, NPO Molnija, TsAGI and DB Antonov have made an initial study for ESA for such a demonstrator (RADEM), using earlier studies of operational launch systems with the An-225 /Hotol and MAKS proposals. The paper describes the results of this study, including the selection of two potential vehicle designs, and an approach to sub-system design and vehicle development to minimize the costs. It appears that such a vheicle, capable of flying to Mach 12 or beyond using currently available technology, could have a cost an order of magnitude less than that required for development of an operational vehicle.

  13. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements (United States)

    Walton, James T.


    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  14. A review of recent advances in solid film lubrication (United States)

    Spalvins, T.


    Thin, adherent sputtered MoS2 and ion plated metallic (Au, Ag, Pb) lubricating films are primarily used in precision contacting triboelement surfaces where wear debris formation is critical and high reliability requirements have to be satisfied. Detailed structural and compositional characterization of solid film lubricants is of prime importance. It is this information from the nano-micro-macro level which is needed to interpret and improve the frictional behavior and assure long endurance lives. The purpose of this paper is to summarize in a concise review the solid lubricant film structure and morphology and their effects on the tribological properties of the lubricant systems. The tribological performance of thin lubricating films has significantly advanced through progressive understanding of the film parameters such as adhesion, cohesion, interface formation, nucleation and microstructural growth, critical film thickness and substrate finish, and temperature. Sputtered MoS2 and ion plated Au, Ag, and Pb films are separately discussed and evaluated in terms of the above film parameters to establish the most desirable film structures and thicknesses in order to achieve effective lubrication.

  15. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets (United States)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George


    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  16. 固体火箭发动机预固化技术及其应用%Pre-cure Technique and Its Applications for Solid Rocket Motors

    Institute of Scientific and Technical Information of China (English)

    苏昌银; 张爱科


    Based on interface properties of HTPB propellant, the cross linking level is regulated through the temperature and time of cure reaction. The chemical reaction takes place gradually in remainder functional groups of the system to form chemical bonds and hydrogen bond, so as to improve the mechanical properties of the resultant. Pre-cure technique and bonding model are described in the paper. They can be used in propellant-liner bonding, propellant loading and integral repairing of the propellant grain of the solid rocket motor (SRM). These test results have been qualified by the successful static firing tests, flight tests of motors and storage tests of specimens for ten-years. The performances of the motor meet the design requirements with good reproducibilities.

  17. This "Is" Rocket Science! (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela


    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  18. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal


    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:

  19. The sky is falling: chemical characterization and corrosion evaluation of deposition produced during the static testing of solid rocket motors. (United States)

    Doucette, William J; McNeill, Laurie S; Mendenhall, Scout; Hancock, Paul V; Wells, Jason E; Thackeray, Kevin J; Gosen, David P


    Static tests of horizontally restrained rocket motors at the ATK facility in Promontory UT, USA result in the deposition of entrained soil and fuel combustion products, referred to as Test Fire Soil (TFS), over areas as large as 30-50 mile (80-130 km) and at distances up to 10-12 miles (16-20 km) from the test site. Chloride is the main combustion product generated from the ammonium perchlorate-aluminum based composite propellant. Deposition sampling/characterization and a 6-month field corrosivity study using mild steel coupons were conducted in conjunction with the February 25th 2010 FSM-17 static test. The TFS deposition rates at the three study sites ranged from 1 to 5 g/min/m. TFS contained significantly more chloride than the surface soil collected from the test site. The TFS collected during two subsequent tests had similarly elevated chloride, suggesting that the results obtained in this study are applicable to other tests assuming that the rocket fuel composition remains similar. The field-deployed coupons exposed to the TFS had higher corrosion rates (3.6-5.0 mpy) than paired non-exposed coupons (1.6-1.8 mpy). Corrosion rates for all coupons decreased over time, but coupons exposed to the TFS always had a higher rate than the non-exposed. Differences in corrosion rates between the three study sites were also observed, with sites receiving more TFS deposition having higher corrosion rates.

  20. Advanced manufacturing technologies for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbruck, S.; Nedelec, R.; Buchkremer, H.P.; Bram, M.; Menzler, N.H.; Stover, D. [Forschungszentrum Julich GmbH, Julich (Germany). Inst. of Energy Research


    Advances in manufacturing technologies play an important role for the marketability of solid oxide fuel cells (SOFC). Highly cost-effective mass production methods are necessary in order to meet the industry's demands for both stationary and mobile application. Sol-gel methods have already been used for several years as a method of producing thin mesoporous and microporous membrane films of several materials including electrolyte materials. This paper discussed the use of a colloidal sol to create a first layer on top of a standard Julich coatmix-substrate with the spin-coating technique. The experimental methods were described with particular reference to the electrochemical characterization of cells produced; synchronization of roll-coating transport; and scanning electron microscopy. It was concluded that thin-film technologies like sol-gel, roll-coating and physical vapour phase deposition are promising candidates for producing SOFCs with high-performance at low operating temperatures. It was possible to demonstrate the potential of thin film technology for sputtered strontium-diffusion barriers, but optimization of the current ceramic coating methods is still necessary for the electrolyte layers. 3 refs., 8 figs.

  1. Advanced Technology Development: Solid-Liquid Interface Characterization Hardware (United States)


    Characterizing the solid-liquid interface during directional solidification is key to understanding and improving material properties. The goal of this Advanced Technology Development (ATD) has been to develop hardware, which will enable real-time characterization of practical materials, such as aluminum (Al) alloys, to unprecedented levels. Required measurements include furnace and sample temperature gradients, undercooling at the growing interface, interface shape, or morphology, and furnace translation and sample growth rates (related). These and other parameters are correlated with each other and time. A major challenge was to design and develop all of the necessary hardware to measure the characteristics, nearly simultaneously, in a smaller integral furnace compatible with existing X-ray Transmission Microscopes, XTMs. Most of the desired goals have been accomplished through three generations of Seebeck furnace brassboards, several varieties of film thermocouple arrays, heaters, thermal modeling of the furnaces, and data acquisition and control (DAC) software. Presentations and publications have resulted from these activities, and proposals to use this hardware for further materials studies have been submitted as sequels to this last year of the ATD.

  2. Rocket noise - A review (United States)

    McInerny, S. A.


    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.



    Raghu Nandan Reddy* and Arshia Shariff


    Solid lipid nanoparticles are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, research and clinical medicine, as well as in other varied sciences. Solid lipid nanoparticle (SLN) dispersions have been proposed as a new type of colloidal drug carrier system suitable for intravenous administration. Solid lipid nanoparticles (SLNs) technology represents a promising new approach to lipophilic drug delivery. Solid lipid nanopa...

  4. High-speed schlieren imaging of rocket exhaust plumes (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael


    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  5. Solid propellants for rockets. Rocket suishin yaku

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. (Defense Agency, Tokyo (Japan). Technical Research and Development Inst.)


    Physical and chemical ProPerties and combustion characteristics of propellants differ according to the combination of oxidizers and fuel components. Composite smoke propellant, having crystalline ammonium perchlorate as an oxidizer and hydrocarbon Polymer as a fuel, has higher specific impulse and improved mechanical properties compared to smokeless double base propellant consisting of nitroglycerin and nirocellulose. Double base propellants with low specific impulse are combined with nitramines( RDX or HMX ) to make composite modified double based( CMDB ) propellants, as a result the smokeless property of double base propellant is preserved and the combustion efficiency is increased. With the combination of oxidizing agents and fuels, formation of various high functional propellants has been possible and energetic azide polymers have provided possibilities for fuels of propellants. 3 refs., 6 figs., 3 tabs.

  6. Rocket launchers as passive controllers (United States)

    Cochran, J. E., Jr.; Gunnels, R. T.; McCutchen, R. K., Jr.


    A concept is advanced for using the motion of launchers of a free-flight launcher/rocket system which is caused by random imperfections of the rockets launched from it to reduce the total error caused by the imperfections. This concept is called 'passive launcher control' because no feedback is generated by an active energy source after an error is sensed; only the feedback inherent in the launcher/rocket interaction is used. Relatively simple launcher models with two degrees of freedom, pitch and yaw, were used in conjunction with a more detailed, variable-mass model in a digital simulation code to obtain rocket trajectories with and without thrust misalignment and dynamic imbalance. Angular deviations of rocket velocities and linear deviations of the positions of rocket centers of mass at burnout were computed for cases in which the launcher was allowed to move ('flexible' launcher) and was constrained so that it did not rotate ('rigid' launcher) and ratios of flexible to rigid deviations were determined. Curves of these error ratios versus launcher frequency are presented. These show that a launcher which has a transverse moment of inertia about its pivot point of the same magnitude as that of the centroidal transverse moments of inertia of the rockets launched from it can be tuned to passively reduce the errors caused by rocket imperfections.

  7. Noncircular Orifice Holes and Advanced Fabrication Techniques for Liquid Rocket Injectors (Phases 1, 2, 3, and 4) (United States)

    Mchale, R. M.; Nurick, W. H.


    A comprehensive summary of the results of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices is presented. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.


    Directory of Open Access Journals (Sweden)

    Raghu Nandan Reddy* and Arshia Shariff


    Full Text Available Solid lipid nanoparticles are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, research and clinical medicine, as well as in other varied sciences. Solid lipid nanoparticle (SLN dispersions have been proposed as a new type of colloidal drug carrier system suitable for intravenous administration. Solid lipid nanoparticles (SLNs technology represents a promising new approach to lipophilic drug delivery. Solid lipid nanoparticles are spherical lipid particles ranging in size from 1 to 1000 nm and are dispersed in water or in aqueous surfactant solution. It is identical to an oil-in-water emulsion, but the liquid lipid (oil of the emulsion has been replaced by a solid lipid, i.e., yielding Solid Lipid Nanoparticles. SLN are particles made from solid lipid or lipid blends produced by high pressure homogenization. The biodegradable and bioacceptable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. SLNs can also be used to improve the bioavailability of drugs. In this present review this new approach is discussed in terms of their advantages, disadvantages, methods, characterization, pharmacokinetic studies, in-vivo studies, in-vitro studies, and special features

  9. Advances in the research on the solid propellant properties abroad (United States)

    Du, Lei; Jiang, Zhirong


    The recent research on the mechanical properties, burning behavior and processing technology of solid propellants abroad was reviewed. There are some available results in predicting theoretically the mechanical and rheological properties of solid propellants. In order to reduce the cost and increase the reliability in propellants processing, there is great demand on the design and manufacture of continuous mixer of high efficiency and safety. The research on the thermoplastic elastomers used as a kind of future binder of solid propellants has attracted more and more attention of many relevant experts.

  10. FEM Modelling and Oscillation Analysis of Solid Propellant Rocket Motor%固体火箭发动机柔性喷管有限元建模及摆动分析

    Institute of Scientific and Technical Information of China (English)

    王成林; 刘勇; 文立华


    The methods of FEM Modelling and Oscillation Analysis of Solid Propellant Rocket Motor were explores. The FEM model of flexible nozzle using the equivalent model of flexible joint based on the three-direction custom spring elements is build; modify the FEM model of the flexible joint according to the experiment data; and carry out the oscillation analysis of solid propellant rocket motor.%研究了固态火箭发动机柔性喷管有限元建模及摆动分析方法.利用基于自定义三向弹簧单元的柔性接头线性等效模型,建立了发动机柔性喷管有限元模型.根据试验数据对柔性接头模型进行修正,并对发动机柔性喷管进行了摆动分析.

  11. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi


    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein


    Walton, J. T.


    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  13. Optimization of Tape Winding Process Parameters to Enhance the Performance of Solid Rocket Nozzle Throat Back Up Liners using Taguchi's Robust Design Methodology (United States)

    Nath, Nayani Kishore


    The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L{9/'} (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.

  14. The Analysis for Grain Structural Integrity of a Certain Solid Rocket Motor%某发动机装药结构完整性分析

    Institute of Scientific and Technical Information of China (English)

    张亮; 邢国强


    Based on three-dimension viscoelastic finite element method, by MSC/NASTRAN software system, the grain structural integrity of the motor under internal pressure load, under thermal load and under the combined action of the two load is analyzed and evaluatedrespectively. The results show that the grain structural integrity of the solid rocket motor meets the design requirement satisfaction.%基于三维粘弹性有限元模型,应用MSC/NASTRAN软件对某发动机分别在固化降温、燃气内压载荷条件下的装药结构完整性进行分析,并对该发动机在固化降温、燃气内压两种载荷联合作用下的装药结构完整性进行评估。结果表明,该发动机的装药结构完整性满足要求。

  15. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds (United States)

    Cofer, W. R., III; Pellett, G. L.


    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  16. Analysis of velocity-coupled response function data from the dual rotating valve. [combustion stability of solid rocket propellants (United States)

    Brown, R. S.; Waugh, R. C.


    The results of a re-evaluation of the propellant combustion data obtained using the dual valve approach for measuring velocity-coupling characteristics of solid propellants are presented. Data analysis and testing procedures are described. The velocity response is compared to pressure-coupled response data within the context of thermal wave response theory. This comparison shows important inconsistencies which cast doubt on inferring the velocity response from pressure-coupled response functions.

  17. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Angelos, E-mail: [London Centre for Nanotechnology and Department of Chemistry, University College London, London (United Kingdom); Martinez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Alavi, Ali [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kresse, Georg [Faculty of Physics and Center for Computational Materials Science, Department of Physics, University of Vienna, Sensengasse 8/12, A-1090 Vienna (Austria); Manby, Frederick R. [Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)


    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  18. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen


    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  19. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry


    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  20. Electrochemical impedance spectroscopy in solid state ionics: recent advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.


    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another p

  1. 高精度小型固体火箭发动机184性能检测系统研究%Research on the Performance Detecting System of High-precision Small-scale Solid Rocket Motor

    Institute of Scientific and Technical Information of China (English)

    冯喜平; 董韬; 李进贤; 曹琪


    针对固体火箭发动机研制和生产中的性能检测需求,基于柔性试验架建立试验平台,采用虚拟仪器技术搭建测控平台,使用LabvieW7.1开发一套包含参数标定、数据测量、数据处理等模块的固体火箭发动机性能检测试验测控软件,构建了固体火箭发动机性能检测系统。通过对标准发动机进行测试,结果表明:该系统实现了发动机参数的现场方便标定、发动机数据的高速采集和实验数据的快速处理,测量精度达到0.3%的工程要求,并同步监测了整个发动机的工作过程,满足了发动机性能检测的高精度要求。%According to the performance detecting requirements in development and manufacture of solid rocket motor, a test platform has been set up based on flexible test stand, in which the measurement and control platform has been built using virtual instrument technology ; a set of solid rocket motor ground test performance detecting software including parameter calibration model, data measure model and data processing model have been developed based on the LabViewT. 1 ; and the solid rocket motor performance detecting system was built. The application results through testing normative solid rocket motor show that: this system could actualize parameter calibration expediently, experimental data collection and processing rapidly, even reach the measurement precision by 0.3% required in projects and could monitor the testing process of solid rocket motor simultaneously, which satisfied high-precision requirements of motor performance detection.

  2. Advanced solid elements for sheet metal forming simulation (United States)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.


    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  3. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine



    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  4. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain (United States)

    Oriekov, K. M.; Ushkin, M. P.


    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  5. 某发动机石墨喉衬的裂纹成因分析%Graphite throat insert cracks analysis of a solid rocket motor

    Institute of Scientific and Technical Information of China (English)

    熊波; 白彦军; 唐敏


    确保石墨喉衬在工作期间的结构完整性是某级间分离固体发动机设计的重要任务,初步设计方案经试车考核后,部分石墨喉衬出现了裂纹。针对该发动机喷管进行了喉衬热结构仿真分析,获得了不同危险点的应力大小和状态,并探讨了该喉衬裂纹的成因。结果表明,喷管仿真分析结果与实际试车结果吻合较好,点火初期石墨喉衬在大梯度的温度和压力冲击下,内部易产生较大的热应力,若石墨材料轴向拉伸强度不足,将可能导致裂纹出现。%A solid rocket motor is used for the separation of new launch vehicle stage. One of the important tasks is to ensure the integrality of graphite throat insert in the firing time. After experiment of the initial design, crack was observed in some of the throat insert was proposed. A simulation analysis method for throat insert thermal structure was proposed. The reason for the crack was explored. The results show that, in the initial time of firing, interior of graphite throat may produce great thermal stress under large gradient temperature and pressure, and the insufficiency of tensile strength in axial direction gives birth to the crack.

  6. 固体火箭发动机药柱加压固化仿真%Simulation on pressure cure of solid rocket motor grain

    Institute of Scientific and Technical Information of China (English)

    宗路航; 杜聪; 卢山; 姚东; 郜婕; 沙宝林


    For those case-bonded casting solid rocket motors ( SRMs) with large outside/inside radius ratio of the grain, high thermal strain will be generated in the propellant grain subjected to thermal loading, which significantly limit the performance of SRM. Pressure cure is an effective method to reduce the thermal strain in the grain. In this paper, the theory of pressure cure was analyzed and the relationship between the desired pressure and the parameters of the SRM was deduced. Then, a finite element method ( FEM) of pressure cure named two step method was proposed. Theoretical calculation and FEM simulation were carried out on a tube motor with four different material cases. The recommended pressure of pressure cure of four cases were given out.%对于药柱外/内径比(m数)很大的贴壁浇注式固体火箭发动机,在固化降温后,推进剂药柱内会产生显著的热应变,这严重限制了发动机的进一步高性能化. 加压固化是一种降低推进剂药柱内热应变的有效方法. 文中分析了加压固化的原理,推导出了加压固化所需压强与发动机参数之间的关系式,提出了一种两步分析法的加压固化有限元分析方法. 针对4种不同壳体材料的圆管发动机,进行了加压固化理论计算与有限元仿真分析,给出了4种壳体加压固化时的推荐压强.

  7. 固体火箭发动机环缝式气动喉部研究%Investigation of ring aerodynamic throat for solid rocket motor

    Institute of Scientific and Technical Information of China (English)

    谢侃; 刘宇; 王一白


    对固体火箭发动机气体二次流控制的环缝式气动喉部方案进行了数值模拟.研究了二次流不同喷射位置、角度、流率及喷嘴几何参数对气动喉部调节性能的影响规律.计算得到了气动喉部的流场特征,即气动喉部的声速线起点在二次流喷口的下游,并得到了气动喉部特征存在的喷注范围.结果还表明使二次流的喷入位置越靠近喉部、增大二次流流量或减小喷射角度都能明显增加气动喉部调节性能.%A ring aerodynamic throat concept of solid rocket motor controlled by secondary injection was simulated numerically. The influence and rules of secondary flow injection positions, injection angle, secondary flow rate and injector geometry parameters on the performance of aerodynamic throat were studied. The flow field character of aerodynamic throat was attained by calculation, namely: the starting point of sonic line from the downstream of secondary injection outlet. And the scope of injection positions for the existence of aerodynamic throat character was also attained. The results show that, the performance of aerodynamic throat can be obviously increased by making secondary flow injector close to the throat, increasing secondary flow rate or decreasing secondary flow injection angle.

  8. Solid State Ionics Advanced Materials for Emerging Technologies (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.


    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  9. Numerical Analysis on the Thermal Safety of Solid Rocket Motor Propellant%固体发动机装药热安全性数值分析

    Institute of Scientific and Technical Information of China (English)

    刘文一; 焦冀光


    Objective To investigate the safety of solid rocket motor(SRM)when it was cook-off. Methods Finite element model of solid SRM was established, and the temperature distribution and the explosion delay time of propellant in fast cook-off mode and slow cook- off mode were computed. Results Propellant reached its critical temperature (352 ℃) after 47 h slow cook-off, while it reached its critical temperature (355 ℃) after 697 s fast cook-off. Conclusion It was proven that the thermal diffusivity in fast cook-off mode was greater than that in slow cook-off mode, while the temperature gradient had an opposite trend. The reaction position of propellant was different in the two different working modes when it reached critical temperature, and the thermal storage capacity of propellant was dependent on its thickness.%目的:研究固体火箭发动机遭受火烤时的安全性。方法建立发动机有限元模型,计算推进剂在慢速烤燃和快速烤燃工况下的温度分布和爆炸延迟时间。结果推进剂慢烤47 h后达到临界温度,其值为352℃;快烤推进剂加热697 s后达到临界温度,临界温度为355℃。结论推进剂在快速烤燃模式下的热扩散速率大于慢速烤燃工况下,但是温度梯度则相反。两种工况下推进剂达到临界温度后开始反应的位置不同,推进剂厚度决定了其储热能力。

  10. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David


    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  11. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan


    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... methods which advantageously minimize the number of modeling parameters and the parameters used have direct physicochemical meaning. This is accomplished by (i) employing an improved cell model where the representative 0-D resistive-capacitive type EC elements are replaced by analytical 1-D porous......) constraining the parameter values during fitting to ranges of physically reasonable values. Using these methods, the number of fitting parameters for four impedance spectra measured with isolated changes to the fuel and oxidant gas compositions, has been reduced from 80 to 21-34 depending on the model...

  12. Applied solid state science advances in materials and device research 3

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 3 covers reviews that are directly related to the two devices which are the epitome of applied solid state science - the transistor and the laser. The book discusses the physics of multilayer-gate IGFET memories; the application of the transient charge technique in drift velocity; and trapping in semiconductors and in materials used in xerography, nuclear particle detectors, and space-charge-limited devices; as well as thin film transistors. The text describes the manipulation of laser beams in solids and discusses

  13. Solid-Liquid Interface Characterization Hardware: Advanced Technology Development (ATD) (United States)

    Peters, Palmer N.; Sisk, R. C.; Sen, S.; Kaukler, W. F.; Curreri, Peter A.; Wang, F. C.; Rose, M. Franklin (Technical Monitor)


    This ATD has the goal of enabling the integration of three separate measurement techniques to characterize the solid-liquid interface of directionally solidified materials in real-time. Arrays of film-based metal thermocouple elements are under development along with compact Seebeck furnaces suitable for interfacing with separately developed X-ray Transmission Microscopes. Results of applying film arrays to furnace profiling are shown, demonstrating their ability to identify a previously undetected hardware flaw in the development of a second-generation compact furnace. Results of real-time furnace profiling also confirmed that the compact furnace design effectively isolates the temperature profiles in two halves of the furnace, a necessary feature. This isolation had only been inferred previously from the characteristics of Seebeck data reported. Results from a 24-thermocouple array successfully monitoring heating and isothermal cooling of a tin sample are shown. The importance of non-intrusion by the arrays, as well as furnace design, on the profiling of temperature gradients is illustrated with example measurements. Further developments underway for effectively combining all three measurements are assessed in terms of improved x-ray transmission, increased magnification, integral arrays with minimum intrusion, integral scales for velocity measurements and other features being incorporated into the third generation Seebeck furnace under construction.

  14. Design of Solid-fuel Rocket Attitude Control System Based on Monte Carlo Method%基于蒙特卡罗方法的固体火箭姿态控制系统设计

    Institute of Scientific and Technical Information of China (English)

    王辰琳; 赵长见; 宋志国


    在固体火箭姿态控制系统设计过程中,为保证设计结果的可靠性,需要针对发动机性能、全箭质量及气动参数等进行拉偏仿真分析,各项偏差的大小及使用方法直接影响对固体火箭控制能力的需求。传统固体火箭姿态控制系统设计时,一般针对各项偏差进行极限拉偏组合仿真,导致设计结果较为保守。针对总体各项偏差量,建立概率模型,采用蒙特卡罗方法进行控制力分析。数学仿真结果表明,相比传统设计方法,在保证系统具有一定的可靠度情况下,大幅降低了对姿态控制系统的需求,优化了系统方案。%In the design process of solid-fuel rocket attitude control system, it is necessary to simulate based on population deviations of engine performance, whole solid-fuel rocket mass and aerodynamic parameter in order to assure the reliability of design results, because the using method of deviation factors are accounted for the demand of solid-fuel rocket control. The extreme value of population deviations are taken in the traditional design method, but it leads to more conservative design results. The probability models of population deviations are established, and then Monte Carlo methods are introduced to analysis the controlling force. The simulated results show that, compared to the traditional design method, the probability design method reduces the demand of solid-fuel rocket attitude control system and optimizes the system design scheme obviously.

  15. Early clinical investigation of sulofenur with a daily schedule in advanced solid tumours

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Pedersen, H; Andersen, E


    modification for the individual patient at any given dose level; 38 patients with advanced solid malignant tumours were enrolled. Haemolytic anaemia was the main side effect. The toxicity was marked at dose levels of 600 and 700 mg/m2. Moderate methaemoglobinaemia also occurred. One case of reversible toxic...

  16. FAU in Treating Patients With Advanced Solid Tumors or Lymphoma (United States)


    Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  17. Replacement of chemical rocket launchers by beamed energy propulsion. (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya


    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  18. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua. (United States)

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham


    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment.

  19. Rocket Science at the Nanoscale. (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph


    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  20. Research on Integrative Bonding Process of Solid Rocket Motor Nozzle%固体火箭发动机喷管一体化粘接工艺研究

    Institute of Scientific and Technical Information of China (English)

    王纪霞; 包乐; 胡大宁; 张崇耿; 张新航


    Influence factors on nozzle bonding property including temperature, adhesive, bonding process and gap between metal shell and insert were analyzed to satisfy integrative bonding process of some solid rocket nozzle. The result of the test indicated that the best bonding process was found through controlling the factors, and the reliability of solid rocket was protected.%为了满足固体火箭发动机喷管一体化的粘接要求,提高产品的粘接质量,分析了胶粘剂性能、粘接工艺、温度及内衬与壳体的配合间隙对喷管粘接质量的影响,结果表明,通过控制影响一体化喷管粘接的各种因素,得出了最佳的工艺生产条件,保证了发动机工作的可靠性。

  1. Simulating Modulated Thermography of Cladding Debond in Solid Rockets%固体火箭包覆层脱粘调制红外热波检测法的数值模拟

    Institute of Scientific and Technical Information of China (English)

    郭兴旺; 李苒笙; 丁蒙蒙


    调制红外热波无损检测是一种可以检测材料内部缺陷的先进技术,在固体火箭发动机包覆层脱粘的诊断中有一定的应用前景.以有限元法对固体火箭发动机包覆层脱粘的调制红外热波检测法进行数值模拟,研究加热条件和结构对可检测性的影响.得出可检信息参数(表面过余温度幅值、相位和相位差)随热波激励条件(调制频率、热流强度)和结构参数(材料、缺陷大小、深度、厚度等)变化的规律.针对典型材料和结构尺寸,给出最佳调制频率、盲频以及相位差的预测值.调制红外热波检测法可用于固体火箭发动机包覆层脱粘的无损检测,检测条件可通过计算机仿真来优化.%Modulated infrared thermal wave nondestructive testing (IR NDT) is an advanced technique of internal flaw inspection,and has certain application prospect in detecting cladding debond in solid rocket motors (SRM). The numerical simulation of modulated IR NDT for cladding debond in SRM is carried out by using finite element method, and the influences of heating condition and structure on the detectability are studied. The evolutions of informative parameters (i.e. the amplitude, phase and phase difference of surface excessive temperature) versus heating condition (i.e. the modulation frequency and heat flow intensity) and structural parameters (i.e. materials, defect size, depth and thickness) are obtained. The optimal modulation frequency, blind frequency and phase difference for typical material and structural size are predicted. Modulated thermography can be used in detecting cladding debond in SRM, and the test condition can be optimized through computer simulation.

  2. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge (United States)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele


    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  3. Advances in medium and high temperature solid oxide fuel cell technology

    CERN Document Server

    Salvatore, Aricò


    In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches. Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.

  4. Nuclear rockets: High-performance propulsion for Mars (United States)

    Watson, C. W.


    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  5. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server


    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  6. Solar Thermal Rocket Propulsion (United States)

    Sercel, J. C.


    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  7. Computation of ablation of thermal-protection layer in long-time working solid rocket motors%长时间工作固体火箭发动机燃烧室热防护层烧蚀计算

    Institute of Scientific and Technical Information of China (English)

    张斌; 刘宇; 王长辉; 任军学


    为了研究长时间工作固体火箭发动机燃烧室的热防护性能,运用三方程烧蚀模型和运动边界显示差分格式,对长时间固体火箭发动机内绝热层烧蚀及温度场进行了耦合计算.计算得到了化学烧蚀率、扩散烧蚀率、燃烧室内壁温度等参数.计算结果表明,所研究的长时间工作发动机燃烧室烧蚀由扩散过程控制.此外,在求解烧蚀子程序时,提出了一种简便有效的赋初值方法.采用文中方法在得到合理计算结果的同时,使得烧蚀计算时间大大缩短.该项研究为长时间工作固体火箭发动机燃烧室热防护层设计提供了有效的分析手段.%In order to study thermal-protection function of long-time working solid rocket motors, insulation ablation and temperature field of long-time working solid rocket motors were coupling calculated by moving boundary explicit-difference method and three equations ablation model. Ablation velocity caused by chemical reaction or diffnsion process and temperature of inner wall were calculated. Numerical results show that the ablation is restricted by the diffusion process. In addition, when solving the ablation subroutine,a convenient and effective method for setting initial value was proposed. Using this new method, the reasonable results were obtained and the calculation time was greatly decreased. This research can offer an effective analytical method for long-time working solid rocket motors.

  8. Study on Horizontal Docking Assembly Method for Segment Thin-walled Solid Rocket Motor with Large Opening%薄壁大开口分段固体发动机卧式对接装配研究

    Institute of Scientific and Technical Information of China (English)

    彭莎莎; 刘永盛; 宗路航; 罗玲莉; 苏昌银


    对薄壁大开口分段固体发动机卧式对接装配进行研究,应用ANSYS软件对燃烧室在重力作用下的应力、应变云图进行分析,提出变形识别与安全校正是解决结构件形变的一种方法。采用径向圆周10点均分校正法,采集燃烧室对接径向U型件边沿的变形量,制定了燃烧室变形安全校正值,经校正后中段与前段燃烧室对接径向边沿的10个点之间距离最大值为0.02mm。实现了Φ2m/分段式大型发动机对接装配。经Φ2m/分段式发动机地面试车获得成功证实校正值合理。%In this paper, the horizontal docking assembly of segment thin-walled large opening solid rocket motor is analyzed. The stress and strain of combustion chamber under the gravity is analyzed by ANSYS software and then deformation recognition and safe correction are proposed to prevent deformation of structural parts. The radial circular 10 average points correction method is used to collect the deformation amount of docking radial direction of edge of the U-shaped part, and to devise the safety correction value of deformation of single and double combustion chamber. Finally it is proved that the biggest gap of docking radial edge of 10 points between front and middle chamber is 0.02mm using different angle correction. Docking assembly of 2m/ segment solid rocket motor is realized and the correction value is proved reasonable after the success of ground fire test of 2m/segment solid rocket motor.

  9. Improved hybrid rocket fuel (United States)

    Dean, David L.


    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  10. A phase I study of bortezomib, etoposide and carboplatin in patients with advanced solid tumors refractory to standard therapy

    NARCIS (Netherlands)

    Lieu, Christopher; Chow, Laura; Pierson, A. Scott; Eckhardt, S. Gail; O'Bryant, Cindy L.; Morrow, Mark; Tran, Zung Vu; Wright, John J.; Gore, Lia


    Purpose: To evaluate the toxicity, pharmacological, and biological properties of the combination of bortezomib, etoposide, and carboplatin in adults with advanced solid malignancies. Patients and methods: Patients received escalating doses of bortezomib, etoposide, and carboplatin every 21 days. Sur

  11. Factors of Influencing Bond Characteristics at II Interface of a Single Chamber Dual Thrust Solid Rocket Motor Grains%一种单室双推力发动机装药Ⅱ界面粘接性能研究

    Institute of Scientific and Technical Information of China (English)

    何德伟; 刘戎; 侯少锋


    Based on the properties of single chamber dual thrust solid rocket motor grain,the effects of the thickness of thermal insulation,liner pre-curing and the vertical storage of pre-cured liner in vacuum on the bond characteristics at II interface were discussed in this paper.Some technical methods were proposed for improving the bond properties at interface.%根据单室双推力发动机装药的特点,对厚度绝热层、衬层的预反应及预固化衬层在真空状态下垂直存放等绝热衬层加工工艺条件对装药Ⅱ界面粘接性能的影响进行了研究,并提出了改善界面性能的技术途径。

  12. Effects of Ignition Process on the Internal Ballistics of Small-size Solid Rocket Motor%点火过程对小型固体火箭发动机内弹道影响

    Institute of Scientific and Technical Information of China (English)

    刘赟; 王浩; 陶如意; 朱德龙


    为了研究某小型固体火箭发动机点火过程对内弹道性能的影响,建立包含点火过程的小型固体火箭发动机的内弹道数值研究模型和试验验证方案,对点火药量为1.0g、0.8g、0.6g和0.4g的发动机进行了内弹道数值研究,试验研究了点火药量为1.0g和0.8g两种情况,数值计算结果与试验结果基本一致.研究结果表明:小型固体火箭发动机由于燃烧室体积小,点火过程对内弹道影响明显;点火药量越大,点火药装填密度越大,引起压力峰值越大,稳定工作时间越短;经验估算得到的1.0g点火药量产生了过高的压力,是稳定压力的三倍,0.8g的点火药量能够满足点火可靠性和总体设计要求,产生最大压力为27.08 MPa,稳定工作时长159 ms,建议该小型火箭发动机的点火药量为0.8g.%To study the effects of ignition process on interior ballistic performance of a small-size solid rocket motor,the model for interior ballistic calculation including ignition process of small-size solid rocket motor and verification plan were set up. The numerical calculations interior ballistic performance with 1.0 g,0.8 g,0,6 g and 0.4 g igniter masses were carried out. The tests of 1.0 g and 0.8 g igniter mass were done. The compute result and test data were basically consistent. The results indicated that; the effect of ignition process on interior ballistic about small-size solid rocket motor is obvious for the small combustion chamber volume. The igniting charge density and pressure peak increase .stable operating time of motor decreases as the igniter mass increases. The 1.0 g igniter mass is estimated by empirical formula,1.0 g igniter mass brings too high pressure to motor,the value of pressure reaches three times the stable pressure. 0.8 g igniter mass meets ignition reliability and general design requirements,and the maximum pressure is 27.08 MPa,and stable work time is 159 ms,and 0.8 g igniter mass is suggested for the

  13. Rockets two classic papers

    CERN Document Server

    Goddard, Robert


    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  14. Mechanics Numerical Simulation of Filament ̄wound Solid Rocket Motor Shell%纤维缠绕固体火箭发动机壳体的力学数值仿真

    Institute of Scientific and Technical Information of China (English)

    王凯; 鞠玉涛


    针对某种纤维缠绕复合材料固体火箭发动机壳体,依据原壳体在ABAQUS中建立了有限元模型,建模过程中将纤维缠绕层视为层合板来处理,简化了模型,并对发射瞬态进行有限元数值计算,分别求出了环向层6层的应力和缠绕层6层的应力,以便于强度分析,并对于铺层方案进行求解,得出数据结论,数据结果与实际情况符合,研究结果为纤维缠绕固体火箭发动机优化分析提供了理论依据。%Aiming at some certain kind of filament ̄wound composite solid rocket motor shel,on the basis of the original shel,the fi ̄nite element model is established. During the process of modeling,the filament winding layers are regarded as the laminated plate,and the finite element numerical calculation of the instantaneous state of the firing is done. Throug the stress calculation,its strength is analyzed to find the way of laying down that it needs to meet the strength requirement. The results provide a theoretical basis for better analysis of filament ̄wound solid rocket motor.

  15. 固体火箭发动机自动回转系统的设计与实现%Design and Implementation of Auto-rotation System for Solid Rocket Engine

    Institute of Scientific and Technical Information of China (English)

    赵锴; 何敏; 于殿泓; 郑毅


    In the process of high energy X-ray radiography detection, the disadvantages of low control accuracy and difficult radiation-proof for operators exist in manually controlling the rotation of solid rocket engine. Thus, the auto-rotation system based on OMRON CQM1H PLC has been designed. Two operating modes: auto and manual are equipped in this system to implement remote and high accurate automatic rotating function for solid rocket engine. The practice shows that the system features high stability and reliability, ease maintenance, and satisfies the requirements of explosion-proof, safety and high reliability.%在对固体火箭发动机进行高能X射线照相检测的过程中,针对采用人工方式存在回转固体火箭发动机存在控制精度不高、人员辐射防护困难等问题,设计了一种基于OMRON CQM1H PLC的自动回转系统.系统具备手动和自动两种运行模式,实现了固体火箭发动机的远程、高精度和自动化回转控制功能.实际应用表明,系统稳定性好、可靠性高且易于维护,符合检测现场防爆安全和高可靠性的要求.

  16. NATO Advanced Research Workshop on Ionization of Solids by Heavy Particles

    CERN Document Server


    This book collects the papers presented at the NATO Advanced Research Workshop on "Ionization of Solids by Heavy Particles", held in Giardini-Naxos (Taormina), Italy, on June 1 -5, 1992. The meeting was the first to gather scientists to discuss the physics of electron emission and other ionization effects occurring during the interaction of heavy particles with condensed matter. The central problem in the field is how to use observations of electron emission and final radiation damage to understand what happens inside the solid, like excitation mechanisms, the propagation of the electronic excitation along different pathways, and surface effects. The ARW began with a brief survey of the field, stressing the unknowns. It was pointed out that ionization theories can only address the very particular case of weak perturbations. For this problem, this meant high speed, low-charged projectiles (a perturbation treatment of interactions with slow, highly charged ions was later presented). Only semi-empirical ...

  17. Applied solid state science advances in materials and device research 6

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 6 covers the application of composites in electronic systems. The book discusses different types of composite-composite materials consisting of finely dispersed mixtures of metals and insulators; composite devices in which two distinct semiconductor devices are combined in one package; and composite glass fibers with the core and cladding differing in their optical properties. The text describes articles dealing with properties that can be achieved in versatile materials; light-emitting diodes and photodetectors th

  18. Applied solid state science advances in materials and device research 2

    CERN Document Server

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 2 covers topics about complex oxide materials such as the garnets, which dominate the field of magnetoelasticity and are among the most important laser hosts, and sodalite, which is one of the classic photochromic materials. The book discusses the physics of the interactions of electromagnetic, elastic, and spin waves in single crystal magnetic insulators. The text then describes the mechanism on which inorganic photochromic materials are based, as observed in a variety of materials in single crystal, powder, and gl

  19. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)


    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  20. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak (United States)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.


    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  1. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F


    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  2. Potential Climate and Ozone Impacts From Hybrid Rocket Engine Emissions (United States)

    Ross, M.


    Hybrid rocket engines that use N2O as an oxidizer and a solid hydrocarbon (such as rubber) as a fuel are relatively new. Little is known about the composition of such hybrid engine emissions. General principles and visual inspection of hybrid plumes suggest significant soot and possibly NO emissions. Understanding hybrid rocket emissions is important because of the possibility that a fleet of hybrid powered suborbital rockets will be flying on the order of 1000 flights per year by 2020. The annual stratospheric emission for these rockets would be about 10 kilotons, equal to present day solid rocket motor (SRM) emissions. We present a preliminary analysis of the magnitude of (1) the radiative forcing from soot emissions and (2) the ozone depletion from soot and NO emissions associated with such a fleet of suborbital hybrid rockets. Because the details of the composition of hybrid emissions are unknown, it is not clear if the ozone depletion caused by these hybrid rockets would be more or less than the ozone depletion from SRMs. We also consider the climate implications associated with the N2O production and use requirements for hybrid rockets. Finally, we identify the most important data collection and modeling needs that are required to reliably assess the complete range of environmental impacts of a fleet of hybrid rockets.

  3. Fluidized-Solid-Fuel Injection Process (United States)

    Taylor, William


    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  4. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L


    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  5. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants (United States)

    Beckstead, M. W.


    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  6. Clinical Analysis of Bisphosphonates Treatment on Bone Metastases and Hypercalcemia of Malignancy in Advanced Solid Tumor

    Institute of Scientific and Technical Information of China (English)

    MING Shu-hong; SUN Tie-ying


    Objective: To evaluate the efficacy and toleration of bisphosphonates therapy in patients with bone metastases and hypercalcemia of malignancy in advanced solid tumor. Methods: Patients with histologically or cytologically confirmed cancer and hypercalcemia with bone metastases were designed to open treatment with either 4mg zoledronic acid or 90mg pamidronate. The primary efficacy parameters were pain scores(NRS), Corrected serum calcium(CSC) and CSC effective rate. The vital signs, biochemical and hematological parameters were determined. Results: Twenty patients were enrolled in this study, twelve patients in zoledronic acid group and eight in pamidronate group. Zoledronic acid and pamidronate significantly palliated pain. Pain scores were significantly lower at end-point after Zoledronic acid or pamidronate infusion(5.92 vs 3.25,P<0.01;6.13 vs 4.38, P<0.01, respectively). The mean CSC level decreased significantly after Zoledronic acid or pamidronate infusion from 12.86 to 10.28mg/dl and 13.19 to 10.36mg/dl respectively. The CSC effective rate was about 90% at 14 days after infusion in two groups. There was no statistical significance for all primary efficacy parameters in zoledronic acid group compared with pamidronate group. An adverse reaction was mild fever after pamidronate infusion and then completely reversible. Conclusion: Zoledronic acid and pamidronate disodium were well tolerated and effective for bone metastases and hypercalcemia of malignancy in advanced solid tumor.

  7. Unique nuclear thermal rocket engine (United States)

    Culver, Donald W.; Rochow, Richard


    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps.

  8. Unique nuclear thermal rocket engine

    Energy Technology Data Exchange (ETDEWEB)

    Culver, D.W. (Aerojet Propulsion Division, P.O. Box 13222, Sacramento, California 95813-6000 (United States)); Rochow, R. (Babcock Wilcox Space Nuclear Systems, P.O. Box 11165, Lynchburg, Virginia 24506-1165 (United States))


    Earlier this year Aerojet Propulsion Division (APD) introduced a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars. This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection (E-D) rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1)Reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2)Eliminate need for a new, uncooled nozzle throat material suitable for long life application; (3)Practical provision for reactor power control; and (4)Use near term, long life turbopumps.

  9. Treating solid dairy manure using microwave-enhanced advanced oxidation process. (United States)

    Kenge, Anju A; Liao, Ping H; Lo, Kwang V


    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H(2)O(2)-AOP was conducted at a microwave temperature of 120 degrees C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53-0.75 g H(2)O(2)/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.

  10. Heterogeneous fuel for hybrid rocket (United States)

    Stickler, David B. (Inventor)


    Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.

  11. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation (United States)

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.


    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  12. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry. (United States)

    Yegemova, Saltanat; Bakaikina, Nadezhda V; Kenessov, Bulat; Koziel, Jacek A; Nauryzbayev, Mikhail


    Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40°C was not observed. Increase of temperature to 60°C and 80°C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24 mg kg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1 mg kg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods.

  13. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao


    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  14. Reorientation phenomena in imidazolium methyl sulfonate as probed by advanced solid-state NMR. (United States)

    Goward, Gillian R; Saalwächter, Kay; Fischbach, Ingrid; Spiess, Hans Wolfgang


    Evidence for reorientation of imidazolium rings in imidazolium methylsulfonate is demonstrated using solid-state NMR. This material is a model system for exciting new proton-conducting materials based on imidazole. Two advanced NMR methods, including 1H-13C and 1H-15N recoupled polarization transfer with dipolar sideband pattern analysis and analysis of the coalescence of 13C lineshapes are used to characterize the ring reorientation. The process is found to occur at temperatures well below the melting point of the salt, between 240 and 380 K, and is described by a single activation energy, of 38+/-5 kJ/mol. This material is considered as a model system for quantifying the ring reorientation process, which is often proposed to be the rate-limiting step in proton transport in imidazole-based proton conducting materials.

  15. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan


    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  16. Solid propellants. (United States)

    Marsh, H. E., Jr.; Hutchison, J. J.


    The basic principles underlying propulsion by rocket motor are examined together with the configuration of a solid propellant motor. Solid propellants and their preparation are discussed, giving attention to homogeneous propellants, composite propellants, energetic considerations in choosing a solid propellant, the processing of composite propellants, and some examples of new developments. The performance of solid propellants is investigated, taking into account characteristics velocity, the specific impulse, and performance calculations. Aspects of propellant development considered include nonperformance requirements for solid propellants, the approach to development, propellant mechanical properties, and future trends.

  17. Numerical investigation on operation process of solid ducted rocket with postpositional gas generator%后置燃气发生器的新型固冲发动机工作过程数值模拟

    Institute of Scientific and Technical Information of China (English)

    王云霞; 陈林泉; 杨向明; 张胜勇


    进行了后置燃气发生器的新型固体火箭冲压发动机直连式试验,并对实验演示用发动机补燃室三维内流场进行了数值模拟,将试验结果与数值模拟结果进行对比,验证了数值模拟的准确性.采用单因素比较分析的方法,研究了一次燃气喷射方式与补燃室长度对固冲发动机性能的影响.结果表明,一次燃气喷射角度为150°时的燃烧效率比60°时高14%,补燃室燃烧效率在一次燃气喷射角度为180°时达到最大值;8喷口的燃烧效率高于4喷口;补燃室长度增加,燃烧效率增大,补燃室长度为149 mm时的燃烧效率比99 mm仅高5%.%Direct-connected test of solid ducted rocket with postpositional gas generator was completed. Numerical investigation on the field of solid ducted rocket secondary chamber was presented. The simulation model was proved by comparing the test and CFD results. Furthermore, the effect of fuel injection style and length of secondary chamber on combustion efficiency was carried out by analysis method of single factor. The numerical results show that the combustion efficiency increases with either the number of fuel-inlet or the length of secondary chamber. In addition, the combustion efficiency was increased by 14 % when the fuel injection angle was equal to 150°, then increased to the maximum while the fuel injection angle was 180° , and the combustion efficiency was increased by only 5% when the length of secondary chamber increased to 149 mm.

  18. Design and application of solid, dense backfill advanced mining technology with two pre-driving entries

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zhang Jixiong; Guo Shuai; Gao Rui; Li Weikang


    New solid backfill mining technology provides unique technical advantages for‘three-under’ coal min-ing which refers to coal resources trapped under buildings, railways, and water bodies. This technology has a much higher recovery rate and can effectively control the surface subsidence. However, successful application of this technology depends heavily on geological conditions. To avoid the disadvantages asso-ciated with downward mining and overhead backfilling with this new technology, a new advanced solid backfill mining design with two pre-driving entries is proposed here to ensure the backfill effect. Taking Huayuan coal mine as an example, this paper tests the double gob-side entries retaining with no pillar left scheme and optimizes an integrated technology setup for backfill mining and gob-side entry retain-ing. Field applications show that the recovery rate increased from 40%for strip mining to 85%for backfill mining. Moreover, the new backfill technology allowed for better control over the surrounding rock deformation caused by the gob-side entry retaining effect and better control of ground subsidence as compared to strip mining.

  19. Advanced 2-micron solid-state laser for wind and CO II lidar applications (United States)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.


    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Diffrencial Absorption Lidar (DIAL) system for measuring atmospheric CO II concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  20. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications (United States)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.


    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  1. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.


    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  2. The Ion Rocket (United States)


    discharge velocity w and the speci- fic impulse lap respectively cannot be increased. At this limit condition the thermal rocket oecouos "choked up...structural quality is 900 t, 3) In the case of an atomic-driven thermal rocket ’,;lth specific Ipipulse ISjy«8C0 sec and thrust to weight ratio « 1, the

  3. Model Rockets and Microchips. (United States)

    Fitzsimmons, Charles P.


    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  4. The sky is falling II: Impact of deposition produced during the static testing of solid rocket motors on corn and alfalfa. (United States)

    Doucette, William J; Mendenhall, Scout; McNeill, Laurie S; Heavilin, Justin


    Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. Exposure to TFS, containing elevated levels of chloride (1000 times) and aluminum (2 times) relative to native soils, affected the germination, growth and tissue concentrations of various elements, depending on the type and level of exposure. Germination was inhibited by high concentrations of TFS in soil, but the impact was reduced if the TFS was pre-leached with water. Biomass production was reduced in the TFS amended soils and corn grown in TFS amended soils did not develop kernels. Chloride concentrations in corn and alfalfa grown in TFS amended soils were two orders of magnitude greater than controls. TFS exposed plants contained higher concentrations of several cations, although the concentrations were well below livestock feed recommendations. Foliar applications of TFS had no impact on biomass, but some differences in the elemental composition of leaves relative to controls were observed. Washing the TFS off the leaves lessened the impact. Results indicate that the TFS deposition could have an effect, depending on the amount and growth stage of the crops, but the impact could be mitigated with rainfall or the application of additional irrigation water. The high level of chloride associated with the TFS is the main cause of the observed impacts.

  5. Thermodynamic cycle analysis on solid propellant air-turbo-rocket%固体推进剂吸气式涡轮火箭发动机的气动热力循环分析

    Institute of Scientific and Technical Information of China (English)

    屠秋野; 丁朝霞; 陈玉春; 蔡元虎


    A numerical model for calculating performance of solid propellant air-turbo-rocket at design point was set up,and a relationship expression of fuel-air ratio of combustion based on compressor pressure ratio,tubine intet total temperature and turbine expansion ratio was put forward.And a relationship between the turbine expansion ratio and the bypass ratio was given.The effects of compressor pressure ratio, turbine inlet temperature,bypass ratio/turbine expansion ratio and flight Mach number on the specific thrust and specific impulse were analyzed quantitatively.%建立了固体推进剂吸气式涡轮火箭发动机的设计状态数值模型,提出了基于压气机增压比、涡轮前温度和涡轮落压比关系的燃烧室燃气与空气配比表达式,以及涡轮落压比和发动机涵道比的匹配关系.定量分析了压气机增压比、涡轮进口燃气总温、涵道比/涡轮落压比和飞行马赫数对固体推进剂吸气式涡轮火箭发动机的单位推力和比冲的影响.

  6. Another Look at Rocket Thrust (United States)

    Hester, Brooke; Burris, Jennifer


    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  7. The use of solid phase microextraction as sample preparation technique for determination of n-nitrosodimethylamine in water polluted by hydrazine-based rocket fuel

    Directory of Open Access Journals (Sweden)

    Bulat Kenessov


    Full Text Available A paper describes a method for determination of N-nitrosodimethylamine in water, polluted by spills of 1,1-dimethylhydrazine, based on solid phase microextraction coupled to gas chromatography/mass spectrometry. A method detection limit was determined to be 1 ug/kg, relative error was below 20%. A method is very sensitive and selective as well as quite simple, relatively cheap and fully automated.

  8. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi


    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  9. Phase i and pharmacological study of pazopanib in combination with oral topotecan in patients with advanced solid tumours

    NARCIS (Netherlands)

    Kerklaan, B. Milojkovic; Lolkema, M. P J; Devriese, L. A.; Voest, E. E.; Nol-Boekel, A.; Mergui-Roelvink, M.; Langenberg, M.; Mykulowycz, K.; Stoebenau, J.; Lane, S.; Legenne, P.; Wissel, P.; Smith, D. A.; Giantonio, B. J.; Schellens, J. H M; Witteveen, P. O.


    Background: This phase I study evaluated the safety, tolerability, maximum tolerated dose (MTD) and pharmacokinetics of two dosing schedules of oral topotecan in combination with pazopanib in patients with advanced solid tumours. Methods: Stage I of this study was to determine whether there was an i

  10. The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries (United States)

    Baldwin, Richard S.; Bennett, William R.


    In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or

  11. Regenerative Cooling for Liquid Rocket Engines

    Institute of Scientific and Technical Information of China (English)



    Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocket engines.Regenerative cooling is and advanced method which can ensure not only the proper running but also higher performance of a rocket engine.The theoretical model is complicated,it relates to fluid bynamics,heat transfer,combustion.etc…,In this paper,a regenerative cooling model is presented.Effects such as radiation,heat transfer to environment,variable thermal properties and coking are included in the model.This model can be applied to all kinds of liquid propellant rocket engines as well as similar constructions.The modularized computer code is completed in the work.

  12. Scaled Rocket Testing in Hypersonic Flow (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish


    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  13. Pharmacokinetic characteristics of vincristine sulfate liposomes in patients with advanced solid tumors

    Institute of Scientific and Technical Information of China (English)

    Zhao YAN; Zhong-ling ZHU; Zheng-zi QIAN; Ge HU; Hua-qing WANG; Wan-hui LIU; Guang CHENG


    Aim:To evaluate the single- and multiple-dose pharmacokinetics of vincristine sulfate liposomes (VSLI) in patients with advanced solid tumors.Methods:In single-dose pharmacokinetic study,16 patients were administered VSLI (1.5,2.0,or 2.3 mg.m-2) through intravenous infusion.Another 6 patients receiving vincristine sulfate (VCR,2.0 mg) were taken as the control.In multiple-dose pharmacokinetic study,12 patients were administered VSLI (1.5 or 1.8 mg.m-2) through intravenous infusion weekly for 4 consecutive weeks.The plasma concentration of VSLI was determined using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.Results:After intravenous infusion of the single dose of VSLI,the plasma concentrations were characterized by bi-exponential decline curves.No statistically significant differences were observed between the main pharmacokinetic parameters in the 3 dose groups.Compared with the patients receiving VCR,the patients treated with VSLI displayed an increase in the area under the plasma concentration vs time curve (AUC),and a decrease in plasma clearance rates.On the 4th cycle in the multiple-dose study,the plasma concentration of VCR in all subjects prior to the weekly administration was below the lower limit of quantification (LLOQ).The calculated pharmacokinetic parameters from the subjects in the multiple-and single-dose (1.5 mgm-2) groups had no significant differences.Although the administration of liposomal VCR may significantly elevate the plasma concentration of VCR,VSLI-associated adverse events were similar to those associated with conventional VCR.Conclusion:VSLI exhibits a lower clearance and a higher AUC compared with conventional VCR.No accumulation was observed in patients exposed to VSLI for 4 consecutive weeks.VSLI was generally tolerated in the subjects.The phase Ⅱ dose of VSLI may be recommended as 4 doses of 1.5 mg·m-2 for treatment of patients with advanced solid tumors.

  14. Rocket University at KSC (United States)

    Sullivan, Steven J.


    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  15. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server


    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  16. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. (United States)

    Senzer, Neil; Nemunaitis, John; Nemunaitis, Derek; Bedell, Cynthia; Edelman, Gerald; Barve, Minal; Nunan, Robert; Pirollo, Kathleen F; Rait, Antonina; Chang, Esther H


    Selective delivery of therapeutic molecules to primary and metastatic tumors is optimal for effective cancer therapy. A liposomal nanodelivery complex (scL) for systemic, tumor-targeting delivery of anticancer therapeutics has been developed. scL employs an anti-transferrin receptor (TfR), scFv as the targeting molecule. Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, is present in most human cancers. Rather than being transiently permissive for tumor initiation, persistence of p53 dysfunction is a continuing requirement for maintaining tumor growth. Herein, we report results of a first-in-man Phase I clinical trial of restoration of the normal human tumor suppressor gene p53 using the scL nanocomplex (SGT-53). Minimal side effects were observed in this trial in patients with advanced solid tumors. Furthermore, the majority of patients demonstrated stable disease. One patient with adenoid cystic carcinoma had his status changed from unresectable to resectable after one treatment cycle. More significantly, we observed an accumulation of the transgene in metastatic tumors, but not in normal skin tissue, in a dose-related manner. These results show not only that systemically delivered SGT-53 is well tolerated and exhibits anticancer activity, but also supply evidence of targeted tumor delivery of SGT-53 to metastatic lesions.

  17. Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes (United States)

    Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.


    The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.

  18. Bortezomib in combination with celecoxib in patients with advanced solid tumors: a phase I trial

    Directory of Open Access Journals (Sweden)

    Salzer Shanta


    Full Text Available Abstract Background COX-2 inhibitors, such as celecoxib, and ubiquitin-proteasome pathway inhibitors, such as bortezomib, can down-regulate NF-κB, a transcription factor implicated in tumor growth. The objective of this study was to determine the maximum tolerated dose and dose-limiting toxicities of bortezomib in combination with celecoxib in patients with advanced solid tumors. Methods Patients received escalating doses of bortezomib either on a weekly schedule (days 1, 8, 15, 22, and 29 repeated every 42 days or on a twice-weekly administration schedule (days 1, 4, 8, and 11 repeated every 21 days, in combination with escalating doses of celecoxib twice daily throughout the study period from 200 mg to 400 mg twice daily. Results No dose-limiting toxicity was observed during the study period. Two patients had stable disease lasting for four and five months each, and sixteen patients developed progressive disease. Conclusion The combination of bortezomib and celecoxib was well tolerated, without dose limiting toxicities observed throughout the dosing ranges tested, and will be studied further at the highest dose levels investigated. Trial registration number NCT00290680.

  19. Phase I Study of Capecitabine, Oxaliplatin, Bevacizumab, and Everolimus in Advanced Solid Tumors (United States)

    Rangwala, F.; Bendell, J.; Kozloff, M.; Arrowood, C.; Dellinger, A.; Meadows, J.; Tourt-Uhlig, S.; Murphy, J.; Meadows, K.L.; Starr, A.; Broderick, S.; Brady, J.C.; Cushman, S. M.; Morse, M.; Uronis, H.; Hsu, S.D.; Zafar, S.Y.; Wallace, J.; Starodub, A.; Strickler, J.; Pang, H.; Nixon, A.B.; Hurwitz, H.


    Purpose To define maximum tolerated dose (MTD), toxicities, and pharmacodynamics of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumor patients. Design This was a standard “3+3” dose-escalation trial. All subjects received bevacizumab 7.5mg/kg on day one of each cycle. Doses for capecitabine, oxaliplatin and everolimus were modified per dose limiting toxicity (DLT). Baseline and on-treatment plasma biomarkers were analyzed. Archived tumor mRNA levels were evaluated for NRP1, NRP2 and VEGF-A isoforms. Results Twenty-nine patients were evaluable for toxicity and 30 for efficacy. Two DLTs were observed in cohort 1 and one DLT each was observed in cohort -1 and -1b. Grade ≥3 toxicities included neutropenia, hypertension, perforation/fistula/hemorrhage, hypertriglyceridemia, diarrhea, and thromboembolism. Twelve subjects experienced partial response (PR); 12 had stable disease as best response. Three of seven chemorefractory metastatic colorectal cancer (mCRC) subjects experienced PR; eight of 15 chemonaive mCRC subjects experienced PR. Plasma TβRIII and IL-6 increased on treatment but without correlation to outcome. Increased VEGF165 levels significantly correlated with longer progression free survival. Conclusions Everolimus with full dose capecitabine, oxaliplatin, and bevacizumab had unacceptable toxicity. MTD was: everolimus 5mg daily; capecitabine 680mg/m2 BID days 1-14; oxaliplatin 100mg/m2 and bevacizumab 7.5mg/kg, day one. Activity was noted in mCRC. PMID:24711126

  20. US Rocket Propulsion Industrial Base Health Metrics (United States)

    Doreswamy, Rajiv


    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  1. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety (United States)

    Jaffe, Richard L.


    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  2. Computation of two-phase reacting flows in solid-liquid rocket ramjets%固液火箭冲压发动机内两相反应流场数值计算

    Institute of Scientific and Technical Information of China (English)

    马智博; 朱建士


    In order to compute three-dimens ional reacting flow fieldsestabl ished in the chambers of solid-liquid rocket ramjets,the block implicit algorit hm was used to solve the Navier-Stokes equations about gas,the Continuum Formul a tion Model and k-ε-Ap model were used to characterize the turbulent fl ow and vaporizatio n of droplets.The modified k-ε-g model was adopted to represent the combu stion of the fuels.Calculations were carried out under different chamber configuration s and initial droplet diameters,from which the effects of these conditions on t he combustion efficiency were analyzed.The numerical results reveal the p r ocesses of droplet vaporization and combustion.%为了计算固液混合式火箭冲压发动机补燃室内的三维反应流场,用块隐式法求解气相Navier-Stokes方程组,用连续介质模型和k-ε-Ap模型计算颗粒相的湍流流动与蒸发过程,用修正的k-ε-g模型描述燃料的燃烧。为了分析发动机设计参数对反应流场的影响,用不同的条件进行计算,并由此分析了补燃室几何结构和液体燃料初始颗粒直径对燃烧效率的影响。算例表明,计算方法有效可行,数值结果能够反映流场结构、液体燃料的蒸发和两种燃料的燃烧过程。

  3. 二次进气固冲发动机补燃室粒子沉积数值模拟%Numerical simulation of particle deposition in solid rocket ramjet chamber with secondary air inlets

    Institute of Scientific and Technical Information of China (English)

    严聪; 张志峰; 马岑睿; 张成涛


    基于随机颗粒轨道模型和颗粒部分沉积模型,对二次进气固冲发动机补燃室壁面的粒子沉积进行了探索研究,讨论了空燃比、进气间距及流量分配比等参数对沉积的影响。结果表明,随空燃比增大,沉积区域有一个明显的前移,空燃比对沉积的影响分为两个阶段;进气间距对沉积的影响较复杂;流量分配比增大,沉积区域变化不大,但沉积总量增加。%Particle deposition in solid rocket ramjet chamber with secondary air inlets was numerically simulated based on ran-dom particle stochastic trajectory and particle partial deposition model. The effects of several parameters on deposition were dis-cussed,such as air-to-fuel ratio,inlet interval,flow distribution ratio etc.The results show that there is an obvious forward move with accretion of air-to-fuel rate,leading to two sections concerning the effects of air-to-fuel ratio.The effects of inlet interval on deposition are complex.The deposition regions change little but the deposition gross increases with the accretion of flow distribution ratio.

  4. Thermochemical Erosion of Hafnium Carbide Modified Carbon/Carbon Composite Throat in a Small Solid Rocket Motor%碳化铪改性炭/炭复合材料喉衬的热化学烧蚀

    Institute of Scientific and Technical Information of China (English)

    沈学涛; 李克智; 李贺军; 冯涛; 张磊磊; 王斌


    Thermochemical erosion of hafnium carbide (HfC) modified carbon/carbon (C/C) composite throat was investigated using a hot-fire testing system in a small solid rocket motor. Chemical composition of the equilibrium combustion products was calculated by NASA-CEA program based on the principle of free energy minimum. The reaction products between the oxidizing species and HfC in the C/C composites were also calculated by FactSage.The results show that H2O, CO2, and OH are the main oxidizing species to consume carbon and HfC and generate thermochemical erosion to the throat materials. The interface of the fibers and matrix is preferentially ablated, and then erosion extends to the fibers and matrix. The formation of cone-shaped fibers and shell-shaped matrix is attributed to the thermochemical erosion of the flame.%采用小型固体火箭发动机研究了碳化铪(HfC)改性炭/炭复合材料喉衬的热化学烧蚀.借助基于最小自由能原理的NASA-CEA程序计算了燃气组成,借助化学热力学软件FactSage计算了燃气组分与碳、HfC的化学反应.结果表明,燃气中的H2O、CO2和OH是碳和HfC的主要氧化组分,使材料发生热化学烧蚀;纤维-基体界面是烧蚀的薄弱环节,烧蚀沿着界面分别向碳纤维和基体方向推进.热化学作用(氧化)造成纤维变细,顶端呈锥状,基体变薄,呈壳状.

  5. Flow Separation and Numerical Simulation of Solid Rocket Motor Nozzle%固体火箭发动机喷管分离流动及其数值模拟

    Institute of Scientific and Technical Information of China (English)

    王晓辉; 于存贵


    Separation flow could be generated in a high-altitude nozzle, in order to study the flow separation on the nozzle performance. A three-dimensional numerical simulation about the separation flow in the high-altitude nozzle of a solid rocket motor (SRM) was conducted. The flow results with different inlet total pressure were obtained by utilizing CFX software. It shows that, due to the separation flow, there are some adverse effects for the stability and thermal protection of the nozzle. The simulation provides a reference of the design of the high-altitude nozzle, also a basis for further study.%大面积比喷管在火箭发动机工作过程中可能产生流动分离的问题,为研究喷管流动分离对喷管性能的影响,利用计算流体力学软件CFX对某固体火箭发动机大面积比喷管内燃气分离流动进行数值模拟.计算出喷管在几种不同入口总压情况下的流场参数分布,显示分离流动会改变燃气内流场流动参数分布,进而会对喷管推力稳定性和热防护性产生不利影响.该研究能为进一步研究大面积比喷管设计提供参考.

  6. Antithermal shield for rockets with heat evacuation by infrared radiation reflection



    At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was...

  7. Additive Manufacturing for Affordable Rocket Engines (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty


    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  8. 固体火箭发动机喉衬流场及热结构耦合分析%Coupled fluid, thermal and structural analysis of nozzle inserts in solid rocket motors

    Institute of Scientific and Technical Information of China (English)

    张晓光; 王长辉; 刘宇; 任军学


    In order to accurately predict the thermal and structural behavior of throat inserts in solid rocket-motor environments, a fluid-thermal-structural coupling model was established based on CFD code FLUENT and FEM code ANSYS. Fully coupled fluid-solid analysis was performed first to simulate the heat transfer and material erosion process, using the method of whole-field discretization and solution in FLUENT. Subsequently, the structural analysis was carried out in ANSYS based on the resulting pressure and thermal loading. In such a procedure, two-way coupling was considered between flow and heat transfer while one-way coupling method was employed in structural analysis. Numerical results show that the convective heat transfer coefficient gradually decreases with increase of wall temperature during the motor firing. The wall temperature and erosion rate follow the trend exhibited by the heat flux distribution, and attain peak at upstream of the throat. The stress is most severe in the throat region due to the steep temperature gradient.%为了准确预示固体火箭发动机喉衬在燃气环境中的烧蚀传热及热结构行为,建立了基于FLUENT流体计算软件和ANSYS结构分析软件的流场及热结构耦合分析模型.由FLUENT采用整场离散、整场求解的方法进行流固耦合烧蚀传热模拟,得到的压强及温度分布导入ANSYS进行结构分析,实现了流场与烧蚀传热的双向耦合以及流场、热到结构的单向耦合.算例结果表明,在发动机工作过程中,喉衬内壁对流换热系数因壁温升高而逐渐降低;内壁温度及烧蚀率遵循内壁热流密度的分布规律,在喉部上游达到峰值;喉部区域对流换热严重,固相材料温度梯度高,是应力集中区.

  9. Carbon-Based Nozzle Thermochemical Erosion Characteristics in Solid Rocket Motors%固体火箭发动机碳基材料喷管热化学烧蚀特性

    Institute of Scientific and Technical Information of China (English)

    张晓光; 王长辉; 刘宇; 任军学


    Based on the thermochemical erosion theory, a two-dimensional axisymmetric, coupled gas-solid-thermal numerical framework was established to predict the carbon-based nozzle erosion in solid rocket motors. Numerical simulations were carried out using the Wall Surface Reaction model of the commercial code FLUENT and the assumption whether the erosion process was chemical kinetics or diffusion controlled was not needed. The method was introduced to simulate the 70-1b BATES motor nozzle erosion and examine the effects of propellant composition, oxidizing species and chamber pressure. The calculated results agree well with experimental data. The erosion rate follows the trend exhibited by the heat flux distribution, and peaks slightly upstream of the throat. The erosion rate decreases with increasing aluminum content and increases almost linearly with chamber pressure. H20 is the dominant oxidizing species in dictating nozzle erosion.%为了准确预示固体火箭发动机碳基材料喷管的烧蚀率,依据热化学烧蚀理论,建立了喷管传热烧蚀的二维轴对称气-固-热耦合计算模型,计算通过FLUENT壁面化学反应模型完成,无需事先假设烧蚀控制机制。针对70-lb BATES发动机喷管进行了烧蚀计算,研究了推进剂配方、氧化性组分、燃烧室压强对喷管烧蚀的影响。结果表明:烧蚀率计算值与试验测试值吻合较好;烧蚀率分布遵循喷管内壁热流密度分布规律,在喉部上游入口处达到峰值;烧蚀率随推进剂Al含量增加而降低,随燃烧室压强升高而近似正比例增大;H2O是决定烧蚀的主要氧化性组分。

  10. 双脉冲固体发动机喷管传热烧蚀特性%Characterization of nozzle thermal and ablation response in dual-pulse solid rocket motors

    Institute of Scientific and Technical Information of China (English)

    张晓光; 刘宇; 王长辉


    In order to investigate the nozzle thermal and ablation characteristics in dual- pulse solid rocket motors, the transient value of the throat diameter was obtained from the pressure and thrust measurements. Furthermore, the in-depth thermal response, pyroly- sis/char profiles and surface recession of the nozzle assembly were predicted through fully coupled fluid-solid analysis using the commercial code FLUENT. Results show that during pulse operation, the insulation material pyrolysis/char profiles expand and the nozzle insert erosion rate increases. During pulse separation, heat conduction in the material leads to the decrease in the material temperature difference. The heat transfer and ablation processes of pulse 1 and pulse separation make the nozzle insert exhibit small heat sink, high surface temperature and large surface roughness, which would result in higher throat erosion rate when pulse 2 operates.%为了研究双脉冲固体发动机喷管的传热烧蚀特性,由燃烧室压强及发动机推力试验曲线得到了喷管喉径的瞬变值,由FLUENT流体计算软件进行流固耦合传热烧蚀计算,得到了喷管瞬态温度分布、绝热材料热解炭化情况及碳/碳(C/C)喉衬瞬态烧蚀率,分析了脉冲工作过程及脉冲间隔时间对喷管传热烧蚀的影响.计算结果表明,脉冲工作过程中,绝热材料热解线、炭化线向材料内部扩展,喉衬烧蚀率不断增大;脉冲间隔时间内,喷管材料内部的导热使各处温差减小,温度趋于一致;第一脉冲的传热烧蚀与脉冲间隔的材料导热使第二脉冲工作时喉衬整体热沉小、内壁初始温度高、表面粗糙度大,从而导致较高烧蚀率.

  11. Rockets in World War I (United States)


    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  12. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle) (United States)

    Thorpe, Douglas G.


    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  13. Baking Soda and Vinegar Rockets (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc


    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  14. Low-Dose Decitabine-Based Chemoimmunotherapy for Patients with Refractory Advanced Solid Tumors: A Phase I/II Report

    Directory of Open Access Journals (Sweden)

    Hui Fan


    Full Text Available Aberrant DNA methylation is one of the main drivers of tumor initiation and progression. The reversibility of methylation modulation makes it an attractive target for novel anticancer therapies. Clinical studies have demonstrated that high-dose decitabine, a hypomethylating agent, results in some clinical benefits in patients with refractory advanced tumors; however, they are extremely toxic. Low doses of decitabine minimize toxicity while potentially improving the targeted effects of DNA hypomethylation. Based on these mechanisms, low-dose decitabine combined with chemoimmunotherapy may be a new treatment option for patients with refractory advanced tumors. We proposed the regimen of low-dose decitabine-based chemoimmunotherapy for patients with refractory advanced solid tumors. A favorable adverse event profile was observed in our trial that was highlighted by the finding that most of these adverse events were grades 1-2. Besides, the activity of our cohort was optimistic and the clinical benefit rate was up to 60%, and the median PFS was prolonged compared with PFS to previous treatment. We also identified a significant correlation between the PFS to previous treatment and clinical response. The low-dose DAC decitabine-based chemoimmunotherapy might be a promising protocol for improving the specificity and efficiency of patients with refractory advanced solid tumors. This trial is registered in the database (identifier NCT01799083.

  15. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters


    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  16. Characterization of nal powders for rocket propulsion (United States)

    Merotto, L.; Galfetti, L.; Colombo, G.; DeLuca, L. T.


    Nanosized metal powders are known to significantly improve both solid and hybrid rocket performance, but have some drawbacks in terms of cost, safety, and possible influence on propellant mechanical properties. Performance enhancement through nanosized metal or metal hydride addition to solid fuels is currently under investigation also for hybrid propulsion. Therefore, a preburning characterization of the powders used in solid propellant or fuel manufacturing is useful to assess their effects on the ballistic properties and engine performance. An investigation concerning the comparative characterization of several aluminum powders having different particle size, age, and coating is presented. Surface area, morphology, chemical species concentration and characteristics, surface passivation layers, surface and subsurface chemical composition, ignition temperature and ignition delay are investigated. The aim of this characterization is to experimentally assess the effect of the nAl powder properties on ballistic characteristics of solid fuels and solidrocket composite-propellant performance, showing an increase in terms of Is caused by the decrease of two-phase losses in solid and a possible significant rf increase in hybrid rockets.

  17. Water rocket - Electrolysis propulsion and fuel cell power

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H


    Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

  18. The Relativistic Rocket (United States)

    Antippa, Adel F.


    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  19. Introduction to Rocket Propulsion (United States)


    Von Braun; 1966. 4. Introduction to Ordnance Technology; IHSP 76-129; 1976. 5. Physics; D. Halliday and R. Resnick ; 1963. 6. Physics Tells Why: Luke Sky- walker in Star Wars when he said "Don’t get cocky." We never plan for EVERYTHING, though we like to think we do. As we’ve said, rocket

  20. Rocketing to the Skies

    Institute of Scientific and Technical Information of China (English)


    ONE sunny morning,we startedfor Yanqi Lake,Huairou District,Beijing,to try“rocket bungy”,so farthe only facility for this sport inChina.On the way there,wequestioned our courage and heartendurance. Entering the gate we saw,towering over a banner saying,

  1. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.


    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  2. ASRM - Turning in a solid performance (United States)

    Mitchell, Royce; Thomas, John; Levinsky, Charles


    The Advanced Solid Rocket Motor (ASRM), currently in its design and development phase, will become the higher reliability/performance next-generation booster for the Space Shuttle. The ASRM design improves safety through the elimination of 229 potential leak paths, thereby eliminating a total of 312 causes of failure. The ASRM will also allow an additional 12,000 lb of payload to be carried by the Shuttle Orbiter. Construction of the ASRM will promote competition through the use of a government owned/contractor operated manufacturing facility. Continuous-mix propellant grain manufacture will be used to enhance safety, quality, and efficiency.

  3. ASRM - Turning in a solid performance (United States)

    Mitchell, Royce; Thomas, John; Levinsky, Charles


    The Advanced Solid Rocket Motor (ASRM), currently in its design and development phase, will become the higher reliability/performance next-generation booster for the Space Shuttle. The ASRM design improves safety through the elimination of 229 potential leak paths, thereby eliminating a total of 312 causes of failure. The ASRM will also allow an additional 12,000 lb of payload to be carried by the Shuttle Orbiter. Construction of the ASRM will promote competition through the use of a government owned/contractor operated manufacturing facility. Continuous-mix propellant grain manufacture will be used to enhance safety, quality, and efficiency.

  4. Continuation Study of Entinostat in Combination With Pembrolizumab in Patients With Advanced Solid Tumors (United States)


    Neoplasms; Neoplasms, Glandular and Epithelial; Neoplasms by Histologic Type; Bronchial Neoplasms; Lung Neoplasms; Respiratory Tract Neoplasms; Thoracic Neoplasms; Digestive System Neoplasms; Endocrine Gland Neoplasms; Carcinoma, Non-Small-Cell Lung; Lung Diseases; Breast Diseases; Renal Neoplasm; Solid Tumors

  5. Pembrolizumab and Ziv-aflibercept in Treating Patients With Advanced Solid Tumors (United States)


    Adult Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Colorectal Carcinoma; Recurrent Melanoma; Recurrent Ovarian Carcinoma; Recurrent Renal Cell Carcinoma; Stage IV Ovarian Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer

  6. 固体火箭发动机壳体脱黏缺陷的热波检测%Debond defect detection in shell of solid rocket motor by thermal wave nondestructive testing

    Institute of Scientific and Technical Information of China (English)

    宋远佳; 张炜; 杨正伟; 田干


    Based on thermal wave nondestructive testing technique, debond defects between composites shell and insulation layer of solid rocket motor ( SRM) were inspected by numerical analysis and experiment. The thermal images were enhanced and segmented by subtracting background method and watershed algorithms respectively. The hot spots area and the time characteristics of thermal sequence diagram were applied to quantificationally estimate the defects size and depth. The sample was also inspected by acoustic-ultrasonic ( AU) method for comparing testing effect. The results show that thermal wave technique has the disadvantage of fast, which can accurately test defect within 20 s; A best inspection time is exited, which was estimated at 7 s in experiment of the three 5 mm-deep defects; defect depths could be calculated by the material parameters and the estimated defect sizes. And the bigger of the debond area, the easier to be detected; the thermal images were more suitable for quantificational analysis than that by AU method.%基于热波技术,对固体火箭发动机复合材料壳体/绝热层脱黏缺陷进行检测研究,采用去除背景和分水岭方法对热图进行降噪、增强和分割处理,利用表面热斑区域的面积对缺陷尺寸进行估算,根据热图序列的时间特征计算缺陷的深度,并与声-超声检测结果进行比较.结果表明,热波技术检测速度快,20 s可对缺陷准确定位,检测结果直观;5 mm深的3个缺陷最佳检测时间均为7s;缺陷深度通过材料参数和缺陷尺寸进行计算,且缺陷越大,误差越小;与声-超声技术相比,热波检测更适合进行定量分析.

  7. Thrust Control Features for Aerodynamic Throat for Solid Rocket Motor%固体火箭发动机气动喉部的推力调控特性

    Institute of Scientific and Technical Information of China (English)

    谢侃; 李博; 郭常超; 王宁飞


    为了研究固体火箭发动机气动喉部推力调节的一般规律,利用氮气作为介质对气动喉部喷管进行了冷流实验研究。研究了该种喷管的扼流性能,二次流嘴的面积、个数对其扼流性能的影响以及空腔容积与喷管压强调节时间的关系。掌握了气动喉部喷管的有效喉部面积随流量比变化的一般规律。结果表明,二次流与主流流量比越大,气动喉部面积越小。小的面积比具有更高的扼流性能,而当流量比大于0.4时,面积比对扼流性能无明显影响。空腔体积越小压强调节时间越短。%Adjust:In order to study the general rules of the thrust control features for aerodynamic throat for solid rocket motor, a cold-flow test research was performed on the aerodynamic nozzle throat using the nitrogen as working gas. Firstly, the choke performance of the aerodynamic throat was studied. Then, the performance of throat modification was studied considering the influence of area and number of secondary flow injectors. Final⁃ly,the relation about the volume of cavity with adjustment time of nozzle was also studied. The general law of ef⁃fective throat area along with the flow rate change was obtained through study. The results show that the larger the flow ratio of the secondary flow and main flow is, the smaller the pneumatic throat area is. The smaller area ratio has higher choke performance,and the influence of area is not obvious when the flow rate is greater than 0.4. Be⁃sides,the smaller the cavity volume is,the shorter the accommodation time of pressure is.

  8. Condensed phase particle acceleration analysis for overload test ground of solid rocket motor%固体发动机地面过载试验凝相粒子加速度分析

    Institute of Scientific and Technical Information of China (English)

    许团委; 田维平; 王建儒; 李强


    Aiming at solid rocket motor overload ground simulation test, the acceleration theoretical analysis for condensate phase particle was carried out. The results show that the particles are mainly affected by the Coriolis acceleration and gas drag role, but the role of the centrifugal acceleration is not dominant. Finally,3D two-phase flow calculations as well as the ground simulation overload test under three groups overload conditions were carried out. Numerical calculation results reveal that particle deposition zone maintain between 60°~80° along the first quadrant to the four quadrant direction;the rotation test results reflect that serious e-rosion site and ablation site maintain between 70°~90° along the first quadrant to the four quadrant direction. Two results coincide well to a certain extent,which verify that the theoretical analysis is reasonable adn correct.%针对固体火箭发动机地面模拟过载试验,开展了燃烧室凝相粒子所受加速度理论分析,认为粒子主要受哥氏加速度和气相阻力的作用,离心加速度的作用并不占优。最后,针对3组不同过载下的缩比发动机,分别开展了三维两相流数值计算并进行了地面旋转模拟过载试验,数值计算得到的粒子聚集区维持在第Ⅰ象限偏第Ⅳ象限60°~80°之间;旋转试验解剖后的结果反映了颗粒冲刷严重部位及烧蚀严重部位维持在第Ⅰ象限偏第Ⅳ象限70°~90°之间。两种结果具有一定吻合性,也验证了理论分析的合理性和正确性。

  9. Effect of adiabatic inhibitor on afterward-dome insulation ablation in segmented solid rocket motors%分段式固体发动机绝热环对后封头绝热层烧蚀影响分析

    Institute of Scientific and Technical Information of China (English)

    王建儒; 何国强; 许团委; 李江; 李强


    The ablation effect of adiabatic inhibitor on afterward-dome insulation was discussed systematically under combustion chamber operating condition for a typical SSRM(segmented solid rocket motor).Both numerical simulation results and tested data show that the existence of adiabatic inhibitor accelerate the gas flow speed to a certain extent,which result in two phase flow gas concentration and speed enhanced in certain scope of afterward-dome of combustion chamber,and make the ablation quantity of afterward-dome increased significantly.Furthermore,with the numerical analysis of modified SSRM,the result of this investigation is to provide the motor design characteristics and the system engineering approach used to effectively suppress the insulation ablation of afterward-dome for SSRMs.%针对某典型分段式固体发动机燃烧室内部绝热环在发动机工作过程中对后封头绝热层的烧蚀影响进行了系统分析,通过数值模拟和已有试验数据证明,分段式固体发动机工作过程中,分段药柱端面绝热环的存在一定程度上加速了燃烧室内部燃气流动的速度,导致燃烧室后封头一定范围内两相流燃气浓度的增加,从而导致后封头烧蚀量的大幅增加.在此基础上,结合改进型分段式固体发动机的数值分析,提出了分段式固体发动机在有效拟制后封头绝热层烧蚀加剧方面的设计措施和建议.

  10. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility (United States)

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Despotopulos, J. D.; Faye, S. A.; Jedlovec, D. R.; Yeamans, C. B.


    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  11. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber

    Directory of Open Access Journals (Sweden)

    Cristina Mottillo


    Full Text Available Controlling the formation of coordination bonds is pivotal to the development of a plethora of functional metal-organic materials, ranging from coordination polymers, metal-organic frameworks (MOFs to metallodrugs. The interest in and commercialization of such materials has created a need for more efficient, environmentally-friendly routes for making coordination bonds. Solid-state coordination chemistry is a versatile greener alternative to conventional synthesis, offering quantitative yields, enhanced stoichiometric and topological selectivity, access to a wider range of precursors, as well as to molecules and materials not readily accessible in solution or solvothermally. With a focus on mechanochemical, thermochemical and “accelerated aging” approaches to coordination polymers, including pharmaceutically-relevant materials and microporous MOFs, this review highlights the recent advances in solid-state coordination chemistry and techniques for understanding the underlying reaction mechanisms.

  12. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan


    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  13. Combustion Instabilities In Solid Propellant Rocket Motors (United States)


    34 AIAA Paper No. 98{3218. Avalon, G., Ugurtas, B. Grisch, F. and Bresson , F. (2000) \\Numerical Computations and Visualization Tests of the Flow Inside...Burners and Related Devices," Prog. in Comb. Energy and Science, Vol. 19, No. 4, pp. 313{364. Roberts , A.K. and Brownlee, W.G. (1971) \\Nonlinear

  14. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism (United States)

    Coles, S. J.; Mapp, L. K.


    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  15. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis. (United States)

    Sabatino, Giuseppina; Papini, Anna M


    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  16. Optimization of solid-state synthesis process of advanced ceramics materials: influence of mixing conditions.

    Directory of Open Access Journals (Sweden)

    Sakri Adel


    Full Text Available In this paper, the effect of mixing process on solid state reaction of solid oxide material mixture was studied. Lead piezoelectric ceramic specimens 0.5 Pb(Zn1/3,Sb2/3O3-0.5 Pb0.98La0.02(Zr0.48,Ti0.52O3 prepared by different mixing procedures, were conducted under different conditions such as order, combination and mixing time. The phase formation, composition nature, structural properties of powder mixture was analyzed by X-ray diffraction. The obtained results for different mixing processes make the solid state reaction method more selective, taking into consideration the attraction forces between the reactants and the electronegativity of oxide reactants.

  17. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes (United States)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John


    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  18. Liquid rocket engine injectors (United States)

    Gill, G. S.; Nurick, W. H.


    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  19. The Alfred Nobel rocket camera. An early aerial photography attempt (United States)

    Ingemar Skoog, A.


    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  20. Liquid Rocket Engine Testing (United States)


    booster rocket engines • 6000-10000 psia capabilities – Can use gaseous nitrogen, helium, or hydrogen to pressurize propellant tanks 9Distribution A...Approved for Public Release; Distribution Unlimited. PA Clearance 16493 Simplified Test Stand Layout Oxidizer  TankFuel  Tank High  Pressure   Gas (GN2...requires large, complex facilities to deliver propellant at the proper pressure , temperature, and flow rates • The enormous energies involved

  1. Advances in solid state laser technology for space and medical applications (United States)

    Byvik, C. E.; Buoncristiani, A. M.


    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  2. Targeting solid tumors : advances in treatment strategies for glioma and colorectal cancer

    NARCIS (Netherlands)

    van Houdt, W.J.


    Curative treatment of most solid tumors includes surgical interference. However, the incidence of local recurrence or distant micrometastases is significantly lower when patients are treated with systemic or locally administered chemo- or targeted therapy. In the last decade, many novel targeting st

  3. Advanced nuclear thermal propulsion concepts (United States)

    Howe, Steven D.


    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  4. Advanced nuclear thermal propulsion concepts (United States)

    Howe, Steven D.


    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  5. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue


    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  6. Nuclear Thermal Rocket Propulsion Systems (United States)


    NUCLEAR THERMAL ROCKET PROPULSION SYSTEMS, IAA WHITE PAPER PARIS, FRANCE, MARCH 2005 Lt Col Timothy J. Lawrence U.S. Air Force Academy...YYYY) 18-03-2005 2. REPORT TYPE White Paper 3. DATES COVERED (From - To) 18 Mar 2005 4. TITLE AND SUBTITLE NUCLEAR THERMAL ROCKET PROPULSION...reduce radiation exposure, is to have a high energy system like a nuclear thermal rocket that can get the payload to the destination in the fastest

  7. Rocket Assembly and Checkout Facility (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  8. Rocket-Powered Parachutes Rescue Entire Planes (United States)


    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  9. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm3+, Er3+, and Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  10. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert


    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  11. NATO Advanced Study Institute on the Physics of Structurally Disordered Solids

    CERN Document Server


    Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me­ chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de­ finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi­ tions of atoms are fixed into adefinite structure, ex­ cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of ...

  12. Inverse dynamic energy management for multi-constrained depleted shutdown of solid rocket%固体火箭多约束耗尽关机的动态逆能量管理方法

    Institute of Scientific and Technical Information of China (English)

    张志健; 王小虎


    To solve the energy management problem of a solid rocket with multi-constraining depleted shutdown,a novel inverse dynamic energy management (IEM) method was proposed.Firstly,a novel model based on excess velocity capability was estab-lished,and its performance was studied.Secondly,a closed-loop IEM method with two specific realizations was proposed, and the constrained and unconstrained convergence condition was discussed.Finally,the IEM's performance,energy manage results and the difference with general energy management ( GEM) and spline energy management ( SEM) were verified by computer simulation, which demonstrates a strong robust,high control precision, low attitude maneuver,small terminal angle of IEM.Indeed,IEM can suc-cessfully manage 2%~83.3% energy under a sort of fixed parameters.As the ratio of excess energy is below 41.3%, the terminal ve-locity is less than 0.25 m/s,the flight-path angle is less than 0.014°,the attitude angular velocity is less than 0.25°/s,and the angle of attack is less than 5° .%针对具有速度控制能力的固体火箭多约束耗尽关机问题,建立以多余视速度增量为状态量的新型能量管理模型,分析了该模型能量管理动态特性,提出一种闭环动态逆能量管理( IEM)方式,得到了无约束和有约束关机时能量管理的收敛条件,并据此设计了IEM的2种具体实现。最后以数学仿真验证了该方法的特性、能量管理效果,分析了与其他2种闭环能量管理方法---通用能量管理(GEM)、样条能量管理(SEM)的异同。结果表明,IEM方法鲁棒性强、精度高、姿态变化缓慢,能量管理范围大,一组固定的参数实现了2.1%~83.3%的能量管理;当能耗小于41.3%时,关机点速度偏差小于0.25 m/s,速度倾角小于0.014°,姿态角速度小于0.25°/s,攻角小于5°。

  13. Rocket Plume Scaling for Orion Wind Tunnel Testing (United States)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.


    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  14. A concept of advanced broad-band solid-state supermirror polarizers for cold neutrons (United States)

    Petukhov, A. K.; Nesvizhevsky, V. V.; Bigault, T.; Courtois, P.; Jullien, D.; Soldner, T.


    An ideal solid-state supermirror (SM) neutron polarizer assumes total reflection of neutrons from the SM coating for one spin-component and total absorption for the other, thus providing a perfectly polarized neutron beam at the exit. However, in practice, the substrate's neutron-nuclei optical potential does not match perfectly that for spin-down neutrons in the SM. For a positive step in the optical potential (as in a Fe / Si Nx SM on Si substrate), this mismatch results in spin-independent total reflection for neutrons with small momentum transfer Q , limiting the useful neutron bandwidth in the low- Q region. To overcome this limitation, we propose to replace Si single-crystal substrates by media with higher optical potential than that for spin-down neutrons in the SM ferromagnetic layers. We found single-crystal sapphire and single-crystal quartz as good candidates for solid-state Fe / Si Nx SM polarizers. To verify this idea, we coated a thick plate of single-crystal sapphire with a m = 2.5 Fe / Si Nx SM. At the T3 instrument at the ILL, we measured the spin-up and spin-down reflectivity curves with λ = 7.5 Å neutrons incident from the substrate to the interface between the substrate and the SM coating. Results of this experimental test are in excellent agreement with our expectations: the bandwidth of high polarizing power extends significantly into the low- Q region. This finding, together with the possibility to apply a strong magnetizing field, opens a new road to produce high-efficiency solid-state SM polarizers with an extended neutron wavelength bandwidth and near-to-perfect polarizing power.

  15. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces. (United States)

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong


    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  16. Rocket + Science = Dialogue (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin


    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  17. Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;


    This paper describes a case study of two electrolysis tests of solid oxide cells [Ni/yttria-stabilized zirconia (YSZ)-YSZ-lanthanum strontium manganite (LSM)/YSZ] tested in a plug-flow setup. An extensively instrumented cell test setup was used, and the tests involved measurements of the cell...... electrolysis conditions. From measurements of the in-plane voltages in the electrodes and impedance spectra obtained during the electrolysis operation, we derive information about the resistance distributions in the Ni electrodes and describe how these distributions evolve over time. Impedance spectra at open...

  18. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan


    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  19. Low Erosion Ceramic Composite Liners for Improved Performance of Ablative Rocket Thrust Chambers Project (United States)

    National Aeronautics and Space Administration — Advanced liquid rocket propulsion systems must achieve longer burn times without performance degradation to allow the lowest cost per kilogram access to space....

  20. What fuel for a rocket?

    CERN Document Server

    Miranda, E N


    Elementary concepts from general physics and thermodynamics have been used to analyze rocket propulsion. Making some reasonable assumptions, an expression for the exit velocity of the gases is found. From that expression one can conclude what are the desired properties for a rocket fuel.

  1. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)



    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  2. Cuttlebone-like V2O5 Nanofibre Scaffolds – Advances in Structuring Cellular Solids (United States)

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, Zaklina


    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone –a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  3. Advanced broad-band solid-state supermirror polarizers for cold neutrons

    CERN Document Server

    Petukhov, A K; Bigault, T; Courtois, P; Jullien, D; Soldner, T


    An ideal solid-state supermirror (SM) neutron polarizer assumes total reflection of neutrons from the SM coating for one spin-component and total absorption for the other, thus providing a perfectly polarized neutron beam at the exit. However, in practice, the substrate's neutron-nucleai optical potential does not match perfectly that for spin-down neutrons in the SM. For a positive step in the optical potential (as in a Fe/SiN(x) SM on Si substrate), this mismatch results in spin-independent total reflection for neutrons with small momentum transfer Q, limiting the useful neutron bandwidth in the low-Q region. To overcome this limitation, we propose to replace Si single-crystal substrates by media with higher optical potential than that for spin-down neutrons in the SM ferromagnetic layers. We found single-crystal sapphire and single-crystal quartz as good candidates for solid-state Fe/SiN(x) SM polarizers. To verify this idea, we coated a thick plate of single-crystal sapphire with a m=2.4 Fe/SiN(x) SM. At ...

  4. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU


    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  5. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems (United States)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  6. Lyman alpha coronagraph research sounding rocket program (United States)

    Parkinson, W. H.; Kohl, J. L.


    The ultraviolet light coronagraph was developed and successfully flown on three rocket flights on 13 April 1979, 16 February 1980 and 20 July 1982. During each of these flights, the Ultraviolet Light Coronagraph was flown jointly with the White Light Coronagraph provided by the High Altitude Observatory. Ultraviolet diagnostic techniques and instrumentation for determining the basic plasma parameters of solar wind acceleration regions in the extended corona were developed and verified and the understanding of the physics of the corona through the performance, analysis and interpretation of solar observations advanced. Valuable UV diagnostics can be performed in the absence of a natural solar eclipse.

  7. An open-label study to investigate the cardiac safety profile of cabazitaxel in patients with advanced solid tumors

    DEFF Research Database (Denmark)

    Maison-Blanche, Pierre; Dakhil, Shaker; Baron, Ari;


    additional ECG parameters (QT, PR and QRS intervals, and heart rate), plasma pharmacokinetics of cabazitaxel and overall clinical safety. RESULTS: The pharmacodynamic (ECG) population included 94 patients. In 63 patients with a full 24-h ECG evaluation, the maximum upper bound of 90 % confidence interval (CI......PURPOSE: This study assessed the cardiovascular safety of cabazitaxel, based on thorough evaluation of QT and non-QT variables, and the relationship between pharmacokinetic and pharmacodynamic electrocardiographic (ECG) profiles and the occurrence of Grade ≥3 cardiovascular adverse events. METHODS......: Patients with advanced solid tumors were treated with cabazitaxel 25 mg/m(2) every 3 weeks. Digital ECG recordings were obtained during Cycle 1 over 24 h after dosing. The primary end point was effect of cabazitaxel on QT interval corrected by the Fridericia formula (QTcF). Secondary end points were...

  8. A Dynamic Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface (United States)

    Catalina, A. V.; Mukherjee, S.; Stefanescu, D. M.


    Most models that describe the interaction of an insoluble particle with an advancing solid-liquid interface are based on the assumption of steady state. However, as demonstrated by experimental work, the process does not reach steady state until the particle is pushed for a while by the interface. In this work, a dynamic mathematical model was developed. The dynamic model demonstrates that this interaction is essentially non-steady state and that steady state eventually occurs only when solidification is conducted at sub-critical velocities. The model was tested for three systems: aluminum-zirconia particles, succinonitrilepolystyrene particles, and biphenyl-glass particles. The calculated values for critical velocity of the pushing/engulfment transition were in same range with the experimental ones.

  9. Mars Rocket Propulsion System (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy


    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  10. Phase 1 study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced solid tumors. (United States)

    Shimizu, Toshio; Seto, Takashi; Hirai, Fumihiko; Takenoyama, Mitsuhiro; Nosaki, Kaname; Tsurutani, Junji; Kaneda, Hiroyasu; Iwasa, Tsutomu; Kawakami, Hisato; Noguchi, Kazuo; Shimamoto, Takashi; Nakagawa, Kazuhiko


    Background This phase I study evaluated the safety and tolerability, pharmacokinetics and pharmacodynamics, immunogenicity, and antitumor activity of pembrolizumab in Japanese patients with advanced solid tumors. Methods Following an initial dose and a 28-day rest (cycle 1), pembrolizumab was administered as an intravenous infusion at escalating doses (2 or 10 mg/kg) every 2 weeks (Q2W) until disease progression or unacceptable toxicity. Adverse events (AEs) were assessed using CTCAE v4.0, and tumor response was assessed using both RECIST v1.1 and immune-related response criteria (irRC). Full pharmacokinetic sampling was performed during cycle 1. Results Three patients received pembrolizumab at 2.0 mg/kg and seven at 10 mg/kg. No dose-limiting toxicities were observed during cycle 1. Eighty percent of patients experienced drug-related AEs (mostly grade 1 or 2); the most common drug-related AEs were nausea, malaise, pyrexia, and aspartate aminotransferase/alanine transaminase (AST/ALT) elevations (n = 2 each). No drug-related grade 4 or 5 AEs occurred. Immune-related AEs comprised grade 3 ALT elevation (n = 1), grade 3 AST elevation (n = 1), grade 1 pneumonitis (n = 1), and grade 1 thyroid-stimulating hormone elevation (n = 1). The safety and pharmacokinetic profiles of Japanese patients were similar to those previously reported for Caucasian patients. A partial tumor response was observed in one patient with non-small-cell lung cancer (NSCLC) and in one patient with melanoma. Conclusions Pembrolizumab at both 2 and 10 mg/kg Q2W was well tolerated in Japanese patients with advanced solid tumors and showed encouraging anti-tumor activity against melanoma and NSCLC.

  11. International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics

    CERN Document Server

    Tseng, Kadin


    The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary­ wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto­ dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas­ sive parallelism. This Symposium was sponsored by United ...

  12. 'RCHX-1-STORM' first Slovenian meteorological rocket program (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone


    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  13. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule


    Full Text Available Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD with immediate release and improved bioavailability was prepared using Soluplus (Sol as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72 and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72 and Cmax higher than those with the commercial capsule (Noxafil. Molecular dynamic (MD simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  14. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation. (United States)

    Fule, Ritesh; Amin, Purnima


    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0-72) and C(max) of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0-72) and C(max) higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  15. Monolithic solid oxide fuel cell technology advancement for coal-based power generation (United States)


    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  16. Effects of high combustion chamber pressure on rocket noise environment (United States)

    Pao, S. P.


    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  17. Yuzhnoye's new liquid rocket engines as enablers for space exploration (United States)

    Degtyarev, Alexander; Kushnaryov, Alexander; Shulga, Vladimir; Ventskovsky, Oleg


    Advanced liquid rocket engines (LREs) are being created by Yuzhnoye Design Office of Ukraine based on the fifty-year experience of rocket engines' and propulsion systems' development. These LREs use both hypergolic (NTO+UDMH) and cryogenic (liquid oxygen+kerosene) propellants. First stage engines have a range of thrust from 40 to 250 t, while the upper stage (used in space) engines - from several kilograms to 50 t and a re-ignition feature. The engines are intended for both Ukraine"s independent access to space and international market.

  18. British used Congreve Rockets to Attack Napoleon (United States)


    Sir William Congreve developed a rocket with a range of about 9,000 feet. The incendiary rocket used black powder, an iron case, and a 16-foot guide stick. In 1806, British used Congreve rockets to attack Napoleon's headquarters in France. In 1807, Congreve directed a rocket attack against Copenhagen.

  19. Solid Propellant Test Article (SPTA) Test Firing (United States)


    The Marshall Space Flight Center (MSFC) engineers test fired a 26-foot long, 100,000-pound-thrust solid rocket motor for 30 seconds at the MSFC east test area, the first test firing of the Modified NASA Motor (M-NASA Motor). The M-NASA Motor was fired in a newly constructed stand. The motor is 48-inches in diameter and was loaded with two propellant cartridges weighing a total of approximately 12,000 pounds. The purpose of the test was to learn more about solid rocket motor insulation and nozzle materials and to provide young engineers additional hands-on expertise in solid rocket motor technology. The test is a part of NASA's Solid Propulsion Integrity Program, that is to provide NASA engineers with the techniques, engineering tools, and computer programs to be able to better design, build, and verify solid rocket motors.

  20. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.E.


    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  1. Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing. (United States)

    Tsai, Candace S J; Dysart, Arthur D; Beltz, Jay H; Pol, Vilas G


    A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.

  2. Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C (United States)

    DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.


    The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.

  3. Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system.

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, T.; Kooima, R. L.; Sandin, D. J.; Johnson, A.; Leigh, J.; DeFanti, T. A.; Mathematics and Computer Science; Univ. of Illinois at Chicago; Univ. of Calif. at San Diego


    A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.

  4. Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. (United States)

    Peterka, Tom; Kooima, Robert L; Sandin, Daniel J; Johnson, Andrew; Leigh, Jason; DeFanti, Thomas A


    A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems, such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.

  5. Hydrocarbon Rocket Technology Impact Forecasting (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.


    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  6. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly


    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  7. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Cabot Corporation


    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped

  8. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max


    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  9. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors

    DEFF Research Database (Denmark)

    Abdul Razak, Albiruni R; Mau-Sørensen, Morten; Gabrail, Nashat Y


    PURPOSE: This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of selinexor (KPT-330), a novel, oral small-molecule inhibitor of exportin 1 (XPO1/CRM1), and determined the recommended phase II dose. PATIENTS AND METHODS: In total, 189 patients with advanced solid tumors...

  10. A phase I, dose-escalation study of TB-403, a monoclonal antibody directed against PlGF, in patients with advanced solid tumours

    DEFF Research Database (Denmark)

    Lassen, U; Nielsen, D L; Sørensen, M;


    BACKGROUND: TB-403 (RO 5323441), a humanised monoclonal antibody, is a novel antiangiogenesis agent directed against placental growth factor. The safety, pharmacokinetics (PK), and antitumour activity of TB-403 were assessed in a phase I, dose-escalation study in patients with advanced solid...

  11. Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser (United States)

    Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.


    For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.

  12. Alternate Propellant Thermal Rocket Project (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  13. The mixing of solid propellant by an artificial muscle actuator


    岩崎, 祥大; 伴, 遼介; 吉浜, 舜; 中村, 太郎; 羽生, 宏人; Iwasaki, Akihiro; Ban, Ryosuke; Yoshihama, Shun; Nakamura, Taro; Habu, Hiroto


    This research aims to reduce the cost of the solid rocket motor production, mainly solid propellant. The production process of the solid rocket propellant are usually employed the multi-batch mixing. However, this study using a peristaltic pump as a mixer will lead to the continuous process. The pump system can mix the powder materials for propellant and we consider that it will make the slurry of the solid propellant efficiently by the mechanism of the fluid dynamics in the pump.

  14. Standard Molded Composite Rocket Pyrogen Igniter - A progress report (United States)

    Lucy, M. H.


    The pyrogen igniter has the function to furnish a controlled, high temperature, high pressure gas to ignite solid propellant surfaces in a rocket motor. Present pyrogens consist of numerous inert components. The Standard Molded Pyrogen Igniter (SMPI) consists of three basic parts, a cap with several integrally molded features, an ignition pellet retainer plate, and a tube with additional integrally molded features. A description is presented of an investigation which indicates that the SMPI concept is a viable approach to the design and manufacture of pyrogen igniters for solid propellant rocket motors. For some applications, combining the structural and thermal properties of molded composites can result in the manufacture of lighter assemblies at considerable cost reduction. It is demonstrated that high strength, thin walled tubes with high length to diameter ratios can be fabricated from reinforced plastic molding compound using the displacement compression process.

  15. Solid Propellant Grain Structural Integrity Analysis (United States)


    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  16. Computational simulation of liquid fuel rocket injectors (United States)

    Landrum, D. Brian


    A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.

  17. Study of Cavitation/Vaporization in Liquid Rocket Thruster Injectors (United States)


    Caveny, L. H., and Summerfield, M., Aluminized Solid Propellants Burning in a Rocket Motor Flowfield, AIAA Journal, Vol. 16, No. 7, 1978, pp. 736-739. [2...the swirl chamber, and the pulsator and manifold are made of 304 stainless steel . Figure 1: Nomenclature defined for swirl injector. Table 1...Wayne, NJ, 2009 [17] MATLAB, Matrix Laboratory, Software Package, R2009a, The MathWorks, Natick, MA, 2009. [18] Coleman, H.W. and Steele , W.G

  18. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin (United States)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir


    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  19. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin. (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir


    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  20. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)


    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  1. Rocket Science 101 Interactive Educational Program (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald


    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  2. Dynamic mechanical analysis of double base rocket propellants

    Directory of Open Access Journals (Sweden)

    Marcin Cegła


    Full Text Available The article presents dynamic mechanical analysis (DMA for solid rocket propellants testing. Principles of operation and measured values are briefly described. The authors refer to the previous research of PTFE material and literature data providing information about proper experimental conditions and influence of measurement frequency, load amplitude, and heating rate on the results of DMA tests. The experimental results of solid double-base rocket propellant testing obtained on the N Netzsch DMA 242 device are presented. Mechanical properties such as the dynamic storage modulus E´, the dynamic loss modulus E˝ and tan(δ were measured within temperature range from (–120°C to (+90°C at the heating rate of 1 K/min. The test sample was subjected to a dual cantilever multi-frequency test. Special attention was paid to determination of the glass transition temperature of the tested propellant in reference to the NATO standardization agreement 4540 as well as influence of the measurement frequency on the glass transition.[b]Keywords[/b]: Dynamic mechanical analysis, solid rocket propellants, glass transition temperature

  3. Integrated model of a composite propellant rocket (United States)

    Miccio, Francesco


    The combustion of composite solid propellants was investigated and an available numerical model was improved for taking into account the change of pressure, when the process occurs in a confined environment, as inside a rocket. The pressure increase upon ignition is correctly described by the improved model for both sandwich and dispersed particles propellants. In the latter case, self-induced fluctuations in the pressure and in all other computed variables occur, as consequence of the periodic rise and depletion of oxidizer particles from the binder matrix. The comparison with the results of the constant pressure model shows a different fluctuating profile of gas velocity, with a possible second order effect induced by the pressure fluctuations.

  4. Additive Manufacturing a Liquid Hydrogen Rocket Engine (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris


    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  5. Composite Solid Propellant Predictability and Quality Assurance (United States)

    Ramohalli, Kumar


    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  6. Implementation of microwave transmissions for rocket exhaust plume diagnostics (United States)

    Coutu, Nicholas George

    Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

  7. Study of Rapid-Regression Liquefying Hybrid Rocket Fuels (United States)

    Zilliac, Greg; DeZilwa, Shane; Karabeyoglu, M. Arif; Cantwell, Brian J.; Castellucci, Paul


    A report describes experiments directed toward the development of paraffin-based hybrid rocket fuels that burn at regression rates greater than those of conventional hybrid rocket fuels like hydroxyl-terminated butadiene. The basic approach followed in this development is to use materials such that a hydrodynamically unstable liquid layer forms on the melting surface of a burning fuel body. Entrainment of droplets from the liquid/gas interface can substantially increase the rate of fuel mass transfer, leading to surface regression faster than can be achieved using conventional fuels. The higher regression rate eliminates the need for the complex multi-port grain structures of conventional solid rocket fuels, making it possible to obtain acceptable performance from single-port structures. The high-regression-rate fuels contain no toxic or otherwise hazardous components and can be shipped commercially as non-hazardous commodities. Among the experiments performed on these fuels were scale-up tests using gaseous oxygen. The data from these tests were found to agree with data from small-scale, low-pressure and low-mass-flux laboratory tests and to confirm the expectation that these fuels would burn at high regression rates, chamber pressures, and mass fluxes representative of full-scale rocket motors.

  8. Radiation/convection coupling in rocket motors and plumes (United States)

    Farmer, R. C.; Saladino, A. J.


    The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

  9. Integrated Composite Rocket Nozzle Extension Project (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  10. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.


    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  11. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.


    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  12. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Woon, K.S.; Lo, Irene M.C., E-mail:


    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH{sub 4}) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH{sub 4} recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Highlights: • AIF is better than LFE with regard to GHG emissions in Hong Kong. • Major individual sub-processes of LFE and AIF for GHG emissions are investigated. • GHG emissions for LFE and AIF are strongly dependent on studied parametric sensitivity analyses. • Findings are valuable for sustainable MSW management and GHG reductions in waste sector.

  13. Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors (United States)

    Wu, Huali; Infante, Jeffrey R; Keedy, Vicki L; Jones, Suzanne F; Chan, Emily; Bendell, Johanna C; Lee, Wooin; Kirschbrown, Whitney P; Zamboni, Beth A; Ikeda, Satoshi; Kodaira, Hiroshi; Rothenberg, Mace L; Burris, Howard A; Zamboni, William C


    IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11). The objective of this study was to evaluate the factors associated with interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 in patients with advanced solid tumors. IHL-305 was administered intravenously once every 4 weeks as part of a Phase I study. Pharmacokinetic studies of the liposomal sum total CPT-11, released CPT-11, SN-38, SN-38G, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin, and 7-ethyl-10-[4-amino-1-piperidino]-carbonyloxycamptothecin in plasma were performed. Noncompartmental and compartmental pharmacokinetic analyses were conducted using pharmacokinetic data for sum total CPT-11. The pharmacokinetic variability of IHL-305 is associated with linear and nonlinear clearance. Patients whose age and body composition (ratio of total body weight to ideal body weight [TBW/IBW]) were greater than the median age and TBW/IBW of the study had a 1.7-fold to 2.6-fold higher ratio of released CPT-11 area under the concentration versus time curve (AUC) to sum total CPT-11 AUC. Patients aged <60 years had a 1.3-fold higher ratio of percent decrease in monocytes at nadir to percent decrease in absolute neutrophil count at nadir as compared with patients aged ≥60 years. There was an inverse relationship between patient age and percent decrease in monocytes at nadir, ie, younger patients have a higher percent decrease in monocytes. Patients with a higher percent decrease in monocytes at nadir have a decreased plasma exposure of sum total CPT-11. The pharmacokinetics and pharmacodynamics of IHL-305 are consistent with those of other PEGylated liposomal carriers. Interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 was associated with age, body composition, and monocytes. PMID:25709442

  14. Nuclear-Thermal Rocket Orbits Mars (United States)


    Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.

  15. Measuring Model Rocket Engine Thrust Curves (United States)

    Penn, Kim; Slaton, William V.


    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  16. Summarization on variable liquid thrust rocket engines

    Institute of Scientific and Technical Information of China (English)


    The technology actuality and development trend of variable thrust rocket engines at home and abroad are summarized. Key technologies of developing variable thrust rocket engines are analyzed. Development advices on developing variable thrust rocket engines that are adapted to the situation of our country are brought forward.

  17. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    Energy Technology Data Exchange (ETDEWEB)

    G. C. Sclippa; L. L. Baxter; S. G. Buckley


    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  18. Attitude Dynamics of a Spinning Rocket with Internal Fluid Whirling Motion

    Directory of Open Access Journals (Sweden)

    Marius Ionut MARMUREANU


    Full Text Available This paper evaluates the impact that helical motion of fluid products of combustion within the combustion chamber of a rocket can have on the attitude dynamics of rocket systems. By developing the study presented by Sookgaew (2004, we determined the configuration of the Coriolis moment components, which catch the impact of the combustion product’s whirling motion, for the radial and centripetal propellant burn pattern specific to S-5M and S-5K solid rocket motors. We continue the investigation of the effects of internal whirling motion of fluid products of combustion on the attitude behavior of variable mass systems of the rocket type by examining the spin motion and transverse attitude motion of such systems. The results obtained show that internal fluid whirling motion can cause appreciable deviations in spin rate predictions, and also affects the frequencies of the transverse angular velocity components.

  19. Lunar mission design using Nuclear Thermal Rockets (United States)

    Stancati, Michael L.; Collins, John T.; Borowski, Stanley K.


    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  20. An numerical calculation method on cook-off of solid rocket motor of ship-based missiles%一种舰载导弹固体火箭发动机烤燃过程的数值计算方法

    Institute of Scientific and Technical Information of China (English)

    原渭兰; 潘浪


    In order to avert the accidents of solid rocket motor explosion in fire and preserve warship's life-force and combat effectiveness, a one-dimensional mathematical model about the cook-off of the solid rocket motor of the ship-based missiles was established in this paper. The effects of radiation heat transfer, convective heat transfer,heat conduct and chemical reaction were considered in the model. The temperature-time curves, temperature-space curves and self-ignite delay times of the motor were obtained by means of solving numerically. The results indicated that there were marked effects of the temperature and the temperature rise rate of the fire on the self-ignite delay times of the motor, there was good adiabatical effect of the insulation of the motor on the fire and the ignition of the propellant appears firstly on the out surface under fast cook-off.%为了能够有效避免火灾中导弹固体火箭发动机着火爆炸的灾难发生、保存舰艇的生命力和战斗力,建立了一种舰载导弹固体火箭发动机烤燃过程的一维传热数学模型.该数学模型考虑了辐射换热、对流换热、导热和化学反应源项的作用.利用有限差分方法,通过数值计算得到了发动机的温度时间分布曲线、温度空间分布曲线和着火延迟时间.结果表明,火焰温度和火焰温升速率对发动机的着火延迟时间有显著影响;发动机的绝热层对外界火灾有好的隔热作用;快速热烤下,推进剂的着火首先发生在外表面上.

  1. Contrail formation in the tropopause region caused by emissions from an Ariane 5 rocket (United States)

    Voigt, Ch.; Schumann, U.; Graf, K.


    Rockets directly inject water vapor and aerosol into the atmosphere, which promotes the formation of ice clouds in ice supersaturated layers of the atmosphere. Enhanced mesospheric cloud occurrence has frequently been detected near 80-kilometer altitude a few days after rocket launches. Here, unique evidence for cirrus formation in the tropopause region caused by ice nucleation in the exhaust plume from an Ariane 5-ECA rocket is presented. Meteorological reanalysis data from the European Centre for Medium-Range Weather Forecasts show significant ice supersaturation at the 100-hectopascal level in the American tropical tropopause region on November 26, 2011. Near 17-kilometer altitudes, the temperatures are below the Schmidt-Appleman threshold temperature for rocket condensation trail formation on that day. Immediately after the launch from the Ariane 5-ECA at 18:39 UT (universal time) from Kourou, French Guiana, the formation of a rocket contrail is detected in the high resolution visible channel from the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) on the METEOSAT9 satellite. The rocket contrail is transported to the south and its dispersion is followed in SEVIRI data for almost 2 h. The ice crystals predominantly nucleated on aluminum oxide particles emitted by the Ariane 5-ECA solid booster and further grow by uptake of water vapor emitted from the cryogenic main stage and entrained from the ice supersaturated ambient atmosphere. After rocket launches, the formation of rocket contrails can be a frequent phenomenon under ice supersaturated conditions. However, at present launch rates, the global climate impact from rocket contrail cirrus in the tropopause region is small.

  2. Solid propellant motor (United States)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)


    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  3. Solid Matter

    CERN Document Server

    Angelo, Joseph A


    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  4. Reusable, flyback liquid rocket booster for the Space Shuttle (United States)

    Benton, Mark G.


    This paper outlines a preliminary design for an unmanned, reusable, flyback liquid rocket booster (LRB) as an evolutionary follow-on to the Shuttle solid rocket booster (SRB). Previous Shuttle liquid-propellant booster concepts are reviewed in order to gain insight into these designs. The operating costs, environmental impacts, and abort options of the SRB are discussed. The LRB flight profile and advantages of LRB use are discussed. The preliminary design for the LRB is outlined in detail using calculations and drawings. This design maximizes the use of existing hardware and proven technology to minimize cost and development time. The LRB design is presented as a more capable, more environmentally acceptable, and safer Shuttle booster.

  5. A phase 1 dose-escalation study of the oral histone deacetylase inhibitor abexinostat in combination with standard hypofractionated radiotherapy in advanced solid tumors. (United States)

    Deutsch, Eric; Cohen-Jonathan Moyal, Elizabeth; Gregorc, Vanesa; Zucali, Paolo Andrea; Menard, Jean; Soria, Jean-Charles; Kloos, Ioana; Hsu, Jeff; Luan, Ying; Liu, Emily; Vezan, Remus; Graef, Thorsten; Rivera, Sofia


    Current treatments for advanced solid tumors tend to be only palliative. Although radiotherapy is administered with a curative intent, radioresistance and dose-limiting toxicities pose limitations to treatment. Abexinostat, an oral pan-histone deacetylase inhibitor, demonstrated enhanced sensitivity to radiation in various solid tumor cell lines. We conducted an exploratory, phase 1, dose-escalation study of abexinostat in combination with standard hypofractionated radiotherapy in patients with advanced solid tumors treated in a palliative setting. Among 58 treated patients, the median age was 61.5 years (range, 20-82); 47% of the patients had M1 stage disease, and 95% had received previous chemotherapy alone or chemotherapy in combination with surgery and/or radiotherapy. The recommended phase 2 dose was determined to be 90 mg/m2 (140 mg). Of the 51 patients evaluable for response, best overall response was 8% (1 complete response [CR], 3 partial responses [PRs]), and best loco-regional response was 12% (1 CR and 5 PRs) at a median follow-up of 16 weeks. Of note, patients with target or non-target brain lesions showed encouraging responses, with 1 patient achieving a best loco-regional response of CR. Treatment-emergent grade ≥3 adverse events (AEs) were few, with most common being thrombocytopenia (17%), lymphopenia (12%), and hypokalemia (7%). Six patients (10%) discontinued treatment due to AEs. No grade ≥3 prolongation of the QTc interval was observed, with no treatment discontinuations due to this AE. Oral abexinostat combined with radiotherapy was well tolerated in patients with advanced solid tumors. The combination may have potential for treatment of patients with brain lesions.

  6. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments (United States)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.


    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated

  7. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality (United States)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  8. Development of high performance hybrid rocket fuels (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  9. History of solid propellants in the 20. century; Histoire des propergols solides au 20. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ph.; Davenas, A.; McDonald, A.J.; Bret, P.; Moreau, J.P.; Boisson, J.; Kuentzmannn, P.; Maire, G.; Pontvianne, G.; Tranchant, J.; Evans, G.; Reydellet, D.; Vallet, G.; Eymard, M.; Pascal, Ph.; Kuentzmann, P.; Bonnevie, E.; Guery, J.F.; Lengelle, G.; Lhuillier, J.N.; Rat, R.; Keromnes, A.; Mathieu, D.; Simonetti, Ph.; Betin, P.; Thevenin, M.; Serra, J.J.; Delbac, P.; Lepeuple, G.; Miermont, H.; Guillot, J.; Vidal, M.; Citon, C.; Tauzia, J.M.; Chounet, G.; Cardin, J.; Longevialle, Y.; Uhrig, G.


    This colloquium has been jointly organized by the research center of history of sciences and techniques (CRHST) and the association of the friends of the gunpowder and pyrotechnical patrimony (A3P). It gathers historians of sciences and techniques and specialists of solid propellants and their applications who make a review of the approaches that have led to todays propellants efficiency and mastery. This books contains 2 introductive talks, 24 articles, a round table and some concluding remarks. The articles deal with: 1 - from the black powder rockets to the space shuttle: France, pioneer of solid propulsion, from Vaillant to Damblanc (1821-1938); the development of solid propellants in the 20. century; lessons learnt from the Challenger accident; 2 - the institutions: the laboratory of ballistics of Sevran-Livry (1945-1969); an historical overview of ONERA's researches on solid propellants; the cast propellants at the Direction of Explosives (1945-1955); 3 - the propellants: the manufacturing secrets of the extruded double base propellants; the development of cast double base propellants; the invention of composite propellants; 4 - space applications: the Diamant adventure; the solid propellant engines of Ariane 5, an endless story; P80, a new generation of solid propellant engines for space applications; 6 - physics and models: from ap{sup n} to 3-D simulations: the combustion of solid propellants in the 20. century; the mechanical behaviour of solid propellant loads (1960-70 years); composite propellants and static electricity (SE) or the occurrence of SE in the manufacturing and implementation of composite propellants; a priori calculation of the performances and synthesis of new energy materials for propellants; 6 - defense applications: French solid propellant rockets and missiles up to the 1960's; from PHI 1500 to PHI 1930 or the fabulous history of metallic and roving propulsion systems; the G2P, the propulsion system of the M4, the exploratory


    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien


    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  11. An Open-Label, Multicenter, Phase 1/2 Study of E7438 (EZH2 Histone Methyl Transferase [HMT] Inhibitor) as a Single Agent in Subjects With Advanced Solid Tumors or With B-cell Lymphomas (United States)


    B-cell Lymphomas (Phase 1); Advanced Solid Tumors (Phase 1); Diffuse Large B-cell Lymphoma (Phase 2); Follicular Lymphoma (Phase 2); Transformed Follicular Lymphoma; Primary Mediastinal Large B-Cell Lymphoma

  12. Research on advanced transportation systems (United States)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka


    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  13. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  14. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  15. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  16. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 and Temsirolimus in Treating Patients With Advanced Solid Tumors (United States)


    Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  17. Nuclear Thermal Rocket - An Established Space Propulsion Technology (United States)

    Klein, Milton


    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  18. Safe, Compact Nuclear Propulsion: Solid Core Nuclear Propulsion Concept (United States)


    analysis group developed ROM component cost estimates given in representative ranges. 4.1 Engine System A representative nuclear thermal rocket engine...nuclear thermal rocket engine cycle balance computer code. The design requirements for the engine were: Thrust : 15,000 lbf Champer Pressure 500 psia...advanced nuclear thermal rockets . Our analysis was based on an examination of presentation material provided by Martin, some independent calculations of

  19. Identification of rocket-induced acoustic waves in the ionosphere (United States)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald


    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  20. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system (United States)

    Irwin, E. L.; Farnsworth, D. L.


    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  1. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui


    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  2. Particle Size Distributions Measured in the Stratospheric Plumes of Three Rockets During the ACCENT Missions (United States)

    Wiedinmyer, C.; Brock, C. A.; Reeves, J. M.; Ross, M. N.; Schmid, O.; Toohey, D.; Wilson, J. C.


    The global impact of particles emitted by rocket engines on stratospheric ozone is not well understood, mainly due to the lack of comprehensive in situ measurements of the size distributions of these emitted particles. During the Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) missions in 1999, the NASA WB-57F aircraft carried the University of Denver N-MASS and FCAS instruments into the stratospheric plumes from three rockets. Size distributions of particles with diameters from 4 to approximately 2000 nm were calculated from the instrument measurements using numerical inversion techniques. The data have been averaged over 30-second intervals. The particle size distributions observed in all of the rocket plumes included a dominant mode near 60 nm diameter, probably composed of alumina particles. A smaller mode at approximately 25 nm, possibly composed of soot particles, was seen in only the plumes of rockets that used liquid oxygen and kerosene as a propellant. Aircraft exhaust emitted by the WB-57F was also sampled; the size distributions within these plumes are consistent with prior measurements in aircraft plumes. The size distributions for all rocket intercepts have been fitted to bimodal, lognormal distributions to provide input for global models of the stratosphere. Our data suggest that previous estimates of the solid rocket motor alumina size distributions may underestimate the alumina surface area emission index, and so underestimate the particle surface area available for heterogeneous chlorine activation reactions in the global stratosphere.

  3. Infrared signature modelling of a rocket jet plume - comparison with flight measurements (United States)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.


    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  4. Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305 in patients with advanced solid tumors

    Directory of Open Access Journals (Sweden)

    Wu H


    Full Text Available Huali Wu,1 Jeffrey R Infante,2 Vicki L Keedy,3 Suzanne F Jones,2 Emily Chan,3 Johanna C Bendell,2 Wooin Lee,4 Whitney P Kirschbrown,1 Beth A Zamboni,5 Satoshi Ikeda,6 Hiroshi Kodaira,6 Mace L Rothenberg,3 Howard A Burris III,2 William C Zamboni1,7–9 1UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 2Sarah Cannon Research Institute/Tennessee Oncology, PLLC, 3Vanderbilt University, Nashville, TN, 4Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 5Department of Mathematics, Carlow University, Pittsburgh, PA, USA; 6Yakult Honsha Co., Ltd., Medical Development Department, Tokyo, Japan; 7UNC Lineberger Comprehensive Cancer Center, 8UNC Institute for Pharmacogenomics and Individualized Therapy, 9Carolina Center for Cancer Nanotechology Excellence, University of North Carolina, Chapel Hill, NC, USA Abstract: IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11. The objective of this study was to evaluate the factors associated with interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 in patients with advanced solid tumors. IHL-305 was administered intravenously once every 4 weeks as part of a Phase I study. Pharmacokinetic studies of the liposomal sum total CPT-11, released CPT-11, SN-38, SN-38G, 7-ethyl-10-[4-N-(5-aminopentanoic acid-1-piperidino]-carbonyloxycamptothecin, and 7-ethyl-10-[4-amino-1-piperidino]-carbonyloxycamptothecin in plasma were performed. Noncompartmental and compartmental pharmacokinetic analyses were conducted using pharmacokinetic data for sum total CPT-11. The pharmacokinetic variability of IHL-305 is associated with linear and nonlinear clearance. Patients whose age and body composition (ratio of total body weight to ideal body weight [TBW/IBW] were greater than the median age and TBW/IBW of the study had a 1.7-fold to 2.6-fold higher ratio of released CPT-11 area under the concentration versus time

  5. Mini-Rocket User Guide (United States)


    Missile Research , Development, and Engineering Center and Ray Sells DESE Research , Inc. 315 Wynn Drive Huntsville, AL 35805 August 2007...with the minirock command, you are prompted for a filename: Mini-Rocket v1.01 by Ray Sells, DESE Research , Inc. Input file: - Output is Commander, U.S. Army ARDEC Picatinny Arsenal, NJ 07806-5000 ATTN: AMSRD-AR-AIS -SA DESE Research , Inc. 3 15 Wynn Drive

  6. Optimization Problem of Multistage Rocket

    Directory of Open Access Journals (Sweden)

    V. B. Tawakley


    Full Text Available The necessary conditions for the existence of minimum of a function of initial and final values of mass, position and velocity components and time of a multistage rocket have been reviewed when the thrust levels in each stage are considered to bounded and variation in gravity with height has been taken into account. The nature of the extremal subarcs comprising the complete extremal are has been studied. A few simple examples have been given as illustrations.

  7. Extended temperature range rocket injector (United States)

    Schneider, Steven J. (Inventor)


    A rocket injector is provided with multiple sets of manifolds for supplying propellants to injector elements. Sensors transmit the temperatures of the propellants to a suitable controller which is operably connnected to valves between these manifolds and propellant storage tanks. When cryogenic propellant temperatures are sensed, only a portion of the valves are opened to furnish propellants to some of the manifolds. When lower temperatures are sensed, additional valves are opened to furnish propellants to more of the manifolds.

  8. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)


    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  9. Reusable rocket engine optical condition monitoring (United States)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.


    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  10. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  11. Recent advances and perspectives in analytical methodologies for monitoring the bioavailability of trace metals in environmental solid substrates

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald


    In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity...... and the eventual impact of anthropogenic TE in environmental solids are addressed. The potential of passive dosimeters based on microdialysis sampling for on-site, real-time monitoring of chemical contaminants in pore soil solution is thoroughly discussed and critically compared with active microsamplers. Recent...

  12. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)


    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  13. Robust lateral pulse jet control of an atmospheric rocket (United States)

    Burchett, Bradley Thomas

    Uncontrolled direct fire rockets exhibit high impact point dispersion, even at relatively short range, and as such have been employed as area weapons on the battlefield. In order to reduce the dispersion of a direct fire rocket, feedback control is employed to fire short-duration solid rocket pulses mounted near the nose of the projectile and acting perpendicular to the projectile axis of symmetry. The feedback law is developed by first determining a piece wise linear model of the projectile swerving motion, subsequently using this linear model to predict the projectile impact point both with and without control, and using the results to command pulses at appropriate times to drive the impact point closer to the specified target. Candidate optimal control laws are formed using rules based on decision grids, and a global control strategy search algorithm. The global search control law proves to be prohibitively computationally expensive for on-line implementation. The performance of the baseline control law is found to be comparable to the rule based and global search optimal control laws. The control gains of the baseline control law are optimized in the presence of parametric plant uncertainty using a Monte Carlo simulation. Performance of the system in the presence of parametric plant uncertainty using the optimized gains is deemed comparable to performance of the baseline controller with no plant uncertainty. The level of uncertainty of several plant parameters is varied in order to compare robustness of the controller when optimized with uncertainty viz. without uncertainty.

  14. Simulation of Rocket-Grade Kerosene Flowing in an Electrically Heated Experimental Apparatus (United States)


    assessed by measuring the carbon deposit formation rate. The experiment is aimed at developing a new standardized thermal stability test. The rocket...the tube, thermally coupled with steady heat conduction , and electric current flow in the solid copper apparatus. Temperature dependence of fluid and...density turbulent flow inside the tube, thermally coupled with steady heat conduction , and electric current flow in the solid copper apparatus

  15. Near-term lunar nuclear thermal rocket engine options (United States)

    Pelaccio, Dennis G.; Scheil, Christine M.; Collins, John T.


    The Nuclear Thermal Rocket (NTR) is an attractive candidate propulsion system option for manned planetary missions. Its high performance capability for such missions translates into a substantial reduction in low-earth-orbit (LEO) required mass and trip times with increased operational flexibility. This study examined NTR engine options that could support near-term lunar mission operations. Expander and gas generator cycle, solid-core NERVA derivative reactor-based NTR engines were investigated. Weight, size, operational characteristics, and design features for representative NTR engine concepts are presented. The impact of using these NTR engines for a typical lunar mission scenario is also examined.

  16. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. (United States)

    Lin, Shan-Yang; Wang, Shun-Li


    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations.

  17. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. (United States)

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng


    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

  18. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)


    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  19. Dual Inhibition of the Epidermal Growth Factor Receptor Pathway with Cetuximab and Erlotinib: A Phase I Study in Patients with Advanced Solid Malignancies (United States)

    Guarino, Michael J.; Schneider, Charles J.; Hosford, Martha A.; Brahmer, Julie R.; Rudin, Charles M.; Finckenstein, Friedrich Graf; Philip-Norton, Robyn E.; Lu, Haolan; Weber, Martin R.; Ettinger, David S.


    Purpose To determine the optimal dose of the antiepidermal growth factor receptor (EGFR) monoclonal antibody cetuximab that can be safely administered in combination with a standard daily dose of erlotinib in patients with advanced solid malignancies. Patients and Methods Patients with advanced solid malignancies who had failed standard chemotherapies received escalating doses of cetuximab without a loading dose (100, 200, 250 mg/m2 i.v. weekly) in combination with a fixed dose of erlotinib (150 mg daily orally) until disease progression or unacceptable toxicity. Results Twenty-two patients were treated, including 14 patients (64%) with non-small cell lung cancer. Twenty patients received combination treatment at the highest dose level for a median of 5.5 weeks (range, 1–31 weeks). One dose-limiting toxicity was observed: grade 3 skin rash. Overall, the most common adverse events (any grade, grade 3/4) were consistent with the safety profiles of the individual drugs: acneform rash (100%, 9%), diarrhea (77%, 5%), and hypomagnesemia (59%, 12%). Seven of 18 evaluable patients (38.9%) had stable disease lasting for a median of 16.6 weeks (range, 6.1–25.1 weeks). Conclusion Dual EGFR inhibition with cetuximab and erlotinib is feasible; the observed toxicities were manageable and consistent with the safety profiles of the individual drugs. The recommended doses for phase II studies are 250 mg/m2 i.v. weekly for cetuximab and 150 mg daily orally for erlotinib. PMID:19182243

  20. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey


    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  1. Advances in high-energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 measurements (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey


    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2- micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  2. Advances and trends in structural and solid mechanics; Proceedings of the Symposium, Washington, DC, October 4-7, 1982 (United States)

    Noor, A. K. (Editor); Housner, J. M.


    The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.

  3. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success (United States)

    Seiler, James; Brasfield, Fred; Cannon, Scott


    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  4. MHD thrust vectoring of a rocket engine (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic


    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  5. Ammonium nitrate: a promising rocket propellant oxidizer (United States)

    Oommen; Jain


    Ammonium nitrate (AN) is extensively used in the area of fertilizers and explosives. It is present as the major component in most industrial explosives. Its use as an oxidizer in the area of propellants, however, is not as extensive as in explosive compositions or gas generators. With the growing demand for environmental friendly chlorine free propellants, many attempts have been made of late to investigate oxidizers producing innocuous combustion products. AN, unlike the widely used ammonium perchlorate, produces completely ecofriendly smokeless products. Besides, it is one of the cheapest and easily available compounds. However, its use in large rocket motors is restricted due to some of its adverse characteristics like hygroscopicity, near room temperature phase transformation involving a volume change, and low burning rate (BR) and energetics. The review is an attempt to consolidate the information available on the various issues pertaining to its use as a solid propellant oxidizer. Detailed discussions on the aspects relating to phase modifications, decomposition chemistry, and BR and energetics of AN-based propellants, are presented. To make the review more comprehensive brief descriptions of the history, manufacture, safety, physical and chemical properties and various other applications of the salt are also included. Copyright 1999 Elsevier Science B.V.

  6. Demilitarization of Lance rocket motors (United States)

    Sargent, Peter


    In 1992 Royal Ordnance was awarded contract by NAMSA for the demilitarization of NATO's European stock of Lance missile rocket motors. Lance is a liquid fueled surface to surface guided missile designed to give general battlefield support with either a nuclear or conventional capability at ranges of up to 130 km. The NAMSA contract required Royal Ordnance to undertake the following: (1) transportation of missiles from NATO depots in Europe to Royal Ordnance's factory at Bishopton in Scotland; (2) establishment of a dedicated demilitarization facility at Bishopton; and (3) demilitarization of live M5 and M6 training missiles by the end of 1994.

  7. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand (United States)

    Chaparro, Javier


    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of

  8. Novel systemic treatment options for advanced solid tumors with or without central nervous system metastases or malignant glioma

    NARCIS (Netherlands)

    Milojkovic Kerklaan, B.


    Chemotherapy is a very frequently used therapy in patients with advanced tumors with or without central nervous system (CNS) metastases or primary brain tumors. Despite the significant progress in drug development, the survival of patients is limited with an unmet need for more effective chemotherap

  9. Geometric effects of fuel regression rate in hybrid rocket motors

    Institute of Scientific and Technical Information of China (English)

    CAI GuoBiao; ZHANG YuanJun; WANG PengFei; HUI Tian; ZHAO Sheng; YU NanJia


    The geometric configuration of the solid fuel is a key parameter affecting the fuel regression rate in hybrid rocket motors.In this paper,a semi-empirical regression rate model is developed to investigate the geometric effect on the fuel regression rate by incorporating the hydraulic diameter into the classical model.The semi-empirical model indicates that the fuel regression rate decreases with increasing hydraulic diameter and is proportional to dh-0.2 when convective heat transfer is dominant.Then a numerical model considering turbulence,combustion,solid fuel pyrolysis,and a solid-gas coupling model is established to further investigate the geometric effect.Eight motors with different solid fuel grains are simulated,and four methods of scaling the regression rate between different solid fuel grains are compared.The results indicate that the solid fuel regression rates are approximate the same when the hydraulic diameters are equal.The numerical results verify the accuracy of the semi-empirical model.

  10. Hybrid Rocket Experiment Station for Capstone Design (United States)

    Conley, Edgar; Hull, Bethanne J.


    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  11. Fuel-Cell Power Source Based on Onboard Rocket Propellants (United States)

    Ganapathi, Gani; Narayan, Sri


    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  12. Water Impact Prediction Tool for Recoverable Rockets (United States)

    Rooker, William; Glaese, John; Clayton, Joe


    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  13. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket (United States)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac


    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  14. In Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments (United States)

    Sen, S.; Juretzko, F.; Stafanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.


    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/l) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub cr) for agglomerates depends not only on their effective size but also their orientation with respect to the s,1 interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  15. In-Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments (United States)

    Sen, S.; Juretzko, F.; Stefanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.


    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/1) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub ct),, for agglomerates depends not only on their effective size but also their orientation with respect to the s/l interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  16. The liquid rocket booster as an element of the U.S. national space transportation system (United States)

    Bialla, Paul H.; Simon, Michael C.

    Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined

  17. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule


    Full Text Available In current study, immediate release solid dispersion (SD formulation of antiulcer drug lafutidine (LAFT was developed using hot melt extrusion (HME technique. Amphiphilic Soluplus® used as a primary solubilizing agent, with different concentrations of selected surfactants like PEG 400, Lutrol F127 (LF127, Lutrol F68 (LF68 were used to investigate their influence on formulations processing via HME. Prepared amorphous glassy solid dispersion was found to be thermodynamically and physicochemically stable. On the contrary, traces of crystalline LAFT not observed in the extrudates according to differential scanning calorimetry (DSC, X-ray diffraction (XRD, scanning electron microscopy (SEM and Raman spectroscopy. Raman micro spectrometry had the lowest detection limit of LAFT crystals compared with XRD and DSC. Atomic Force microscopy (AFM studies revealed drug- polymer molecular miscibility and surface interaction at micro level. 1H–COSY NMR spectroscopy confirmed miscibility and interaction between LAFT and Soluplus®, with chemical shift drifting and line broadening. MD simulation studies using computational modelling showed intermolecular interaction between molecules. Dissolution rate and solubility of LAFT was enhanced remarkably in developed SD systems. Optimized ratio of polymer and surfactants played crucial role in dissolution rate enhancement of LAFT SD. The obtained results suggested that developed LAFT has promising potential for oral delivery and might be an efficacious approach for enhancing the therapeutic potential of LAFT.

  18. Advanced analytical method of nereistoxin using mixed-mode cationic exchange solid-phase extraction and GC/MS. (United States)

    Park, Yujin; Choe, Sanggil; Lee, Heesang; Jo, Jiyeong; Park, Yonghoon; Kim, Eunmi; Pyo, Jaesung; Jung, Jee H


    Nereistoxin(NTX) was originated from a marine annelid worm Lumbriconereis heteropoda and its analogue pesticides including cartap, bensultap, thiocyclam and thiobensultap have been commonly used in agriculture, because of their low toxicity and high insecticidal activity. However, NTX has been reported about its inhibitory neuro toxicity in human and animal body, by blocking nicotinic acetylcholine receptor and it cause significant neuromuscular toxicity, resulting in respiratory failure. We developed a new method to determine NTX in biological fluid. The method involves mixed-mode cationic exchange based solid phase extraction and gas chromatography/mass spectrometry for final identification and quantitative analysis. The limit of detection and recovery were substantially better than those of other methods using liquid-liquid extraction or headspace solid phase microextraction. The good recoveries (97±14%) in blood samples were obtained and calibration curves over the range 0.05-20 mg/L have R2 values greater than 0.99. The developed method was applied to a fatal case of cartap intoxication of 74 years old woman who ingested cartap hydrochloride for suicide. Cartap and NTX were detected from postmortem specimens and the cause of the death was ruled to be nereistoxin intoxication. The concentrations of NTX were 2.58 mg/L, 3.36 mg/L and 1479.7 mg/L in heart, femoral blood and stomach liquid content, respectively. The heart blood/femoral blood ratio of NTX was 0.76.

  19. 21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein...

  20. Enhancement of hybrid rocket combustion performance using nano-sized energetic particles (United States)

    Risha, Grant Alexander

    Until now, the regression rate of classical hybrid rocket engines have typically been an order of magnitude lower than solid propellant motors; thus, hybrids require a relatively large fuel surface area for a given thrust level. In addition to low linear regression rates, relatively low combustion efficiency (87 to 92%), low mass burning rates, varying oxidizer-to-fuel ratio during operation, and lack of scaling laws have been reported. These disadvantages can be ameliorated by introducing nano-sized energetic powder additives into the solid fuel. The addition of nano-sized energetic particles into the solid fuel enhances performance as measured by parameters such as: density specific impulse, mass and linear burning rates, and thrust. Thermophysical properties of the solid fuel such as density, heat of combustion, thermal diffusivity, and thermal conductivity are also enhanced. The types of nano-sized energetic particles used in this study include aluminum, boron, boron carbide, and some Viton-A coated particles. Since the combustion process of solid fuels in a hybrid rocket engine is governed by the mass flux of the oxidizer entering the combustion chamber, the rate-limiting process is the mixing and reacting of the pyrolysis products of the fuel grain with the incoming oxidizer. The overall goal of this research was to determine the relative propulsive and combustion behavior for a family of newly-developed HTPB-based solid-fuel formulations containing various nano-sized energetic particles. Seventeen formulations contained 13% additive by weight, one formulation (SF4) contained 6.5% additive by weight, and one formulation (SF19) contained 5.65% boron by weight. The two hybrid rocket engines which were used in this investigation were the Long Grain Center-Perforated (LGCP) rocket engine and the X-Ray Transparent Casing (XTC) rocket engine. The smaller scale LGCP rocket engine was used to evaluate all of the formulations because conducting experiments using the