WorldWideScience

Sample records for advanced semiconductor manufacturing

  1. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  2. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  3. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Settens, Charles M. [State Univ. of New York (SUNY), Albany, NY (United States)

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  4. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  5. Manufacture of Semi-Conductor Grade Silicon

    Directory of Open Access Journals (Sweden)

    V. Ramakrishna

    1968-05-01

    Full Text Available Methods of manufacture of elemental Si are considered in the light of its occurrence and abundance in nature. The thermodynamics of the reactions involved in the manufacture and in the refining process has been discussed. Some commercial for obtaining semiconductor Grade Si are outlined.

  6. Discussion on advanced manufacturing

    Institute of Scientific and Technical Information of China (English)

    WANG Xiankui

    2007-01-01

    Advanced manufacturing consists of continuity of manufacturing,its broad sense,and the core of the manufacturing process.The technology of continuous manufacturing is discussed according to both historical and modern perspectives.The relationship between human development and manufacturing technology is also discussed.Manufacturing is a continuously evolving topic.It is not only the foundation and means of imagination,conception,the science,and the technology of material change,but also the expression of national economy,national defense,and the support industries.The broad sense of manufacturing theory,which extends the concept of manufacturing,is an important development in the 20th century.The sense is analyzed in connection with design,material forming theory,synthesis of manufacturing technology,manufacturing modes,life cycle of product,hardware and sottware,and support environment,etc.At the same time,the core action and the development of the theory and technology of process is also discussed.At the end of this paper,the development directions of mechanical manufacturing science and technology are mentioned.

  7. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Science.gov (United States)

    2010-12-28

    ... COMMISSION In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and... for ] importation, and sale within the United States after importation of certain semiconductor... respondents: Taiwan Semiconductor Manufacturing, Co., Ltd. (Taiwan) (``TSMC''); and Samsung Electronics...

  8. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  9. Semiconductors integrated circuit design for manufacturability

    CERN Document Server

    Balasinki, Artur

    2011-01-01

    Because of the continuous evolution of integrated circuit manufacturing (ICM) and design for manufacturability (DfM), most books on the subject are obsolete before they even go to press. That's why the field requires a reference that takes the focus off of numbers and concentrates more on larger economic concepts than on technical details. Semiconductors: Integrated Circuit Design for Manufacturability covers the gradual evolution of integrated circuit design (ICD) as a basis to propose strategies for improving return-on-investment (ROI) for ICD in manufacturing. Where most books put the spotl

  10. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  11. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  12. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  13. Advanced Semiconductor Devices

    Science.gov (United States)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  14. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  15. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  16. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2007-11-02

    markets, production and innovation. After encountering growing international competition in the 1970’s and 1980’s, U.S. manufacturers sought new and better...competitive advantages and better performance in world markets. Importantly, advanced manufacturing involves the innovative integration of new technology...the traditional parameters of mass production, giving rise to a new era in manufacturing in which manufacturers are increasing the speed and

  17. Microeconomics of process control in semiconductor manufacturing

    Science.gov (United States)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  18. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [University of Arizona

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  19. 先进生产调度:半导体制造中的在制品管理%Advanced scheduling in WIP management for semiconductor manufacturing

    Institute of Scientific and Technical Information of China (English)

    张涛

    2004-01-01

    晶片在制品的库存管理一直是困扰半导体制造业的一个难题.在全自动300mm晶片制造厂,显得愈发重要.晶片储存柜的负载平衡对于晶片在制品的及时运送有着重要影响.保证优先级高的晶片在制品在靠近加工机器的储存柜中有足够的空间是至关重要的."主动恢复"过程可以减少从远处储存柜运送晶片的次数,从而缩短运送时间.本文介绍了几种实用的库存管理方法.这些方法利用自动控制系统数据仓库提供的不同功能,通过调整工厂中晶片在制品的配给来提高工厂的产能.%Semiconductor manufacturing community has long been plagued with inventory management of work-In-process (WIP) wafers. With the emergence of 300mm fully automated Fabs,the issue becomes increasingly important. Load balance among stockers has a strong impact on the lot delivery time. Lack of space in a local stocker results in longer delivery time because getting wafer lots from remote stockers are very time-consuming. Proactive restoration can be implemented to automatically allocate lots from wrong stockers to the right stockers in order to reduce the number of remote get lots, therefore lot delivery time. This paper describes some practical storage management approaches to adjust wafer distribution in the factory to improve manufacturability by taking advantages of the data warehouse capability of various automation systems.

  20. Semiconductor Manufacturing Final Air Toxics Rules Fact Sheets

    Science.gov (United States)

    This page contains a February 2003 fact sheet for the final NESHAP for Semiconductor Manufacturing. This page also contains a July 2008 fact sheet with information regarding the final amendments to the 2003 final rule for the NESHAP.

  1. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  2. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  3. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  4. Planning for the semiconductor manufacturer of the future

    Science.gov (United States)

    Fargher, Hugh E.; Smith, Richard A.

    1992-01-01

    Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described.

  5. 75 FR 879 - National Semiconductor Corporation Arlington Manufacturing Site Including On-Site Leased Workers...

    Science.gov (United States)

    2010-01-06

    ... Employment and Training Administration National Semiconductor Corporation Arlington Manufacturing Site... Semiconductor Corporation, Arlington Manufacturing Site, including on-site leased workers from GCA, CMPA, Custom... Mechanical Systems were employed on-site at the Arlington, Texas location of National...

  6. 使用在线RGA的先进半导体生产%Advanced Semiconductor Manufacturing with an in situ RGA

    Institute of Scientific and Technical Information of China (English)

    K.C.Lin

    2003-01-01

    Automated residual gas analyzers (RGAs) canplay a very important role in advanced process con-trol (APC), advanced equipment control (AEC), andfault detection and classification (FDC). Inparticular, automated RGAs can provide needed tooland process information to aid in such analyses.This paper will discuss the role that automated RGAcan play in the areas of APC, AEC, and FDC, presenta viable automated RGA approach, and lastly, pro-vide an example of this approach to the detectionof photoresist.

  7. Strengthening the Competitiveness and Sustainability of a Semiconductor Manufacturer with Cloud Manufacturing

    Directory of Open Access Journals (Sweden)

    Toly Chen

    2014-01-01

    Full Text Available Cloud manufacturing (CMfg is a new-generation service-oriented networked manufacturing model that provides distributed users centralized managed manufacturing resources, ability, and services. CMfg is applied here to a semiconductor manufacturing factory. Benefits are classified into five aspects: cost savings, efficiency, additional data analysis capabilities, flexibility, and closer partner relationships. A strength, weakness, opportunity, and threat (SWOT analysis is done which guides a semiconductor manufacturer in planning CMfg implementation projects. Simulation of a wafer fabrication factory (wafer fab is used as an example. Several CMfg services are proposed for assisting the fab simulation activities through the collaboration of cloud service providers, software vendors, equipment suppliers, and the wafer fab. The connection with the competitiveness and sustainability of a wafer fab is also stressed.

  8. Integrated optics approach for advanced semiconductor lasers

    Science.gov (United States)

    Suematsu, Yasuharu; Arai, Shigehisa

    1987-11-01

    Recent advances in the field of semiconductor integrated optics are reviewed from the point of view of monolithic integration of semiconductor lasers and other optical components and/or devices. Emphasis is placed on dynamic-single-mode (DSM) lasers, such as DFB and DBR lasers, intended for highly stable single-wavelength light sources for such monolithic integration. The realization of high-performance DSM lasers and the fabrication techniques of monolithically integrated optical devices and circuits are briefly reviewed. A variety of potential applications is discussed.

  9. TiCl4 Barrier Process Engineering in Semiconductor Manufacturing

    Directory of Open Access Journals (Sweden)

    Tuung Luoh

    2016-01-01

    Full Text Available Titanium nitride (TiN not only was utilized in the wear-resistant coatings industry but it was also adopted in barrier processes for semiconductor manufacturing. Barrier processes include the titanium (Ti and TiN processes, which are commonly used as diffusion barriers in via/contact applications. However, engineers frequently struggle at the via/contact module in the beginning of every technology node. As devices shrink, barrier processes become more challenging to overcome the both the physical fill-in and electrical performance requirements of advanced small via/contact plugs. The aim of this paper is to investigate various chemical vapor deposition (CVD TiCl4-based barrier processes to serve the application of advanced small via/contact plugs and the metal gate processes. The results demonstrate that the plasma-enhanced chemical vapor deposition (PECVD TiCl4-based Ti process needs to select a feasible process temperature to avoid Si surface corrosion by high-temperature chloride flow. Conventional high step coverage (HSC CVD TiCl4-based TiN processes give much better impurity performance than metal organic chemical vapor deposition (MOCVD TiN. However, the higher chloride content in HSC film may degrade the long-term reliability of the device. Furthermore, it is evidenced that a sequential flow deposition (SFD CVD TiCl4-based process with multiple cycles can give much less chloride content, resulting in faster erase speeds and lower erase levels than that of conventional HSC TiN.

  10. A method of manufacturing graduated substrates for a semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Yosikava, A.; Kadzumura, K.; Ota, K.; Sugino, T.; Vada, M.

    1984-01-12

    A method is patented for manufacturing a substrate with a graduated design for a semiconductor laser with a long service life and the necessary optical characteristics in a 1.5 micrometer spectral range. The laser is manufactured using a GaAs substrate with an active zone based on GaxAll-xAs. In order to achieve this goal, the active layer is equipped with a so called diffusion window whose diameter is chosen so that the threshold pumping current of the laser is less than 30 milliamperes.

  11. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  12. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    Science.gov (United States)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  13. 用于先进半导体制程的光刻反向计算技术(ILT)%Inverse Lithography Technology (ILT) for Advanced Semiconductor Manufacturing

    Institute of Scientific and Technical Information of China (English)

    庞琳勇; 刘永; Dan Abrams

    2007-01-01

    In this paper, we present the first ILT approach that can rapidly solve for the optimal photomask design and that is suitable for use in a production environment. We will discuss the latest development of ILT at Luminescent, in particular, in the areas of sub-resolution assist feature (SRAF) generation, process window ILT, and mask rule compliance (MRC). Results collected internally and from customers demonstrate that ILT is no longer just an R&D tool, but is in fact ready for production qualification at advanced technology nodes. By optimizing each element of the process, ILT can improve process windows while maintaining mask costs at a reasonable level.%此篇论文将介绍一个用于半导体光罩上图样设计以及可用于实际生产的光刻反向计算技术(ILT).在论文中将讨论有关ILT的最新发展,包括在超成像极限协助图样(SRAF)的生成,可增加制程宽容度的ILT, 以及如何生成满足光罩生产标准的图样等方面.从内部的研究结果和客户的使用结果可以看出,ILT已经不再只是一种用于研究的工具,而是已经可以用于先进半导体制程的大规模生产.在对各个环节优化之后,ILT可以增加制程的宽容度,同时将光罩的成本控制在可以接受的水平.

  14. Rare resource supply crisis and solution technology for semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  15. Emerging Global Trends in Advanced Manufacturing

    Science.gov (United States)

    2012-03-01

    in manufacturing competitiveness (Deloitte Council on Competitiveness, 2010 #219). South Korea has one of the highest...OECD countries (OECD 2010c). However, foreign direct investment is low in South Korea , and the barriers to starting a new business are high in terms of...advances in manufacturing will likely become increasingly networked. In 20 years, manufacturing is expected to advance to new frontiers, resulting in

  16. Isotope separation and advanced manufacturing technology

    Science.gov (United States)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  17. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  18. Advanced manufacturing: Technology and international competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  19. Advanced Manufacturing Training: Mobile Learning Labs

    Science.gov (United States)

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  20. Advanced Manufacturing Training: Mobile Learning Labs

    Science.gov (United States)

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  1. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    Science.gov (United States)

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  2. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  3. Microeconomics of yield learning and process control in semiconductor manufacturing

    Science.gov (United States)

    Monahan, Kevin M.

    2003-06-01

    Simple microeconomic models that directly link yield learning to profitability in semiconductor manufacturing have been rare or non-existent. In this work, we review such a model and provide links to inspection capability and cost. Using a small number of input parameters, we explain current yield management practices in 200mm factories. The model is then used to extrapolate requirements for 300mm factories, including the impact of technology transitions to 130nm design rules and below. We show that the dramatic increase in value per wafer at the 300mm transition becomes a driver for increasing metrology and inspection capability and sampling. These analyses correlate well wtih actual factory data and often identify millions of dollars in potential cost savings. We demonstrate this using the example of grating-based overlay metrology for the 65nm node.

  4. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  5. Design for manufacturability with advanced lithography

    CERN Document Server

    Yu, Bei

    2016-01-01

    This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL).  The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography.  Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.

  6. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Science.gov (United States)

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  7. Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing

    Directory of Open Access Journals (Sweden)

    James Moyne

    2017-07-01

    Full Text Available Smart manufacturing (SM is a term generally applied to the improvement in manufacturing operations through integration of systems, linking of physical and cyber capabilities, and taking advantage of information including leveraging the big data evolution. SM adoption has been occurring unevenly across industries, thus there is an opportunity to look to other industries to determine solution and roadmap paths for industries such as biochemistry or biology. The big data evolution affords an opportunity for managing significantly larger amounts of information and acting on it with analytics for improved diagnostics and prognostics. The analytics approaches can be defined in terms of dimensions to understand their requirements and capabilities, and to determine technology gaps. The semiconductor manufacturing industry has been taking advantage of the big data and analytics evolution by improving existing capabilities such as fault detection, and supporting new capabilities such as predictive maintenance. For most of these capabilities: (1 data quality is the most important big data factor in delivering high quality solutions; and (2 incorporating subject matter expertise in analytics is often required for realizing effective on-line manufacturing solutions. In the future, an improved big data environment incorporating smart manufacturing concepts such as digital twin will further enable analytics; however, it is anticipated that the need for incorporating subject matter expertise in solution design will remain.

  8. Advances in recombinant antibody manufacturing.

    Science.gov (United States)

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  9. Advances in Rare Earth Application to Semiconductor Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    屠海令

    2004-01-01

    The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.

  10. "Advanced Manufacturing Methods for Systems of Nanospacecrafts".

    OpenAIRE

    Rochus, Pierre

    2014-01-01

    Space instrumentation and Space Environmental testing activities at CSL Dreams, a priori expectations and space specificities Advanced Manufacturing Techniques considered in our studies First steps realizations 15 years ago More concrete and more recent examples Conclusions and future activities Peer reviewed

  11. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  12. Methods for the additive manufacturing of semiconductor and crystal materials

    Science.gov (United States)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  13. Methods for the additive manufacturing of semiconductor and crystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  14. Optimization of a semiconductor manufacturing process using a reentrant model

    Directory of Open Access Journals (Sweden)

    Sarah Abuhab Valente

    2015-01-01

    Full Text Available The scope of this work is the simulation of a semiconductor manufacturing model in Arena® software and subsequent optimization and sensitivity analysis of this model. The process is considered extremely complex given the amount of steps, machinery, parameters, and highly reentrant characteristics, which makes it difficult to reach stability of production process. The production model used was the Intel Five-Machine Six-Step Mini-fab developed by Karl Kempf (1994. It was programmed in Arena® and optimized by OptQuest®, an add-on. We concluded that variation in the number of machines and operators reflects on cycle time only if there is an increase of one unit of resource more than obtained in the optimization. As a result, we highlighted the scenario where a reduction in cycle time stood out, in which one extra unit was added in the second machine group, representing a 7.41% reduction in cycle time.

  15. Simulation-Based ‘Smart’ Operation Management System for Semiconductor Manufacturing

    OpenAIRE

    Choi, Byoung,; Kim, Byung,

    2015-01-01

    Part 2: Open Cloud Computing Architecture for Smart Manufacturing and Cyber Physical Production Systems; International audience; Presented in this paper is a framework of a simulation-based ‘smart’ operation management system (OMS) for semiconductor manufacturing. Also described are changes in the semiconductor market environment and key modules in the smart OMS. The proposed smart OMS is being implemented for a couple of IC chip makers in Korea.

  16. Inorganic acid emission factors of semiconductor manufacturing processes.

    Science.gov (United States)

    Chein, HungMin; Chen, Tzu Ming; Aggarwal, Shankar Gopala; Tsai, Chuen-Jinn; Huang, Chun-Chao

    2004-02-01

    A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HCl], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.

  17. Development and Implementation of an Advanced Planning & Scheduling (APS) System for Semiconductor Backend Assembly

    Institute of Scientific and Technical Information of China (English)

    T; J; Chua; T; X; Cai; F; Y; Wang; William; Liu; X; F; Yin; W; J; Yan; J; P; Zhu; Joanne; Lam

    2002-01-01

    In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company's quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integra...

  18. Nanoimprint system development and status for high volume semiconductor manufacturing

    Science.gov (United States)

    Hiura, Hiromi; Takabayashi, Yukio; Takashima, Tsuneo; Emoto, Keiji; Choi, Jin; Schumaker, Phil

    2016-10-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography* (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are many criteria that determine whether a particular technology is ready for wafer manufacturing. For imprint lithography, recent attention has been given to the areas of overlay, throughput, defectivity, and mask replication. This paper reviews progress in these critical areas. Recent demonstrations have proven that mix and match overlay of less than 5nm can achieved. Further reductions require a higher order correction system. Modeling and experimental data are presented which provide a path towards reducing the overlay errors to less than 3nm. Throughput is mainly impacted by the fill time of the relief images on the mask. Improvement in resist materials provides a solution that allows 15 wafers per hour per station, or a tool throughput of 60 wafers per hour. Defectivity and mask life play a significant role relative to meeting the cost of ownership (CoO) requirements in the production of semiconductor devices. Hard particles on a wafer or mask create the possibility of inducing a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, the lifetime of both the master mask and the replica mask can be extended. In this work, we report results that demonstrate a path towards achieving mask lifetimes of better than 1000 wafers. Finally, on the mask side, a new replication tool, the FPA-1100NR2 is

  19. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    Science.gov (United States)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical

  20. Nanoimprint system development and status for high-volume semiconductor manufacturing

    Science.gov (United States)

    Takashima, Tsuneo; Takabayashi, Yukio; Nishimura, Naosuke; Emoto, Keiji; Matsumoto, Takahiro; Hayashi, Tatsuya; Kimura, Atsushi; Choi, Jin; Schumaker, Philip

    2016-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made overlay, throughput and defectivity and to introduce the FPA-1200NZ2C cluster system designed for high volume manufacturing of semiconductor devices. in the reduction of particle adders in an imprint tool and introduce the new mask replication tool that will enable the fabrication of replica masks with added residual image placement errors suitable for memory devices with half pitches smaller than 15nm. Overlay results better than 5nm 3sigma have been demonstrated. To further enhance overlay, wafer chucks with improved flatness have been implemented to reduce distortion at the wafer edge. To address higher order corrections, a two part solution is discussed. An array of piezo actuators can be applied to enable linear corrections. Additional reductions in distortion can then be addressed by the local heating of a wafer field. The NZ2C cluster platform for high volume manufacturing is also discussed. System development continues this year with a target for introduction later in 2016. The first application is likely to be NAND Flash memory, and eventual use for DRAM and logic devices as both overlay and defectivity improve.

  1. Additive manufacturing approaches for stress relief in semiconductor die packaging

    NARCIS (Netherlands)

    Zon, C.M.B. van der; Wiel, A. van der; Maalderink, H.H.; Vaes, M.H.E.; Aulbers, A.P.; Vorst, L.T.G. van de; Cate, A.T. ten; Furrer, J.F.; Burssens, J.W.; Chen, J.

    2012-01-01

    Packaging of semiconductor chips, especially MEMS-based, always causes stress on the functional areas of the die causing unpredictable changes in chip performance. As a consequence such devices can only be calibrated individually after complete assembly. Melexis and TNO have developed an approach to

  2. Additive manufacturing approaches for stress relief in semiconductor die packaging

    NARCIS (Netherlands)

    Zon, C.M.B. van der; Wiel, A. van der; Maalderink, H.H.; Vaes, M.H.E.; Aulbers, A.P.; Vorst, L.T.G. van de; Cate, A.T. ten; Furrer, J.F.; Burssens, J.W.; Chen, J.

    2012-01-01

    Packaging of semiconductor chips, especially MEMS-based, always causes stress on the functional areas of the die causing unpredictable changes in chip performance. As a consequence such devices can only be calibrated individually after complete assembly. Melexis and TNO have developed an approach to

  3. Submillimeter Absorption Spectroscopy in Semiconductor Manufacturing Plasmas and Comparison to Theoretical Models

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2015-06-01

    Plasmas used in the semiconductor manufacturing industry are of a similar nature to the environments often created for submillimeter spectroscopic study of astrophysical species. At the low operating pressures of these plasmas, submillimeter absorption spectroscopy is a method capable of measuring the abundances and temperatures of molecules, radicals, and ions without disturbing any of the properties of the plasma. These measurements provide details and insight into the interactions and reactions occurring within the plasma and their implications for semiconductor manufacturing processes. A continuous wave, 500 to 750 GHz, absorption spectrometer was designed and used to make measurements of species in semiconductor processing plasmas. Comparisons with expectations from theoretical plasma models provide a basis for validating and improving these models, which is a complex and difficult science itself. Furthermore, these comparisons are an evaluation for the use of submillimeter spectroscopy as a diagnostic tool in manufacturing processes.

  4. Recent advances in semiconductor optical amplifiers and their applications

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Mikkelsen, Benny; Djurhuus, Torsten;

    1992-01-01

    The authors review recent advances in SOAs (semiconductor optical amplifiers) and some of their applications. SOAs are under rapid development to achieve polarization independent gain, low facet reflectivities, good coupling to optical fibers, and high saturation power. The package SOA can be made...

  5. 75 FR 38129 - Freescale Semiconductor, Inc., Hardware/Software Design and Manufacturing A Including On-Site...

    Science.gov (United States)

    2010-07-01

    ... Employment and Training Administration Freescale Semiconductor, Inc., Hardware/Software Design and... Freescale Semiconductor, Inc., Hardware/Software Design and Manufacturing A, Austin, Texas. The notice was... related to the production of semiconductors. The company reports that workers leased from TAC...

  6. Precision Casting via Advanced Simulation and Manufacturing

    Science.gov (United States)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  7. Handbook for cleaning for semiconductor manufacturing fundamentals and applications

    CERN Document Server

    Reinhardt, Karen A

    2011-01-01

    This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This

  8. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.

    Science.gov (United States)

    Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari

    2014-11-21

    Photocatalytic and photoelectrochemical water splitting under irradiation by sunlight has received much attention for production of renewable hydrogen from water on a large scale. Many challenges still remain in improving energy conversion efficiency, such as utilizing longer-wavelength photons for hydrogen production, enhancing the reaction efficiency at any given wavelength, and increasing the lifetime of the semiconductor materials. This introductory review covers the fundamental aspects of photocatalytic and photoelectrochemical water splitting. Controlling the semiconducting properties of photocatalysts and photoelectrode materials is the primary concern in developing materials for solar water splitting, because they determine how much photoexcitation occurs in a semiconductor under solar illumination and how many photoexcited carriers reach the surface where water splitting takes place. Given a specific semiconductor material, surface modifications are important not only to activate the semiconductor for water splitting but also to facilitate charge separation and to upgrade the stability of the material under photoexcitation. In addition, reducing resistance loss and forming p-n junction have a significant impact on the efficiency of photoelectrochemical water splitting. Correct evaluation of the photocatalytic and photoelectrochemical activity for water splitting is becoming more important in enabling an accurate comparison of a number of studies based on different systems. In the latter part, recent advances in the water splitting reaction under visible light will be presented with a focus on non-oxide semiconductor materials to give an overview of the various problems and solutions.

  9. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  10. The Role of Advanced Manufacturing in Our Journey to Mars

    Science.gov (United States)

    Keys, Andrew S.

    2017-01-01

    The National Additive Manufacturing Innovation Institute was launched in August 2012 as a result of President Obama's proposed need for a whole-of-government advanced manufacturing effort. Mission: To accelerate the adoption of additive manufacturing technologies to increase domestic manufacturing competitiveness. Funding: Five federal agencies - the Departments of Defense, Energy, and Commerce, the National Science Foundation, and NASA - jointly committed to invest $45 million.

  11. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Directory of Open Access Journals (Sweden)

    Alfred T. Sidambe

    2014-12-01

    Full Text Available Titanium (Ti and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  12. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Science.gov (United States)

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  13. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  14. Robust control of lithographic process in semiconductor manufacturing

    Science.gov (United States)

    Kang, Wei; Mao, John

    2005-05-01

    In this paper, a stability analysis is conducted for several feedback controllers of photolithography processes. We emphasize the stability of process controllers in the presence of model mismatch, and other uncertainties such as system drift and unknown noise. Real data of critical dimension (CD) in shallow trench isolation area from an Intel manufacturing fab is used for model analysis. The feedbacks studied in this paper include a controller based on an adaptive model, and several controllers based on existing estimation methods such as EWMA, extended EWMA, and d-EWMA. Both theoretical analysis and computer simulations are presented to show the stability of the controlled process under these feedbacks.

  15. Organizational Considerations for Advanced Manufacturing Technology

    Science.gov (United States)

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  16. Manufacturing Advanced Channel Wall Rocket Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  17. Enhancing the Long-Term Yield Competitiveness of a Semiconductor Manufacturing Factory Using a Multiobjective Fuzzy Nonlinear Programming Approach

    Directory of Open Access Journals (Sweden)

    Toly Chen

    2013-01-01

    Full Text Available This study proposes a multiobjective fuzzy nonlinear programming (MOFNP approach to enhance the long-term yield competitiveness of a semiconductor manufacturing factory. By modeling the long-term competitiveness of every product in a semiconductor manufacturing plant with the fuzzy correlation coefficient (FCC between time and instantaneous competitiveness, the proposed model considers the various viewpoints when interpreting the overall competitiveness of the semiconductor manufacturing plant in the long-term. All noninferior solutions of the MOFNP solutions are then derived using a systematic procedure. A real example is employed to illustrate the applicability of the proposed methodology.

  18. Exploring the evolution of investment pattern on advanced manufacturing technology

    DEFF Research Database (Denmark)

    Yang, Cheng; Matthiesen, Rikke Vestergaard; Johansen, John

    2014-01-01

    This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution...

  19. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  20. Evaluation of advanced polymers for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, Crystal [PPG Industries, Pittsburgh, PA (United States)

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  1. Advanced manufacturing technologies on color plasma displays

    Science.gov (United States)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  2. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  3. A review of advanced manufacturing technology

    Science.gov (United States)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  4. Advances in 3D printing & additive manufacturing technologies

    CERN Document Server

    Pandey, Pulak; Kumar, L

    2017-01-01

    This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automotives. The objective of this book is to help designers, R&D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing. .

  5. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature manufacturing technology to enable fabrication of single-piece integrally-stiffened launch vehicle structures to replace expensive, heavy, and...

  6. SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MCBRAYER,JOHN D.

    2000-12-01

    This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

  7. Advancing lean manufacturing, the role of IT

    NARCIS (Netherlands)

    Riezebos, J.; Klingenberg, W.

    2009-01-01

    This introduction to the special issue discusses the changing role of information technology (IT) in advancing lean production. Lean principles and techniques have been applied in a wide variety of organisations, from make-to-stock to engineer-to-order industries, and even in typical service sectors

  8. Advancing lean manufacturing, the role of IT

    NARCIS (Netherlands)

    Riezebos, J.; Klingenberg, W.

    2009-01-01

    This introduction to the special issue discusses the changing role of information technology (IT) in advancing lean production. Lean principles and techniques have been applied in a wide variety of organisations, from make-to-stock to engineer-to-order industries, and even in typical service sectors

  9. Advancing lean manufacturing, the role of IT

    NARCIS (Netherlands)

    Riezebos, J.; Klingenberg, W.

    This introduction to the special issue discusses the changing role of information technology (IT) in advancing lean production. Lean principles and techniques have been applied in a wide variety of organisations, from make-to-stock to engineer-to-order industries, and even in typical service

  10. The Flexible Foundry: Advanced Reconfigurable Manufacturing for Semiconductors

    Data.gov (United States)

    Federal Laboratory Consortium —  Sometimes it is not a device that is obsolete, but an idea. In logistics terms, the problem is not that the device becomes obsolete; the problem is that the device...

  11. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  12. Determining Concentrations and Temperatures in Semiconductor Manufacturing Plasmas via Submillimeter Absorption Spectroscopy

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2016-06-01

    Plasmas used in the manufacturing processes of semiconductors are similar in pressure and temperature to plasmas used in studying the spectroscopy of astrophysical species. Likewise, the developed technology in submillimeter absorption spectroscopy can be used for the study of industrial plasmas and for monitoring manufacturing processes. An advantage of submillimeter absorption spectroscopy is that it can be used to determine absolute concentrations and temperatures of plasma species without the need for intrusive probes. A continuous wave, 500 - 750 GHz absorption spectrometer was developed for the purpose of being used as a remote sensor of gas and plasma species. An important part of this work was the optical design to match the geometry of existing plasma reactors in the manufacturing industry. A software fitting routine was developed to simultaneously fit for the background and absorption signal, solving for concentration, rotational temperature, and translational temperature. Examples of measurements made on inductively coupled plasmas will be demonstrated. We would like to thank the Texas Analog Center of Excellence/Semiconductor Research Corporation (TxACE/SRC) and Applied Materials for their support of this work.

  13. Recent Advances in Precision Machinery and Manufacturing Technology

    DEFF Research Database (Denmark)

    Liu, Chien-Hung; Hsieh, Wen-Hsiang; Chang, Zong-Yu

    2014-01-01

    Precision machinery and manufacturing technology are be- coming more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end, the special issue aims to disseminate...... manufacturing systems, sensors and materials, CAD/CAM/CAE for precision machinery, computation/numerical method, intelligent system and ap- proach, vibration engineering, mechanism design, and fluid- dynamics/thermodynamics....

  14. Materials/manufacturing element of the Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G. [Oak Ridge National Lab., TN (United States)] [and others

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  15. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  16. Modeling and Control of Time-pressure Dispensing for Semiconductor Manufacturing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper.

  17. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  18. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    Science.gov (United States)

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  19. Composite intermediate case manufacturing scale-up for advanced engines

    Science.gov (United States)

    Ecklund, Rowena H.

    1992-01-01

    This Manufacturing Technology for Propulsion Program developed a process to produce a composite intermediate case for advanced gas turbine engines. The method selected to manufacture this large, complex part uses hard tooling for surfaces in the airflow path and trapped rubber to force the composite against the mold. Subelements were manufactured and tested to verify the selected design, tools, and processes. The most significant subelement produced was a half-scale version of a composite intermediate case. The half-scale subelement maintained the geometry and key dimensions of the full-scale case, allowing relevant process development and structural verification testing to be performed on the subelement before manufacturing the first full-scale case.

  20. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    Science.gov (United States)

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  1. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    Science.gov (United States)

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  2. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  3. NATO Advanced Research Institute on the Efficiency of Manufacturing Systems

    CERN Document Server

    Berg, C; French, D

    1983-01-01

    The Advanced Research Institute (A.R. 1.) on "the efficiency of Manufacturing Systems" was held under the auspices of the NATO Special Programm~ Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international co-operation. Advanced Research Institutes are organised for the purpose of bringing together experts in a particular field of interest to identify and make known the present state of knowledge in that area and, through informed debate, to make recommendations for directions for future research that would benefit the community at large. To this end two kinds of contribution were obtained by invitation. There were those papers which were about the current state of work in the area of manufacturing systems and its organisation; in addition three theme papers were presented to provide a stimulus to the discussion in terms of ways of thinking, both about the area and about the kind of research needed.

  4. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  5. Infrared spectroscopy for process control and fault detection of advanced semiconductor processes

    Science.gov (United States)

    Rosenthal, P.; Aarts, W.; Bonanno, A.; Boning, D.; Charpenay, S.; Gower, A.; Richter, M.; Smith, T.; Solomon, P.; Spartz, M.; Nelson, C.; Waldhauer, A.; Xu, J.; Yakovlev, V.; Zhang, W.; Allen, L.; Cordts, B.; Brandt, M.; Mundt, R.; Perry, A.

    1998-11-01

    Fourier transform infrared (FTIR) spectroscopy has emerged as an attractive sensor for in-situ monitoring and control of semiconductor fabrication processes. New applications are being enabled by advances in FTIR hardware and software that provide for: compact size, fast measurements with exceptional stability and signal to noise, and intelligent model based algorithms for thin film and gas analysis. In previously reported work, FTIR instrumentation with automated spectral analysis software was demonstrated as a novel sensor for monitoring layer properties such as thickness, composition and temperature. Recent work has emphasized applications to practical problems in modern semiconductor manufacturing. In this paper we will report pioneering results on: 1) Run-to-run closed loop control of a single wafer epitaxial silicon process using integrated infrared thickness and doping profiling metrology, 2) Fault detection during cluster tool plasma etching using real-time infrared exhaust gas analysis, and 3) oxygen implantation process monitoring during the formation of silicon on insulator (SOI) wafers using infrared reflectometry.

  6. Process development status report for advanced manufacturing projects

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  7. Organic semiconductors as candidates for advanced optoelectronic devices:

    OpenAIRE

    Bratina, Gvido; Hudej, Robert

    2001-01-01

    Organic semiconductors are gaining an increasing attention due to their promise of novel optoelectronic devices. The main attraction of these materials stems from their potential integration with flexible materials, which would result in ultrathin flexible multicolor displays. Basic electronic properties of typical representatives of organic semiconductors are reviewed. The operation of a light-emitting device based on organic semiconductors is fundamentally different from its inorganic count...

  8. 5th International Conference on Advanced Manufacturing Engineering and Technologies

    CERN Document Server

    Jakovljevic, Zivana; NEWTECH2017

    2017-01-01

    This book presents the proceedings from the 5th NEWTECH conference (Belgrade, Serbia, 5–9 June 2017), the latest in a series of high-level conferences that bring together experts from academia and industry in order to exchange knowledge, ideas, experiences, research results, and information in the field of manufacturing. The range of topics addressed is wide, including, for example, machine tool research and in-machine measurements, progress in CAD/CAM technologies, rapid prototyping and reverse engineering, nanomanufacturing, advanced material processing, functional and protective surfaces, and cyber-physical and reconfigurable manufacturing systems. The book will benefit readers by providing updates on key issues and recent progress in manufacturing engineering and technologies and will aid the transfer of valuable knowledge to the next generation of academics and practitioners. It will appeal to all who work or conduct research in this rapidly evolving field.

  9. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    Science.gov (United States)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  10. The Environmental Impact of Advanced Manufacturing Technologies: Examples from Hungary

    Directory of Open Access Journals (Sweden)

    Andrea Szalavetz

    2017-06-01

    Full Text Available The purpose of the paper is to demonstrate the beneficial impact of advanced manufacturing technologies (AMT on firms’ environmental performance. Drawing on interviews conducted with 16 Hungarian manufacturing subsidiaries on their experience with AMT, we find three functional areas, where industry 4.0 solutions can not only enhance operational excellence and cost-efficiency, but they can also improve eco-efficiency, but they can also improve eco-efficiency, namely in the field of quality management (through smart production control, data analytics and predictive modelling solutions; process optimization (through capacity planning and production scheduling solutions; and product and process engineering (through advanced virtual technologies. We also find that AMT adoption facilitated subsidiary upgrading along various dimensions. The main managerial implication is that subsidiaries need to be proactive, and emphasize also the benefits stemming from energy and resource efficiency improvement when lobbying for investment in AMT.

  11. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  12. Evaluating the barriers for enhacing the utilization level of advanced manufacturing technologies (AMTs) in manufacturing industry

    OpenAIRE

    2014-01-01

    This research has been out within the field of the barriers of advanced manufacturing technology. It has been goal to investigate the barriers affecting the implementation of AMT in the organisation. the work with this paper has been carried out in cooperation with machine well with the goal to create recommendation for the company in how they could implement AMT successfully in the company in order to answer the question what should a small industry focus on to implement the ...

  13. 78 FR 34346 - Proposed Information Collection; Comment Request; NIST MEP Advanced Manufacturing Jobs and...

    Science.gov (United States)

    2013-06-07

    ... Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC) Client Impact Survey AGENCY... information collection. The purpose of the Advanced Manufacturing Jobs and Innovation Accelerator Challenge... to support job creation, encourage economic development, and enhance the competitiveness of...

  14. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  15. Based on Weibull Information Fusion Analysis Semiconductors Quality the Key Technology of Manufacturing Execution Systems Reliability

    Science.gov (United States)

    Huang, Zhi-Hui; Tang, Ying-Chun; Dai, Kai

    2016-05-01

    Semiconductor materials and Product qualified rate are directly related to the manufacturing costs and survival of the enterprise. Application a dynamic reliability growth analysis method studies manufacturing execution system reliability growth to improve product quality. Refer to classical Duane model assumptions and tracking growth forecasts the TGP programming model, through the failure data, established the Weibull distribution model. Combining with the median rank of average rank method, through linear regression and least squares estimation method, match respectively weibull information fusion reliability growth curve. This assumption model overcome Duane model a weakness which is MTBF point estimation accuracy is not high, through the analysis of the failure data show that the method is an instance of the test and evaluation modeling process are basically identical. Median rank in the statistics is used to determine the method of random variable distribution function, which is a good way to solve the problem of complex systems such as the limited sample size. Therefore this method has great engineering application value.

  16. The Preemptive Stocker Dispatching Rule of Automatic Material Handling System in 300 mm Semiconductor Manufacturing Factories

    Science.gov (United States)

    Wang, C. N.; Lin, H. S.; Hsu, H. P.; Wang, Yen-Hui; Chang, Y. P.

    2016-04-01

    The integrated circuit (IC) manufacturing industry is one of the biggest output industries in this century. The 300mm wafer fabs is the major fab size of this industry. The automatic material handling system (AMHS) has become one of the most concerned issues among semiconductor manufacturers. The major lot delivery of 300mm fabs is used overhead hoist transport (OHT). The traffic jams are happened frequently due to the wide variety of products and big amount of OHTs moving in the fabs. The purpose of this study is to enhance the delivery performance of automatic material handling and reduce the delay and waiting time of product transportation for both hot lots and normal lots. Therefore, this study proposes an effective OHT dispatching rule: preemptive stocker dispatching (PSD). Simulation experiments are conducted and one of the best differentiated preemptive rule, differentiated preemptive dispatching (DPD), is used for comparison. Compared with DPD, The results indicated that PSD rule can reduce average variable delivery time of normal lots by 13.15%, decreasing average variable delivery time of hot lots by 17.67%. Thus, the PSD rule can effectively reduce the delivery time and enhance productivity in 300 mm wafer fabs.

  17. Feature-based tolerancing for advanced manufacturing applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.W.; Kirk, W.J. III; Simons, W.R.; Ward, R.C.; Brooks, S.L.

    1994-11-01

    A primary requirement for the successful deployment of advanced manufacturing applications is the need for a complete and accessible definition of the product. This product definition must not only provide an unambiguous description of a product`s nominal shape but must also contain complete tolerance specification and general property attributes. Likewise, the product definition`s geometry, topology, tolerance data, and modeler manipulative routines must be fully accessible through a robust application programmer interface. This paper describes a tolerancing capability using features that complements a geometric solid model with a representation of conventional and geometric tolerances and non-shape property attributes. This capability guarantees a complete and unambiguous definition of tolerances for manufacturing applications. An object-oriented analysis and design of the feature-based tolerance domain was performed. The design represents and relates tolerance features, tolerances, and datum reference frames. The design also incorporates operations that verify correctness and check for the completeness of the overall tolerance definition. The checking algorithm is based upon the notion of satisfying all of a feature`s toleranceable aspects. Benefits from the feature-based tolerance modeler include: advancing complete product definition initiatives, incorporating tolerances in product data exchange, and supplying computer-integrated manufacturing applications with tolerance information.

  18. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  19. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Elizabeth [Columbia River Economic Development Council, Vancouver, WA (United States)

    2017-01-06

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companies interact and use their machines to reduce energy consumption.

  20. Advanced manufacturing technologies for the BeCOAT telescope

    Science.gov (United States)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  1. Evaluating the barriers for enhacing the utilization level of advanced manufacturing technologies (AMTs in manufacturing industry

    Directory of Open Access Journals (Sweden)

    Preetam singh sankhla

    2014-10-01

    Full Text Available This research has been out within the field of the barriers of advanced manufacturing technology. It has been goal to investigate the barriers affecting the implementation of AMT in the organisation. the work with this paper has been carried out in cooperation with machine well with the goal to create recommendation for the company in how they could implement AMT successfully in the company in order to answer the question what should a small industry focus on to implement the AMT concept successfully, an investigation in the two middle size industries in the Rajasthan (India were visited. One interview was carried out with managers at both the two companies and a questionnaire was handed out to workers. The aim was to see if there were any large differences in the barriers of AMT which is applying in the company. The interview and questionnaire did show that a company should know about barriers of AMT & their inter relationship if they wanted to accomplish more in the organisation with tea work and get more busy from the employees. It is important that all workers know the vision and goal why a company is implementing AMT. Advanced manufacturing technology (AMT has been viewed strategic weapon to gain competitive advantages by manufacturing organisation . The small and medium scale industries (SMISs are under increasing pressure to adopt advanced manufacturing technology to be competitive or simply to survive. The successful implementation of AMT will requires the companies to have a workforce with higher level of skills, a flexible organizational structure and include a new culture in managing and training a workforce in the manufacturing industries. The ability of the workers to run multiple machines, stopping production when problem occur, communication of organizational goals and participation in idea generation and decision making are important in achieving a higher benefits of AMT. The SMIs have to increase the educational and supervision

  2. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    Science.gov (United States)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  3. Risk for work-related fatigue among the employees on semiconductor manufacturing lines.

    Science.gov (United States)

    Lin, Yu-Cheng; Chen, Yen-Cheng; Hsieh, Hui-I; Chen, Pau-Chung

    2015-03-01

    To examine the potential risk factors for work-related fatigue (WRF) among workers in modern industries, the authors analyzed the records of need-for-recovery questionnaires and health checkup results for 1545 employees. Compared with regular daytime workers, and after adjusting for confounders, the workers adapting to day-and-night rotating shift work (RSW) had a 4.0-fold (95% confidence interval [CI] = 2.7-5.9) increased risk for WRF, higher than the 2.2-fold risk (95% CI = 1.5-3.3) for persistent shift workers. Based on highest education level, the male employees with university degrees had the highest adjusted odds ratio (a-OR) 2.8 (95% CI = 1.0-7.8) for complaining of WRF versus compulsory education group. For female workers, currently married/cohabiting status was inversely associated with WRF (a-OR = 0.5; 95% CI = 0.2-0.9), and child-rearing responsibility moderately increased WRF risk (a-OR = 1.9; 95% CI = 1.0-3.7). Day-and-night RSW and the adaptation, educational levels of males, and domestic factors for females contributed to WRF among semiconductor manufacturing employees.

  4. Feature analysis and classification of manufacturing signatures based on semiconductor wafermaps

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.; Gleason, S.S.; Karnowski, T.P. [Oak Ridge National Lab., TN (United States); Cohen, S.L. [SEMATECH, Austin, TX (United States)

    1997-02-01

    Automated tools for semiconductor wafer defect analysis are becoming more necessary as device densities and wafer sizes continue to increase. Trends towards larger wafer formats and smaller critical dimensions have caused an exponential increase in the volume of defect data which must be analyzed and stored. To accommodate these changing factors, automatic analysis tools are required that can efficiently and robustly process the increasing amounts of data, and thus quickly characterize manufacturing processes and accelerate yield learning. During the first year of this cooperative research project between SEMATECH and the Oak Ridge National Laboratory, a robust methodology for segmenting signature events prior to feature analysis and classification was developed. Based on the results of this segmentation procedure, a feature measurement strategy has been designed based on interviews with process engineers coupled with the analysis of approximately 1500 electronic wafermap files. In this paper, the authors represent an automated procedure to rank and select relevant features for use with a fuzzy pair-wise classifier and give examples of the efficacy of the approach taken. Results of the feature selection process are given for two uniquely different types of class data to demonstrate a general improvement in classifier performance.

  5. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  6. Advanced Manufacture of Spiral Bevel and Hypoid Gears

    Directory of Open Access Journals (Sweden)

    Vilmos Simon

    2016-11-01

    Full Text Available In this study, an advanced method for the manufacture of spiral bevel and hypoid gears on CNC hypoid generators is proposed. The optmal head-cutter geometry and machine tool settings are determined to introduce the optimal tooth surface modifications into the teeth of spiral bevel and hypoid gears. The aim of these tooth surface modifications is to simultaneously reduce the tooth contact pressure and the transmission errors, to maximize the EHD load carrying capacity of the oil film, and to minimize power losses in the oil film. The proposed advanced method for the manufacture of spiral bevel and hypoid gears is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions and on the use of a CNC hypoid generator. An algorithm is developed for the execution of motions on the CNC hypoid generator using the optimal relations on the cradle-type machine. Effectiveness of the method was demonstrated by using spiral bevel and hypoid gear examples. Significant improvements in the operating characteristics of the gear pairs are achieved.

  7. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  8. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  9. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  10. NATO Advanced Study Institute on Physics of Submicron Semiconductor Devices

    CERN Document Server

    Ferry, David; Jacoboni, C

    1988-01-01

    The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES...................

  11. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications.

    Science.gov (United States)

    Nanda, Sitansu Sekhar; Kim, Min Jik; Kim, Kwangmeyung; Papaefthymiou, Georgia C; Selvan, Subramanian Tamil; Yi, Dong Kee

    2017-08-25

    Quantum confinement in inorganic semiconductor nanocrystals produces brightly luminescent nanoparticles endowed with unique photo-physical properties, such as tunable optical properties. These have found widespread applications in nanotechnology. The ability to render such nanostructures biocompatible, while maintaining their tunable radiation in the visible range of the electromagnetic spectrum, renders them appropriate for bio-applications. Promising in vitro and in vivo diagnostic applications have been demonstrated, such as fluorescence-based detection of biological interactions, single molecule tracking, multiplexing and immunoassaying. In particular, these fluorescent inorganic semiconductor nanocrystals, generally known as quantum dots, have the potential of remarkable immunobiological applications. This review focuses on the current status of biocompatible quantum dots and their applications in immunobiology - immunosensing, immunofluorescent imaging and immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analyzing the Drivers of Advanced Sustainable Manufacturing System Using AHP Approach

    Directory of Open Access Journals (Sweden)

    K. Madan Shankar

    2016-08-01

    Full Text Available A number of current manufacturing sectors are striving hard to introduce innovative long-term strategies into their operations. As a result, many scholarly studies have found it fruitful to investigate advanced manufacturing strategies such as agile, computer-integrated, and cellular manufacturing. Through the example of downstream cases, manufacturing sectors have learned that financial benefits garnered through automated technologies cannot be counted on as a sole measure to ensure their success in today’s competitive and fluctuating marketplaces. The objective of this study is to integrate those advanced techniques with sustainable operations, to promote advanced sustainable manufacturing so those manufacturing sectors can thrive even in uncertain markets. To establish this connection, this study analyzes the drivers of advanced sustainable manufacturing through a proposed framework validated through a case study in India. Common drivers are collected from the literature, calibrated with opinions from experts, and analyzed through an analytical hierarchy process (AHP, which is a multi-criteria decision making (MCDM approach. This study reveals that quality is the primary driver that pressures manufacturing sectors to adopt advanced sustainable manufacturing. Manufacturers can easily note the top ranked driver and adopt it to soundly implement advanced sustainable manufacturing. In addition, some key future scopes are explored along with possible recommendations for effective implementation of advanced sustainable manufacturing systems.

  13. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  14. Importance of Advanced Planning of Manufacturing for Nuclear Industry

    Directory of Open Access Journals (Sweden)

    Shykinov Nick

    2016-06-01

    Full Text Available In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.

  15. Developing novel 3D antennas using advanced additive manufacturing technology

    Science.gov (United States)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  16. Nanoimprint wafer and mask tool progress and status for high volume semiconductor manufacturing

    Science.gov (United States)

    Matsuoka, Yoichi; Seki, Junichi; Nakayama, Takahiro; Nakagawa, Kazuki; Azuma, Hisanobu; Yamamoto, Kiyohito; Sato, Chiaki; Sakai, Fumio; Takabayashi, Yukio; Aghili, Ali; Mizuno, Makoto; Choi, Jin; Jones, Chris E.

    2016-10-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are many criteria that determine whether a particular technology is ready for wafer manufacturing. Defectivity and mask life play a significant role relative to meeting the cost of ownership (CoO) requirements in the production of semiconductor devices. Hard particles on a wafer or mask create the possibility of inducing a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, the lifetime of both the master mask and the replica mask can be extended. In this work, we report results that demonstrate a path towards achieving mask lifetimes of better than 1000 wafers. On the mask side, a new replication tool, the FPA-1100 NR2 is introduced. Mask replication is required for nanoimprint lithography (NIL), and criteria that are crucial to the success of a replication platform include both particle control, resolution and image placement accuracy. In this paper we discuss the progress made in both feature resolution and in meeting the image placement specification for replica masks.

  17. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  18. Method for manufacturing electrical contacts for a thin-film semiconductor device

    Science.gov (United States)

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  19. Recent Advances in Understanding Delayed Photoluminescence in Colloidal Semiconductor Nanocrystals.

    Science.gov (United States)

    Marchioro, Arianna

    2017-02-22

    Colloidal semiconductor nanocrystals display remarkably bright, strongly size-dependent photoluminescence properties. Following photoexcitation of these materials, temporary charge carrier separation can occur where one or both charge carriers are trapped. Charge detrapping can reform the emissive state on long time scales up to seconds, causing delayed luminescence. This delayed luminescence has not yet been thoroughly explored, and appears to be closely associated with a phenomenon observed at the single particle level, i.e. photoluminescence intermittency (blinking). Here, some of our recent work on the delayed luminescence properties of nanocrystals of different chemical composition is reviewed. These results provide insight into the mechanism of carrier detrapping, and are discussed in the context of photoluminescence blinking.

  20. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  1. Deep UV Semiconductor Sources for Advanced Planetary Science Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for miniature, narrow-linewidth, deep UV optical sources that operate at very low ambient temperatures for use in advanced in situ...

  2. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  3. Decision Making for Third Party Logistics Supplier Selection in Semiconductor Manufacturing Industry: A Nonadditive Fuzzy Integral Approach

    Directory of Open Access Journals (Sweden)

    Bang-Ning Hwang

    2015-01-01

    Full Text Available The semiconductor industry has a unique vertically disintegrated structure that consists of various firms specializing in a narrow range of the value chain. To ensure manufacturing and logistics efficiency, the semiconductor manufacturers considerably rely on 3PL suppliers to achieve supply chain excellence. However, 3PL supplier selection is a complex decision-making process involving multiple selection criteria. The goal of this paper is to identify the key 3PL selection criteria by employing the nonadditive fuzzy integral approach. Unlike the traditional multicriterion decision-making (MCDM methods which often assume independence among criteria and additive importance weights, the nonadditive fuzzy integral is a more effective approach to solve the dependency among criteria, vagueness in information, and essential fuzziness of human judgment. In this paper, we demonstrate an empirical case that employs the nonadditive fuzzy integral to evaluate the importance weight of selection criteria and choose the most appropriate 3PL supplier. The research result can become a valuable reference for manufacturing companies operating in comparable situations. Moreover, the systematic framework presented in this study can be easily extended to the analysis of other decision-making domains.

  4. Advanced manufacturing technologies and strategically flexible production. A review and outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    During the 1980s, Western manufacturers were attracted by the potential of computer technology to increase productivity through the improvement of quality and the reduction of costs and lead times. However, most investments aimed at exploiting the benefits of Computer Integrated Manufacturing (CI...... of Advanced Manufacturing Technologies (AMT) and the adoption of new managerial and organizational principles....

  5. Semiconductor with protective surface coating and method of manufacture thereof. [Patent application

    Science.gov (United States)

    Hansen, W.L.; Haller, E.E.

    1980-09-19

    Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.

  6. Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations

    OpenAIRE

    Rastogi, Aditya; Fowler, John; Carlyle, Matthew; Araz, Ozgur; Maltz, Arnold; Buke, Burak

    2011-01-01

    A semiconductor supply network involves many expensive steps, which have to be executed to serve global markets. The complexity of global capacity planning combined with the large capital expenditures to increase factory capacity makes it important to incorporate optimization methodologies for cost reduction and long-term planning. The typical view of a semiconductor supply network consists of layers for wafer fab, sort, assembly, test and demand centers. We present a two-stage stochastic int...

  7. Advanced numerical methods and software approaches for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  8. Advanced manufacturing technologies for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbruck, S.; Nedelec, R.; Buchkremer, H.P.; Bram, M.; Menzler, N.H.; Stover, D. [Forschungszentrum Julich GmbH, Julich (Germany). Inst. of Energy Research

    2009-07-01

    Advances in manufacturing technologies play an important role for the marketability of solid oxide fuel cells (SOFC). Highly cost-effective mass production methods are necessary in order to meet the industry's demands for both stationary and mobile application. Sol-gel methods have already been used for several years as a method of producing thin mesoporous and microporous membrane films of several materials including electrolyte materials. This paper discussed the use of a colloidal sol to create a first layer on top of a standard Julich coatmix-substrate with the spin-coating technique. The experimental methods were described with particular reference to the electrochemical characterization of cells produced; synchronization of roll-coating transport; and scanning electron microscopy. It was concluded that thin-film technologies like sol-gel, roll-coating and physical vapour phase deposition are promising candidates for producing SOFCs with high-performance at low operating temperatures. It was possible to demonstrate the potential of thin film technology for sputtered strontium-diffusion barriers, but optimization of the current ceramic coating methods is still necessary for the electrolyte layers. 3 refs., 8 figs.

  9. Prosperity Game: Advanced Manufacturing Day, May 17, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.

    1994-12-01

    Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents a 90-minute Prosperity Game conducted as part of Advanced Manufacturing Day on May 17, 1994. This was the fourth game conducted under the direction of the Center for National Industrial Alliances at Sandia. Although previous games lasted from one to two days, this abbreviated game produced interesting and important results. Most of the strategies proposed in previous games were reiterated here. These included policy changes in international trade, tax laws, the legal system, and the educational system. Government support of new technologies was encouraged as well as government-industry partnerships. The importance of language in international trade was an original contribution of this game. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.

  10. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  11. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  12. Research on Scientific Data Sharing and Distribution Policy in Advanced Manufacturing and Automation Fields

    Directory of Open Access Journals (Sweden)

    Liya Li

    2007-12-01

    Full Text Available Scientific data sharing is a long-term and complicated task. The related data sharing and distribution policies are prime concerns. By using both domestic and international experiences in scientific data sharing, the sources, distribution, and classification of scientific data in advanced manufacturing and automation are discussed. A primary data sharing and distribution policy in advanced manufacture and automation is introduced.

  13. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  14. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    Science.gov (United States)

    2014-05-15

    intermediate band, quantum dots, metamorphic III-V semiconductors, virtual substrates, defect spectroscopy, molecular beam epitaxy 16. SECURITY...AFRL-RV-PS- AFRL-RV-PS- TR-2014-0059 TR-2014-0059 GROWTH AND DEFECT CHARACTERIZATION OF QUANTUM DOT-EMBEDDED III-V SEMICONDUCTORS FOR ADVANCED...COVERED (From - To) 2 4 May 2012 – 06 Mar 2014 4. TITLE AND SUBTITLE Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors

  15. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element

    Data.gov (United States)

    National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....

  16. Lead Nanopowder as Advanced Semi-Conductor, An Insight

    CERN Document Server

    Theivasanthi, T

    2013-01-01

    This work reports aspect related to semi-conducting nature of nano-sized particles of lead. This attempt finds its semiconducting behaviors elaborately and such advanced insight has so far not been said in literatures. New findings of Pb nanopowder (metal) by optical, fluorescence, cyclic voltammetry and four probe studies are presented in this study. The successful calculations of band gap, resistance value confirm its semi-conducting nature and explore its potential application in various industries. This work throws some light on and helps further research.

  17. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of

  18. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    Science.gov (United States)

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  19. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond

    Science.gov (United States)

    Lee, Moon-Keun; Shin, Minjung; Bao, Tianming; Song, Chul-Gi; Dawson, Dean; Ihm, Dong-Chul; Ukraintsev, Vladimir

    2009-03-01

    Continuing demand for high performance microelectronic products propelled integrated circuit technology into 45 nm node and beyond. The shrinking device feature geometry created unprecedented challenges for dimension metrology in semiconductor manufacturing and research and development. Automated atomic force microscope (AFM) has been used to meet the challenge and characterize narrower lines, trenches and holes at 45nm technology node and beyond. AFM is indispensable metrology techniques capable of non-destructive full three-dimensional imaging, surface morphology characterization and accurate critical dimension (CD) measurements. While all available dimensional metrology techniques approach their limits, AFM continues to provide reliable information for development and control of processes in memory, logic, photomask, image sensor and data storage manufacturing. In this paper we review up-todate applications of automated AFM in every mentioned above semiconductor industry sector. To demonstrate benefits of AFM at 45 nm node and beyond we compare capability of automated AFM with established in-line and off-line metrologies like critical dimension scanning electron microscopy (CDSEM), optical scatterometry (OCD) and transmission electronic microscopy (TEM).

  20. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  1. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  2. Advanced Lightweight Metal Matrix Composite Segmented Optic Manufacture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Design, manufacture and test a flat segmented mirror made of optical grade AlBeMet 162 material and fusion bonded through the use of E Beam welding to demonstrate...

  3. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  4. Advanced manufacturing technologies for improved competitiveness of the South African manufacturing industry

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-11-01

    Full Text Available In this paper the manufacturing environment with regards to technology and market is discussed. Both the South African and global view are given, together with technology management strategies. Value added products are described and determined...

  5. Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System%Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System

    Institute of Scientific and Technical Information of China (English)

    曹政才; 邓积杰; 刘民; 王永吉

    2012-01-01

    Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.

  6. Advancement in additive manufacturing & numerical modelling considerations of direct energy deposition process

    OpenAIRE

    Quanren Zeng; Zhenhai Xu; Yankang Tian; Yi Qin

    2016-01-01

    The development speed and application range of the additive manufacturing (AM) processes, such as selective laser melting (SLM), laser metal deposition (LMD) or laser-engineering net shaping (LENS), are ever-increasing in modern advanced manufacturing field for rapid manufacturing, tooling repair or surface enhancement of the critical metal components. LMD is based on a kind of directed energy deposition (DED) technology which ejects a strand of metal powders into a moving molten pool caused ...

  7. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  8. Advances and Future Issues for STEP-compliant NC Manufacture

    Institute of Scientific and Technical Information of China (English)

    LIU Riliang; ZHANG Chengrui; NEWMAN Stephen T

    2006-01-01

    Over the last years a new data model, known as STEP-NC, has been proposed and accepted as an international standard (ISO 14649) to replace ISO 6983 (G&M code programming). STEP-NC enables bi-directional communication of high-level geometric and manufacturing information, and provides a way of interoperable and adaptable NC manufacturing of mechanical components. This paper starts with an overview of the STEP-NC data model, provides a brief review of the global research and development activities, and tries to identify the issues and challenges for the application of the new standard and the implementation of related systems. This paper also provides a vision of the STEP-compliant NC manufacturing and the development trends of related technologies and systems, focusing on STEP-compliant CNCs.

  9. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  10. Innovation Training within the Australian Advanced Manufacturing Industry

    Science.gov (United States)

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  11. Manufacture of Precious Metal Products:Advancement and Prospect

    Institute of Scientific and Technical Information of China (English)

    MOROZOVA L. E.; YASTREBOV V. A.; VASEKIN V. V.

    2012-01-01

    A survey about OJSC "SIC ‘Supermetal’" as a processor of secondary precious metal raw materials and a manufacturer of precious metal products for technical purposes,has been presented.Brief information has been given about the basic technologies and materials used in production,including dispersion-strengthened materials on the basis of platinum alloys and laminar composites.

  12. Innovation Training within the Australian Advanced Manufacturing Industry

    Science.gov (United States)

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  13. Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

    Directory of Open Access Journals (Sweden)

    Wen-Jung Tsai

    2013-02-01

    Full Text Available This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  14. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    Science.gov (United States)

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-02-08

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  15. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering

    Science.gov (United States)

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-01

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  16. Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation

    Directory of Open Access Journals (Sweden)

    Mircea Guina

    2012-01-01

    Full Text Available We review the recent advances in the development of semiconductor disk lasers (SDLs producing yellow-orange and mid-IR radiation. In particular, we focus on presenting the fabrication challenges and characteristics of high-power GaInNAs- and GaSb-based gain mirrors. These two material systems have recently sparked a new wave of interest in developing SDLs for high-impact applications in medicine, spectroscopy, or astronomy. The dilute nitride (GaInNAs gain mirrors enable emission of more than 11 W of output power at a wavelength range of 1180–1200 nm and subsequent intracavity frequency doubling to generate yellow-orange radiation with power exceeding 7 W. The GaSb gain mirrors have been used to leverage the advantages offered by SDLs to the 2–3 μm wavelength range. Most recently, GaSb-based SDLs incorporating semiconductor saturable absorber mirrors were used to generate optical pulses as short as 384 fs at 2 μm, the shortest pulses obtained from a semiconductor laser at this wavelength range.

  17. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Information technology planning: critical for implementing advanced manufacturing automation

    Energy Technology Data Exchange (ETDEWEB)

    Devine, M.; Brogden, I. [EDS Canada Management Consulting Services, Whitby, ON (Canada)

    1994-12-31

    The paper describes the major components of information technology planning that, although developed for manufacturing companies, apply to mining companies. The major components of a fully integrated plan are discussed: strategic business planning, business process reengineering, corporate technology policy, application planning, information and data planning, infrastructure planning, and resource management. The factors that are critical to the success of information technology planning are discussed. Effective management for change must consider the following key components: corporate strategy, organizational structure, business process, people, culture, and technology. 12 refs., 5 figs., 1 tab.

  19. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    Science.gov (United States)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  20. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  1. Review on Advances of Functional Material for Additive Manufacturing

    Science.gov (United States)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  2. Effects of Job Characteristics on Performance of Advanced Manufacturing Technology:an Empirical Examination to Equipment-manufacturing Industry

    Institute of Scientific and Technical Information of China (English)

    DAI Dashuang; WANG Dongbo; SONG Jinbo

    2006-01-01

    Advanced manufacturing technology (AMT) is pivotal for firms to gain manufacturing performance and competitive advantage. Job characteristics, as a kind of important factors affecting the implementation effects of AMT, have become the focus in the field of academy. Based on a literature review, this study refines the implementation effects of AMT into operational performance, satisfaction and competitive performance, and reclassifies the job characteristics of AMT into job autonomy, job responsibility, job complexity and job significance. With a large sample of 307 equipment-manufacturing firms selected from the 2005 China International Equipment and Manufacturing Exposition, linear structural equation analysis (LIEREL) is performed to examine the relationships between job characteristics and the implementation effects of AMT. The results show that job responsibility and job significance have positive effects on satisfaction; satisfaction is positively correlated with operational performance; operational performance positively affects competitive performance. The findings provide the guide for firms to improve satisfaction, achieve higher operational performance and further gain higher competitive by reasonable job redesign.

  3. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    Science.gov (United States)

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were cleanroom environments.

  4. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    Science.gov (United States)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  5. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  6. A Further Discussion on Trends in the Development of Advanced Manufacturing Technology

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-zi; WU Bo; LI Bin

    2006-01-01

    This paper is a supplement to "Trends in the Development of Advanced Manufacturing Technology" (Yang and Wu in Chin.J Mech.Eng.,39:73,2003)but delves deeper into it.It first points out the strategic status of manufacturing industry in state development.Then.a de tailed analysis is given on the features and trends in the development of advanced manufacturing technology in a total of 12 points from three aspects:"precision,""extreme," and"culture" from the aspect of the product itself;"green," "rapidness,""saving,"and"efficiency"during the manu facturing process;and"digit,""auto,""integration,""net working,"and"intelligence"in view of the manufacturing method.In addition,it emphasizes that all the above aspects should be based on two base points:"manufacture"and "machinery."Finally,it puts forth the guiding ideologies for the development of advanced manufacturing technology and the aspects China should give priority to in development,while stressing on the principles of independence,innovation and"humanorientation."

  7. 3D metal droplet printing development and advanced materials additive manufacturing

    Directory of Open Access Journals (Sweden)

    Lawrence E. Murr

    2017-01-01

    Full Text Available While commercial additive manufacturing processes involving direct metal wire or powder deposition along with powder bed fusion technologies using laser and electron beam melting have proliferated over the past decade, inkjet printing using molten metal droplets for direct, 3D printing has been elusive. In this paper we review the more than three decades of development of metal droplet generation for precision additive manufacturing applications utilizing advanced, high-temperature metals and alloys. Issues concerning process optimization, including product structure and properties affected by oxidation are discussed and some comparisons of related additive manufactured microstructures are presented.

  8. Capacity Planning in Semiconductor Manufacturing%半导体制造中的产能规划

    Institute of Scientific and Technical Information of China (English)

    张智聪; 郑力; 张涛

    2004-01-01

    Capacity planning in semiconductor manufacturing is very complex due to numerous variables/constraints and competing objectives. This paper describes key methodologies employed to solve the difficult problems, and we focus on the most convincing approach,mathematical programming, especially Linear Programming (LP). We introduce LP modeling and algorithm developing techniques, and also address the evaluation system of capacity planning.%由于涉及大量的决策变量、约束和目标函数,半导体制造中的产能规划问题异常复杂.本文首先提出一个半导体制造产能规划系统的框架,然后阐述用于解决该问题的各种方法.重点介绍了数学规划(尤其是线性规划)这一最有效的工具,包括线性规划的各种建模技术及其求解算法.本文还描述了半导体制造产能规划系统的一些评价方法,在比较各种产能规划方法的基础上得出结论并对该领域未来的研究方向提出建议.

  9. Solving partial differential equations on irregular domains with moving interfaces, with applications to superconformal electrodeposition in semiconductor manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sethian, J.A.; Shan, Y.

    2007-12-10

    We present a numerical algorithm for solving partial differential equations on irregular domains with moving interfaces. Instead of the typical approach of solving in a larger rectangular domain, our approach performs most calculations only in the desired domain. To do so efficiently, we have developed a one-sided multigrid method to solve the corresponding large sparse linear systems. Our focus is on the simulation of the electrodeposition process in semiconductor manufacturing in both two and three dimensions. Our goal is to track the position of the interface between the metal and the electrolyte as the features are filled and to determine which initial configurations and physical parameters lead to superfilling. We begin by motivating the set of equations which model the electrodeposition process. Building on existing models for superconformal electrodeposition, we develop a model which naturally arises from a conservation law form of surface additive evolution. We then introduce several numerical algorithms, including a conservative material transport level set method and our multigrid method for one-sided diffusion equations. We then analyze the accuracy of our numerical methods. Finally, we compare our result with experiment over a wide range of physical parameters.

  10. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  11. Measures to minimize cross-contamination risks in Advanced Therapy Medicinal Product manufacturing

    Directory of Open Access Journals (Sweden)

    Livia Roseti

    2014-12-01

    Full Text Available Current European regulations define in vitro expanded cells for clinical purposes as substantially manipulated and include them in the class of Advanced Therapy Medicinal Products to be manufactured in compliance with current Good Manufacturing Practice. These quality requirements are generally thought to be elaborate and costly. However, they ensure three main product characteristics: safety, consistency, and absence of cross-contamination. The term crosscontamination is used to indicate misidentification of one cell line or culture by another. The Good Manufacturing Practice Guidelines suggest some recommendations in order to prevent cross-contaminations and require a demonstration that the implemented actions are effective. Here we report some practical examples useful both to minimize crosscontamination risks in an Advanced Therapy Medicinal Products production process and to evaluate the efficacy of the adopted measures.

  12. Integrated Computer Aided Planning and Manufacture of Advanced Technology Jet Engines

    Directory of Open Access Journals (Sweden)

    B. K. Subhas

    1987-10-01

    Full Text Available This paper highlights an attempt at evolving a computer aided manufacturing system on a personal computer. A case study of an advanced technology jet engine component is included to illustrate various outputs from the system. The proposed system could be an alternate solution to sophisticated and expensive CAD/CAM workstations.

  13. Advanced approaches to the improving of three-cone rock bits manufacturing method

    OpenAIRE

    Яким, Роман; Петрина, Юрій; Яким, Ігор

    2013-01-01

    The complex approach to the improvement of three-cone rock bits manufacturing method, that includes the requirements increase for the chemical composition of rock bit steels, and also the advanced approaches to the improvement of technological processes quality and efficiency are offered.

  14. Overview of the manufacturing sequence of the Advanced Solid Rocket Motor

    Science.gov (United States)

    Chapman, John S.; Nix, Michael B.

    1992-01-01

    The manufacturing sequence of NASA's new Advanced Solid Rocket Motor, developed as a replacement of the Space Shuttle's existing Redesigned Solid Rocket Motor, is overviewed. Special attention is given to the case preparation, the propellant mix/cast, the nondestructuve evaluation, the motor finishing, and the refurbishment. The fabrication sequences of the case, the nozzle, and the igniter are described.

  15. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives.

    Science.gov (United States)

    Flaherty, Nicole L; Chandrasekaran, Akshaya; del Pilar Sosa Peña, Maria; Roth, Gary A; Brenner, Sara A; Begley, Thomas J; Melendez, J Andrés

    2015-12-15

    Continued expansion of the nanotechnology industry has necessitated the self-assessment of manufacturing processes, specifically in regards to understanding the health related aspects following exposure to nanomaterials. There exists a growing concern over potential occupational exposure in the semiconductor industry where Al2O3, CeO2 and SiO2 nanoparticles are commonly featured as part of the chemical mechanical planarization (CMP) process. Chronic exposure to toxicants can result not only in acute cytotoxicity but also initiation of a chronic inflammatory state associated with diverse pathologies. In the current investigation, pristine nanoparticles and CMP slurry formulations of Al2O3, SiO2 and CeO2 were employed to assess their ability to induce cytotoxicity, inflammatory responses and reactive oxygen species in a mouse alveolar macrophage cell model. The pristine nanoparticles and slurries were not intrinsically cytotoxic and did not generate free radicals but were found to act as scavengers in the presence of an oxidant stimulant. Al2O3 and SiO2 nanoparticles increased levels of pro-inflammatory cytokines while pristine SiO2 nanoparticles induced generation of F2-Isoprostanes. In co-treatment studies, the pristine nanomaterials modulated the response to the inflammatory stimulant lipopolysaccharide. The studies have established that pristine nanoparticles and slurries do not impact the cells in a similar way indicating that they should not be used as slurry substitutes in toxicity evaluations. Further, we have defined how an alveolar cell line, which would likely be the first challenged upon nanomaterial aerosolization, responds to diverse mixtures of nanomaterials. Moreover, our findings reinforce the importance of using multiple analytic methods to define the redox state of the cell following exposure to commonly used industrial nanomaterials and toxicants.

  16. Defectivity and particle reduction for mask life extension, and imprint mask replication for high-volume semiconductor manufacturing

    Science.gov (United States)

    Emoto, Keiji; Sakai, Fumio; Sato, Chiaki; Takabayashi, Yukio; Nakano, Hitoshi; Takabayashi, Tsuneo; Yamamoto, Kiyohito; Hattori, Tadashi; Hiura, Mitsuru; Ando, Toshiaki; Kawanobe, Yoshio; Azuma, Hisanobu; Iwanaga, Takehiko; Choi, Jin; Aghili, Ali; Jones, Chris; Irving, J. W.; Fletcher, Brian; Ye, Zhengmao

    2016-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made in the reduction of particle adders in an imprint tool and introduce the new mask replication tool that will enable the fabrication of replica masks with added residual image placement errors suitable for memory devices with half pitches smaller than 15nm. Hard particles on a wafer or mask create the possibility of creating a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, test stand results demonstrate the potential for extending mask life to better than 1000 wafers. Additionally, a new replication tool, the FPA-1100 NR2 is introduced. Mask chuck flatness simulation results were also performed and demonstrate that residual image placement errors can be reduced to as little as 1nm.

  17. Advanced Manufacturing of an Aircraft Component (Fish-Head: A Technology Review on the Fabrication

    Directory of Open Access Journals (Sweden)

    M. Minhat

    2016-10-01

    Full Text Available The Airbus fish-head is machined using a 5-axis Computerized Numerical Control (CNC milling machine, which consists of many complex shapes that are built into it. A conventional CNC machining requires tremendous effort in programming and investment due to the increasing in features complexity of the fish-head to be machined. An alternative method through advanced manufacturing processes namely vacuum casting, Fused Deposition Modelling (FDM and three dimensional printing (3DP is reviewed. The fish-head prototypes are manufactured through the concept of reverse engineering and rapid prototyping. The fish-head master pattern is digitized using a three dimensional laser scanner and edited using a surface modelling software to generate the Standard Triangulation Language (STL, which is common to most rapid prototyping (RP machines. The fish-head prototypes are fabricated through FDM and 3DP using the STL data files, whereas the master pattern is used to fabricated silicone mould for vacuum casting. The quality of the prototypes is accessed in terms of dimensional accuracy and time to produce a single prototype. The dimensional accuracy is analysed using coordinate measuring machine (CMM. The dimensional accuracy error is found to be less than 5%. However, all prototypes require secondary surface treatment processing in order to achieve the desired surface roughness quality. All three prototypes can be manufactured less than 24 hours per prototype. The advanced manufacturing processes allows parts to be fabricated similar to parts manufactured through CNC but at a lower cost and faster.

  18. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    Science.gov (United States)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  19. Semiconductor laser. Halbleiterlaser

    Energy Technology Data Exchange (ETDEWEB)

    Wuenstel, K.; Gohla, B.; Tegude, F.; Luz, G.; Hildebrand, O.

    1987-08-27

    A highly modulable semiconductor laser and a process for its manufacture are described. The semiconductor laser has a substrate, a stack of semiconductor layers and electrical contacts. To reduce the capacity, the width of the stack of semiconductor layers is reduced at the sides by anisotropic etching. The electrical contacts are situated on the same side of the substrate and are applied in the same stage of the process. The semiconductor laser is suitable for monolithic integration in other components.

  20. Research and Development Advances Impacting Diminishing Manufacturing Sources and Material Shortages Management

    Science.gov (United States)

    2016-06-01

    Manufacturing effort will use first-principles and physics-based modeling to predict materials performance for direct metal laser sintering using a...and redesign projects.86 A variety of polymer AM processes are used as well as two direct metal AM processes: direct metal laser sintering and direct ...36  F.  Direct Write Laser Technology Advances ........................................................39  7.  R

  1. Advanced Manufacturing Technology: The Perceived Impact on Producer’s Value

    Directory of Open Access Journals (Sweden)

    Rohani Abdullah

    2012-09-01

    Full Text Available The purpose of this study is to determine which AMT has the greatest perceived impact on producer’s value and to identify which AMTs has been most successfully employed. The study population consists of senior manufacturing executives in electrical and electronic firms located in the northern region of Malaysia. The study addresses the senior manufacturing executives’ perceptions on how well specific AMTs have achieved the expectation of the firms implementing them. They are selected as respondents because of their understanding of the technology and their effects, and because as top manufacturing decision makers, their opinions are likely to shape the future technology of the organization. This study found that the type of AMT that perceived the greatest impact on producer’s value is Flexible Manufacturing System, due to its high effects on two dimensions of producer’s value: quality and cost while Just-in-Time is found to be the most successfully employed AMT among respondents. The findings of this study are significant as they contribute to the AMT literature especially in the context of Electrical and Electronic firms. Keywords: advanced manufacturing technology, producer’s value

  2. The advanced manufacturing science and technology program. FY 95 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J. [comp.

    1996-03-01

    This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.

  3. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone B. [Universidade Bandeirante (UNIBAN), Sao Paulo, SP (Brazil)

    2011-07-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  4. Argonne's performance assessment of major facility systems to support semiconductor manufacturing by the National Security Agency/R Group, Ft. Meade, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Miller, G.M.

    1990-12-01

    The National Security Agency (NSA) was authorized in 1983 to construct a semiconductor and circuit-board manufacturing plant at its Ft. Meade, Maryland, facility. This facility was to become known as the Special Process Laboratories (SPL) building. Phase I construction was managed by the US Army Corps of Engineers, Baltimore District (USACE/BD) and commenced in January 1986. Phase I construction provided the basic building and support systems, such as the heating, ventilating, and air-conditioning system, the deionized-water and wastewater-treatment systems, and the high-purity-gas piping system. Phase II construction involved fitting the semiconductor manufacturing side of the building with manufacturing tools and enhancing various aspects of the Phase I construction. Phase II construction was managed by NSA and commenced in April 1989. Argonne National Laboratory (ANL) was contracted by USACE/BD midway through the Phase I construction period to provide quality-assured performance reviews of major facility systems in the SPL. Following completion of the Phase I construction, ANL continued its performance reviews under NSA sponsorship, focusing its attention on the enhancements to the various manufacturing support systems of interest. The purpose of this document is to provide a guide to the files that were generated by ANL during its term of technical assistance to USACE/BD and NSA and to explain the quality assurance program that was implemented when ANL conducted its performance reviews of the SPL building's systems. One set of the ANL project files is located at NSA, Ft. Meade, and two sets are at Argonne, Illinois. The ANL sets will be maintained until the year 2000, or for the 10-year estimated life of the project. 1 fig.

  5. Argonne's performance assessment of major facility systems to support semiconductor manufacturing by the National Security Agency/R Group, Ft. Meade, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Miller, G.M.

    1990-12-01

    The National Security Agency (NSA) was authorized in 1983 to construct a semiconductor and circuit-board manufacturing plant at its Ft. Meade, Maryland, facility. This facility was to become known as the Special Process Laboratories (SPL) building. Phase I construction was managed by the US Army Corps of Engineers, Baltimore District (USACE/BD) and commenced in January 1986. Phase I construction provided the basic building and support systems, such as the heating, ventilating, and air-conditioning system, the deionized-water and wastewater-treatment systems, and the high-purity-gas piping system. Phase II construction involved fitting the semiconductor manufacturing side of the building with manufacturing tools and enhancing various aspects of the Phase I construction. Phase II construction was managed by NSA and commenced in April 1989. Argonne National Laboratory (ANL) was contracted by USACE/BD midway through the Phase I construction period to provide quality-assured performance reviews of major facility systems in the SPL. Following completion of the Phase I construction, ANL continued its performance reviews under NSA sponsorship, focusing its attention on the enhancements to the various manufacturing support systems of interest. The purpose of this document is to provide a guide to the files that were generated by ANL during its term of technical assistance to USACE/BD and NSA and to explain the quality assurance program that was implemented when ANL conducted its performance reviews of the SPL building's systems. One set of the ANL project files is located at NSA, Ft. Meade, and two sets are at Argonne, Illinois. The ANL sets will be maintained until the year 2000, or for the 10-year estimated life of the project. 1 fig.

  6. Tribal Colleges and Universities/American Indian Research and Education Initiatives Advanced Manufacturing Technical Assistance Project

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, Stanley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The overall goal of this project is to establish a network of TCUs with essential advanced manufacturing (AM) facilities, associated training and education programs, and private sector and federal agency partnerships to both prepare an American Indian AM workforce and create economic and employment opportunities within Tribal communities through design, manufacturing, and marketing of high quality products. Some examples of high quality products involve next generation grid components such as mechanical energy storage, cabling for distribution of energy, and electrochemical energy storage enclosures. Sandia National Laboratories (Sandia) is tasked to provide technical advising, planning, and academic program development support for the TCU/American Indian Higher Education Consortium (AIHEC) Advanced Manufacturing Project. The TCUs include Bay Mills Community College (BMCC), Cankdeska Cikana Community College (CCCC), Navajo Technical University (NTU), Southwestern Indian Polytechnic Institute (SIPI), and Salish Kooteani College. AIHEC and Sandia, with collaboration from SIPI, will be establishing an 8-week summer institute on the SIPI campus during the summer of 2017. Up to 20 students from TCUs are anticipated to take part in the summer program. The goal of the program is to bring AM science, technology, engineering, and mathematics (STEM) awareness and opportunities for the American Indian students. Prior to the summer institute, Sandia will be providing reviews on curriculum plans at the each of the TCUs to ensure the content is consistent with current AM design and engineering practice. In addition, Sandia will provide technical assistance to each of the TCUs in regards to their current AM activities.

  7. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  8. Selective atomic-level etching using two heating procedures, infrared irradiation and ion bombardment, for next-generation semiconductor device manufacturing

    Science.gov (United States)

    Shinoda, K.; Miyoshi, N.; Kobayashi, H.; Miura, M.; Kurihara, M.; Maeda, K.; Negishi, N.; Sonoda, Y.; Tanaka, M.; Yasui, N.; Izawa, M.; Ishii, Y.; Okuma, K.; Saldana, T.; Manos, J.; Ishikawa, K.; Hori, M.

    2017-05-01

    The demand for precisely controlled etching is increasing as semiconductor device geometries continue to shrink. To fulfill this demand, cyclic atomic level/layer etching will become one of the key technologies in semiconductor device manufacturing at nanometer dimensions. This review describes recent trends in semiconductor devices and some of the latest results on cyclic atomic-level etching. In particular, it focuses on two types of cyclic etching that use different heating procedures: infrared irradiation for isotropic etching and Ar+ ion bombardment for anisotropic etching. It describes how an inductively-coupled-plasma down-flow etching apparatus with infrared lamps can be used for isotropic cyclic etching. The isotropic cyclic etching of SiN involves the formation and thermal desorption of ammonium hexafluorosilicate-based surface modified layers. This method features high selectivity with respect to SiO2, atomic-level control of the amount of SiN etching, and isotropic etched features. On the other hand, the anisotropic cyclic etching with Ar+ ion bombardment uses a microwave electron-cyclotron-resonance plasma etching apparatus. The anisotropic process for poly Si is composed of cyclic repetitions of chlorine adsorption and Ar+ ion bombardment. The anisotropic process for SiN is composed of cyclic repetitions involving an adsorption step using hydrofluorocarbon chemistry and a desorption step using Ar+ ion bombardment. Potential applications of these isotropic/anisotropic cyclic etching processes are described.

  9. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    Science.gov (United States)

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  10. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    Science.gov (United States)

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  11. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories.

    Science.gov (United States)

    Park, Seung-Hyun; Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-09-01

    The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

  12. Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies

    Science.gov (United States)

    Lee, Tien-Hsi

    Wafer bonding is an attractive technology for modern semiconductor and microelectronic industry due to its variability in allowing combination of materials. Initially, the bonding of wafers of the same material, such as silicon-silicon wafer bonding has been major interest. In the meantime, research interest has shifted to the bonding of dissimilar materials such as silicon to quartz or to sapphire. Thermal stress coming from the different expansion coefficients usually is a barrier to the success of dissimilar material bonding. Thermal stress may cause debonding, sliding, cracking, thermal misfit dislocations, or film wrinkle to impair the quality of the transferred layer. This dissertation presents several effective approaches to solve the thermal stress problem. These approaches concern bonding processes (low vacuum bonding and storage), thinning (advanced ion implantation layer splitting), and annealing processes (accumulative effect of blister generation) and are combined to design the best heat-treatment cycle. For this propose the concept of hot bonding is used in order to effectively minimize the thermal mismatch of dissimilar material bonding during the bonding and thinning procedures. During the initial bonding and bond strengthening phase, the difference in the temperature between bonding and annealing processes should be decreased as much as possible to avoid excessive thermal stresses. This concept can be realized either by increasing the bonding temperature or by decreasing the annealing temperature. A thinning technique has to employed that can thin the device wafer before debonding occurs due to the thermal stress generated either from the cooling-down process in the first case or by the annealing process itself in the late case. The ion implantation layer splitting method, also known as the Smart-cutsp°ler process, developed by Bruel at LEIT in France is a practical thinning technique which satisfies the above requirement. In the study, an

  13. Advanced Shape Memory Technology to Reshape Product Design, Manufacturing and Recycling

    Directory of Open Access Journals (Sweden)

    Wen Guang Yang

    2014-08-01

    Full Text Available This paper provides a brief review on the advanced shape memory technology (ASMT with a focus on polymeric materials. In addition to introducing the concept and fundamentals of the ASMT, the potential applications of the ASMT either alone or integrated with an existing mature technique (such as, 3D printing, quick response (QR code, lenticular lens and phenomena (e.g., wrinkling and stress-enhanced swelling effect in product design, manufacturing, and recycling are demonstrated. It is concluded that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.

  14. Post-Buckling, Damage Tolerance and Manufacturing Techniques for Advanced Composite Materials.

    Science.gov (United States)

    1986-08-01

    ADVAN. J DUGUNDJI ET AL. UNCLASSIFIED AuG 96 TELA-96-23 RMRIL-TR-87-4006 F/G 11/4 MI L2.5 11111 . L6 5 8Wo1 ~E 13.2 12 LooI 1111 1111.4 11.6...MANUFACTURING TECHNIQUES FOR ADVANCED COMPOSITE MATERIALS 00 NN John Dugundji , Paul A. Lagace, James W. Mar, Theodore H.H. Pian CO Massachusetts Institute...describing the experimental results and correlations is in preparation: Wang, Pian, Dugundji and Lagace [5]. 8 - N ~N - - --~ 4 - :)AMAGE. T111H - FPIRURJD

  15. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  16. Advanced Manufacturing Technologies and Green Innovation: The Role of Internal Environmental Collaboration

    Directory of Open Access Journals (Sweden)

    Ting Kong

    2016-10-01

    Full Text Available Green innovation has been deemed a key corporate capability to deal with environmental issues. The usage of advanced manufacturing technologies (AMT provides important resources and knowledge for firms’ green innovation. Drawing on a resources-based approach, this study contributes to the existing literature by examining how the adoption of specific types of AMT (process, design, and planning influences two dimensions of green innovation (green product innovation and green process innovation. In particular, we explore these relationships through internal environmental collaboration. Based on data collected from 198 Chinese manufacturing firms, we found that process, design, and planning AMT can contribute to both green products and process innovation. Moreover, the findings confirm the significant mediating role of internal environmental collaboration in this relationship. Specifically, internal environmental collaboration mediates the relationship between process AMT and green product innovation as well as the relationship between design AMT and two dimensions of green innovation; it also partially mediates the relationship between process AMT and green process innovation as well as the relationship between planning AMT and two dimensions of green innovation. These findings provide novel insights into how manufacturing firms can use various types of AMT to enhance their green innovation.

  17. Advanced Manufacturing for Thermal and Environmental Control Systems: Achieving National Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2017-02-20

    This project was part of a regional initiative in the five counties of Central New York (CNY) that received funding from the U.S. Department of Energy (DOE) and four other federal agencies through the 2012 Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC). The CNY initiative was focused on cultivating the emergent regional cluster in “Advanced Manufacturing for Thermal and Environmental Control (AM-TEC).” As one component of the CNY AM-TEC initiative, the DOE-funded project supported five research & development seed projects that strategically targeted: 1) needs and opportunities of CNY AM-TEC companies, and 2) the goal of DOE’s Advanced Manufacturing Office (AMO) to reduce energy consumption by 50% across product life-cycles over 10 years. The project also sought to fulfill the AMO mission of developing and demonstrating new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. The five seed projects demonstrated technologies and processes that can reduce energy intensity and improve production as well as use less energy throughout their lifecycles. The project was conducted over three years in two 18-month budget periods. During the first budget period, two projects proposed in the original AMJAIC application were successfully completed: Seed Project 1 focused on saving energy in heat transfer processes via development of nano structured surfaces to significantly increase heat flux; Seed Project 2 addressed saving energy in data centers via subzero cooling of the computing processors. Also during the first budget period, a process was developed and executed to select a second round of seed projects via a competitive request for proposals from regional companies and university collaborators. Applicants were encouraged to form industry-academic partnerships to leverage experience and resources of public and private sectors in the CNY region. Proposals were

  18. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  19. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    the testing, answered the main research question:How can the manufacture of complex geometry thin-walled GFRC be advanced to meet today’s architectural demands?So, the architectural demands for thin-walled GFRC cladding were identified, together with a clearly defined range of complexity of thin-walled GFRC panels. The key demands were; a smooth surface texture, no visual fibres in the surface, minimal air-bubbles or voids, consistent colour across all thin-walled GRFC elements, no visible cracks, and the need for edge-returns and panel offsets. The suitability of selected production methods were evaluated against these demands. Firstly the automated premixed method was tested on a flexible table, (single reconfigurable mould surface, with computer controlled actuators  capable of forming free-formed geometries. This showed that the flexible table alone would not meet the requirements for an edge-return, with the manufacturing speed required, to produce many unique shaped panels within normal building project time-schedules. Following this test a solution was proposed that used the flexible table to produce free-formed shaped moulds using fast curing foam, enabling moulds to be produced within hours allowing more rapid utilization of the flexible table. This solution was first tested for the premixed method by casting positive and negative mould parts enabling an edge-return to be cast because flexible tables are only able to produce moulds with a continuous surface. The new mould solution for complex geometry shapes also demonstrated that it was difficult to avoid air-bubbles and voids when casting the GFRC panels using the premixed method. So a second mould solution was developed for the sprayed method. This resolved the challenges of forming an edge-barrier on the mould, while allowing an edge-return to be successfully cast on a double curved panel that met the key architectural demands.From the research and the tests it was possible to devise a fully automated

  20. Effects on Semiconductor Optical Amplifier Gain Quality for Applications in Advanced All-optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Riyam A. Johni

    2014-04-01

    Full Text Available Semiconductor optical amplifiers are strong candidates to replace traditional erbium-doped-fibre-amplifiers in future all-optical networks by virtue of their proven functional capabilities, in addition to gain. They are also smaller, cheaper and easier to integrate than fibre amplifiers. This study summarizes the gain quality of the semiconductor optical amplifier with varying effects such as input power, bias current and wavelength and data rate. The results reported herein show high quality gain, coupled with accept ably low noise figure values.

  1. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  2. Fiscal 1998 research achievement report. Development of key technology for high-efficiency semiconductor manufacturing process; 1998 nendo kokoritsu handotai seizo process kiban gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    In the development of large-aperture/high-density plasma technology, research and development was carried out for balanced electron drift plasma technologies for uniform control of plasma density and the like, such as an excited plasma source and plasma drift to enable wide-range plasma generation in a chamber. In the development of high-efficiency exposure technology, studies were made for stable generation and control of short wavelength excimer laser and for higher-speed large-aperture mask writing by use of an electron beam. In the development of higher-speed processing and energy-efficient technologies, research and development was conducted involving probe card technology for increasing the speed of semiconductor inspection, software-aided virtual tester technology, local energy-efficient cleaning technology in wafer processing and transportation, sheet-type flexible manufacturing system, and the like. (NEDO)

  3. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population...... pulse distortion occurs at zero bias....

  4. Maintenance scheduling for semiconductor manufacturing equipment based on Markov Decision Process%基于MDP的半导体制造设备维护调度研究

    Institute of Scientific and Technical Information of China (English)

    陈静静

    2012-01-01

    To solve the maintenance scheduling problem of semiconductor manufacturing equipment, two-layer maintenance optimization model based on Markov decision process is proposed. Device layer uses Markov Decision Process to derive the optimal policy for job sequencing,cleaning and maintenance of each device in the long-term, both considering the degradation failure and stochastic failure. Genetic algorithm is applied to assign a limited number of maintenance personnels to manufacturing equipment in order to induce the productivity losses. Finally this model based on a certain semiconductor wafer fabrication is built on Em-Plant, and results revealed satisfactory scheduling performance.%为解决半导体制造设备的维护调度问题,提出基于马尔可夫决策过程(MDP)的制造设备两层维护优化模型.设备层利用马尔可夫决策过程(MDP)模型,同时考虑劣化故障和随机故障两种故障类型,制定针对单台设备的工件排序、清洗和维修的长期维护优化策略,系统层采用遗传算法解决有限维护资源下短期维修调度方案,尽可能降低由设备故障所导致的生产损失.最后以某半导体生产线为例利用eM-Plant软件进行仿真验证,结果表明,该维护策略能更好的提高系统性能.

  5. The Second Development Method and Application Based on Ansys in Advanced Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    SUN Yuantao; WANG Shaomei; ZHAO Zhangyan

    2006-01-01

    The computer aided engineering is aiming at the numerical simulation-the important link in the advanced digital manufacturing. Its second development based on Ansys platform can be carried out often. In common, the Visual Basic and APDL are important development tools and are applied in the product design at the same time. In the paper, the secondary development flow and method based on Ansys is described. The parameter design and analysis process of the bridge girder erecting equipment is carried on with Ansys software and its secondary development tools-APDL and Visual Basics, including the interact between the mode of Ansys batch solving and Visual Basic. The method speeds up design and enhances the product the quality and the performance.

  6. Training for my Life: Lived Experiences of Dislocated Workers in an Advanced Manufacturing Training Program

    Directory of Open Access Journals (Sweden)

    Marquita R. Walker

    2012-07-01

    Full Text Available This qualitative paper explores the lived experiences of one group of workers dislocated because of globalized trade policies who completed a hybrid Advanced Manufacturing Training Program (AMTP by taking advantage of Trade Adjustment Assistance (TAA, a federally-funded program for retraining workers dislocated because of trade policies. The research questions focus on how satisfied these workers are with the services and programs provided by TAA. Focus groups and survey instrument results indicate these workers found TAA services and processes cumbersome and time- consuming and actually had the effect of discouraging their education, training, and self- employment. The consequences of their dislocation as it relates to TAA experiences are increased frustration and dissatisfaction with the TAA program. Serious consideration for TAA policy changes should be deemed of utmost importance.

  7. Final Scientific/Technical Report: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, William [24M Technologies, Inc., Cambridge, MA (United States)

    2017-01-10

    This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independent testing; 4) those processes were scaled to a large-format (> 260 cm2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.

  8. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  9. Advanced transmission electron microscopy studies in low-energy ion implanted Si Semiconductors; Junctions; Silicon

    CERN Document Server

    Wang, T S

    2002-01-01

    As the dimensions of semiconductor devices shrink down to 0.1 mu m and beyond, low energy ion implantation is required to introduce shallower junctions to match such small devices. In this work, transmission electron microscopy (TEM) is employed to analyse low energy implanted junctions with both structural and chemical analyses. High resolution transmission electron microscopy (HRTEM) has been employed to observe Si crystal damage and amorphization due to low energy B sup + /As sup + ion implantations, and also, defect formation/annihilation during rapid thermal annealing (RTA). The damage effects due to different implant temperatures between 300 deg C and -150 deg C are also discussed. Since knowledge of the distribution of low energy ion implanted dopants in Si is extremely important for semiconductor device processing, energy filtered transmission electron microscopy (EFTEM) has been employed to determine implanted B distributions in Si while Z-contrast imaging and X-ray analytical mapping techniques are ...

  10. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  11. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    Science.gov (United States)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  12. Agile dry etching of compound semiconductors for science-based manufacturing using in-situ process control

    Energy Technology Data Exchange (ETDEWEB)

    ASHBY,CAROL I.; VAWTER,GREGORY A.; BREILAND,WILLIAM G.; BRUSKAS,LARRY A.; WOODWORTH,JOSEPH R.; HEBNER,GREGORY A.

    2000-02-01

    In-situ optical diagnostics and ion beam diagnostics for plasma-etch and reactive-ion-beam etch (RIBE) tools have been developed and implemented on etch tools in the Compound Semiconductor Research Laboratory (CSRL). The optical diagnostics provide real-time end-point detection during plasma etching of complex thin-film layered structures that require precision etching to stop on a particular layer in the structure. The Monoetch real-time display and analysis program developed with this LDRD displays raw and filtered reflectance signals that enable an etch system operator to stop an etch at the desired depth within the desired layer. The ion beam diagnostics developed with this LDRD will permit routine analysis of critical ion-beam profile characteristics that determine etch uniformity and reproducibility on the RIBE tool.

  13. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  14. 面向可持续发展的半导体制造的集成产品和过程控制%Integrated Product and Process Control for Sustainable Semiconductor Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈良; Y.L.Huang

    2011-01-01

    Semiconductor fabrication is a manufacturing sequence with hundreds of sophisticated unit operations and it is always challenged by strategy development for ensuring the yield of defect-free products. In this paper, an advanced control strategy through integrating product and process control is established. The proposed multiscale scheme contains three layers for coordinated equipment control, process control and product quality control. In the upper layer, online control performance assessment is applied to reduce the quality variation and maximize the overall product performance (OPP). It serves as supervisory control to update the recipe of the process controller in the middle layer. The process controller is designed as an exponentially weighted moving average (EWMA) run-to-mn controller to reject disturbances, such as process shift, drift and tool worn out, that are exerted to the operation. The equipment in the process is individually controlled to maintain its optimal operational status and maximize the overall equipment effectiveness (OEE), based on the set point given by the process controller. The efficacy of the proposed integrated control scheme is demonstrated through case studies, where both the OPP (for product) and the OEE (for equipment) are enhanced.

  15. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    Science.gov (United States)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  16. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha [AKHAN Semiconductor, Inc., Hoffman Estates, IL (United States)

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  17. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  18. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  19. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  20. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to use selective laser melting (SLM, an additive manufacturing technique) to manufacture a hot fire-capable, water-cooled spool...

  1. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to demonstrate feasibility of using selective laser melting (SLM, an emerging manufacturing technique) to manufacture a subscale...

  2. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    Science.gov (United States)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  3. Semiconductor packaging materials interaction and reliability

    CERN Document Server

    Chen, Andrea

    2012-01-01

    In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. The book focuses on an important step in semiconductor manufacturing--package assembly and testing. It covers the basics of material properties and explains how to determine which behaviors are important to package performance. The authors also discuss how

  4. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment

    Science.gov (United States)

    Hashem, Manal; Saion, Elias; Al-Hada, Naif Mohammed; Kamari, Halimah Mohamed; Shaari, Abdul H.; Talib, Zainal Abidin; Paiman, Suriati B.; Kamarudeen, Mazliana A.

    In this paper, thermal treatment procedures were utilised to prepare crystalline nickel oxide semiconductor nanoparticles, derived from an aqueous solution. The solution consists of three compounds, primarily nickel nitrate, polyvinyl pyrrolidine and deionised H2O acting as metal precursor, capping agent and solvent, respectively. The solution was made prior to the drying, grinding and calcination at varying temperature settings up to 800 °C. The scanning Electron Microscopy (SEM) images allowed a detailed study on the morphological of the monocrystalline grains which were obviously observed in the specimen, showing them to be almost identical in shape and size. The Infrared Fourier Transform (FTIR) and X-ray diffraction (XRD) results demonstrated a transformation of the amorphous structure at room temperature to the crystalline structure at higher temperatures during calcination process. The mean particle diameter and particle distribution were found to be directly proportional to temperature increased. The transmission electron microscopic (TEM) analysis revealed that the particle diameters vary between 15 and 35 nm when temperature increased between 500 and 800 °C. The composition of the specimens was delineated by energy dispersed X-ray spectroscopy (EDX), which identified nickel and oxygen atomic percentages in the final products. Optical characteristics were deducted from a UV-Vis reflectance spectrophotometer, which demonstrated the energy band gap decrement as the calcination temperatures increased. Magnetic properties were determined through electron spin resonance spectroscopy (ESR), which revealed the presence of unpaired electrons. The magnetic field resonance decreases along with an increase of the g-factor value as the calcination temperature increased from 500 to 800 °C.

  5. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  6. High Operation Efficiency of Semiconductor Electrooptic Modulators in Advanced Lightwave Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-07-01

    Full Text Available Photonic links have been proposed to transport radio frequency (RF signals over optical fiber communication systems. External optical modulation is commonly used in high performance RF photonic links. The practical use of optical fiber communication systems to transport RF signals is still limited due to high RF signal loss. In order to reduce the RF signal loss, highly efficient modulators are needed. For many applications, modulators with broad bandwidths are required. However, there are applications that require only a narrow bandwidth. For these narrow band applications, the modulation efficiency can be improved through the resonant enhancement technique at the expense of reduced transmission bandwidth. Therefore we have been investigated to get the best performance of the transmission bit rate capacity and product of different semiconductor materials based electrooptic (EO modulators over wide range of the affecting parameters.

  7. Advances in the Manufacture of Omega-scale Double-shell Targets

    Science.gov (United States)

    Bono, M.

    2005-10-01

    The double-shell ignition target design consists of a low-Z outer shell that absorbs hohlraum-generated x-rays, implodes, and collides with a high-Z inner shell containing DT fuel. Efforts are continuing to field scaled ignition-like double shells on the Omega laser facility over a range of inner-shell Z. Previous ignition-like double-shell implosions on Omega used a low-Z CH inner shell [1]. The current target contains a higher-Z glass inner shell of diameter 216 microns, which is supported by SiO2 aerogel inside a Br-doped CH ablator shell of diameter 550 microns. Fielding double-shell targets has historically been limited by the ability to successfully fabricate them, but several technological advances have recently been made in the manufacturing process. The inner capsule will be cast in SiO2 aerogel of density 50 mg/cc, whose outer contour will be machined concentric to the inner capsule. This piece will then be assembled between two hemispherical ablator shells that mate at a step-joint with an adhesive-filled gap of thickness 100 nm. Three-dimensional tomographs made of each target using an x-ray micro-tomography system will allow precise characterization of the targets. [1] P. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005).

  8. Using advanced manufacturing to produce unmanned aerial vehicles: a feasibility study

    Science.gov (United States)

    Easter, Steven; Turman, Jonathan; Sheffler, David; Balazs, Michael; Rotner, Jonathan

    2013-05-01

    This paper reports on a feasibility study to explore the impact of advanced manufacturing on the production and maintenance of a 3D printed, unmanned aerial vehicle (UAV) in theatre. Specifically, this report focuses on fused deposition modeling (FDM), the selective deposition of a molten thermoplastic. FDM is already a forward deployed technology, primarily used for printing custom tools and replacement parts. The authors ask if it is feasible to expand the printers' capacity to produce aerial platforms; the reduction in logistics and labor could significantly decrease costs per unit and enable far more platform customization and specialized deployment scenarios than are available in existing aircraft. The University of Virginia and The MITRE Corporation designed and built a prototype, 3D printed UAV for use as an aerial sensor platform. This report • Discusses the printed aerial platform, summarizes the design process, and compares printing methods • Describes the benefits and limitations to selecting FDM printers as the technology both for deployment as well as UAV design • Concludes with the current state and future expectations for FDM printing technologies relevant to UAV production. Our findings suggest that although 3D printing is not yet entirely field-ready, many of its advantages can already be realized.

  9. Software development for the evaluation of the ergonomic compatibility on the selection of advanced manufacturing technology.

    Science.gov (United States)

    Maldonado-Macías, A; Reyes, R; Guillen, L; García, J

    2012-01-01

    Advanced Manufacturing Technology (AMT) is one of the most relevant resources that companies have to achieve competitiveness and best performance. The selection of AMT is a complex problem which involves significant amount of information and uncertainty when multiple aspects must be taken into consideration. Actual models for the selection of AMT are found scarce of the Human Factors and Ergonomics perspective which can lead to a more complete and reliable decision. This paper presents the development of software that enhances the application of an Ergonomic Compatibility Evaluation Model that supports decision making processes taking into consideration ergonomic attributes of designs. Ergonomic Compatibility is a construct used in this model and it is mainly based in the concept of human-artifact compatibility on human compatible systems. Also, an Axiomatic Design approach by the use of the Information Axiom was evolved under a fuzzy environment to obtain the Ergonomic Incompatibility Content. The extension of this axiom for the evaluation of ergonomic compatibility requirements was the theoretical framework of this research. An incremental methodology of four stages was used to design and develop the software that enables to compare AMT alternatives by the evaluation of Ergonomic Compatibility Attributes.

  10. Advanced Micro Narrows Gap in Race for New Chip

    Institute of Scientific and Technical Information of China (English)

    John Markoff; 张宁

    2004-01-01

    @@ Hoping to catch up with Intel and I. B. M. in an advanced chip-making technology, the semiconductor maker Advanced Micro Devices plans to announce Tuesday that it has begun to ship chips based on an advanced manufacturing process that is being used to build the next generation of processors.

  11. Advanced Manufacturing Technologies (AMT): Additive Construction for Mobile Emplacement (ACME) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional methods of manufacturing automation do not lend themselves to construction of large structures with internal features, especially if various other...

  12. Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, I.J.; Klem, J.F.; Hafich, M.J. [and others

    1997-04-01

    This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

  13. Selective Synthesis and Advanced Characteristic of CdSe Semiconductor Quantum Dots by Aqueous Phase

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This work mainly investigated the influences of some factors, such as, synthesis methods, pre cursor alternatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum dots synthesized by aqueous phase.The research results indicate that the fluorescent characteristic of water-solution sample prepared from Na2 SO3 precursor was sensitive to water bath heating time, and specially, its photoluminescence spectrum shows the unique phenomenon of double excitation and emission peaks.Meanwhile,the fluorescent characteristic of water- solution sample prepared from NaBH4 precursor is slightly influenced by water bath heating time, and the surface of CdSe quantum dots could be passivated by the excessive amount of NaBH4precursor, which results in the effective decrease of surface traps and great enhancement of quantum yield.Furthermore, the fluorescent emission peaks of samples could be sharpeued by vacuum heat-treating process, with its spectral full width at half of maximum (FWHM) around 30-40 nm, so the emission peaks become redshift, ofwhich the intensity greatly increases.

  14. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation.

    Science.gov (United States)

    Zheng, Tianlong; Wang, Qunhui; Shi, Zhining; Fang, Yue; Shi, Shanshan; Wang, Juan; Wu, Chuanfu

    2016-12-01

    A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m(2), circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.

  15. Field enhancements of packed-bed performance for low-concentration acidic and basic-waste gases from semiconductor manufacturing process.

    Science.gov (United States)

    Chein, Hung Min; Aggarwal, Shankar Gopala; Wu, Hsin Hsien; Chen, Tzu Ming; Huang, Chun-Chao

    2005-05-01

    Low-concentration acidic and basic-waste gas pollutants contribute significantly in the total emission of a facility. Previous results show that the control of high volumetric flow rate (approximately 500 m3/min), low-concentration acidic (< 1 ppm by vol) and basic (< 3 ppm by vol) gases from semiconductor process vent, by conventional wet scrubbing technique is a challenging task. This work was targeted to enhance the performance of packed beds for high-volumetric flow rate, low-concentration acidic (HF, HCl), and basic (NH3)-waste gases from the semiconductor manufacturing process. The methodology used to meet the goal was the application of fine-water mist over the inlet stream before entering to the packed bed and use of the surfactant with mist/packed-bed liquid in low concentration. An experimental study was carried out in two acid-packed beds to optimize the operating conditions, such as pH of the liquid, circulating liquid flow rate, blow-down cycle, and so forth. The relationship among liquid pH, liquid ionic concentration, and the removal efficiency of the packed bed for the pollutants has been discussed considering chemical equilibrium, two-film theory, and Henry's law. For the potential utilization of scrubbing water, the dependency of the efficiency on blow-down cycle was studied, and a mechanism is suggested. The proposed water-mist surfactant system was installed in two acid-packed beds, and performance of the packed beds was compared. The background efficiencies of the acid-packed beds for HF, HCl, and NH3 were found max to be (n = 11) 53, 40, and 27%, whereas after installation of the system, they increased significantly and became 76 +/- 13% (n = 10), 76 +/- 8% (n = 7), and 78 +/- 7% (n = 7), respectively, for inlet concentrations of HF and HCl < 1 ppm and NH3 < 14 ppm. The mechanism by which the surfactants operate to enhance the removal in scrubbing process is suggested considering the hydrodynamic effect and the interfacial effect with the

  16. Advanced Manufacturing Technologies and Strategically Flexible Production. A Review and Outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    During the 1980s, Western manufacturers were attracted by the potential of computer technology to increase productivity through the improvement of quality and the reduction of costs and lead times. However, most investments aimed at exploiting the benefits of Computer Integrated Manufacturing (CIM...

  17. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  18. DARPA Agreement HR0011-06-1-0028 (Robert C. Byrd Institute for Advanced Flexible Manufacturing)

    Science.gov (United States)

    2011-12-13

    Environmental Management Systems implementation and certification including ISO 9001 , ISO 14001; 5S Manufacturing initiatives; Six Sigma; Lean...specs (and those that involve the automotive and aerospace industries); ISO 9001 ; ISO 14001 - Environmental (Green Manufacturing); QS-9000 and...assistance to the West Virginia Army National Guard, which included ISO 9001 Quality Management; ISO 14001 Environmental Management; Six Sigma Green

  19. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  20. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    Directory of Open Access Journals (Sweden)

    Sylvestre Uwizeyemungu

    2015-10-01

    Full Text Available Manufacturing small and medium-sized enterprises (SMEs are more and more adopting advanced manufacturing technologies (AMT aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types of AMT grouped into 5 categories, we derived three AMT assimilation patterns through a cluster analysis procedure combining hierarchical and non-hierarchical clustering algorithms. The analysis of the relationship between AMT assimilation patterns and product innovation performance shows a rather unexpected picture: in spite of the existence of clearly distinct patterns of AMT assimilation, we find no significant relationship between any pattern and product innovation performance. Instead, we find the organizational and environmental context of SMEs to be more determinant for product innovation performance than any of the AMT assimilation patterns. From a practical point of view, this study indicates that manufacturing SMEs managers interested in fostering their innovation capabilities through AMT assimilation need to be aware of the contingency effects of their organizational size, age, and sector of activity.

  1. Effects of work-related factors on the breastfeeding behavior of working mothers in a Taiwanese semiconductor manufacturer: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Chie Wei-Chu

    2006-06-01

    Full Text Available Abstract Background In recent years, the creation of supportive environments for encouraging mothers to breastfeed their children has emerged as a key health issue for women and children. The provision of lactation rooms and breast pumping breaks have helped mothers to continue breastfeeding after returning to work, but their effectiveness is uncertain. The aim of this study was to assess the effects of worksite breastfeeding-friendly policies and work-related factors on the behaviour of working mothers. Methods This study was conducted at a large Taiwanese semiconductor manufacturer in August-September 2003. Questionnaires were used to collect data on female employees' breastfeeding behaviour, child rearing and work status when raising their most recently born child. A total of 998 valid questionnaires were collected, giving a response rate of 75.3%. Results The results showed that 66.9% of survey respondents breastfed initially during their maternity leave, which averaged 56 days. Despite the provision of lactation rooms and breast pumping breaks, only 10.6% mothers continued to breastfeed after returning to work, primarily office workers and those who were aware of their company's breastfeeding-friendly policies. Conclusion In conclusion, breastfeeding-friendly policies can significantly affect breastfeeding behaviour. However, an unfavourable working environment, especially for fab workers, can make it difficult to implement breastfeeding measures. With health professionals emphasizing that the importance of breastfeeding for infant health, and as only females can perform lactation, it is vital that women's work "productive role" and family "reproductive role" be respected and accommodated by society.

  2. 先进制造技术特点及发展趋势%The characteristics of advanced manufacturing technology and its development trend

    Institute of Scientific and Technical Information of China (English)

    王群

    2013-01-01

    This paper introduces the advanced manufacturing technology progress, elaborated the development trend of advanced manufacturing technology, system ana lysis of the development of advanced manufacturing technology content, method, characteristic and direction. Only the advanced manufacturing technology has the world advanced level, the production of products can have global competition.%  本文介绍了先进制造技术发展的概况特点,阐述了先进制造技术的发展趋势,系统的分析了先进制造技术发展的内容、方法、特点以及方向。只有先进制造技术具有世界先进水平,生产产品才能具有全球竞争性。

  3. 75 FR 51843 - In the Matter of Certain Large Scale Integrated Circuit Semiconductor Chips and Products...

    Science.gov (United States)

    2010-08-23

    ... Matter of Certain Large Scale Integrated Circuit Semiconductor Chips and Products Containing the Same... certain large scale integrated circuit semiconductor chips and products containing same by reason of... including the following: Freescale Semiconductor Xiqing Integrated Semiconductor Manufacturing...

  4. Advanced Manufacturing Technologies (AMT): Low Cost Upper Stage-Class Propulsion Development Element

    Data.gov (United States)

    National Aeronautics and Space Administration — As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for...

  5. NDE of additively manufactured components with embedded defects (reference standards) using conventional and advanced ultrasonic methods

    Science.gov (United States)

    Koester, L.; Roberts, R. A.; Barnard, D. J.; Chakrapani, S.; Singh, S.; Hogan, R.; Bond, L. J.

    2017-02-01

    Additive manufacturing provides a unique opportunity to embed defects of known size and shape to produce reference samples for inspection and quality control purposes. This paper reports defect detectability studies with cylindrical additively manufactured cobalt-chromium alloy specimens which contain defects of known sizes and distributions. The specimens were characterized using immersion, synthetic aperture focusing (SAFT), phased array, and nonlinear ultrasonic techniques. Results include detectability, signal to noise ratios, and comparison of results between the methods and what is believed to be the first determination of a non-linearity (beta) parameter for an additively manufactured material. The results indicate that additive manufacturing provides a valuable method to produce reference samples, though additional work is required to validate the shape and morphology of the defects specified.

  6. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Dentz, J. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Barker, G. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Dadia, D. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States)

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  7. Dry etching of poly-Si/TaN/HfSiON gate stack for advanced complementarymetal-oxide-semiconductor devices

    Institute of Scientific and Technical Information of China (English)

    Li Yongliang; Xu Qiuxia

    2011-01-01

    A novel dry etching process of a poly-Si/TaN/HfSiON gate stack for advanced complementary metal-oxide-semiconductor (CMOS) devices is investigated.Our strategy to process a poly-Si/TaN/HfSiON gate stack is that each layer of gate stack is selectively etched with a vertical profile.First,a three-step plasma etching process is developed to get a vertical poly-Si profile and a reliable etch-stop on a TaN metal gate.Then different BCl3-based plasmas are applied to etch the TaN metal gate and find that BC13/Cl2/O2/Ar plasma is a suitable choice to get a vertical TaN profile.Moreover,considering that C12 almost has no selectivity to Si substrate,BCl3/Ar plasma is applied to etch HfSiON dielectric to improve the selectivity to Si substrate after the TaN metal gate is vertically etched off by the optimized BCl3/Cl2/O2/Ar plasma.Finally,we have succeeded in etching a poly-Si/TaN/HfSiON stack with a vertical profile and almost no Si loss utilizing these new etching technologies.

  8. United States of America Department of Health and Human Services support for advancing influenza vaccine manufacturing in the developing world.

    Science.gov (United States)

    Perdue, Michael L; Bright, Rick A

    2011-07-01

    Since 2005, the Government of the United States of America has provided more than US$ 50 million to advance influenza vaccine development in low-resourced countries. This programme has provided a unique opportunity for the US Government to develop a comprehensive view of, and to understand better the challenges and future needs for influenza vaccines in the developing world. The funding for this programme has been primarily through a cooperative agreement with the World Health Organization (WHO) to support directly its capacity-building grants to government-owned or -supported vaccine manufacturers in developing countries. A second cooperative agreement with the Program for Appropriate Technologies in Health (PATH) was initiated to accelerate the completion of a current Good Manufacturing Practice cGMP production facility, along with supporting facilities to obtain a reliable source of eggs, and to conduct clinical trials of influenza vaccine manufactured in Vietnam. This mechanism of utilizing cooperative agreements to support capacity-building for vaccine development in low-resourced settings has been novel and unique and has yielded fruitful returns on minimal investment. The information derived from this programme helps to clarify not only the development challenges for influenza vaccines and how the United States may assist in meeting those challenges, but also other vaccine development issues common to manufacturers in developing countries. While building the initial capacity to produce influenza vaccines can be a straightforward exercise, the sustainability of the enterprise and expansion of subsequent markets will be the key to future usefulness. There is hope for expansion of the global influenza vaccine market. Ongoing burden of disease studies are elucidating the impact of influenza infections, particularly in children, and more countries will take note and respond accordingly, since respiratory diseases are now the number one killer of children under

  9. Recent advance on design and manufacturing of composite anisogrid structures for space launchers

    Science.gov (United States)

    Totaro, G.; De Nicola, F.

    2012-12-01

    Anisogrid composite shells have been developed and applied since the eighties by the Russian technology aiming at critical weight structures for space launchers, as interstages and cone adapters. The manufacturing process commonly applied is based on the wet filament winding. The paper concerns with some developments of design and manufacturing recently performed at the Italian Aerospace Research Center on a cylindrical structural model representative of this kind of structures. The framework of preliminary design is improved by introducing the concept of suboptimal configuration in order to match the stiffness requirement of the shell and minimise the mass, in conjunction with the typical strength constraints. The undertaken manufacturing process is based on dry robotic winding for the lattice structure and for the outer skin, with the aid of usual rubber tooling and new devices for the automated deposition strategy. Resin infusion under vacuum bag and co-cure of the system of ribs and skin is finally applied out-of-autoclave, with the aid of a heated mandrel. With such approach an interstage structural model (scale factor 1:1.5) has been designed, manufactured and tested. Design requirements and loads refer to a typical space launcher whose baseline configuration is made in aluminium. The global mechanical test of the manufactured structure has confirmed the expected high structural performance. The possibility to reach substantial weight savings in comparison with the aluminium benchmark has been fully demonstrated.

  10. MODULAR RESEARCH EQUIPMENT FOR ON-LINE INSPECTION IN ADVANCED MANUFACTURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Davrajh, S.

    2012-11-01

    Full Text Available The significance of inspection processes increases when producing parts with high levels of customer input. These processes must adapt to variations in significant product characteristics. Mass customisation and reconfigurable manufacturing are currently being researched as ways to respond to high levels of customer input. This paper presents the research and development of modular inspection equipment that was designed to meet the on-line quality requirements of mass customisation and reconfigurable manufacturing environments. Simulated results were analysed for application in an industrial environment. The implementation of the equipment in South Africa is briefly discussed. The research indicates that manufacturers need only invest in the required equipment configurations when they are needed for on-line inspection.

  11. Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, III, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Ulsh, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Srinivasan, Venkat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-12-01

    A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; to evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.

  12. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    Institute of Scientific and Technical Information of China (English)

    Hamid Sazegaran; Ali-Reza Kiani-Rashid; Jalil Vahdati Khaki

    2016-01-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres’ shells were character-ized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), en-ergy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sin-tered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various pa-rameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper con-tent results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  13. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...... and better parts functionality (Ponche 2014). Also, the use of AM ma-chines for spare parts can potentially reduce costs and downtime, and lead to a higher robustness to supply chain disruptions (Khajavi 2013). Control and optimization of the involved process chains are crucial for a fast and robust...

  14. The impact on advanced economies of north-south trade in manufacturing and services

    Directory of Open Access Journals (Sweden)

    Robert Rowthorn

    2005-04-01

    Full Text Available Many types of production are being transferred from the rich economies of the North to the poorer economies of the South. Such changes began in manufacturing but are now spreading to services. This paper provides estimates of their past and future impact on employment in the North. About 5 million manufacturing jobs have been lost over the past decade because of trade with low-wage economies. A similar number of service jobs may be lost to low-wage economies over the next decade. Although small compared to total employment, such losses may seriously harm certain localities or types of worker.

  15. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant.

    Science.gov (United States)

    Tsao, Yung-Chieh; Wu, Chang-Fu; Chang, Pao-Erh; Chen, Shin-Yu; Hwang, Yaw-Huei

    2011-08-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. Copyright © 2011 Elsevier B.V. All rights

  16. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    Science.gov (United States)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  17. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Development of an advanced uncooled 10-Gb DFB laser for volume manufacture

    Science.gov (United States)

    Burns, Gordon; Charles, Paul M.

    2003-03-01

    Optical communication systems operating at 10Gbit/s such as 10Gigabit Ethernet are becoming more and more important in Local Area Networks (LAN) and Metropolitan Area Networks (MAN). This market requires optical transceivers of low cost, size and power consumption. This drives a need for uncooled DFB lasers directly modulated at 10Gbit/s. This paper describes the development of a state of the art uncooled high speed DFB laser which is capable of being manufactured in high volume at the low cost demanded by the GbE market. A DFB laser was designed by developing technological building blocks within the 'conventional" InGaAsP materials system, using existing well proven manufacturing processes modules wherever possible, limiting the design risk to a few key areas where innovation was required. The temperature and speed performance of the InGaAsP SMQW active layer system was carefully optimized and then coupled with a low parasitic lateral confinement system. Using concurrent engineering, new processes were demonstrated to have acceptable process capability within a manufacturing fabrication environment, proving their ability to support high volume manufacturing requirements. The DFB laser fabricated was shown to operate at 100C chip temperature with an open eye at 10Gbit/s operation (with an extinction ratio >5dB). Up to 90C operation this DFB shows threshold current as low as 29mA, optical power as high as 13mW and it meets the 10Gb scaled Ethernet mask with extinction ratio >6dB. It was found that the high temperature dynamic behavior of these lasers could not be fully predicted from static test data. A production test strategy was therefore followed where equipment was designed to fully test devices/subassemblies at 100C and up to 20Gbit/s at key points in the product build. This facilitated the rapid optimisation of product yields upon manufacturing ramp up and minimization of product costs. This state of the art laser is now transferred into volume manufacture.

  19. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  20. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets

    OpenAIRE

    2016-01-01

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxylpropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11 mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1 mm length. Molecular modelling study using...

  1. Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feuerstein, Albert [Praxair Surface Technologies, Inc., (United States); Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirka, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-30

    The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheet material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture

  2. Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mazzolari, Andrea, E-mail: mazzolari@fe.infn.it [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Camattari, Riccardo; Bellucci, Valerio; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Scian, Carlo; Mattei, Giovanni [University of Padova, Department of Physics and Astronomy Galileo Galilei (Italy); Guidi, Vincenzo [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy)

    2015-07-15

    X- and γ-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation.

  3. Advances in directed self assembly integration and manufacturability at 300 mm

    Science.gov (United States)

    Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen

    2013-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.

  4. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  5. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    Science.gov (United States)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  6. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dentz, J. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Barker, G. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dadia, D. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States)

    2016-03-01

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductless mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.

  7. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  8. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    CERN Document Server

    Langeslag, S.A.E.; Libeyre, P.; Marcinek, D.J.; Zhang, Z.

    2015-01-01

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procuremen...

  9. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  10. Advanced Material Studies for Additive Manufacturing in terms of Future Gear Application

    Directory of Open Access Journals (Sweden)

    Jan Bräunig

    2014-06-01

    Full Text Available Additive manufacturing by laser beam melting is predestined for complex component geometry like integrated cooling channels without enormous posttreatment processing. To investigate the influence of build-up direction in terms of later tooth excitation of gear-wheels, first fundamental material analyses were accomplished in this publication. Therefore, additively produced specimens were used to determine the build-up direction dependent elastic properties of the material in all three spatial directions based on tensile and torsion tests. The anisotropies of elastic limits and breaking points of previous studies were confirmed in this paper. Furthermore, torsion values were also determined depending on build-up direction. Laser beam melted X3NiCoMoTi18-9-5 (hot-work tool steel was shown to exhibit extremely high performance under shear loading in comparison to conventionally processed steel. The influence of build-up direction on torsional strength was also shown.

  11. FY1995 ultra-high performance semiconductor lasers for advanced optical information network; 1995 nendo kodo hikari joho tsushinmo e muketa kyokugen seino handotai laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research was to study and develop ultra-high performance semiconductor light source devices that should facilitate construction of advanced optical information networks. The semiconductor devices mentioned above are enhanced and integrated versions of distributed feedback (DFB) lasers based on 'gain coupling', which the group of the research coordinator has been investigating as a pioneer in the world. This research aimed at development of ultra-high performance semiconductor lasers that surpass the first generation conventional DFB lasers in any respect, by strengthening important device characteristics for system applications of the gain-coupled DFB lasers. The achievements of this research are listed below : 1. In-situ characterization of As-P exchange in MOVPE 2. Development of 1.55 {mu}m gain-coupled DFB lasers of absorptive grating type 3. Establishment of measurement technique for gain-coupling coefficients 4. Enlargement of small signal modulation response by the absorptive grating 5. Prediction of lower analog modulation distortion 6. Characterization of reflection-induced noise 7. Proposal and Demonstration of wavelength trimming 8. Proposal and Fabrication of GC DFB laser triode (NEDO)

  12. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  13. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  14. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  15. An Approach to Evaluate the Implementation Effects of Advanced Manufacturing Technology Based on the Specialists' Opinion Selection

    Institute of Scientific and Technical Information of China (English)

    SONG Jinbo; SONG Yanqiu; DAI Dashuang

    2006-01-01

    Since domestic corporations firstly introduced into and implemented the Advanced Manufacturing Technology (AMT), how to scientifically evaluate the implementation effects of AMT has been an urgent problem. Through the review of foreign relative studies, this paper constructs an indicator system used to evaluate the implementation effects of AMT. Operational performance, Organizational or managerial performance, Satisfactory performance, and Competitive performance are indicators of first level in the system, and 19 indicators of second level have been selected to estimate the implementation effects of AMT. In this study, a model based on Minkowski distance discriminance to select the specialists' opinion was designed to evaluate the indicator system, and the measure's validity and practicability was proved by a case study to a diesel engine factory.

  16. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  17. Structural analysis and manufacture for the vacuum vessel of experimental advanced superconducting tokamak (EAST) device

    Energy Technology Data Exchange (ETDEWEB)

    Song Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China)]. E-mail: songyt@ipp.ac.cn; Yao Damao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China); Wu Songata [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China); Weng Peide [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China)

    2006-02-15

    The experimental advanced superconducting tokamak (EAST) is an advanced steady-state plasma physics experimental device, which has been approved by the Chinese government and is being constructed as the Chinese national nuclear fusion research project. The vacuum vessel, that is one of the key components, will have to withstand not only the electromagnetic force due to the plasma disruption and the Halo current, but also the pressure of boride water and the thermal stress due to the 250 deg. C baking out by the hot pressure nitrogen gas, or the 100 deg. C hot wall during plasma operation. This paper is a report of the mechanical analyses of the vacuum vessel. According to the allowable stress criteria of American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee (ASME), the maximum integrated stress intensity on the vacuum vessel is 396 MPa, less than the allowable design stress intensity 3S {sub m} (441 MPa). At the same time, some key R and D issues are presented, which include supporting system, bellows and the assembly of the whole vacuum vessel.

  18. 浅谈先进制造技术与现代装备价值管理%Advanced Manufacturing Technology and Value Management of Modern Equipment

    Institute of Scientific and Technical Information of China (English)

    龙志平

    2013-01-01

      文章通过介绍当今机械先进制造技术以及在先进制造技术基础上生产的现代装备的特征,进而阐述现代装备价值管理的具体思路。%The article presents the current advanced manufacturing technology and the features of modern equipment by advanced manufacturing technology, and then discusses the idea of value management of modern equipment.

  19. A note on “A new approach for the selection of advanced manufacturing technologies: Data envelopment analysis with double frontiers”

    Directory of Open Access Journals (Sweden)

    Hossein Azizi

    2015-08-01

    Full Text Available Recently, using the data envelopment analysis (DEA with double frontiers approach, Wang and Chin (2009 proposed a new approach for the selection of advanced manufacturing technologies: DEA with double frontiers and a new measure for the selection of the best advanced manufacturing technologies (AMTs. In this note, we show that their proposed overall performance measure for the selection of the best AMT has an additional computational burden. Moreover, we propose a new measure for developing a complete ranking of AMTs. Numerical examples are examined using the proposed measure to show its simplicity and usefulness in the AMT selection and justification.

  20. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  1. Semiconductor assisted metal deposition for nanolithography applications

    Science.gov (United States)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  2. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  3. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  4. SILICON CARBIDE FOR SEMICONDUCTORS

    Science.gov (United States)

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  5. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  6. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    Science.gov (United States)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  7. Dampak Implementasi Penggunaan Teknologi Manufaktur Tingkat Lanjut -Advanced Manufacturing Technology pada Kinerja UKM di Indonesia

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2014-01-01

    Full Text Available In Indonesia, 99.8% of the businesses are SMEs. However, those SMEs only contribute to the 56.7% of the Indonesia GDP.  This happened, mainly due to the limitations of SMEs which use traditional technologies in the production process. Therefore, in 2014, the Indonesian government through the Ministry of Cooperation and Small Medium Entreprises launced a new strategic plan to empowering the SMEs by applying the Advanced Manufacting Technology (AMT. It is believed that by applying the AMT in the SMEs can increase productivities, expand the market share and raised national economic growth. This study, identified the used of AMT in the Indonesia SMEs, especially in foods, beverages, herbal and handicraft sectors. Additionally, it is also measured the impact of the used of AMT in the SMEs’ performaces. In this study, it is found that 76.6 % of the total sampel (253 SMEs declared that they use the AMT. This indicates that the Indonesia SMEs have a clear operation mission, process production, high quality products and meet the customer’s satisfaction. It is also found that the percentage of the hard technology is higher than the soft technology. This showed that there is a large effort to increase the productivity in the process production. Finally, we found that the impact of the AMT used to the SMEs’ performance in the market share, profitability and organization performance is increased significantly.

  8. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  9. Changes in trade structure. Impacts of overseas advance on Japanese manufactures; Nihon kigyo no kaigai shinshutsu ni tomonau boeki kozo no henka. Seizogyo ni tsuite no jissho bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Y.; Hattori, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-06-01

    The trend of overseas advance on recent Japanese manufactures and the change in trade structure were analyzed for each district and industry type to examine the impact of overseas advance on the trade structure. The rate of overseas production in the manufacturing industry significantly increased from 2.9% in 1980 to 8.6% in 1994. The spot manufacturer corporation that advanced into Asia has been recently activating the industrial trade. With the overseas advance of manufacturers, the trade in the same industry type has been growing prosperous between Japan and Asia. In the trade structure, the role of East Asia and capital goods has been rapidly expanding in weight. A remarkable change in structure is in progress. The income elasticities of exports vary depending on the district and item. The income elasticities of imports do not vary depending on the district more than for exports. The chemical product, iron steel, and electric machinery exports to Asia, and the general machinery exports to North America have a high export induced effect. The electric machinery imports from Asia have a high re-import effect. In 1990 to 1994, 79% of its trade surplus is caused by overseas production effects, and 27% by income effects. 7 refs., 8 figs., 18 tabs.

  10. 先进制造技术在煤机行业的信息化应用%Research on informatization application of advanced manufacturing technology in coal machine manufacturing industry

    Institute of Scientific and Technical Information of China (English)

    韩斌慧

    2015-01-01

    From manual process, machinery production, CNC machining, to current advanced manufacturing technology,manufacturing industry has changed from simple processing to diverse manufacturing methods considering low -carbon environmental protection,green manufacturing,and sustainable development. In this process,the penetration of information technology on the development of manufacturing technology has played a decisive role.This paper,taking product design,heat treatment control,micro -arc plasma welding remanufacturing,CAE simulation and other successful application of advanced manufacturing technology as examples,combined with coal machine manufacturing industry informatization status quo, elaborates the significance for enhancing coal industry technology level,reducing production costs,improving enterprise management that integrates effectively advanced manufacturing technology with information.%制造业由手工制造、机械化生产、数控加工,发展到现在的先进制造技术,实现了从单纯的产品加工到兼顾低碳环保、绿色制造、可持续发展等多元制造方式的转变。在此过程中,信息化的渗透对制造技术的发展起到了决定性作用。本文以先进制造技术在产品设计、热处理过程控制、微弧等离子焊接再制造、CAE 仿真分析等方面的成功应用为例,结合煤机制造行业的信息化现状,阐述了在煤机制造过程中将先进制造技术与信息化有效融合,对于提升煤机行业工艺技术水平,降低生产制造成本、全面提高企业管理方面的重要意义。

  11. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  12. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  13. Framework for Grid Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈笠; 邓宏; 邓倩妮; 吴振宇

    2004-01-01

    With the development of networked manufacturing, it is more and more imminent to solve problems caused by inherent limitations of network technology, such as heterogeneity, collaboration collision, and decentralized control.This paper presents a framework for grid manufacturing, which neatly combines grid technology with the infrastructure of advanced manufacturing technology.The paper studies grid-oriented knowledge description and acquisition, and constructs a distributed knowledge grid model.The paper also deals with the protocol of node description in collaborative design, and describes a distributed collaborative design model.The protocol and node technology leads to a collaborative production model for grid manufacturing.The framework for grid manufacturing offers an effective and feasible solution for the problems of networked manufacturing.The grid manufacturing will become an advanced distributed manufacturing model and promote the development of advanced manufacturing technologies.

  14. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    Science.gov (United States)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  15. Semiconductors for organic transistors

    Directory of Open Access Journals (Sweden)

    Antonio Facchetti

    2007-03-01

    Full Text Available Organic molecules/polymers with a π-conjugated (heteroaromatic backbone are capable of transporting charge and interact efficiently with light. Therefore, these systems can act as semiconductors in opto-electronic devices similar to inorganic materials. However, organic chemistry offers tools for tailoring materials' functional properties via modifications of the molecular/monomeric units, opening new possibilities for inexpensive device manufacturing. This article reviews the fundamental aspects behind the structural design/realization of p- (hole transporting and n-channel (electron-transporting semiconductors for organic field-effect transistors (OFETs. An introduction to OFET principles and history, as well as of the state-of-the-art organic semiconductor structure and performance of OFETs is provided.

  16. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  17. Where the chips fall: environmental health in the semiconductor industry.

    OpenAIRE

    Chepesiuk, R

    1999-01-01

    Three recent lawsuits are focusing public attention on the environmental and occupational health effects of the world's largest and fastest growing manufacturing sector-the $150 billion semiconductor industry. The suits allege that exposure to toxic chemicals in semiconductor manufacturing plants led to adverse health effects such as miscarriage and cancer among workers. To manufacture computer components, the semiconductor industry uses large amounts of hazardous chemicals including hydrochl...

  18. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  19. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make...being able to produce parts “on-demand” in extreme environments, such as on a ship or on a forward-operating base. However, there are technical ...into a more expeditionary force. This will result in severe reductions in the logistics tail but will require Army forces to become more adaptive

  20. Semiconductors for organic transistors

    OpenAIRE

    Antonio Facchetti

    2007-01-01

    Organic molecules/polymers with a π-conjugated (hetero)aromatic backbone are capable of transporting charge and interact efficiently with light. Therefore, these systems can act as semiconductors in opto-electronic devices similar to inorganic materials. However, organic chemistry offers tools for tailoring materials' functional properties via modifications of the molecular/monomeric units, opening new possibilities for inexpensive device manufacturing. This article reviews the fundamental as...

  1. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  2. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  3. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brett W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diaz, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States); Ochiobi, Chinaza Darlene [Georgia Inst. of Technology, Atlanta, GA (United States); Paynabar, Kamran [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  4. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  5. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Electronics Manufacturing To Provide Flexibility AGENCY: Environmental Protection Agency (EPA). ACTION: Final... Electronics Manufacturing portion of the Greenhouse Gas Reporting Rule for the ``largest'' semiconductor... facilities Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413...

  6. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  7. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  8. Single semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen

    2009-07-01

    This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)

  9. Manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  10. Basic Semiconductor Physics

    CERN Document Server

    Hamaguchi, Chihiro

    2010-01-01

    This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mob...

  11. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality.

  12. Energy Use in Nanoscale Manufacturing

    OpenAIRE

    Zhang, Teresa; Boyd, Sarah; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    This paper presents an overview of key nanoscale manufacturing technologies, and qualitatively examines their fundamental process requirements with respect to energy demand. The processes requirements are related to semiconductor manufacturing, where applicable, and gaps in our understanding of these processes on the production scale are identified as goals for the research community. Finally, the paper proposes a framework for the systematic analysis of energy use in nanoscale manufacturing ...

  13. Advanced Manufacturing and Sustainable Urban Development%先进制造与可持续城市发展

    Institute of Scientific and Technical Information of China (English)

    Otthein HERZOG; Bernhard MUELLER; WU Zhiqiang

    2016-01-01

    构的的途径。GIZ认为有4个多部门的优先点是相关的[2]:  大都市地区作为创新产业地区:“大都市为地方、国家和全球商业的商品和信息的交流提供了场所。他们吸引知识型公司,并推进和落实可促进可持续经济活动的新想法。但是,为了实现这一点,必须要建立适当的框架”[2]。  大都市地区作为包容的劳动力市场和住宅中心:“大都市地区以其经济增长可创造广泛的服务类工作岗位,贫困人群也可从中受益[2]。”  大都市地区作为“密集纽带”网络:大都市地区把大量的人口、生产和消费集中在一个区域,它要消耗巨量的能源和自然资源。但是由于大都市地区存在着紧密交织的地理连接和部门连接,还是有很好的机会以提高其物质和能量循环的效率的”[2]。  大都市地区作为治理体系:“城市群需要新的治理结构以组织和控制它们所面临的多部门的挑战……”[2]  上述的3个途径:高质量增长、绿色城市经济和可持续城市发展,有不少相互重合和联系之处。高质量增长关注总体上的经济发展,而绿色城市经济和大都市地区可持续发展的概念把增长质量转化到城市发展的语境中。因此,我们取增长质量这个方法来作为分析的基础。%AbSTRAcT Industry 4.0 [17, 18, 28], the Industrial Internet[15, 16], and Made in China 2025[3] are three topics of high economic relevance that touch on the future of current international value networks. The three approaches to Advanced Manufacturing aim at a forthcoming “fourth industrial revolution,” which is based on the progressing digitalization process across al industries and services (cf. e.g., Ref.[4]). These long-term plans and strategies are based on technologies that are available today, namely Cyber-Physical Systems, the Internet of Things, distributed software services, and Cloud Computing. They are

  14. Fabrication of Microcomponents by Electrochemical Manufacturing: Advanced Feed-Through Metallisation on Silicon and Nickel Micromechanical Resonators

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Heschel, Matthias; Ravnkilde, Jan Tue

    2000-01-01

    different MEMS component examples: An example uses electrochemical manufacturing to form multiple feed-though wires of copper (similar to printed circuit boards, but much smaller and on tree-dimensional surfaces) from one side of a silicon wafer to the other. In this example tin bumps for flip-chip bonding......, as well as nickel/gold pads for conductive adhesive bonding, are also deposited by electroplating. The second example is a simple, inexpensive, low-temperature electroplating process for fabrication of released, stress-free nickel comb resonators. Since the manufacturing sequence only involves low...

  15. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  16. Fabrication of Microcomponents by Electrochemical Manufacturing: Advanced Feed-Through Metallisation on Silicon and Nickel Micromechanical Resonators

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Heschel, Matthias; Ravnkilde, Jan Tue

    2000-01-01

    different MEMS component examples: An example uses electrochemical manufacturing to form multiple feed-though wires of copper (similar to printed circuit boards, but much smaller and on tree-dimensional surfaces) from one side of a silicon wafer to the other. In this example tin bumps for flip-chip bonding...

  17. Analytical challenges of determining composition and structure in small volumes with applications to semiconductor technology, nanostructures and solid state science

    Science.gov (United States)

    Ma, Zhiyong; Kuhn, Markus; Johnson, David C.

    2017-03-01

    Determining the structure and composition of small volumes is vital to the ability to understand and control nanoscale properties and critical for advancing both fundamental science and applications, such as semiconductor device manufacturing. While metrology of nanoscale materials (nanoparticles, nanocomposites) and nanoscale semiconductor structures is challenging, both basic research and cutting edge technology benefit from new and enhanced analytical techniques. This focus issue contains articles describing approaches to overcome the challenges in obtaining statistically significant atomic-scale quantification of structure and composition in a variety of materials and devices using electron microscopy and atom probe tomography.

  18. Stretchable Organic Semiconductor Devices.

    Science.gov (United States)

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  19. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  20. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  1. 76 FR 14688 - In the Matter of Certain Large Scale Integrated Circuit Semiconductor Chips and Products...

    Science.gov (United States)

    2011-03-17

    ... COMMISSION In the Matter of Certain Large Scale Integrated Circuit Semiconductor Chips and Products... semiconductor chips and products containing same by reason of infringement of certain claims of U.S. Patent Nos... Semiconductor Xiqing Integrated Semiconductor Manufacturing Site (``Freescale Xiqing'') of China;...

  2. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  3. An Exploratory Analysis for the Selection and Implementation of Advanced Manufacturing Technology by Fuzzy Multi-criteria Decision Making Methods: A Comparative Study

    Science.gov (United States)

    Nath, Surajit; Sarkar, Bijan

    2016-06-01

    Advanced Manufacturing Technologies (AMTs) offer opportunities for the manufacturing organizations to excel their competitiveness and in turn their effectiveness in manufacturing. Proper selection and evaluation of AMTs is the most significant task in today's modern world. But this involves a lot of uncertainty and vagueness as it requires many conflicting criteria to deal with. So the task of selection and evaluation of AMTs becomes very tedious for the evaluators as they are not able to provide crisp data for the criteria. Different Fuzzy Multi-criteria Decision Making (MCDM) methods help greatly in dealing with this problem. This paper focuses on the application of two very much potential Fuzzy MCDM methods namely COPRAS-G, EVAMIX and a comparative study between them on some rarely mentioned criteria. Each of the two methods is very powerful evaluation tool and has beauty in its own. Although, performance wise these two methods are almost at same level, but, the approach of each one of them are quite unique. This uniqueness is revealed by introducing a numerical example of selection of AMT.

  4. An Exploratory Analysis for the Selection and Implementation of Advanced Manufacturing Technology by Fuzzy Multi-criteria Decision Making Methods: A Comparative Study

    Science.gov (United States)

    Nath, Surajit; Sarkar, Bijan

    2017-08-01

    Advanced Manufacturing Technologies (AMTs) offer opportunities for the manufacturing organizations to excel their competitiveness and in turn their effectiveness in manufacturing. Proper selection and evaluation of AMTs is the most significant task in today's modern world. But this involves a lot of uncertainty and vagueness as it requires many conflicting criteria to deal with. So the task of selection and evaluation of AMTs becomes very tedious for the evaluators as they are not able to provide crisp data for the criteria. Different Fuzzy Multi-criteria Decision Making (MCDM) methods help greatly in dealing with this problem. This paper focuses on the application of two very much potential Fuzzy MCDM methods namely COPRAS-G, EVAMIX and a comparative study between them on some rarely mentioned criteria. Each of the two methods is very powerful evaluation tool and has beauty in its own. Although, performance wise these two methods are almost at same level, but, the approach of each one of them are quite unique. This uniqueness is revealed by introducing a numerical example of selection of AMT.

  5. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  6. Semiconductor electrochemistry

    CERN Document Server

    Memming, Rüdiger

    2015-01-01

    Providing both an introduction and an up-to-date survey of the entire field, this text captivates the reader with its clear style and inspiring, yet solid presentation. The significantly expanded second edition of this milestone work is supplemented by a completely new chapter on the hot topic of nanoparticles and includes the latest insights into the deposition of dye layers on semiconductor electrodes. In his monograph, the acknowledged expert Professor Memming primarily addresses physical and electrochemists, but materials scientists, physicists, and engineers dealing with semiconductor technology and its applications will also benefit greatly from the contents.

  7. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  8. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  9. Incorporating DSA in multipatterning semiconductor manufacturing technologies

    Science.gov (United States)

    Badr, Yasmine; Torres, J. A.; Ma, Yuansheng; Mitra, Joydeep; Gupta, Puneet

    2015-03-01

    Multi-patterning (MP) is the process of record for many sub-10nm process technologies. The drive to higher densities has required the use of double and triple patterning for several layers; but this increases the cost of the new processes especially for low volume products in which the mask set is a large percentage of the total cost. For that reason there has been a strong incentive to develop technologies like Directed Self Assembly (DSA), EUV or E-beam direct write to reduce the total number of masks needed in a new technology node. Because of the nature of the technology, DSA cylinder graphoepitaxy only allows single-size holes in a single patterning approach. However, by integrating DSA and MP into a hybrid DSA-MP process, it is possible to come up with decomposition approaches that increase the design flexibility, allowing different size holes or bar structures by independently changing the process for every patterning step. A simple approach to integrate multi-patterning with DSA is to perform DSA grouping and MP decomposition in sequence whether it is: grouping-then-decomposition or decomposition-then-grouping; and each of the two sequences has its pros and cons. However, this paper describes why these intuitive approaches do not produce results of acceptable quality from the point of view of design compliance and we highlight the need for custom DSA-aware MP algorithms.

  10. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Electronics Manufacturing (Subpart I) To Provide Flexibility AGENCY: Environmental Protection Agency (EPA... the Electronics Manufacturing portion (Subpart I) of the Mandatory Greenhouse Gas Reporting Rule for the ``largest'' semiconductor manufacturing facilities (i.e., those that fabricate devices on...

  11. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  12. 基于先进制造平台的假肢接受腔计算机辅助制造系统%Computer-aided prosthetic socket manufacturing system based on an advanced manufacture technology

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 陈玲玲; 李松; 宣伯凯

    2009-01-01

    OBJECTIVE:To overcome the shortcoming of manual method,computer-aided manufacturing (CAM) system of prosthetic socket is applied to improve socket's quality and processing efficiency,which also reduces the demand of operator's knowledge and experience.METHODS:Prosthetic socket CAM system was discussed based on an advanced manufacture technology,and the hardware and software were designed.The advanced manufacture platform was composed of an industrial personal computer (IPC),a motion control card,four sets of Panasonic digital AC servo control system,four lead screw guides,two spindle motor of milling cutter,a transducer,two switching power supply,limit switch and proximity switch.The software of prosthetic socket CAM system mainly included three function modules:parameter setting,machine testing and beginning processing.Through adjusting command pulse's input and driver's coefficient,the motor worked at different speeds.RESULTS:The result of experiment demonstrated that maximum rotational speed restriction was applied to protect the motor,and the motor could work very smoothly without vibration in very low speed.It was suitable for manufacture prosthetic sockets,and could manufacture the high quality prosthetic socket to satisfy the requirements of amputee.CONCLUSION:Prosthetic socket CAM system based on the advanced manufacture platform can overcome the shortcoming of traditional manual method,ensure product quality,and reduce the cost.The protracted experience of certified prosthetist was incorporated into the design program to reduce the demand of manipulator's knowledge and experience,increase the one-time success rate of manufacture prosthetic sockets,and improve the quality uncertainty of sockets.It can change the backward production mode of designing,measuring,taking model,and modifying model which depends on handwork.%目的:为了克服手工制作假肢接受腔的缺点,将计算机辅助制造技术用于加工假肢接受腔,提高接受腔的质量

  13. 半导体制造系统改进Petri网模型的建立及优化调度%Optimal scheduling of semiconductor manufacture system based on improved Petri net model

    Institute of Scientific and Technical Information of China (English)

    苏国军; 汪雄海

    2011-01-01

    为了更有效优化半导体制造系统生产资源调度,提出了基于分层着色时间Petri网模型的分时段优化调度方案.通过增强基本Petri网的描述能力和引入分层Petri网的思想,根据半导体制造系统的结构建立其改进Petri网模型-分层着色时间Petri网模型,并在模型中引入调度库所将调度算法嵌入到模型中,该模型能有效地克服基本Petri网模型规模膨胀的缺陷;同时将每一生产周期分成若干时间段,利用遗传算法来寻找各时间段内调度规则组合来优化半导体制造系统的动态性能,实现分时段优化调度,编码时,根据机器组的利用率来选择部分机器组为瓶颈机器组,重点调度瓶颈机器组,提高算法的搜索效率;仿真实验结果验证了该调度方案的优越性.%In order to optimize the resources scheduling of semiconductor manufacturing system (SMS) more effectively, the hierarchical colored-timed Petri net (HCTPN) model based multi-phase optimal scheduling (MPOS) approach was proposed. Through the description enhancement and hierarchical idea for the basic Petri net, an improved Petri net model named HCTPN model was established, the HCTPN model can overcome the risk of model explosion of basic Petri net, and the scheduling place was embedded into the HCTPN model for the MPOS. At the same time, the MPOS was realized by dividing a production cycle into multi phases, the genetic algorithm (GA) was used to optimize the combination of integrated rules at each phase, the bottleneck machine groups were identified by their utilization rates, and the search efficiency of MPOS was improved by emphasizing the bottleneck machine groups through coding phase of GA. The results of simulation experiments verify the feasibility of the proposed strategy.

  14. Manufacturing and Reliability of Nanoscale Devices

    Science.gov (United States)

    Loh, Owen Yin

    The International Technology Roadmap for Semiconductors (ITRS) identifies emerging technologies with the potential to sustain Moore's Law. A necessary progression from conventional CMOS, to non-planer/dual gate CMOS, and ultimately to novel device architectures such as nanoelectromechanical systems (NEMS) is envisioned. The ITRS also identifies critical roadblocks which currently preclude advances beyond CMOS as a means to guide research and development efforts. Roadblocks specific to NEMS include widespread manufacturing challenges associated with manipulating one-dimensional nanostructures, and poor reliability arising from a number of prevalent failure modes. The weight of these roadblocks is evident well beyond the goals of the ITRS, where nanoelectromechanical sensors and other devices face similar obstacles. This thesis focuses on two critical challenges facing the development of robust carbon nanotube-based NEMS: scalable manufacturing methods, and understanding and eliminating prevalent failure modes. Toward the first challenge, probe-based nanomanufacturing schemes are developed to construct well-ordered arrays of individual carbon nanotubes from which NEMS can be fabricated. This work extends beyond the goals of the semiconductor industry, and demonstrates the ability to create functional sub-100-nanometer protein and drug arrays, as well as novel in vitro injection methods for single cell studies. The second part of this thesis indentifies prevalent failure modes and their point of onset within the device design space. Again, these are addressed by the ITRS but have implications reaching well beyond the semiconductor industry. It then seeks to find the underlying mechanisms for the observed failure modes, and introduces easily-implemented solutions which exhibit the ability to eliminate or greatly-suppress the prevalent failure modes, enabling numerous device actuation cycles without failure and demonstrations of functionality not possible with failure

  15. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  16. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  17. GMP facilities for manufacturing of advanced therapy medicinal products for clinical trials: an overview for clinical researchers.

    Science.gov (United States)

    Alici, Evren; Blomberg, Pontus

    2010-12-01

    To be able to produce advanced therapy medicinal products, compliance with regulatory standards while maintaining flexibility is mandatory. For this purpose, careful planning is vital in the design or upgrade of a facility. Similarly, extensive foresight is elemental to anticipate upcoming needs and requirements. Failing this may lead to the facility's in-ability to meet the demands. In this chapter we aimed to outline the current issues with regards to the European Union Directives (EUD) and the proposal for Advanced Therapies, which are of importance to cellular and gene therapy facilities in Europe. This chapter is an attempt to elucidate what the minimum requirements for GMP facilities for cell and gene therapy products are and what is considered necessary to comply with the regulations in Europe.

  18. DOD Initiatives to Rapidly Transition Advanced Coating and Surface Finishing Technologies for Military Turbine Engine Manufacture and Repair

    Science.gov (United States)

    2005-03-21

    of PEWG Projects Involving Plating, Coating, and Surface Finishing • Advanced thermal spray coatings (HVOF) • Electrospark deposition • Laser...EWI, GEAE, P&W, Rolls-Royce FUNDING SOURCES RTOC STATUS OC-ALC request for FY06 Funding 3/21/2005 22 Other Technologies • Electrospark Deposition for...Aircraft Engines PEWG MANAGER Chuck Alford, Anteon Corp TECHNOLOGY OPPORTUNITY ADVANTAGES: Kinetic spray technologies deposit thick coatings with a

  19. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    Science.gov (United States)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  20. Thermal sensors principles and applications for semiconductor industries

    CERN Document Server

    2015-01-01

    This book is a comprehensive guide to both the fundamentals of thermal sensors and their advanced functions. Key topics include sensor materials, CMOS-compatible sensors, measurement capabilities, thermal management and manufacturing processes. The introductory chapter covers the basic principles of thermal sensors from the essentials of heat transfer to smart wireless sensors. Later chapters illustrate the wide range of thermal sensor uses, from microprocessor thermal sensing to energy converter applications. Modeling and simulation techniques are used to explain the future direction of the field. Designed for researchers and practitioners working with wireless sensors and thermal management, Thermal Sensors: Principles and Applications for Semiconductor Industries is a valuable reference to the benefits and challenges these sensors offer. Advanced-level students studying mechanical or electrical engineering and networks will also find the content useful.

  1. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  2. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  3. Semiconductor Yield Analysis and Multi-Chip Package (MCP) Die Pairing Optimization using Machine Learning

    Institute of Scientific and Technical Information of China (English)

    Randall Goodwin; Russell Miller; Eugene Tuv; Alexander Borisov

    2006-01-01

    Machine Learning, Artificial Intelligence (AI) and Statistical Learning are related mathematical fields which utilize computer algorithms to create models for the purposes of data description and/or prediction. Some well known examples include biometric identification and authorization systems, speech recognition and user targeted internet advertising. Statistical Learning, which we will use in this paper, also has many applications in semiconductor manufacturing.Some of the challenging characteristics of semiconductor data include high dimensionality, mixtures of categorical and numeric data, non-randomly missing data, non-Gaussian and multimodal distributions, nonlinear complex relationships, noise, outliers and temporal dependencies. These challenges are becoming particularly acute as the quantity of available data increases and the ability to trace lots, wafers, die, and packages throughout the full fab, wafer test, assembly and final test manufacturing flow improves. Statistical-learning techniques are applied to address these challenges. In this paper we discuss the advancement and applications of Tree based classification and regression methods to semiconductor data. We begin the paper with a description of the problem, followed by and overview of the statistical-learning techniques we use in our case studies. We then describe how the challenges presented by semiconductor data were addressed with original extensions to tree-based and kernel-based methods. Next, we review four case studies: home sales price prediction, signal identification/separation, final speed bin classification and die pairing optimization for Multi-Chip Packages (MCP). Results from the case studies demonstrate how statistical-learning addresses the challenges presented by semiconductor manufacturing data and enables improved data discovery and prediction when compared to traditional statistical approaches.

  4. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  5. MEASURING MANUFACTURING INNOVATIVENESS

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  6. Semiconductor Ion Implanters

    Science.gov (United States)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  7. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  8. SCOOP - Semiconductor COmponents for Optical signal Processing

    DEFF Research Database (Denmark)

    Mørk, Jesper; Yvind, Kresten; Oxenløwe, Leif Katsuo;

    2001-01-01

    Opto-electronic semiconductor devices operating at very high bitrates play a central role in the continued expansion of the transmission capacity of optical communication systems. A number of different devices based on quantum well structures have been manufactured within the framework of the nat......Opto-electronic semiconductor devices operating at very high bitrates play a central role in the continued expansion of the transmission capacity of optical communication systems. A number of different devices based on quantum well structures have been manufactured within the framework...... of the national SCOOP programme. Results for a high-speed modulator, a short-pulse laser and an all-optical switch are presented....

  9. Semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Shyuue, M.

    1982-09-25

    A distributed feedback semiconductor laser is proposed which generates several beams with equal wavelengths in different directions. For this purpose, 1 millimeter grooves are cut into the surface of an n-type conductance GaAs plate in three different directions; these grooves form a diffraction grating. The center of this plate has no grooves and is bombarded by an He/Ne laser beam. The diffraction gratings provide resonance properties and generate laser beams with wavelengths of 8850, 9000 and 9200 angstroms.

  10. Device overlay method for high volume manufacturing

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.

    2016-03-01

    Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.

  11. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  12. Power semiconductors

    CERN Document Server

    Kubát, M

    1984-01-01

    The book contains a summary of our knowledge of power semiconductor structures. It presents first a short historic introduction (Chap. I) as well as a brief selection of facts from solid state physics, in particular those related to power semiconductors (Chap. 2). The book deals with diode structures in Chap. 3. In addition to fundamental facts in pn-junction theory, the book covers mainly the important processes of power structures. It describes the emitter efficiency and function of microleaks (shunts). the p +p and n + n junctions, and in particular the recent theory of the pin, pvn and p1tn junctions, whose role appears to be decisive for the forward mode not only of diode structures but also of more complex ones. For power diode structures the reverse mode is the decisive factor in pn-junction breakdown theory. The presentation given here uses engineering features (the multiplication factor M and the experimentally detected laws for the volume and surface of crystals), which condenses the presentation an...

  13. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  14. REDUCTION OF ARSENIC WASTES IN THE SEMICONDUCTOR INDUSTRY

    Science.gov (United States)

    The research described in this report was aimed at initiating and developing processes and process modifications that could be incorporated into semiconductor manufacturing operations to accomplish pollution prevention, especially to accomplish significant reduction in the quanti...

  15. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  16. Manufacturing Innovation and Technological Superiority

    Science.gov (United States)

    2016-09-01

    Defense AT&L: September-October 2016 2 From the Under Secretary of Defense for Acquisit ion, Technology, and Logist ics Manufacturing Innovation ...English advantages in mechanized textile manufacturing in the early 1800s drove the performance of the British economy, just as Carnegie’s steel...program to establish Manufacturing Innovation Institutes (MIIs) that would create incubators for advanced manufacturing technology in key

  17. ON INTELLIGENTIZED TECHNOLOGIES FOR MODERN WELDING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    Chen Shanben; Qiu Tao; Lin Tao; Wu Yixiong

    2003-01-01

    A short survey on researching and developing status of intelligent technologies in modem welding manufacturing is given. According to the developing trend of advanced manufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), is presented for systematization of researching and developing domains on welding automation, intelligentized welding,robotic and flexible welding and advanced welding manufacturing technologies. And key technologies of welding intelligent manufacturing and its developing trend in the future are investigated.

  18. Evaluation of Agile Manufacturing Enterprises%Evaluation of Agile Manufacturing Enterprises

    Institute of Scientific and Technical Information of China (English)

    黄新刚; 王先逵; 刘成颖

    2001-01-01

    Agile manufacturing is an important manufacturing philosophy todevelop advanced manufacturing enterprises to improve competivity. The evaluation of Agile Manufacturing Enterprises (AME) is one of the key activities in implementing agile manufacturing. This paper proposes a method for evaluating AME, establishes a basic feature model of AME based on the feature tree and discusses the hierarchical decomposition algorithm based on the model with an example.

  19. Fundamentals of Digital Manufacturing Science

    CERN Document Server

    Zhou, Zude; Chen, Dejun

    2012-01-01

    The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to...

  20. Study on the Manufacturability Evaluation Based on Double-layer Model of Manufacturing Resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organization. A new manufacturability evaluation approach is described in this paper, which is carried out based on every process feature under the double-layer model of manufacturing resources proposed by authors. The manufacturing resources that build up the virtual organization are selected according to the results of manufacturability evaluation.

  1. Organic Semiconductors and its Applications

    Science.gov (United States)

    Kamalasanan, M. N.

    2011-10-01

    Organic semiconductors in the form of evaporated or spin coated thin films have many optoelectronic applications in the present electronic industry. They are frequently used in many type of displays, photo detectors, photoconductors for photocopiers and photovoltaic cells. But many p-conjugated molecules and polymer based devices do not provide satisfactory device performance and operational stability. Most of these problems are related to the interfaces they make with other organic materials and electrodes and the low conductivity of the organic layers. The study of organic-metal and organic—organic interfaces as well as electrical doping of organic semiconductors are very important areas of research at present. In this talk, I will be discussing some of the recent advances in this field as well as some of our own results in the area of interface modification and electrical doping of organic semiconductors.

  2. Review of laser micromachining in contract manufacturing

    Science.gov (United States)

    Ogura, Glenn; Gu, Bo

    1998-06-01

    This paper explores the wide range of laser micromachining applications used in contract manufacturing. Contract manufacturing is used in several key industries such as microelectronics packaging, semiconductor, data storage, medical devices, communications, peripherals, automobiles and aerospace. Material types includes plastics, metals, ceramics, inorganics and composites. However laser micromachining is just one available technology for micromachining and other methods will be reviewed. Contract manufacturing offers two important glimpses of the future. Firstly prototype work for new applications often beings in contract manufacturing. Secondly, contract manufacturing can be an economic springboard to allow laser systems to be installed in a production environment.

  3. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  4. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  5. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, and secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.

  6. Measurements of radioactive contaminants in semiconductor materials

    Science.gov (United States)

    Gordon, Michael S.; Rodbell, Kenneth P.; Murray, Conal E.; McNally, Brendan D.

    2016-12-01

    The emission of alpha particles from materials used to manufacture semiconductors can contribute substantially to the single-event upset rate. The alpha particles originate from contamination in the materials, or from radioactive isotopes, themselves. In this review paper, we discuss the sources of the radioactivity and the measurement methods to detect the emitted particles.

  7. Analysis and simulation of semiconductor devices

    CERN Document Server

    Selberherr, Siegfried

    1984-01-01

    The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the s...

  8. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  9. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  10. Metal oxide semiconductor thin-film transistors for flexible electronics

    Science.gov (United States)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  11. 基于改进遗传算法的制造单元设计研究%Study on Manufacturing Cellular Design Based on Advanced Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    范佳静; 冯定忠

    2011-01-01

    针对制造单元构建问题的特征,构建了以总搬运成本以及机器设备的折旧和维修成本最低为主要目标,综合考虑了产品设备单元划分、单元内机器布局以及单元问布局的综合性制造单元模型.同时针对模型求解的复杂性,提出了改进遗传算法,并将其用于制造单元模型的求解.通过双层遗传算法,既保证了算法中染色体个体的有效性,又满足了遗传算法适者生存的根本原理;采用精英策略保证算法的收敛性;同时通过在求解过程中不断调整交叉算予和变异算子防止了算法收敛到局部最优解.最后将所提出的模型和改进的遗传算法应用于复杂实例,证明模型和算法的有效性.%A comprehensive model for manufacturing cellular was put forward which aimed at abtaining the minmum of material handling cost and machine depreciable and repair cost as well as synchronously considering the cellular formaiton, machine layout and cellular layout according to the characteristics of the problem of manufacturing cellular.And an advanced genetic algorithm was brought forward to solve this model.The individual validity and the characteristic of genetic algorithm were ensured; the convergence of algorithm through the elite strategy was ensured and the local convergence was protected by adjusting the crossover operator and mutation operator constantly.At last,the validity of the model and algorithm was proved by a complicated example.

  12. Integrated metrology: an enabler for advanced process control (APC)

    Science.gov (United States)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  13. Semiconductor foundry, lithography, and partners

    Science.gov (United States)

    Lin, Burn J.

    2002-07-01

    The semiconductor foundry took off in 1990 with an annual capacity of less than 0.1M 8-inch-equivalent wafers at the 2-mm node. In 2000, the annual capacity rose to more than 10M. Initially, the technology practiced at foundries was 1 to 2 generations behind that at integrated device manufacturers (IDMs). Presently, the progress in 0.13-mm manufacturing goes hand-in-hand with any of the IDMs. There is a two-order of magnitude rise in output and the progress of technology development outpaces IDMs. What are the reasons of the success? Is it possible to sustain the pace? This paper shows the quick rise of foundries in capacity, sales, and market share. It discusses the their uniqueness which gives rise to advantages in conjunction with challenges. It also shows the role foundries take with their customer partners and supplier partners, their mutual dependencies, as well as expectations. What role then does lithography play in the foundries? What are the lithographic challenges to sustain the pace of technology? The experience of technology development and transfer, at one of the major foundries, is used to illustrate the difficulties and progresses made. Looking into the future, as semiconductor manufacturing will become even more expensive and capital investment more prohibitive, we will make an attempt to suggest possible solutions.

  14. Computational manufacturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a general framework for computational manufacturing. The methodology of computational manufacturing aims at integrating computational geometry, machining principle, sensor information fusion, optimization, computational intelligence and virtual prototyping to solve problems of the modeling, reasoning, control, planning and scheduling of manufacturing processes and systems. There are three typical problems in computational manufacturing, i.e., scheduling (time-domain), geometric reasoning (space-domain) and decision- making (interaction between time-domain and space-domain). Some theoretical fundamentals of computational manufacturing are also discussed.

  15. Integrated Manufacturing for Advanced MEAs

    Energy Technology Data Exchange (ETDEWEB)

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  16. Integrated Manufacturing for Advanced MEAs

    Energy Technology Data Exchange (ETDEWEB)

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  17. Custom Machines Advance Composite Manufacturing

    Science.gov (United States)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  18. Fabrication and Characterization of Edge-Emitting Semiconductor Lasers

    Science.gov (United States)

    Song, Junyeob

    The semiconductor laser was invented in 1962, and has recently become ubiquitous in modern life. This thesis focuses on the development of a semiconductor laser fabricating process which utilizes semiconductor manufacturing technology in a cleanroom environment including photolithography, etching, deposition, and bonding processes. A photomask for patterning is designed, recipes of photolithography process and etching process are developed with experiments. This work gives how to develop the process of fabrication and determine the parameters for each processes. A series of semiconductor laser devices are then fabricated using the developed process and characterization is performed to assess device performance with industrial standard methods. A fabricated device has 18W power and 11% conversion efficiency.

  19. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  20. Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David; Denneulin, Thibaud; Barnes, Jean-Paul; Hartmann, Jean-Michel; Hutin, Louis; Le Royer, Cyrille [CEA, LETI France MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Beche, Armand [CEA, LETI, and FEI France MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Rouviere, Jean-Luc [CEA, INAC, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-12-15

    Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.

  1. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  2. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  3. Integration of Advanced Manufacturing Supply Chain and Construction of Shanghai International Trade Center%先进制造业供应链整合与上海国际贸易中心建设

    Institute of Scientific and Technical Information of China (English)

    李红霞

    2011-01-01

    目前中国企业只是处于全球供应链的最末端,制造业特别是先进制造业供应链整合对推进上海国际贸易中心建设有着非常重要的意义。上海先进制造业供应链整合的目标主要是将物流、信息流、资金流等有效整合,从而能够提高利润、降低成本、提高服务质量和响应速度。就上海制造业供应链整合的现状,结合国外经验启示,提出整合先进制造业供应链,推进上海国际贸易中心建设的对策措施。%At present, China's enterprises are only at the end of the global supply chain. Manufacturing industries, especially the integration of advanced manufacturing supply chain play a significant role in promoting the construction of Shanghai international trade center. Shanghai's advanced manufacturing supply chain targets mainly at effective integration of logistics, information flow and capital flow, which can increase profits, reduce costs and improve service quality and responsiveness. Based on the status quo of integration of Shanghai manufacturing supply chain, combined with experience, countermeasures of integrating advanced manufacturing supply chain were proposed to promote the construction of Shanghai International Trade Center.

  4. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  5. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  6. Workshop report and presentations from the Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop

    Science.gov (United States)

    The Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop was held in Oak ridge, Tennessee, on November 2-3, 1987. It was to provide a forum for representatives of the national laboratories, DOE, and the semiconductor industry in which to discuss capabilities of the national laboratories which could contribute to the future competitiveness of the US semiconductor industry, to identify specific large and small projects at the national laboratories which would be of direct benefit to the semiconductor industry, and to find ways of implementing these projects. Numerous small projects were identified which would utilize unique capabilities of the national laboratories in advanced ion implantation, plasma processing (including electron cyclotron resonance plasmas), ion and cluster beam deposition, materials characterization, electronic packaging, and laser processing and deposition. Five large-scale candidate projects were identified in synchrotron x-ray lithography, silicon process integration, advanced materials processing science, process analysis and diagnostics, and ultra clean room engineering. The major obstacle to implementing these projects if the lack of appropriate funds to initiate and stimulate interactions between the national laboratories and the semiconductor industry. SEMATECH and the federal government are potential sources of seed funds for these projects. The Semiconductor Research Corporation is ideally suited to interface the semiconductor industry and the national laboratories for many of these interactions.

  7. The Manufacturing Industry

    Science.gov (United States)

    2005-06-01

    the organization.”92 Dr. Eliyahu Goldratt designed the most popular system, based on his “Theory of Constraints.” He emphasized the importance of...Exploring Advanced Manufacturing Technologies. New York, NY, Industrial Press Inc. Goldratt , Eliyahu M. and Robert E. Fox. The Race. Croton-on-Hudson

  8. Quantum processes in semiconductors

    CERN Document Server

    Ridley, B K

    2013-01-01

    Aimed at graduate students, this is a guide to quantum processes of importance in the physics and technology of semiconductors. The fifth edition includes new chapters that expand the coverage of semiconductor physics relevant to its accompanying technology.

  9. Micro-optics: manufacturing and characterization

    Science.gov (United States)

    Voelkel, R.; Eisner, M.; Weible, K. J.

    2005-10-01

    Wafer-based manufacturing of Micro-Optics is based on standard technologies from Semiconductor Industry, like resist coating, lithography, reactive ion etching, deposition, sputtering, and lift-off. These well-established technologies allow the manufacturing of almost any Micro-Optics' structure shape. The excellence of the Micro-Optics component depends much on the proper choice of the manufacturing equipment and the process control. As all processes are standard Semiconductor technology, the quality is merely a question of the budget and the optimization effort. For characterization and testing, the current situation is different. Neither the test equipment from Semiconductor industry nor the test equipment from classical optics manufacturing is suitable to for Micro-Optics. Most of test instruments Micro-Optics industry is using today have been developed by research institutes or by the manufacturing companies themselves. As Micro-Optics is still a niche market, all instruments are built in small series. This lack of suitable test equipment is a major problem for the Micro-Optics industry today. All process optimization in manufacturing is closely related to the capability to measure the quality of the products. We report on the state of the art in wafer-based manufacturing and summarize the standard characterization tools for Micro-Optics.

  10. e-Manufacturing: Characteristics, applications and potentials

    Institute of Scientific and Technical Information of China (English)

    Kai Cheng; Richard J. Bateman

    2008-01-01

    In this paper, an engineering oriented approach is proposed towards e-manufacturing and its applications. The characteristics and potential of e-manufacturing are presented with a number of application examples developed by the authors'research group. The advances in e-manufacturing and applications are also highlighted and critically reviewed. The paper concludes with a further discussion on the promises and impact of e-manufacturing technology and philosophy on modem manufacturing industry and the practices.

  11. 2010 Defects in Semiconductors GRC

    Energy Technology Data Exchange (ETDEWEB)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  12. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  13. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  14. Overview of atomic layer etching in the semiconductor industry

    Energy Technology Data Exchange (ETDEWEB)

    Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A. [Lam Research Corporation, 4400 Cushing Parkway, Fremont, California 94538 (United States)

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  15. The Physics of Semiconductors An Introduction Including Nanophysics and Applications

    CERN Document Server

    Grundmann, Marius

    2010-01-01

    The Physics of Semiconductors contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two...

  16. The Physics of Semiconductors An Introduction Including Devices and Nanophysics

    CERN Document Server

    Grundmann, Marius

    2006-01-01

    The Physics of Semiconductors provides material for a comprehensive upper-level-undergrauate and graduate course on the subject, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. For the interested reader some additional advanced topics are included, such as Bragg mirrors, resonators, polarized and magnetic semiconductors are included. Also supplied are explicit formulas for many results, to support better understanding. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from ...

  17. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  18. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin

    2010-01-01

    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  19. Mudanças organizacionais na adoção de tecnologias avançadas de manufatura Organizational changes in the adoption of advanced manufacturing technologies

    Directory of Open Access Journals (Sweden)

    Rafaela da Rosa Cardoso

    2010-12-01

    Full Text Available Para que a adoção de Tecnologia Avançada da Manufatura (AMT possa, de fato, proporcionar vantagens competitivas às empresas, faz-se necessário que essas tecnologias sejam selecionadas segundo critérios que considerem aspectos estratégicos. As características organizacionais de uma empresa influenciam sobremaneira o processo de adoção de AMT, de tal forma que se faz necessário desenvolver recomendações para a revisão do projeto organizacional. O presente trabalho propõe um processo para a geração de tais recomendações, através de uma metodologia denominada de "refinamentos sucessivos". Como resultado deste processo de "refinamentos sucessivos" obtém-se um conjunto de recomendações para a revisão do projeto organizacional, baseados em requisitos estabelecidos pelo processo de adoção de AMT. Essas recomendações constituem um conjunto de decisões a serem tomadas acerca do projeto organizacional para adequá-lo às demandas de uma nova tecnologia a ser introduzida, ou seja, a implementação de AMT.In order for the adoption of Advanced Manufacturing Technology (AMT to provide competitive advantages to the companies, it is necessary to select these technologies according to criteria that consider strategic aspects. The organizational characteristics of a company influence particularly the process of AMT adoption, in such a way that it is necessary to develop recommendations for the review of the organizational project. The present work proposes a process for the generation of these recommendations, which through a methodology called 'successive refinements' produces a set of recommendations for the review of the organizational project, based on requirements established by the AMT adoption process. These recommendations are a set of decisions that may be taken about the organizational project to adapt them to demands of the new technology to be introduced, in other words, the AMT implementation.

  20. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  1. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  2. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  3. 78 FR 21099 - Grant of Authority for Subzone Status, Hemlock Semiconductor, L.L.C., (Polysilicon), Clarksville, TN

    Science.gov (United States)

    2013-04-09

    ... Foreign-Trade Zones Board Grant of Authority for Subzone Status, Hemlock Semiconductor, L.L.C... manufacturing facility of Hemlock Semiconductor, L.L.C., located in Clarksville, Tennessee (FTZ Docket 62-2011... polysilicon at the facility of Hemlock Semiconductor, L.L.C., located in Clarksville, Tennessee (Subzone...

  4. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  5. High throughput combinatorial screening of semiconductor materials

    Science.gov (United States)

    Mao, Samuel S.

    2011-11-01

    This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16×16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated.

  6. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  7. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    . If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  8. Dimensional crossover in semiconductor nanostructures

    Science.gov (United States)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  9. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  10. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  11. New digital circuits at Thomson semiconductor in France

    Science.gov (United States)

    Dellamussia, J. P.

    1985-11-01

    DCS, Thomson Semiconductors' Semi-Standard Circuits Department, has just announced a CMOS gate array with up to 4,200 gates, standard cells, and a unique 900-component, 3 GHz linear gate array. All of Thomson's gate arrays are supported by Daisy, Valid and Mentor workstations. These are the first fruits of a reorganization begun several months ago to distance the department from the actual design and manufacture of integrated circuits, making it more of an archestrator among customers, workstation manufacturers, independent designers and the various Thomson Semiconductors division. Thomson Semiconductors' silicon sales based on DCS contracts totaled 25,000,000 Frances in 1984. This figure should be double in 1985. Thomson Semiconductors plans to offer 120 new integrated circuits this year, twice the number available in 1984. At the same time, the Munich design center and the American subsidiary, VSI, should open new markets in 1985, bringing exports to an estimated 30 percent of sales.

  12. NextFlex Flexible Hybrid Electronics Manufacturing

    Science.gov (United States)

    2016-10-01

    and innovators, along with a robust U.S. network of manufacturing nodes, to advance a national flexible hybrid electronics (FHE) manufacturing...methods to scale up today’s FHE laboratory experiments into smart , affordable products. FHE manufacturing en- compasses innovative electronic...The software design tools will encompass multiphysics simulation (e.g., electrical , thermal, mechanical, etc., interactions based on first principles

  13. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  14. Semiconductor data book characteristics of approx. 10,000 transistors, FETs, UJTs, diodes, rectifiers, optical semiconductors, triacs and SCRs

    CERN Document Server

    Ball, A M

    1981-01-01

    Semiconductor Data Book, 11th Edition presents tables for ratings and characteristics of transistors and multiple transistors; silicon field effect transistors; unijunction transistors; low power-, variable-, power rectifier-, silicon reference-, and light emitting diodes; photodetectors; triacs; thyristors; lead identification; and transistor comparable types. The book starts by providing an introduction and explanation of tables and manufacturers' codes and addresses. Professionals requiring such data about semiconductors will find the book useful.

  15. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  16. Physics of semiconductors in high magnetic fields

    CERN Document Server

    Miura, Noboru

    2008-01-01

    This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.

  17. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  18. Semiconductor bridge (SCB) detonator

    Science.gov (United States)

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  19. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.

  20. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  1. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    Directory of Open Access Journals (Sweden)

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  2. A conceptual model for manufacturing performance improvement

    Directory of Open Access Journals (Sweden)

    M.A. Karim

    2009-07-01

    Full Text Available Purpose: Important performance objectives manufacturers sought can be achieved through adopting the appropriate manufacturing practices. This paper presents a conceptual model proposing relationship between advanced quality practices, perceived manufacturing difficulties and manufacturing performances.Design/methodology/approach: A survey-based approach was adopted to test the hypotheses proposed in this study. The selection of research instruments for inclusion in this survey was based on literature review, the pilot case studies and relevant industrial experience of the author. A sample of 1000 manufacturers across Australia was randomly selected. Quality managers were requested to complete the questionnaire, as the task of dealing with the quality and reliability issues is a quality manager’s major responsibility.Findings: Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Design and manufacturing capability and on time delivery came second. Price is considered as the least important factor for the Australian manufacturers. Results show that collectively the advanced quality practices proposed in this study neutralize the difficulties manufacturers face and contribute to the most performance objectives of the manufacturers. The companies who have put more emphasize on the advanced quality practices have less problem in manufacturing and better performance in most manufacturing performance indices. The results validate the proposed conceptual model and lend credence to hypothesis that proposed relationship between quality practices, manufacturing difficulties and manufacturing performances.Practical implications: The model shown in this paper provides a simple yet highly effective approach to achieving significant improvements in product quality and manufacturing performance. This study introduces a relationship based ‘proactive’ quality management approach and provides great

  3. Fundamentals of semiconductor processing technology

    CERN Document Server

    El-Kareh, Badih

    1995-01-01

    The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac­ turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil­ ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech­ n...

  4. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  5. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.

  6. Semiconductor Research Experimental Techniques

    CERN Document Server

    Balkan, Naci

    2012-01-01

    The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.

  7. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  8. Research cooperation project on manufacturing technology supported by advanced and integrated information system through international cooperation (MATIC); Kan`i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To support the advancement of basic industries including machine industry in Asian countries, research cooperation has been conducted for developing the manufacturing technology supported by advanced and integrated information system suitable for actual circumstances of individual countries. For the automotive and the parts industries, it is significant for the preparation works of manufacturing in overseas factories to possess common information between Japan and overseas factories. In this project, a system is constructed, which can be used in industries surrounding automotive industry, such as parts and facility industries, as well as in the automotive industry. In FY 1996, a primary system has been developed, and the demonstration tests were carried out. For the home electric machine and the parts industries, the technology applicable to the design of printed board circuit was developed, and the catalog of electronic parts was constructed. In FY 1996, a preliminary prototype system of the electronic parts catalog system was designed and developed. For the textile and apparel industries, the EDI, exchange system of CAD/CAM data, and construction of data bank were investigated. 87 figs., 19 tabs.

  9. Research cooperation project on manufacturing technology supported by advanced and integrated information system through international cooperation (MATIC); Kan`i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To support the advancement of basic industries including machine industry in Asian countries, research cooperation has been conducted for developing the manufacturing technology supported by advanced and integrated information system suitable for actual circumstances of individual countries. For the automotive and the parts industries, it is significant for the preparation works of manufacturing in overseas factories to possess common information between Japan and overseas factories. In this project, a system is constructed, which can be used in industries surrounding automotive industry, such as parts and facility industries, as well as in the automotive industry. In FY 1996, a primary system has been developed, and the demonstration tests were carried out. For the home electric machine and the parts industries, the technology applicable to the design of printed board circuit was developed, and the catalog of electronic parts was constructed. In FY 1996, a preliminary prototype system of the electronic parts catalog system was designed and developed. For the textile and apparel industries, the EDI, exchange system of CAD/CAM data, and construction of data bank were investigated. 87 figs., 19 tabs.

  10. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  11. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  12. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  13. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  14. International Semiconductor Device Research Symposium (ISDRS-91)

    Science.gov (United States)

    Shur, Michael

    1992-03-01

    The First International Semiconductor Device Research Symposium (ISDRS-91) took place in Charlottesville, Va on December 4-6, 1991 for the purpose of providing a convenient forum for the exchange of information and new ideas for researchers from industry, university, and government laboratories with leading researchers from the United States, Canada, Europe, Asia, and the former Soviet Union. As the first international conference of its kind to take place after the August 1991 coup attempt in the Soviet Union, it was unique with the presence of an unusually large contingent of Russian scientists. The emphasis of the program was on novel ideas such as advanced semiconductor technologies still in their infancy whose tangible technological outcomes are not expected for another five to ten years. Some of the technologies discussed at the symposium included bandgap engineering, large area semiconductor electronics, new millimeter wave and opto-electronics technologies, and silicon carbide and diamond devices.

  15. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  16. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  17. Thermodynamic analysis of resources used in manufacturing processes.

    Science.gov (United States)

    Gutowski, Timothy G; Branham, Matthew S; Dahmus, Jeffrey B; Jones, Alissa J; Thiriez, Alexandre

    2009-03-01

    In this study we use a thermodynamic framework to characterize the material and energy resources used in manufacturing processes. The analysis and data span a wide range of processes from "conventional" processes such as machining, casting, and injection molding, to the so-called "advanced machining" processes such as electrical discharge machining and abrasive waterjet machining, and to the vapor-phase processes used in semiconductor and nanomaterials fabrication. In all, 20 processes are analyzed. The results show that the intensity of materials and energy used per unit of mass of material processed (measured either as specific energy or exergy) has increased by at least 6 orders of magnitude over the past several decades. The increase of material/energy intensity use has been primarily a consequence of the introduction of new manufacturing processes, rather than changes in traditional technologies. This phenomenon has been driven by the desire for precise small-scale devices and product features and enabled by stable and declining material and energy prices over this period. We illustrate the relevance of thermodynamics (including exergy analysis) for all processes in spite of the fact that long-lasting focus in manufacturing has been on product quality--not necessarily energy/material conversion efficiency. We promote the use of thermodynamics tools for analysis of manufacturing processes within the context of rapidly increasing relevance of sustainable human enterprises. We confirm that exergy analysis can be used to identify where resources are lost in these processes, which is the first step in proposing and/or redesigning new more efficient processes.

  18. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  19. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  20. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  1. Slow Light Semiconductor Laser

    Science.gov (United States)

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  2. Semiconductor technology for reducing emissions and increasing efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, B.; Frank, R. [Motorola Semiconductor Products Sector, Phoenix, AZ (United States)

    1997-12-31

    The cooperation and support of all industries are required to significantly impact a worldwide reduction in gaseous emissions that may contribute to climate change. Each industry also is striving to more efficiently utilize the resources that it consumes since this is both conservation for good citizenship and an intelligent approach to business. The semiconductor industry is also extremely concerned with these issues. However, semiconductor manufacturer`s products provide solutions for reduced emissions and increased efficiency in their industry, other industries and areas that can realize significant improvements through control technology. This paper will focus on semiconductor technologies of digital control, power switching and sensing to improve efficiency and reduce emissions in automotive, industrial, and office/home applications. 10 refs., 13 figs.

  3. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  4. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical......, organizational and management improvements in the company to what is named the Linak Production System.  ...

  5. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  6. Integrated Flexible Manufacturing Program for manufacturing automation and rapid prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S.L.; Brown, C.W.; King, M.S.; Simmons, W.R.; Zimmerman, J.J.

    1992-12-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  7. Physics of semiconductor devices

    CERN Document Server

    Rudan, Massimo

    2015-01-01

    This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices.  Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of s...

  8. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  9. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  10. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  11. A semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Naoko, O.; Masaru, K.

    1984-04-20

    A semiconductor laser with enhanced characteristics is patented in which bleaching coatings are generated on the outcoupling mirrors by sputtering alternating coating layers made from A1203 and A10, with high and low indices of refraction.

  12. Exploration and Understanding of Manufacturing Networks:From Manufacturing Centres Towards Global Inter-firm Relationships

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The boundaries of manufacturing system have been ex te nded from factory to the international manufacturing network, supply network, va lue network and virtual network in recent decades, driven by intensified competi tion, fragmented market, globalised collaboration, and advanced technology. However, as the manufacturing system evolves into more and more complicated net work relationship, the fundamental concepts of manufacturing strategy focusing o n a product family and bridging its market, competitio...

  13. Production planning and control for semiconductor wafer fabrication facilities modeling, analysis, and systems

    CERN Document Server

    Mönch, Lars; Mason, Scott J

    2012-01-01

    Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems

  14. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  15. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  16. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  17. Computational Intelligence Characterization Method of Semiconductor Device

    CERN Document Server

    Liau, Eric

    2011-01-01

    Characterization of semiconductor devices is used to gather as much data about the device as possible to determine weaknesses in design or trends in the manufacturing process. In this paper, we propose a novel multiple trip point characterization concept to overcome the constraint of single trip point concept in device characterization phase. In addition, we use computational intelligence techniques (e.g. neural network, fuzzy and genetic algorithm) to further manipulate these sets of multiple trip point values and tests based on semiconductor test equipments, Our experimental results demonstrate an excellent design parameter variation analysis in device characterization phase, as well as detection of a set of worst case tests that can provoke the worst case variation, while traditional approach was not capable of detecting them.

  18. Special Issue featuring invited articles arising from UK Semiconductors 2012

    Science.gov (United States)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  19. Implementation status and barriers of good manufacturing practice ...

    African Journals Online (AJOL)

    Implementation status and barriers of good manufacturing practice (GMP) for chinese ... patent medicine (CPM) are highly relevant to the manufacturing process. ... enhancing the international communication with advanced GMP regulators.

  20. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  1. Recent developments in semiconductor gamma-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  2. Advances in Tube Hydroforming - An Enabling Technology for Low-Mass Vehicle Manufacturing - Material, Lubrication,Loading, Simulation Issues, and Alternatives

    Institute of Scientific and Technical Information of China (English)

    Muammer Ko(c)

    2004-01-01

    The tube hydroforming process (THF) has recently found a wide application opportunity in the automotive industry, and is of increasing interest to other industries as well. The increased interest stems from the fact that, through the THF process, manufacturers are able to produce complex, consolidated, lightweight parts with reduced number of post-processing than through alternative metal forming techniques. In order to fully realize the benefits of this technology, various aspects have been under investigation in academia and industry world-wide. In this paper, effect of loading path, incoming material variation, and lubrication on the robustness of the hydroforming process and final part specifications are summarized based on previous experimental and computational work. In addition, the simulation of hydroforming and examples are presented in comparison with experimental findings. Briefly, results emphasized the importance of the loading path design whereas material variation within the experimentally tested range was not found to be significantly effective on the final part specifications. Selection of a lubricant for hydroforming of a frame rail part was presented demonstrating several aspects of lubrication selection methodology. Results of friction experiments show that only thickness, axial feeding, and force measurements are good indications of lubricant performance as these are found to be strongly discriminative.

  3. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  4. Content-Based Image Retrieval for Semiconductor Process Characterization

    Directory of Open Access Journals (Sweden)

    Kenneth W. Tobin

    2002-07-01

    Full Text Available Image data management in the semiconductor manufacturing environment is becoming more problematic as the size of silicon wafers continues to increase, while the dimension of critical features continues to shrink. Fabricators rely on a growing host of image-generating inspection tools to monitor complex device manufacturing processes. These inspection tools include optical and laser scattering microscopy, confocal microscopy, scanning electron microscopy, and atomic force microscopy. The number of images that are being generated are on the order of 20,000 to 30,000 each week in some fabrication facilities today. Manufacturers currently maintain on the order of 500,000 images in their data management systems for extended periods of time. Gleaning the historical value from these large image repositories for yield improvement is difficult to accomplish using the standard database methods currently associated with these data sets (e.g., performing queries based on time and date, lot numbers, wafer identification numbers, etc.. Researchers at the Oak Ridge National Laboratory have developed and tested a content-based image retrieval technology that is specific to manufacturing environments. In this paper, we describe the feature representation of semiconductor defect images along with methods of indexing and retrieval, and results from initial field-testing in the semiconductor manufacturing environment.

  5. The ATLAS semiconductor tracker (SCT)

    CERN Document Server

    Jackson, J N

    2005-01-01

    The ATLAS detector (CERN/LHCC/94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10**3**4 cm**-**2 s**-**1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN/LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN/LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed.

  6. Challenges and opportunities in chemical functionalization of semiconductor surfaces

    Science.gov (United States)

    Gao, Fei; Teplyakov, Andrew V.

    2017-03-01

    The field of chemical functionalization of semiconductor surfaces has developed tremendously over the last several decades. Since silicon occupied the main portion of the industrial applications of semiconductors, understanding its surface chemistry at a molecular level is very advanced. This particular field has also benefited from combining the work on well-defined clean silicon surfaces in vacuum, well-characterized chemically-passivated surfaces in ambient, and current and potential applications of the resulting interfaces. This article will use this work to build a generalized evaluation of the developments in surface chemical functionalization, specifically addressing organic functionalization of semiconductors, and consider the challenges and opportunities for further evolution of the field.

  7. 中石油装备制造业务技术创新发展与展望%Advance and Prospect of Technology Innovation of CNPC’s Equipment Manufacturing Business

    Institute of Scientific and Technical Information of China (English)

    张晗亮; 罗超; 刘兆黎; 秦莲香

    2016-01-01

    石油装备制造是石油行业的重要支撑性产业,先进的技术装备是勘探开发和炼油化工水平提升的前提和保证。面临长期低油价,中石油装备制造业务发展何去何从,是亟待思考的问题。介绍了中石油装备制造业务技术创新成果和存在的不足,通过分析指出:中石油装备制造业务应以满足油气主业发展需要为出发点,以提高自主创新能力为核心,以市场为导向,加强绿色、深层、海洋、非常规等高端替代进口装备研发和现有优势传统主导产品技术升级,加快产品结构调整,加快向服务延伸,打造技术竞争优势。%The petroleum equipment manufacturing is an important supportive industry for the petroleum in⁃dustry. Advanced equipment is the premise and the guarantee of promoting the exploitation and refining level. The development of CNPC equipment manufacturing business has been an urgent issue under the long term low oil price environment. The CNPC equipment manufacturing technology innovation products and the shortcomings have been introduced. Analyses show that, the CNPC equipment manufacturing business should set satisfying the main petro⁃leum business development as target, improving independent innovation as the core, taking the market as the trend guide, so that to enhance research and development of high⁃end equipment for green, deep formation, offshore and unconventional oil and gas reservoir development, improve upgrade of the main conventional products, promote ad⁃justment of products structure and stretching into service, thus establish the technical competitive advantage.

  8. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  9. The Beginning of Semiconductor Research in Cuba

    Science.gov (United States)

    Veltfort, Theodore

    I was invited to Cuba in 1962 to initiate some efforts in semiconductor development. I had been a physicist and senior research engineer with various electronic companies of the "Silicon Valley" of California, south of San Francisco. I had heard of the efforts made by the new revolutionary government of Cuba to advance the level of science and technology, and I was anxious to see what I could do to help.

  10. Semiconductor Laser Tracking Frequency Distance Gauge

    Science.gov (United States)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  11. Automation in semiconductor production minienvironments, flexibility and information flow

    Science.gov (United States)

    Dudde, Ralf; Staudt-Fischbach, Peter; Herzog, Olaf

    1995-09-01

    The productivity of semiconductor fabs can be improved significantly by the combined action of several measures: Usage of expensive resources only at the point of use, like limiting the generation of a particlefree clean room environment to the immediate surrounding of wafers and wafer processed by usage of mini-environments and SMIF-wafer capsulation. Improvement of the logistic and material flow by an appropriate computer control system in the production line especially for a flexible IC- production. With its new Institute of Silicon Technology (ISiT) in Itzehoe the Fraunhofer-Society for applied research is now realizing an advanced CMOS pilot-line starting with a 0.5 (mu) process that is dedicated from the very beginning for an optimum in flexibility, productivity and lowest running costs. The complete concept for mini- environments, SMIF upgrade of the equipment and production control software was developed in a cooperation between the Fraunhofer institutes for Silicon Technology (ISiT) and Production automation (IPA). The Jenoptic, Jena, was chosen as supplier of SMIF components, mini-environments and identification software. The Line-Information- System, which operates as a low-cost manufacturing execution system, has been developed by the Fraunhofer-IPA using a central database system and client applications to access it. It tracks the actual work in progress in the fab, maintains equipment and lot history and allows production and cost monitoring and optimization.

  12. Research and Development Strategies in the Semiconductor Industry

    Science.gov (United States)

    Bowling, Allen

    2003-03-01

    In the 21st Century semiconductor industry, there is a critical balance between internally funded semiconductor research and development (R) and externally funded R. External R may include jointly-funded research collaborations/partnerships with other device manufacturers, jointly-funded consortia-based R, and individually-funded research programs at universities and other contract research locations. Each of these approaches has merits and each has costs. There is a critical balance between keeping the internal research and development pipeline filled and keeping it from being overspent. To meet both competitive schedule and cost goals, a semiconductor device manufacturer must decide on a model for selection of internal versus external R. Today, one of the most critical decisions is whether or not to do semiconductor research and development on 300 mm silicon wafers. Equipment suppliers are doing first development on 300 mm equipment. So, for the device manufacturer, there is a balance between the cost of doing development on 300 mm wafers and the development time schedule driven by equipment availability. In the face of these cost and schedule elements, device manufacturers are looking to consortia such as SEMATECH, SRC, and SRC MARCO for early development and screening of new materials and device structure approaches. This also causes much more close development collaboration between device manufacturer and equipment supplier. Many device manufacturers are also making use of direct contract research with universities and other contract-research organizations, such as IMEC, LETI, and other government-funded research organizations around the world. To get the most out of these external research interactions, the company must develop a strategy for management and technology integration of external R.

  13. 78 FR 68030 - Draft Guidance on Intellectual Property Rights for the National Network for Manufacturing...

    Science.gov (United States)

    2013-11-13

    ... National Network for Manufacturing Innovation and Draft Institute Performance Metrics for the National Network for Manufacturing Innovation AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice. SUMMARY: The Advanced Manufacturing National Program Office (AMNPO), hosted...

  14. Method of doping a semiconductor

    Science.gov (United States)

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  15. Manufacturing technology supported by advanced and integrated information system through international cooperation in fiscal 1995; Kan`i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Informatization using mainly computers is more and more important contributing to the upgrading in society, economy and a variety of fields. As to informatization in developing countries, however, there has still been few to be seen. Accordingly, gaps are getting larger between developing countries and developed countries where informatization is acceleratedly advanced. In the light of such actual state, Center of the International Cooperation for Computerization (CICC) contracted with NEDO and promoted a project `Manufacturing technology supported by advanced and integrated information system through international cooperation.` This is a project to study jointly with five Asian countries with which NEDO made a basic contract, China, Indonesia, Malaysia, Singapore and Thailand. Working group is set up for each theme such as automobiles/parts, electric home appliances/parts, and fiber/apparel, to study the construction of a model house and the design of a system. In fiscal 1994, the field survey was conducted, and in fiscal 1995 the system design was started. 16 figs., 1 tab.

  16. Additive Manufacturing of Biomaterials, Tissues, and Organs

    NARCIS (Netherlands)

    Zadpoor, Amir A; Malda, Jos|info:eu-repo/dai/nl/412461099

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further

  17. Additive Manufacturing of Biomaterials, Tissues, and Organs

    NARCIS (Netherlands)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further developm

  18. Ultra-precision processes for optics manufacturing

    Science.gov (United States)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  19. Ultra-precision processes for optics manufacturing

    Science.gov (United States)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  20. Manufacturing Careers, Skilled Workers and the Economy

    Science.gov (United States)

    Martino, Lisa

    2011-01-01

    In order to jumpstart the economy, "Made in the U.S.A." needs to be synonymous with in-demand, high-quality products sold throughout the world. Recognizing the importance of the manufacturing industry and its connection to a healthy economy, President Obama addressed Carnegie Mellon University and launched the Advanced Manufacturing Partnership…