WorldWideScience

Sample records for advanced scientific computing

  1. Advanced Scientific Computing Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  2. Advanced Scientific Computing Environment Team new scientific database management task

    Energy Technology Data Exchange (ETDEWEB)

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  3. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    Energy Technology Data Exchange (ETDEWEB)

    Hey, Tony [eScience Institute, University of Washington; Agarwal, Deborah [Lawrence Berkeley National Laboratory; Borgman, Christine [University of California, Los Angeles; Cartaro, Concetta [SLAC National Accelerator Laboratory; Crivelli, Silvia [Lawrence Berkeley National Laboratory; Van Dam, Kerstin Kleese [Pacific Northwest National Laboratory; Luce, Richard [University of Oklahoma; Arjun, Shankar [CADES, Oak Ridge National Laboratory; Trefethen, Anne [University of Oxford; Wade, Alex [Microsoft Research, Microsoft Corporation; Williams, Dean [Lawrence Livermore National Laboratory

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  4. Advances in Domain Mapping of Massively Parallel Scientific Computations

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hendrickson, Bruce A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    One of the most important concerns in parallel computing is the proper distribution of workload across processors. For most scientific applications on massively parallel machines, the best approach to this distribution is to employ data parallelism; that is, to break the datastructures supporting a computation into pieces and then to assign those pieces to different processors. Collectively, these partitioning and assignment tasks comprise the domain mapping problem.

  5. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Daniel [University of Iowa; Berzins, Martin [University of Utah; Pennington, Robert; Sarkar, Vivek [Rice University; Taylor, Valerie [Texas A& M University

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  6. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  7. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    CERN Document Server

    Nam, H; Nazarewicz, W; Bulgac, A; Hagen, G; Kortelainen, M; Maris, P; Pei, J C; Roche, K J; Schunck, N; Thompson, I; Vary, J P; Wild, S M

    2012-01-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multidisciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadershi...

  8. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  9. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Robert [University of Southern California, Information Sciences Institute; Ang, James [Sandia National Laboratories; Bergman, Keren [Columbia University; Borkar, Shekhar [Intel; Carlson, William [Institute for Defense Analyses; Carrington, Laura [University of California, San Diego; Chiu, George [IBM; Colwell, Robert [DARPA; Dally, William [NVIDIA; Dongarra, Jack [University of Tennessee; Geist, Al [Oak Ridge National Laboratory; Haring, Rud [IBM; Hittinger, Jeffrey [Lawrence Livermore National Laboratory; Hoisie, Adolfy [Pacific Northwest National Laboratory; Klein, Dean Micron; Kogge, Peter [University of Notre Dame; Lethin, Richard [Reservoir Labs; Sarkar, Vivek [Rice University; Schreiber, Robert [Hewlett Packard; Shalf, John [Lawrence Berkeley National Laboratory; Sterling, Thomas [Indiana University; Stevens, Rick [Argonne National Laboratory; Bashor, Jon [Lawrence Berkeley National Laboratory; Brightwell, Ron [Sandia National Laboratories; Coteus, Paul [IBM; Debenedictus, Erik [Sandia National Laboratories; Hiller, Jon [Science and Technology Associates; Kim, K. H. [IBM; Langston, Harper [Reservoir Labs; Murphy, Richard Micron; Webster, Clayton [Oak Ridge National Laboratory; Wild, Stefan [Argonne National Laboratory; Grider, Gary [Los Alamos National Laboratory; Ross, Rob [Argonne National Laboratory; Leyffer, Sven [Argonne National Laboratory; Laros III, James [Sandia National Laboratories

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  10. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  11. Practical scientific computing

    CERN Document Server

    Muhammad, A

    2011-01-01

    Scientific computing is about developing mathematical models, numerical methods and computer implementations to study and solve real problems in science, engineering, business and even social sciences. Mathematical modelling requires deep understanding of classical numerical methods. This essential guide provides the reader with sufficient foundations in these areas to venture into more advanced texts. The first section of the book presents numEclipse, an open source tool for numerical computing based on the notion of MATLAB®. numEclipse is implemented as a plug-in for Eclipse, a leading integ

  12. UNEDF: Advanced Scientific Computing Transforms the Low-Energy Nuclear Many-Body Problem

    CERN Document Server

    Stoitsov, M; Nazarewicz, W; Bulgac, A; Hagen, G; Kortelainen, M; Pei, J C; Roche, K J; Schunck, N; Thompson, I; Vary, J P; Wild, S M

    2011-01-01

    The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper illustrates significant milestones accomplished by UNEDF through integration of the theoretical approaches, advanced numerical algorithms, and leadership class computational resources.

  13. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bochev, Pavel B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cameron-Smith, Philip J.. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Easter, Richard C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States); Lowrie, Robert B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, Po-lun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sacks, William J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Shrivastava, Manish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Balwinder [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tautges, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, Mark A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Worley, Patrick H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  14. US Scientific Discory through Advanced Computing (SciDAC) Program & Fusion Energy Science

    Institute of Scientific and Technical Information of China (English)

    W. Tang

    2007-01-01

    @@ The development of a secure and reliable energy system that is environmentally and economically sustainable is a truly formidable scientific and technological challenge facing the world in the twenty-first century. This demands basic scientific understanding that can enable the innovations to make fusion energy practical.

  15. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  16. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Shelley (Sam) I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  17. Advanced Excel for scientific data analysis

    CERN Document Server

    De Levie, Robert

    2004-01-01

    Excel is by far the most widely distributed data analysis software but few users are aware of its full powers. Advanced Excel For Scientific Data Analysis takes off from where most books dealing with scientific applications of Excel end. It focuses on three areas-least squares, Fourier transformation, and digital simulation-and illustrates these with extensive examples, often taken from the literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. These macros and functions are provided in uncompiled, computer-readable, easily

  18. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  19. Advanced Computer Typography.

    Science.gov (United States)

    1981-12-01

    ADVANCED COMPUTER TYPOGRAPHY .(U) DEC 81 A V HERSHEY UNCLASSIFIED NPS012-81-005 M MEEEIEEEII IIUJIL15I.4 MICROCQP RE SO.JjI ON ft R NPS012-81-005...NAVAL POSTGRADUATE SCHOOL 0Monterey, California DTIC SELECTEWA APR 5 1982 B ADVANCED COMPUTER TYPOGRAPHY by A. V. HERSHEY December 1981 OApproved for...Subtitle) S. TYPE Or REPORT & PERIOD COVERED Final ADVANCED COMPUTER TYPOGRAPHY Dec 1979 - Dec 1981 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S CONTRACT

  20. Scientific computing in electrical engineering SCEE 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michielsen, Bastiaan [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Poirier, Jean-Rene (eds.) [LAPLACE-ENSEEIHT, Toulouse (France)

    2012-07-01

    Selected from papers presented at the 8th Scientific Computation in Electrical Engineering conference in Toulouse in 2010, the contributions to this volume cover every angle of numerically modelling electronic and electrical systems, including computational electromagnetics, circuit theory and simulation and device modelling. On computational electromagnetics, the chapters examine cutting-edge material ranging from low-frequency electrical machine modelling problems to issues in high-frequency scattering. Regarding circuit theory and simulation, the book details the most advanced techniques for modelling networks with many thousands of components. Modelling devices at microscopic levels is covered by a number of fundamental mathematical physics papers, while numerous papers on model order reduction help engineers and systems designers to bring their modelling of industrial-scale systems within the reach of present-day computational power. Complementing these more specific papers, the volume also contains a selection of mathematical methods which can be used in any application domain. (orig.)

  1. Advances in computers

    CERN Document Server

    Memon, Atif

    2012-01-01

    Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. In-depth surveys and tutorials on new computer technologyWell-known authors and researchers in the fieldExtensive bibliographies with m

  2. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  3. Advances in Computers

    CERN Document Server

    Zelkowitz, Marvin

    2010-01-01

    This is volume 79 of Advances in Computers. This series, which began publication in 1960, is the oldest continuously published anthology that chronicles the ever- changing information technology field. In these volumes we publish from 5 to 7 chapters, three times per year, that cover the latest changes to the design, development, use and implications of computer technology on society today. Covers the full breadth of innovations in hardware, software, theory, design, and applications.Many of the in-depth reviews have become standard references that co

  4. Mastering scientific computing with R

    CERN Document Server

    Gerrard, Paul

    2015-01-01

    If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.

  5. Educational interventions to advance children's scientific thinking.

    Science.gov (United States)

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  6. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  7. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  8. International Conference on Advanced Computing for Innovation

    CERN Document Server

    Angelova, Galia; Agre, Gennady

    2016-01-01

    This volume is a selected collection of papers presented and discussed at the International Conference “Advanced Computing for Innovation (AComIn 2015)”. The Conference was held at 10th -11th of November, 2015 in Sofia, Bulgaria and was aimed at providing a forum for international scientific exchange between Central/Eastern Europe and the rest of the world on several fundamental topics of computational intelligence. The papers report innovative approaches and solutions in hot topics of computational intelligence – advanced computing, language and semantic technologies, signal and image processing, as well as optimization and intelligent control.

  9. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    OpenAIRE

    Hules, John A.

    2009-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

  10. Scientific Research in Computer Sciences

    Directory of Open Access Journals (Sweden)

    Arwa al-Yasiry

    2007-09-01

    Full Text Available This paper displays the importance of selection research objective and supervisor; In addition this paper suggested the optimal research methods that help researcher to get to optimal results in efficient way. This paper shows the thesis writing style and arrangement in way that to be readable for reader about reality of type and size of the work. The one important result of this paper it's the successful of scientific research must depend about many features that join together and miss one of the research methods that mean unsuccessful research.

  11. Metadata Management in Scientific Computing

    CERN Document Server

    Seidel, Eric L

    2012-01-01

    Complex scientific codes and the datasets they generate are in need of a sophisticated categorization environment that allows the community to store, search, and enhance metadata in an open, dynamic system. Currently, data is often presented in a read-only format, distilled and curated by a select group of researchers. We envision a more open and dynamic system, where authors can publish their data in a writeable format, allowing users to annotate the datasets with their own comments and data. This would enable the scientific community to collaborate on a higher level than before, where researchers could for example annotate a published dataset with their citations. Such a system would require a complete set of permissions to ensure that any individual's data cannot be altered by others unless they specifically allow it. For this reason datasets and codes are generally presented read-only, to protect the author's data; however, this also prevents the type of social revolutions that the private sector has seen...

  12. InSAR Scientific Computing Environment

    Science.gov (United States)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  13. Scientific computing by using HPF

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shun [Hitachi Ltd., Tokyo (Japan)

    1998-03-01

    Parallel programs usually contain three parts: pre-loop communication, loop computation, and post-loop communication. When you parallelize your program by using HPF, you have to direct HPF how to make pre/post communication and how to distribute loop computation by using HPF DIRECTIVE`s. Since there are some, but not many, programming patterns of pre/post-loop communications, you need `not so many` HPF DIRECTIVES. When you describe parallelization of finite difference method with structured mesh, you use DISTRIBUTE, SHADOW, REFLECT, and REDISTRIBUTE directives. However, particle simulations contain patterns which you describe with very complicated programmings and directives. This is because HPF has not enough directives to direct pre/post-communications which are used in particles simulations. (author)

  14. High-performance scientific computing

    CERN Document Server

    Berry, Michael W; Gallopoulos, Efstratios

    2012-01-01

    This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applic

  15. Numerical and symbolic scientific computing

    CERN Document Server

    Langer, Ulrich

    2011-01-01

    The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from

  16. Advances and Challenges in Computational Plasma Science

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang; V.S. Chan

    2005-01-03

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

  17. Advances in unconventional computing

    CERN Document Server

    2017-01-01

    The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete autho...

  18. Learning SciPy for numerical and scientific computing

    CERN Document Server

    Silva

    2013-01-01

    A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy. This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computatio

  19. Introduction to High Performance Scientific Computing

    OpenAIRE

    2016-01-01

    The field of high performance scientific computing lies at the crossroads of a number of disciplines and skill sets, and correspondingly, for someone to be successful at using high performance computing in science requires at least elementary knowledge of and skills in all these areas. Computations stem from an application context, so some acquaintance with physics and engineering sciences is desirable. Then, problems in these application areas are typically translated into linear algebraic, ...

  20. Component-Based Software for High-Performance Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri; Allan, Benjamin A.; Armstrong, Robert C.; Bernholdt, David E.; Dahlgren, Tamara L.; Gannon, Dennis B.; Janssen, Curtis; Kenny, Joseph P.; Krishnan, Manoj Kumar; Kohl, James A.; Kumfert, Gary K.; McInnes, Lois C.; Nieplocha, Jarek; Parker, Steven G.; Rasmussen, Craig; Windus, Theresa L.

    2005-06-26

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  1. Component-based software for high-performance scientific computing

    Science.gov (United States)

    Alexeev, Yuri; Allan, Benjamin A.; Armstrong, Robert C.; Bernholdt, David E.; Dahlgren, Tamara L.; Gannon, Dennis; Janssen, Curtis L.; Kenny, Joseph P.; Krishnan, Manojkumar; Kohl, James A.; Kumfert, Gary; Curfman McInnes, Lois; Nieplocha, Jarek; Parker, Steven G.; Rasmussen, Craig; Windus, Theresa L.

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  2. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  3. Pascal-SC a computer language for scientific computation

    CERN Document Server

    Bohlender, Gerd; von Gudenberg, Jürgen Wolff; Rheinboldt, Werner; Siewiorek, Daniel

    1987-01-01

    Perspectives in Computing, Vol. 17: Pascal-SC: A Computer Language for Scientific Computation focuses on the application of Pascal-SC, a programming language developed as an extension of standard Pascal, in scientific computation. The publication first elaborates on the introduction to Pascal-SC, a review of standard Pascal, and real floating-point arithmetic. Discussions focus on optimal scalar product, standard functions, real expressions, program structure, simple extensions, real floating-point arithmetic, vector and matrix arithmetic, and dynamic arrays. The text then examines functions a

  4. Software Defects, Scientific Computation and the Scientific Method

    CERN Document Server

    CERN. Geneva

    2011-01-01

    Computation has rapidly grown in the last 50 years so that in many scientific areas it is the dominant partner in the practice of science. Unfortunately, unlike the experimental sciences, it does not adhere well to the principles of the scientific method as espoused by, for example, the philosopher Karl Popper. Such principles are built around the notions of deniability and reproducibility. Although much research effort has been spent on measuring the density of software defects, much less has been spent on the more difficult problem of measuring their effect on the output of a program. This talk explores these issues with numerous examples suggesting how this situation might be improved to match the demands of modern science. Finally it develops a theoretical model based on an amalgam of statistical mechanics and Hartley/Shannon information theory which suggests that software systems have strong implementation independent behaviour and supports the widely observed phenomenon that defects clust...

  5. Exploring HPCS Languages in Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Richard F [ORNL; Alam, Sadaf R [ORNL; de Almeida, Valmor F [ORNL; Bernholdt, David E [ORNL; Elwasif, Wael R [ORNL; Kuehn, Jeffery A [ORNL; Poole, Stephen W [ORNL; Shet, Aniruddha G [ORNL

    2008-01-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  6. Exploring HPCS languages in scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, R F; Alam, S R; Almeida, V F d; Bernholdt, D E; Elwasif, W R; Kuehn, J A; Poole, S W; Shet, A G [Oak Ridge National Laboratory, Oak Ridge, TN (United States)], E-mail: rbarrett@ornl.gov, E-mail: alamsr@ornl.gov, E-mail: dealmeidav@ornl.gov, E-mail: bernholdtde@ornl.gov, E-mail: elwasifwr@ornl.gov, E-mail: kuehn@ornl.gov, E-mail: spoole@ornl.gov, E-mail: shetag@ornl.gov

    2008-07-15

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  7. Scientific Computing and Apple's Intel Transition

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Intel's published processor roadmap and how it may affect the future of personal and scientific computing About the speaker: Eric Albert is Senior Software Engineer in Apple's Core Technologies group. During Mac OS X's transition to Intel processors he has worked on almost every part of the operating system, from the OS kernel and compiler tools to appli...

  8. Scientific Computing Using Consumer Video-Gaming Hardware Devices

    CERN Document Server

    Volkema, Glenn

    2016-01-01

    Commodity video-gaming hardware (consoles, graphics cards, tablets, etc.) performance has been advancing at a rapid pace owing to strong consumer demand and stiff market competition. Gaming hardware devices are currently amongst the most powerful and cost-effective computational technologies available in quantity. In this article, we evaluate a sample of current generation video-gaming hardware devices for scientific computing and compare their performance with specialized supercomputing general purpose graphics processing units (GPGPUs). We use the OpenCL SHOC benchmark suite, which is a measure of the performance of compute hardware on various different scientific application kernels, and also a popular public distributed computing application, Einstein@Home in the field of gravitational physics for the purposes of this evaluation.

  9. Institute for Scientific Computing Research Annual Report: Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D E

    2005-02-07

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technology enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science

  10. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  11. Research initiatives for plug-and-play scientific computing

    Science.gov (United States)

    Curfman McInnes, Lois; Dahlgren, Tamara; Nieplocha, Jarek; Bernholdt, David; Allan, Ben; Armstrong, Rob; Chavarria, Daniel; Elwasif, Wael; Gorton, Ian; Kenny, Joe; Krishan, Manoj; Malony, Allen; Norris, Boyana; Ray, Jaideep; Shende, Sameer

    2007-07-01

    This paper introduces three component technology initiatives within the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS) that address ever-increasing productivity challenges in creating, managing, and applying simulation software to scientific discovery. By leveraging the Common Component Architecture (CCA), a new component standard for high-performance scientific computing, these initiatives tackle difficulties at different but related levels in the development of component-based scientific software: (1) deploying applications on massively parallel and heterogeneous architectures, (2) investigating new approaches to the runtime enforcement of behavioral semantics, and (3) developing tools to facilitate dynamic composition, substitution, and reconfiguration of component implementations and parameters, so that application scientists can explore tradeoffs among factors such as accuracy, reliability, and performance.

  12. Research initiatives for plug-and-play scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Lois Curfman [Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL (United States); Dahlgren, Tamara [Lawrence Livermore National Laboratory, Livermore, CA (United States); Nieplocha, Jarek [Computational Sciences and Mathematics, Pacific Northwest Nat. Laboratory, Richland, WA (United States); Bernholdt, David [Computer Science and Mathematics, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allan, Ben [Scalable Computing R and D, Sandia National Laboratories, Livermore, CA (United States); Armstrong, Rob [Scalable Computing R and D, Sandia National Laboratories, Livermore, CA (United States); Chavarria, Daniel [Computational Sciences and Mathematics, Pacific Northwest Nat. Laboratory, Richland, WA (United States); Elwasif, Wael [Computer Science and Mathematics, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Gorton, Ian [Computational Sciences and Mathematics, Pacific Northwest Nat. Laboratory, Richland, WA (United States); Kenny, Joe [Scalable Computing R and D, Sandia National Laboratories, Livermore, CA (United States); Krishan, Manoj [Computational Sciences and Mathematics, Pacific Northwest Nat. Laboratory, Richland, WA (United States); Malony, Allen [Computer and Information Science, University of Oregon, Eugene, OR (United States); Norris, Boyana [Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL (United States); Ray, Jaideep [Advanced Software R and D, Sandia National Laboratories, Livermore, CA (United States); Shende, Sameer [Computer and Information Science, University of Oregon, Eugene, OR (United States)

    2007-07-15

    This paper introduces three component technology initiatives within the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS) that address ever-increasing productivity challenges in creating, managing, and applying simulation software to scientific discovery. By leveraging the Common Component Architecture (CCA), a new component standard for high-performance scientific computing, these initiatives tackle difficulties at different but related levels in the development of component-based scientific software: (1) deploying applications on massively parallel and heterogeneous architectures, (2) investigating new approaches to the runtime enforcement of behavioral semantics, and (3) developing tools to facilitate dynamic composition, substitution, and reconfiguration of component implementations and parameters, so that application scientists can explore tradeoffs among factors such as accuracy, reliability, and performance.

  13. Research initiatives for plug-and-play scientific computing.

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, L. C.; Dahlgren, T.; Nieplocha, J.; Bernholdt, D.; Allan, B.; Armstrong, R.; Chavarria, D.; Elwasif, W.; Gorton, I.; Krishan, M.; Malony, A.; Norris, B.; Ray, J.; Shende, S.; Mathematics and Computer Science; LLNL; PNNL; ORNL; SNL; Univ. of Oregon

    2007-01-01

    This paper introduces three component technology initiatives within the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS) that address ever-increasing productivity challenges in creating, managing, and applying simulation software to scientific discovery. By leveraging the Common Component Architecture (CCA), a new component standard for high-performance scientific computing, these initiatives tackle difficulties at different but related levels in the development of component-based scientific software: (1) deploying applications on massively parallel and heterogeneous architectures, (2) investigating new approaches to the runtime enforcement of behavioral semantics, and (3) developing tools to facilitate dynamic composition, substitution, and reconfiguration of component implementations and parameters, so that application scientists can explore tradeoffs among factors such as accuracy, reliability, and performance.

  14. Compiler Technology for Parallel Scientific Computation

    Directory of Open Access Journals (Sweden)

    Can Özturan

    1994-01-01

    Full Text Available There is a need for compiler technology that, given the source program, will generate efficient parallel codes for different architectures with minimal user involvement. Parallel computation is becoming indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel computation is limited by the high costs of developing the needed software. To overcome this difficulty we advocate a comprehensive approach to the development of scalable architecture-independent software for scientific computation based on our experience with equational programming language (EPL. Our approach is based on a program decomposition, parallel code synthesis, and run-time support for parallel scientific computation. The program decomposition is guided by the source program annotations provided by the user. The synthesis of parallel code is based on configurations that describe the overall computation as a set of interacting components. Run-time support is provided by the compiler-generated code that redistributes computation and data during object program execution. The generated parallel code is optimized using techniques of data alignment, operator placement, wavefront determination, and memory optimization. In this article we discuss annotations, configurations, parallel code generation, and run-time support suitable for parallel programs written in the functional parallel programming language EPL and in Fortran.

  15. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  16. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  17. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  18. Recent Advances in Evolutionary Computation

    Institute of Scientific and Technical Information of China (English)

    Xin Yao; Yong Xu

    2006-01-01

    Evolutionary computation has experienced a tremendous growth in the last decade in both theoretical analyses and industrial applications. Its scope has evolved beyond its original meaning of "biological evolution" toward a wide variety of nature inspired computational algorithms and techniques, including evolutionary, neural, ecological, social and economical computation, etc., in a unified framework. Many research topics in evolutionary computation nowadays are not necessarily "evolutionary". This paper provides an overview of some recent advances in evolutionary computation that have been made in CERCIA at the University of Birmingham, UK. It covers a wide range of topics in optimization, learning and design using evolutionary approaches and techniques, and theoretical results in the computational time complexity of evolutionary algorithms. Some issues related to future development of evolutionary computation are also discussed.

  19. Scientific Visualization and Computational Science: Natural Partners

    Science.gov (United States)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization

  20. Scientifically advanced solutions for chestnut ink disease.

    Science.gov (United States)

    Choupina, Altino Branco; Estevinho, Letícia; Martins, Ivone M

    2014-05-01

    On the north regions of Portugal and Spain, the Castanea sativa Mill. culture is extremely important. The biggest productivity and yield break occurs due to the ink disease, the causal agent being the oomycete Phytophthora cinnamomi. This oomycete is also responsible for the decline of many other plant species in Europe and worldwide. P. cinnamomi and Phytophthora cambivora are considered, by the generality of the authors, as the C. sativa ink disease causal agents. Most Phytophthora species secrete large amounts of elicitins, a group of unique highly conserved proteins that are able to induce hypersensitive response (HR) and enhances plant defense responses in a systemic acquired resistance (SAR) manner against infection by different pathogens. Some other proteins involved in mechanisms of infection by P. cinnamomi were identified by our group: endo-1,3-beta-glucanase (complete cds); exo-glucanase (partial cds) responsible by adhesion, penetration, and colonization of host tissues; glucanase inhibitor protein (GIP) (complete cds) responsible by the suppression of host defense responses; necrosis-inducing Phytophthora protein 1 (NPP1) (partial cds); and transglutaminase (partial cds) which inducts defense responses and disease-like symptoms. In this mini-review, we present some scientifically advanced solutions that can contribute to the resolution of ink disease.

  1. Scientific computing with MATLAB and Octave

    CERN Document Server

    Quarteroni, Alfio; Gervasio, Paola

    2014-01-01

    This textbook is an introduction to Scientific Computing, in which several numerical methods for the computer-based solution of certain classes of mathematical problems are illustrated. The authors show how to compute the zeros, the extrema, and the integrals of continuous functions, solve linear systems, approximate functions using polynomials and construct accurate approximations for the solution of ordinary and partial differential equations. To make the format concrete and appealing, the programming environments Matlab and Octave are adopted as faithful companions. The book contains the solutions to several problems posed in exercises and examples, often originating from important applications. At the end of each chapter, a specific section is devoted to subjects which were not addressed in the book and contains bibliographical references for a more comprehensive treatment of the material. From the review: ".... This carefully written textbook, the third English edition, contains substantial new developme...

  2. Enabling Computational Technologies for Terascale Scientific Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  3. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Aurora [Washington State Univ., Pullman, WA (United States); Millis, Andy [Columbia Univ., New York, NY (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Wolverton, Chris [Northwestern Univ., Evanston, IL (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); va DAm, Kerstin Kleese [Brookhaven National Lab. (BNL), Upton, NY (United States); Proffen, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diachin, Lori [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Riley, Katherine [Argonne Leadership Computing Facility, IL (United States); Straatsma, Tjerk [Oak Ridge Leadership Computing Facility, TN (United States)

    2015-12-31

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  4. Designing Scientific Software for Heterogeneous Computing

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig

    concurrency and maintain numerical efficiency. Graphical Processing Units (GPUs) have proven to be very e_ective units for computing the solution of scientific problems described by partial differential equations (PDEs). GPUs have today become standard devices in portable, desktop, and supercomputers, which...... makes parallel software design applicable, but also a challenge for scientific software developers at all levels. We have developed a generic C++ library for fast prototyping of large-scale PDEs solvers based on flexible-order finite difference approximations on structured regular grids. The library....... We extend the novel work on an efficient and robust iterative parallel solution strategy proposed by Engsig-Karup, Madsen & Glimberg (2011), for the bottleneck problem of solving a _-transformed Laplace problem in three dimensions at every time integration step. A geometric multigrid preconditioned...

  5. Scientific Computing in the CH Programming Language

    Directory of Open Access Journals (Sweden)

    Harry H. Cheng

    1993-01-01

    Full Text Available We have developed a general-purpose block-structured interpretive programming Ianguage. The syntax and semantics of this language called CH are similar to C. CH retains most features of C from the scientific computing point of view. In this paper, the extension of C to CH for numerical computation of real numbers will be described. Metanumbers of −0.0, 0.0, Inf, −Inf, and NaN are introduced in CH. Through these metanumbers, the power of the IEEE 754 arithmetic standard is easily available to the programmer. These metanumbers are extended to commonly used mathematical functions in the spirit of the IEEE 754 standard and ANSI C. The definitions for manipulation of these metanumbers in I/O; arithmetic, relational, and logic operations; and built-in polymorphic mathematical functions are defined. The capabilities of bitwise, assignment, address and indirection, increment and decrement, as well as type conversion operations in ANSI C are extended in CH. In this paper, mainly new linguistic features of CH in comparison to C will be described. Example programs programmed in CH with metanumbers and polymorphic mathematical functions will demonstrate capabilities of CH in scientific computing.

  6. Educational NASA Computational and Scientific Studies (enCOMPASS)

    Science.gov (United States)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  7. Large scale scientific computing - future directions

    Science.gov (United States)

    Patterson, G. S.

    1982-06-01

    Every new generation of scientific computers has opened up new areas of science for exploration through the use of more realistic numerical models or the ability to process ever larger amounts of data. Concomitantly, scientists, because of the success of past models and the wide range of physical phenomena left unexplored, have pressed computer designers to strive for the maximum performance that current technology will permit. This encompasses not only increased processor speed, but also substantial improvements in processor memory, I/O bandwidth, secondary storage and facilities to augment the scientist's ability both to program and to understand the results of a computation. Over the past decade, performance improvements for scientific calculations have come from algoeithm development and a major change in the underlying architecture of the hardware, not from significantly faster circuitry. It appears that this trend will continue for another decade. A future archetectural change for improved performance will most likely be multiple processors coupled together in some fashion. Because the demand for a significantly more powerful computer system comes from users with single large applications, it is essential that an application be efficiently partitionable over a set of processors; otherwise, a multiprocessor system will not be effective. This paper explores some of the constraints on multiple processor architecture posed by these large applications. In particular, the trade-offs between large numbers of slow processors and small numbers of fast processors is examined. Strategies for partitioning range from partitioning at the language statement level (in-the-small) and at the program module level (in-the-large). Some examples of partitioning in-the-large are given and a strategy for efficiently executing a partitioned program is explored.

  8. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Roser, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Tim [Argonne National Lab. (ANL), Argonne, IL (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-31

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. JJ Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greater — than that available currently. JJ The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. JJ Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. JJ A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. JJ Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be

  9. Recent advances in computational optimization

    CERN Document Server

    2013-01-01

    Optimization is part of our everyday life. We try to organize our work in a better way and optimization occurs in minimizing time and cost or the maximization of the profit, quality and efficiency. Also many real world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization. This book presents recent advances in computational optimization. The volume includes important real world problems like parameter settings for con- trolling processes in bioreactor, robot skin wiring, strip packing, project scheduling, tuning of PID controller and so on. Some of them can be solved by applying traditional numerical methods, but others need a huge amount of computational resources. For them it is shown that is appropriate to develop algorithms based on metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming etc...

  10. Blueprint and First Experiences Bridging Hardware Virtualization and Global Grids for Advanced Scientific Computing: Designing and Building a Global Edge Services Framework (ESF) for OSG, EGEE, and LCG

    CERN Document Server

    Rana, A S; Vaniachine, A; Wurthwein, F; Foster, I; Sotomayor, B; Freeman, T

    2006-01-01

    We report on first experiences with building and operating an edge services framework (ESF) based on Xen virtual machines instantiated via the workspace service in Globus toolkit, and developed as a joint project between EGEE, LCG, and OSG. Many computing facilities are architected with their compute and storage clusters behind firewalls. Edge services (ES) are instantiated on a small set of gateways to provide access to these clusters via standard grid interfaces. Experience on EGEE, LCG, and OSG has shown that at least two issues are of critical importance when designing an infrastructure in support of ES. The first concerns ES configuration. It is impractical to assume that each virtual organization (VO) using a facility will employ the same ES configuration, or that different configurations will coexist easily. Even within a VO, it should be possible to run different versions of the same ES simultaneously. The second issue concerns resource allocation: it is essential that an ESF be able to effectively gu...

  11. International Conference on Advanced Computing

    CERN Document Server

    Patnaik, Srikanta

    2014-01-01

    This book is composed of the Proceedings of the International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2013), held at Central Institute of Technology, Raipur, Chhattisgarh, India during June 14–16, 2013. The book records current research articles in the domain of computing, networking, and informatics. The book presents original research articles, case-studies, as well as review articles in the said field of study with emphasis on their implementation and practical application. Researchers, academicians, practitioners, and industry policy makers around the globe have contributed towards formation of this book with their valuable research submissions.

  12. Final Report for "Center for Technology for Advanced Scientific Component Software"

    Energy Technology Data Exchange (ETDEWEB)

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  13. Institute for Scientific Computing Research Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D E; McGraw, J R; Bodtker, L K

    2003-03-11

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified

  14. Computational intelligence for big data analysis frontier advances and applications

    CERN Document Server

    Dehuri, Satchidananda; Sanyal, Sugata

    2015-01-01

    The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.

  15. Sharing in or Benefiting from Scientific Advancement?

    NARCIS (Netherlands)

    Timmermann, C.A.

    2014-01-01

    The intellectual property regimes we have currently in place are heavily under attack. One of the points of criticism is the interaction between two elements of article 27 of the Universal Declaration of Human Rights, the widely discussed issue of being able to benefit from scientific progress and t

  16. ASCR Cybersecurity for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Piesert, Sean

    2015-02-27

    The Department of Energy (DOE) has the responsibility to address the energy, environmental, and nuclear security challenges that face our nation. Much of DOE’s enterprise involves distributed, collaborative teams; a signi¬cant fraction involves “open science,” which depends on multi-institutional, often international collaborations that must access or share signi¬cant amounts of information between institutions and over networks around the world. The mission of the Office of Science is the delivery of scienti¬c discoveries and major scienti¬c tools to transform our understanding of nature and to advance the energy, economic, and national security of the United States. The ability of DOE to execute its responsibilities depends critically on its ability to assure the integrity and availability of scienti¬c facilities and computer systems, and of the scienti¬c, engineering, and operational software and data that support its mission.

  17. Introduction to Bayesian scientific computing ten lectures on subjective computing

    CERN Document Server

    Calvetti, Daniela

    2007-01-01

    A combination of the concepts subjective – or Bayesian – statistics and scientific computing, the book provides an integrated view across numerical linear algebra and computational statistics. Inverse problems act as the bridge between these two fields where the goal is to estimate an unknown parameter that is not directly observable by using measured data and a mathematical model linking the observed and the unknown. Inverse problems are closely related to statistical inference problems, where the observations are used to infer on an underlying probability distribution. This connection between statistical inference and inverse problems is a central topic of the book. Inverse problems are typically ill-posed: small uncertainties in data may propagate in huge uncertainties in the estimates of the unknowns. To cope with such problems, efficient regularization techniques are developed in the framework of numerical analysis. The counterpart of regularization in the framework of statistical inference is the us...

  18. International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics

    CERN Document Server

    DEVELOPMENTS IN RELIABLE COMPUTING

    1999-01-01

    The SCAN conference, the International Symposium on Scientific Com­ puting, Computer Arithmetic and Validated Numerics, takes place bian­ nually under the joint auspices of GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik) and IMACS (International Association for Mathematics and Computers in Simulation). SCAN-98 attracted more than 100 participants from 21 countries all over the world. During the four days from September 22 to 25, nine highlighted, plenary lectures and over 70 contributed talks were given. These figures indicate a large participation, which was partly caused by the attraction of the organizing country, Hungary, but also the effec­ tive support system have contributed to the success. The conference was substantially supported by the Hungarian Research Fund OTKA, GAMM, the National Technology Development Board OMFB and by the J6zsef Attila University. Due to this funding, it was possible to subsidize the participation of over 20 scientists, mainly from Eastern European countries. I...

  19. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  20. A Scientific Cloud Computing Platform for Condensed Matter Physics

    Science.gov (United States)

    Jorissen, K.; Johnson, W.; Vila, F. D.; Rehr, J. J.

    2013-03-01

    Scientific Cloud Computing (SCC) makes possible calculations with high performance computational tools, without the need to purchase or maintain sophisticated hardware and software. We have recently developed an interface dubbed SC2IT that controls on-demand virtual Linux clusters within the Amazon EC2 cloud platform. Using this interface we have developed a more advanced, user-friendly SCC Platform configured especially for condensed matter calculations. This platform contains a GUI, based on a new Java version of SC2IT, that permits calculations of various materials properties. The cloud platform includes Virtual Machines preconfigured for parallel calculations and several precompiled and optimized materials science codes for electronic structure and x-ray and electron spectroscopy. Consequently this SCC makes state-of-the-art condensed matter calculations easy to access for general users. Proof-of-principle performance benchmarks show excellent parallelization and communication performance. Supported by NSF grant OCI-1048052

  1. Case Study on Algebraic Software Methodologies for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Magne Haveraaen

    2000-01-01

    Full Text Available The use of domain specific languages and appropriate software architectures are currently seen as the way to enhance reusability and improve software productivity. Here we outline a use of algebraic software methodologies and advanced program constructors to improve the abstraction level of software for scientific computing. This leads us to the language of coordinate free numerics as an alternative to the traditional coordinate dependent array notation. This provides the backdrop for the three accompanying papers: Coordinate Free Programming of Computational Fluid Dynamics Problems, centered around an example of using coordinate free numerics, Machine and Collection Abstractions for User-Implemented Data-Parallel Programming, exploiting the higher abstraction level when parallelising code, and An Algebraic Programming Style for Numerical Software and its Optimization, looking at high-level transformations enabled by the domain specific programming style.

  2. Epistemology of scientific inquiry and computer-supported collaborative learning

    Science.gov (United States)

    Hakkarainen, Kai Pekka Juhani

    1998-12-01

    The problem addressed in the study was whether 10- and 11-year-old children, collaborating within a computer-supported classroom, could learn a process of inquiry that represented certain principal features of scientific inquiry, namely (1) engagement in increasingly deep levels of explanation, (2) progressive generation of subordinate questions, and (3) collaborative effort to advance explanations. Technical infrastructure for the study was provided by the Computer-Supported Intentional Learning Environments, CSILE. The study was entirely based on qualitative content analysis of students' written productions posted to CSILE's database. Five studies were carried out to analyze CSILE students' process of inquiry. The first two studies aimed at analyzing changes in CSILE students' culture of inquiry in two CSILE classrooms across a three-year period. The results of the studies indicate that the classroom culture changed over three years following the introduction of CSILE. The explanatory level of knowledge produced by the students became increasingly deeper in tracking from the first to third year representing the first principal feature of scientific inquiry. Moreover, between-student communication increasingly focused on facilitating advancement of explanation (the third principal feature). These effects were substantial only in one classroom; the teacher of this class provided strong pedagogical support and epistemological guidance for the students. Detailed analysis of this classroom's inquiry, carried out in the last three studies, indicated that with teacher's guidance the students were able to produce meaningful intuitive explanations as well as go beyond the functional and empirical nature of their intuitive explanations and appropriate theoretical scientific explanations (the first principal feature). Advancement of the students' inquiry appeared to be closely associated with generation of new subordinate questions (the second principal feature) and peer

  3. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    Energy Technology Data Exchange (ETDEWEB)

    William M. Tang

    2011-02-09

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  4. A Review and Prospect for Scientific and Engineering Computing in China

    Institute of Scientific and Technical Information of China (English)

    Yu Dehao

    2002-01-01

    The rise of scientific computing was one of the most important advances in the S&T progress during the second half of the 20th century. Parallel with theoretical exploration and scientific experiments,scientific computing has become the "third means" for scientific activities in the world today. The article gives a panoramic review of the subject during the past 50 years in China and lists the contributions made by Chinese scientists in this field. In addition, it reveals some key contents of related projects in the national research plan and looks into the development vista for the subject in China at the dawning years of the new century.

  5. Special issue on advances in computer entertainment: editorial

    NARCIS (Netherlands)

    Romão, Teresa; Nijholt, Anton; Cheok, Adrian David; Romão, T.; Nijholt, A.; Cheok, J.D.

    2015-01-01

    This special issue of the International Journal of Arts and Technology comprises a selection of papers from ACE 2012, the 9th International Conference on Advances in Computer Entertainment (Nijholt et al., 2012). ACE is the leading scientific forum for dissemination of cutting-edge research results

  6. Scientific computing infrastructure and services in Moldova

    Science.gov (United States)

    Bogatencov, P. P.; Secrieru, G. V.; Degteariov, N. V.; Iliuha, N. P.

    2016-09-01

    In recent years distributed information processing and high-performance computing technologies (HPC, distributed Cloud and Grid computing infrastructures) for solving complex tasks with high demands of computing resources are actively developing. In Moldova the works on creation of high-performance and distributed computing infrastructures were started relatively recently due to participation in implementation of a number of international projects. Research teams from Moldova participated in a series of regional and pan-European projects that allowed them to begin forming the national heterogeneous computing infrastructure, get access to regional and European computing resources, and expand the range and areas of solving tasks.

  7. High speed and large scale scientific computing

    CERN Document Server

    Gentzsch, W; Joubert, GR

    2010-01-01

    Over the years parallel technologies have completely transformed main stream computing. This book deals with the issues related to the area of cloud computing and discusses developments in grids, applications and information processing, as well as e-science. It is suitable for computer scientists, IT engineers and IT managers.

  8. InSAR Scientific Computing Environment

    Science.gov (United States)

    Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.

    2011-01-01

    This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and

  9. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  10. Computer-supported analysis of scientific measurements

    NARCIS (Netherlands)

    Jong, de Hidde

    1998-01-01

    In the past decade, large-scale databases and knowledge bases have become available to researchers working in a range of scientific disciplines. In many cases these databases and knowledge bases contain measurements of properties of physical objects which have been obtained in experiments or at obse

  11. A high performance scientific cloud computing environment for materials simulations

    CERN Document Server

    Jorissen, Kevin; Rehr, John J

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditi...

  12. Scientific computing for scientists and engineers

    CERN Document Server

    Heister, Timo

    2015-01-01

    Nowadays most mathematics done in practice is done on a computer. In engineering it is necessary to solve more than 1 million equations simultaneously, and computers can be used to reduce the calculation time from years to minutes or even seconds. This book explains: How can we approximate these important mathematical processes? How accurate are our approximations? How efficient are our approximations?

  13. Introduction to numerical analysis and scientific computing

    CERN Document Server

    Nassif, Nabil

    2013-01-01

    Computer Number Systems and Floating Point Arithmetic Introduction Conversion from Base 10 to Base 2Conversion from Base 2 to Base 10Normalized Floating Point SystemsFloating Point OperationsComputing in a Floating Point SystemFinding Roots of Real Single-Valued Functions Introduction How to Locate the Roots of a Function The Bisection Method Newton's Method The Secant MethodSolving Systems of Linear Equations by Gaussian Elimination Mathematical Preliminaries Computer Storage for Matrices. Data Structures Back Substitution for Upper Triangular Systems Gauss Reduction LU DecompositionPolynomia

  14. 9th International Conference on Advanced Computing & Communication Technologies

    CERN Document Server

    Mandal, Jyotsna; Auluck, Nitin; Nagarajaram, H

    2016-01-01

    This book highlights a collection of high-quality peer-reviewed research papers presented at the Ninth International Conference on Advanced Computing & Communication Technologies (ICACCT-2015) held at Asia Pacific Institute of Information Technology, Panipat, India during 27–29 November 2015. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry present their original work and exchange ideas, information, techniques and applications in the field of Advanced Computing and Communication Technology.

  15. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU Qiang

    2004-01-01

    @@ The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.

  16. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU; Qiang

    2004-01-01

    The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.……

  17. Basic mathematical function libraries for scientific computation

    Science.gov (United States)

    Galant, David C.

    1989-01-01

    Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.

  18. Monte Carlo strategies in scientific computing

    CERN Document Server

    Liu, Jun S

    2008-01-01

    This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...

  19. Scientific computations section monthly report, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  20. InSAR Scientific Computing Environment - The Home Stretch

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python

  1. Introduction to scientific computing and data analysis

    CERN Document Server

    Holmes, Mark H

    2016-01-01

    This textbook provides and introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The MATLAB codes used to produce most of the figures and data tables in the text are available on the author’s website and SpringerLink.

  2. Advanced computing in electron microscopy

    CERN Document Server

    Kirkland, Earl J

    2010-01-01

    This book features numerical computation of electron microscopy images as well as multislice methods High resolution CTEM and STEM image interpretation are included in the text This newly updated second edition will bring the reader up to date on new developments in the field since the 1990's The only book that specifically addresses computer simulation methods in electron microscopy

  3. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  4. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  5. Scientific computing an introduction using Maple and Matlab

    CERN Document Server

    Gander, Walter; Kwok, Felix

    2014-01-01

    Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple – Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.

  6. Accelerating scientific computations with mixed precision algorithms

    Science.gov (United States)

    Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire

    2009-12-01

    On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU

  7. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  8. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  9. Power-aware applications for scientific cluster and distributed computing

    CERN Document Server

    Abdurachmanov, David; Eulisse, Giulio; Grosso, Paola; Hillegas, Curtis; Holzman, Burt; Klous, Sander; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    The aggregate power use of computing hardware is an important cost factor in scientific cluster and distributed computing systems. The Worldwide LHC Computing Grid (WLCG) is a major example of such a distributed computing system, used primarily for high throughput computing (HTC) applications. It has a computing capacity and power consumption rivaling that of the largest supercomputers. The computing capacity required from this system is also expected to grow over the next decade. Optimizing the power utilization and cost of such systems is thus of great interest. A number of trends currently underway will provide new opportunities for power-aware optimizations. We discuss how power-aware software applications and scheduling might be used to reduce power consumption, both as autonomous entities and as part of a (globally) distributed system. As concrete examples of computing centers we provide information on the large HEP-focused Tier-1 at FNAL, and the Tigress High Performance Computing Center at Princeton U...

  10. High-Performance Cloud Computing: A View of Scientific Applications

    CERN Document Server

    Vecchiola, Christian; Buyya, Rajkumar

    2009-01-01

    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure...

  11. Scientific advances in headache research: an update on neurostimulation.

    Science.gov (United States)

    Hoffmann, Jan; Magis, Delphine

    2013-01-01

    The pathophysiological understanding of migraine and other primary headaches has been substantially improved over the last 20 years. A milestone that paved the way for successful research was the development of the International Classification of Headache Disorders published by the International Headache Society in 1988. The classification facilitated a clear clinical diagnosis of headache disorders and allowed research efforts to be focused on clearly defined syndromes. Recent advances in the understanding of headache disorders have been driven by the availability of new research tools, such as advanced imaging techniques, genetic tools, pharmaceutical compounds and devices for electrical or magnetic stimulation. The latest scientific and clinical advances were presented at the recent European Headache and Migraine Trust International Congress (EHMTIC) in London (UK).

  12. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  13. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2011-02-06

    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

  14. ADVANCES AT A GLANCE IN PARALLEL COMPUTING

    Directory of Open Access Journals (Sweden)

    RAJKUMAR SHARMA

    2014-07-01

    Full Text Available In the history of computational world, sequential uni-processor computers have been exploited for years to solve scientific and business problems. To satisfy the demand of compute & data hungry applications, it was observed that better response time can be achieved only through parallelism. Large computational problems were partitioned and solved by using multiple CPUs in parallel. Computing performance was further improved by adopting multi-core architecture which provides hardware parallelism through use of multiple cores. Efficient resource utilization of a parallel computing environment by using software and hardware parallelism is a major research challenge. The present hardware technologies provide freedom to algorithm developers for control & management of resources through software codes, such as threads-to-cores mapping in recent multi-core processors. In this paper, a survey is presented since beginning of parallel computing up to the use of present state-of-art multi-core processors.

  15. Second Annual AEC Scientific Computer Information Exhange Meeting. Proceedings of the technical program theme: computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin,A.M.; Shimamoto, Y.

    1974-01-01

    The topic of computer graphics serves well to illustrate that AEC affiliated scientific computing installations are well represented in the forefront of computing science activities. The participant response to the technical program was overwhelming--both in number of contributions and quality of the work described. Session I, entitled Advanced Systems, contains presentations describing systems that contain features not generally found in graphics facilities. These features can be roughly classified as extensions of standard two-dimensional monochromatic imaging to higher dimensions including color and time as well as multidimensional metrics. Session II presents seven diverse applications ranging from high energy physics to medicine. Session III describes a number of important developments in establishing facilities, techniques and enhancements in the computer graphics area. Although an attempt was made to schedule as many of these worthwhile presentations as possible, it appeared impossible to do so given the scheduling constraints of the meeting. A number of prospective presenters 'came to the rescue' by graciously withdrawing from the sessions. Some of their abstracts have been included in the Proceedings.

  16. Advance Trends in Soft Computing

    CERN Document Server

    Kreinovich, Vladik; Kacprzyk, Janusz; WCSC 2013

    2014-01-01

    This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary co...

  17. Scientific and technological advancements in inertial fusion energy

    Science.gov (United States)

    Hinkel, D. E.

    2013-10-01

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. This synergy is summarized here, and future scientific studies are detailed.

  18. Lattice gauge theory on the Intel parallel scientific computer

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, S. (Department of Physics, Indiana University, Bloomington, IN (USA))

    1990-08-01

    Intel Scientific Computers (ISC) has just started producing its third general of parallel computer, the iPSC/860. Based on the i860 chip that has a peak performance of 80 Mflops and with a current maximum of 128 nodes, this computer should achieve speeds in excess of those obtainable on conventional vector supercomputers. The hardware, software and computing techniques appropriate for lattice gauge theory calculations are described. The differences between a staggered fermion conjugate gradient program written under CANOPY and for the iPSC are detailed.

  19. Towards a next generation of scientific computing in the Cloud

    Directory of Open Access Journals (Sweden)

    Yassine Tabaa

    2012-11-01

    Full Text Available More than ever, designing new types of highly scalable data intensive computing is needed to qualify the new generation of scientific computing and analytics effectively perform complex tasks on massive amounts of data such as clustering, matrix computation, data mining, information extraction, etc. MapReduce, put forward by Google, is a well-known model for programming commodity computer clusters to perform large-scale data processing in a single pass. Hadoop is the most popular open-source implementation of the MapReduce model which provides a simple abstraction for large-scale distributed algorithm; it has become a popular distributed computing and data analysis paradigm in recent years. While, Hadoop MapReduce suits well for embarrassingly parallel problems, it suffers significant troubles when dealing with iterative algorithms; as a consequence, many alternative frameworks that support this class of algorithms were created. In this paper, we propose architecture for such configuration implemented in an SPC (Scientific Private Cloud prototype, using the Hadoop 2.0 next generation platform to allow the use of alternative programming frameworks respecting a hybrid approach, while retaining the scalability and fault tolerance of Hadoop MapReduce. By adapting scientific problems to execute them in our Scientific Cloud, experiments conducted show the effectiveness of the proposed model and its impact on the ease of frameworks handling.

  20. Advances in randomized parallel computing

    CERN Document Server

    Rajasekaran, Sanguthevar

    1999-01-01

    The technique of randomization has been employed to solve numerous prob­ lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...

  1. A Component Architecture for High-Performance Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, David E; Allan, Benjamin A; Armstrong, Robert C; Bertrand, Felipe; Chiu, Kenneth; Dahlgren, Tamara L; Damevski, Kostadin; Elwasif, Wael R; Epperly, Thomas G; Govindaraju, Madhusudhan; Katz, Daniel S; Kohl, James A; Krishnan, Manoj Kumar; Kumfert, Gary K; Larson, J Walter; Lefantzi, Sophia; Lewis, Michael J; Malony, Allen D; McInnes, Lois C; Nieplocha, Jarek; Norris, Boyana; Parker, Steven G; Ray, Jaideep; Shende, Sameer; Windus, Theresa L; Zhou, Shujia

    2006-07-03

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  2. A Component Architecture for High-Performance Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; Allan, B A; Armstrong, R; Bertrand, F; Chiu, K; Dahlgren, T L; Damevski, K; Elwasif, W R; Epperly, T W; Govindaraju, M; Katz, D S; Kohl, J A; Krishnan, M; Kumfert, G; Larson, J W; Lefantzi, S; Lewis, M J; Malony, A D; McInnes, L C; Nieplocha, J; Norris, B; Parker, S G; Ray, J; Shende, S; Windus, T L; Zhou, S

    2004-12-14

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  3. Research on Visualization in Scientific Computation of Grinding Temperature Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper introduces the concepts, classification and method of visualization in scientific computation. Visual C++ developing tool is used to compute surface grinding forces and grinding temperature field models. The three-dimensional entity model of workpiece is made with OpenGL tool, and the different colors on the workpiece entity show different value of temperature, so the visualization of grinding temperature field is realized. The temperature value of every points in grinding temperature field, the c...

  4. Applications of parallel supercomputers: Scientific results and computer science lessons

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.C.

    1989-07-12

    Parallel Computing has come of age with several commercial and inhouse systems that deliver supercomputer performance. We illustrate this with several major computations completed or underway at Caltech on hypercubes, transputer arrays and the SIMD Connection Machine CM-2 and AMT DAP. Applications covered are lattice gauge theory, computational fluid dynamics, subatomic string dynamics, statistical and condensed matter physics,theoretical and experimental astronomy, quantum chemistry, plasma physics, grain dynamics, computer chess, graphics ray tracing, and Kalman filters. We use these applications to compare the performance of several advanced architecture computers including the conventional CRAY and ETA-10 supercomputers. We describe which problems are suitable for which computers in the terms of a matching between problem and computer architecture. This is part of a set of lessons we draw for hardware, software, and performance. We speculate on the emergence of new academic disciplines motivated by the growing importance of computers. 138 refs., 23 figs., 10 tabs.

  5. Exploring Cloud Computing for Large-scale Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

    2013-06-27

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

  6. Creating science-driven computer architecture: A new patch to scientific leadership

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; McCurdy, C. William; Kramer, T.C.; Stevens, Rick; McCoy,Mike; Seager, Mark; Zacharia, Thomas; Bair, Ray; Studham, Scott; Camp, William; Leland, Robert; Morrison, John; Feiereisen, William

    2003-05-16

    We believe that it is critical for the future of high end computing in the United States to bring into existence a new class of computational capability that is optimal for science. In recent years scientific computing has increasingly become dependent on hardware that is designed and optimized for commercial applications. Science in this country has greatly benefited from the improvements in computers that derive from advances in microprocessors following Moore's Law, and a strategy of relying on machines optimized primarily for business applications. However within the last several years, in part because of the challenge presented by the appearance of the Japanese Earth Simulator, the sense has been growing in the scientific community that a new strategy is needed. A more aggressive strategy than reliance only on market forces driven by business applications is necessary in order to achieve a better alignment between the needs of scientific computing and the platforms available. The United States should undertake a program that will result in scientific computing capability that durably returns the advantage to American science, because doing so is crucial to the country's future. Such a strategy must also be sustainable. New classes of computer designs will not only revolutionize the power of supercomputing for science, but will also affect scientific computing at all scales. What is called for is the opening of a new frontier of scientific capability that will ensure that American science is greatly enabled in its pursuit of research in critical areas such as nanoscience, climate prediction, combustion, modeling in the life sciences, and fusion energy, as well as in meeting essential needs for national security. In this white paper we propose a strategy for accomplishing this mission, pursuing different directions of hardware development and deployment, and establishing a highly capable networking and grid infrastructure connecting these platforms to

  7. PARA'04, State-of-the-art in scientific computing

    DEFF Research Database (Denmark)

    Madsen, Kaj; Wasniewski, Jerzy

    This meeting in the series, the PARA'04 Workshop with the title ``State of the Art in Scientific Computing'', was held in Lyngby, Denmark, June 20-23, 2004. The PARA'04 Workshop was organized by Jack Dongarra from the University of Tennessee and Oak Ridge National Laboratory, and Kaj Madsen and J...

  8. Topics in numerical partial differential equations and scientific computing

    CERN Document Server

    2016-01-01

    Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

  9. National Energy Research Scientific Computing Center 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  10. Ontology-Driven Discovery of Scientific Computational Entities

    Science.gov (United States)

    Brazier, Pearl W.

    2010-01-01

    Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…

  11. Computational electromagnetics recent advances and engineering applications

    CERN Document Server

    2014-01-01

    Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

  12. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  13. Managing Security in Advanced Computational Infrastructure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Proposed by Education Ministry of China, Advanced Computational Infrastructure (ACI) aims at sharing geographically distributed high-performance computing and huge-capacity data resource among the universities of China. With the fast development of large-scale applications in ACI, the security requirements become more and more urgent. The special security needs in ACI is first analyzed in this paper, and security management system based on ACI is presented. Finally, the realization of security management system is discussed.

  14. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  15. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    Energy Technology Data Exchange (ETDEWEB)

    Schlicher, Bob G [ORNL; Kulesz, James J [ORNL; Abercrombie, Robert K [ORNL; Kruse, Kara L [ORNL

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  16. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  17. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Potok, Thomas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  18. Trend Analysis of the Brazilian Scientific Production in Computer Science

    Directory of Open Access Journals (Sweden)

    TRUCOLO, C. C.

    2014-12-01

    Full Text Available The growth of scientific information volume and diversity brings new challenges in order to understand the reasons, the process and the real essence that propel this growth. This information can be used as the basis for the development of strategies and public politics to improve the education and innovation services. Trend analysis is one of the steps in this way. In this work, trend analysis of Brazilian scientific production of graduate programs in the computer science area is made to identify the main subjects being studied by these programs in general and individual ways.

  19. Implementation of Scientific Computing Applications on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Guochun Shi

    2009-01-01

    Full Text Available The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.

  20. High-performance Scientific Computing using Parallel Computing to Improve Performance Optimization Problems

    Directory of Open Access Journals (Sweden)

    Florica Novăcescu

    2011-10-01

    Full Text Available HPC (High Performance Computing has become essential for the acceleration of innovation and the companies’ assistance in creating new inventions, better models and more reliable products as well as obtaining processes and services at low costs. The information in this paper focuses particularly on: description the field of high performance scientific computing, parallel computing, scientific computing, parallel computers, and trends in the HPC field, presented here reveal important new directions toward the realization of a high performance computational society. The practical part of the work is an example of use of the HPC tool to accelerate solving an electrostatic optimization problem using the Parallel Computing Toolbox that allows solving computational and data-intensive problems using MATLAB and Simulink on multicore and multiprocessor computers.

  1. Computational Intelligence Paradigms in Advanced Pattern Classification

    CERN Document Server

    Jain, Lakhmi

    2012-01-01

    This monograph presents selected areas of application of pattern recognition and classification approaches including handwriting recognition, medical image analysis and interpretation, development of cognitive systems for image computer understanding, moving object detection, advanced image filtration and intelligent multi-object labelling and classification. It is directed to the scientists, application engineers, professors, professors and students will find this book useful.

  2. The Potential of the Cell Processor for Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Shalf, John; Oliker, Leonid; Husbands, Parry; Kamil, Shoaib; Yelick, Katherine

    2005-10-14

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of the using the forth coming STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. We are the first to present quantitative Cell performance data on scientific kernels and show direct comparisons against leading superscalar (AMD Opteron), VLIW (IntelItanium2), and vector (Cray X1) architectures. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop both analytical models and simulators to predict kernel performance. Our work also explores the complexity of mapping several important scientific algorithms onto the Cells unique architecture. Additionally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  3. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)

    Science.gov (United States)

    Denning, P. J.

    1986-01-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  4. Technologies for Large Data Management in Scientific Computing

    CERN Document Server

    Pace, A

    2014-01-01

    In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focusses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.

  5. Research on Scientific Data Sharing and Distribution Policy in Advanced Manufacturing and Automation Fields

    Directory of Open Access Journals (Sweden)

    Liya Li

    2007-12-01

    Full Text Available Scientific data sharing is a long-term and complicated task. The related data sharing and distribution policies are prime concerns. By using both domestic and international experiences in scientific data sharing, the sources, distribution, and classification of scientific data in advanced manufacturing and automation are discussed. A primary data sharing and distribution policy in advanced manufacture and automation is introduced.

  6. Computer simulations and the changing face of scientific experimentation

    CERN Document Server

    Duran, Juan M

    2013-01-01

    Computer simulations have become a central tool for scientific practice. Their use has replaced, in many cases, standard experimental procedures. This goes without mentioning cases where the target system is empirical but there are no techniques for direct manipulation of the system, such as astronomical observation. To these cases, computer simulations have proved to be of central importance. The question about their use and implementation, therefore, is not only a technical one but represents a challenge for the humanities as well. In this volume, scientists, historians, and philosophers joi

  7. Object-Oriented Design for FDTD Visual Scientific Computing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A scheme for general purposed FDTD visual scientific computing software is introduced in this paper using object-oriented design (OOD) method. By abstracting the parameters of FDTD grids to an individual class and separating from the iteration procedure, the visual software can be adapted to more comprehensive computing problems. Real-time gray degree graphic and wave curve of the results can be achieved using DirectX technique. The special difference equation and data structure in dispersive medium are considered, and the peculiarity of parameters in perfectly matched layer are also discussed.``

  8. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  9. Advances in computers improving the web

    CERN Document Server

    Zelkowitz, Marvin

    2010-01-01

    This is volume 78 of Advances in Computers. This series, which began publication in 1960, is the oldest continuously published anthology that chronicles the ever- changing information technology field. In these volumes we publish from 5 to 7 chapters, three times per year, that cover the latest changes to the design, development, use and implications of computer technology on society today.Covers the full breadth of innovations in hardware, software, theory, design, and applications.Many of the in-depth reviews have become standard references that continue to be of significant, lasting value i

  10. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  11. 10th International Conference on Scientific Computing in Electrical Engineering

    CERN Document Server

    Clemens, Markus; Günther, Michael; Maten, E

    2016-01-01

    This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.

  12. Strategic Plan for a Scientific Cloud Computing infrastructure for Europe

    CERN Document Server

    Lengert, Maryline

    2011-01-01

    Here we present the vision, concept and direction for forming a European Industrial Strategy for a Scientific Cloud Computing Infrastructure to be implemented by 2020. This will be the framework for decisions and for securing support and approval in establishing, initially, an R&D European Cloud Computing Infrastructure that serves the need of European Research Area (ERA ) and Space Agencies. This Cloud Infrastructure will have the potential beyond this initial user base to evolve to provide similar services to a broad range of customers including government and SMEs. We explain how this plan aims to support the broader strategic goals of our organisations and identify the benefits to be realised by adopting an industrial Cloud Computing model. We also outline the prerequisites and commitment needed to achieve these objectives.

  13. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  14. PARA'04 Workshop on State-of-the-art in Scientific Computing, June 20-23, 2004: Complementary Proceedings

    DEFF Research Database (Denmark)

    Dongarra, Jack; Madsen, Kaj; Wasniewski, Jerzy

    2004-01-01

    in Lyngby, Denmark. The rst six meetings featured lectures in modern numerical algorithms, computer science, engineering, and industrial applications, all in the context of scientific parallel computing. This meeting in the series, the PARA'04 Workshop with the title State of the Art in Scientific Computing...... (HPC). The ongoing development of ever more advanced computers provides the potential for solving increasingly dif cult computational problems. However, given the complexity of modern computer architectures, the task of realizing this potential needs careful attention. For example, the failure...... for HPC. A solution to this problem can be network computing, where remote computing facilities are exploited via the internet. PARA'04 featured invited talks, contributed talks, minisymposia, and software and hardware vendors. The rst day, June 20, was devoted to two parallel tutorials. The minisymposia...

  15. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  16. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  17. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  18. AVES: A Computer Cluster System approach for INTEGRAL Scientific Analysis

    Science.gov (United States)

    Federici, M.; Martino, B. L.; Natalucci, L.; Umbertini, P.

    The AVES computing system, based on an "Cluster" architecture is a fully integrated, low cost computing facility dedicated to the archiving and analysis of the INTEGRAL data. AVES is a modular system that uses the software resource manager (SLURM) and allows almost unlimited expandibility (65,536 nodes and hundreds of thousands of processors); actually is composed by 30 Personal Computers with Quad-Cores CPU able to reach the computing power of 300 Giga Flops (300x10{9} Floating point Operations Per Second), with 120 GB of RAM and 7.5 Tera Bytes (TB) of storage memory in UFS configuration plus 6 TB for users area. AVES was designed and built to solve growing problems raised from the analysis of the large data amount accumulated by the INTEGRAL mission (actually about 9 TB) and due to increase every year. The used analysis software is the OSA package, distributed by the ISDC in Geneva. This is a very complex package consisting of dozens of programs that can not be converted to parallel computing. To overcome this limitation we developed a series of programs to distribute the workload analysis on the various nodes making AVES automatically divide the analysis in N jobs sent to N cores. This solution thus produces a result similar to that obtained by the parallel computing configuration. In support of this we have developed tools that allow a flexible use of the scientific software and quality control of on-line data storing. The AVES software package is constituted by about 50 specific programs. Thus the whole computing time, compared to that provided by a Personal Computer with single processor, has been enhanced up to a factor 70.

  19. Advanced I/O for large-scale scientific applications.

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be

  20. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  1. FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations

    Directory of Open Access Journals (Sweden)

    Mamidi Nagaraju

    2012-09-01

    Full Text Available In this project we explore the capability and flexibility of FPGA solutions in a sense to accelerate scientific computing applications which require very high precision arithmetic, based on IEEE 754 standard 128-bit floating-point number representations. Field Programmable Gate Arrays (FPGA is increasingly being used to design high end computationally intense microprocessors capable of handling floating point mathematical operations. Quadruple Precision Floating-Point Arithmetic is important in computational fluid dynamics and physical modelling, which require accurate numerical computations. However, modern computers perform binary arithmetic, which has flaws in representing and rounding the numbers. As the demand for quadruple precision floating point arithmetic is predicted to grow, the IEEE 754 Standard for Floating-Point Arithmetic includes specifications for quadruple precision floating point arithmetic. We implement quadruple precision floating point arithmetic unit for all the common operations, i.e. addition, subtraction, multiplication and division. While previous work has considered circuits for low precision floating-point formats, we consider the implementation of 128-bit quadruple precision circuits. The project will provide arithmetic operation, simulation result, hardware design, Input via PS/2 Keyboard interface and results displayed on LCD using Xilinx virtex5 (XC5VLX110TFF1136 FPGA device.

  2. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  3. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  4. Computational Design of Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Savrasov, Sergey [Univ. of California, Davis, CA (United States); Kotliar, Gabriel [Rutgers Univ., Piscataway, NJ (United States); Haule, Kristjan [Rutgers Univ., Piscataway, NJ (United States)

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  5. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  6. Domain analysis of computational science - Fifty years of a scientific computing group

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.

    2010-02-23

    I employed bibliometric- and historical-methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it.

  7. Institute for scientific computing research;fiscal year 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D

    2000-03-28

    Large-scale scientific computation, and all of the disciplines that support it and help to validate it, have been placed at the focus of Lawrence Livermore National Laboratory by the Accelerated Strategic Computing Initiative (ASCI). The Laboratory operates the computer with the highest peak performance in the world and has undertaken some of the largest and most compute-intensive simulations ever performed. Computers at the architectural extremes, however, are notoriously difficult to use efficiently. Even such successes as the Laboratory's two Bell Prizes awarded in November 1999 only emphasize the need for much better ways of interacting with the results of large-scale simulations. Advances in scientific computing research have, therefore, never been more vital to the core missions of the Laboratory than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, the Laboratory must engage researchers at many academic centers of excellence. In FY 1999, the Institute for Scientific Computing Research (ISCR) has expanded the Laboratory's bridge to the academic community in the form of collaborative subcontracts, visiting faculty, student internships, a workshop, and a very active seminar series. ISCR research participants are integrated almost seamlessly with the Laboratory's Center for Applied Scientific Computing (CASC), which, in turn, addresses computational challenges arising throughout the Laboratory. Administratively, the ISCR flourishes under the Laboratory's University Relations Program (URP). Together with the other four Institutes of the URP, it must navigate a course that allows the Laboratory to benefit from academic exchanges while preserving national security. Although FY 1999 brought more than its share of challenges to the operation of an academic-like research enterprise within the context of a national security laboratory, the results declare the

  8. Carbon Dioxide Measurements from Space: Scientific Advance and Societal Benefit

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Miller, C. E.

    2009-04-01

    The dawn of the 21st Century finds spaceborne sensors poised to revolutionize the atmospheric CO2 record by providing high-quality measurements with unprecedented spatio-temporal coverage and density. Space-based CO2 observations will augment local and regional measurements from ground and airborne sensors, providing global context for existing measurements and covering regions not readily accessible or instrumented by other means. Hyperspectral data from the Atmospheric Infrared Sounder (AIRS), launched in 2002, have been used to produce global maps of CO2 concentrations in the mid-troposphere. These data provide important new constraints on the global distribution and transport of CO2. Future satellite missions dedicated to CO2 observations will collect precise global measurements, enabling more detailed process studies and contributing to further improvements in coupled carbon-climate model development, initialization, and validation. Japan's GOSAT mission, scheduled for launch in January 2009 will measure CO2 and CH4 spectral radiances via thermal and near infrared spectrometry to study the transport mechanisms of greenhouse gases with an emphasis on identification of CO2 sources and sinks on sub-continental scales in support of the Kyoto protocol. NASA's Orbiting Carbon Observatory (OCO), scheduled to launch in February 2009, will deliver measurements of column-averaged CO2 dry air mole fraction, XCO2, with the precision, temporal and spatial resolution, and coverage needed to characterize the variability of CO2 sources and sinks on regional spatial scales and seasonal to interannual time scales. Satellite CO2 observations, combined with continued ground and airborne measurements, will improve our understanding of the natural processes and human activities that regulate the atmospheric abundance and distribution of this important greenhouse gas, generating both scientific advance and societal benefit. Deriving actionable information from these observation

  9. A data management system for engineering and scientific computing

    Science.gov (United States)

    Elliot, L.; Kunii, H. S.; Browne, J. C.

    1978-01-01

    Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.

  10. Computer simulation, rhetoric, and the scientific imagination how virtual evidence shapes science in the making and in the news

    CERN Document Server

    Roundtree, Aimee Kendall

    2013-01-01

    Computer simulations help advance climatology, astrophysics, and other scientific disciplines. They are also at the crux of several high-profile cases of science in the news. How do simulation scientists, with little or no direct observations, make decisions about what to represent? What is the nature of simulated evidence, and how do we evaluate its strength? Aimee Kendall Roundtree suggests answers in Computer Simulation, Rhetoric, and the Scientific Imagination. She interprets simulations in the sciences by uncovering the argumentative strategies that underpin the production and disseminati

  11. Computer code applicability assessment for the advanced Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wren, D.J.; Langman, V.J.; Popov, N.; Snell, V.G. [Atomic Energy of Canada Ltd (Canada)

    2004-07-01

    AECL Technologies, the 100%-owned US subsidiary of Atomic Energy of Canada Ltd. (AECL), is currently the proponents of a pre-licensing review of the Advanced Candu Reactor (ACR) with the United States Nuclear Regulatory Commission (NRC). A key focus topic for this pre-application review is the NRC acceptance of the computer codes used in the safety analysis of the ACR. These codes have been developed and their predictions compared against experimental results over extended periods of time in Canada. These codes have also undergone formal validation in the 1990's. In support of this formal validation effort AECL has developed, implemented and currently maintains a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper discusses the SQA program used to develop, qualify and maintain the computer codes used in ACR safety analysis, including the current program underway to confirm the applicability of these computer codes for use in ACR safety analyses. (authors)

  12. Advances in parallel computer technology for desktop atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Ionescu-Niscov, S.; Fast, J.D. [Pacific Northwest National Lab., Richland, WA (United States); Allwine, K.J. [Allwine Enviornmental Serv., Richland, WA (United States)

    1996-12-31

    Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  13. Advanced proton imaging in computed tomography

    CERN Document Server

    Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J

    2015-01-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...

  14. SciDAC Advances and Applications in Computational Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  15. SciDAC advances and applications in computational beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R [Lawrence Berkeley National Laboratory (United States); Abell, D [Tech-X Corporation (United States); Adelmann, A [Paul Scherrer Institute, (Switzerland); Amundson, J [Fermi National Accelerator Laboratory (United States); Bohn, C [Fermi National Accelerator Laboratory (United States); Cary, J [Tech-X Corporation (United States); Colella, P [Lawrence Berkeley National Laboratory (United States); Dechow, D [Tech-X Corporation (United States); Decyk, V [University of California at Los Angeles (United States); Dragt, A [University of Maryland (United States); Gerber, R [Lawrence Berkeley National Laboratory (United States); Habib, S [Los Alamos National Laboratory (United States); Higdon, D [Los Alamos National Laboratory (United States); Katsouleas, T [University of Southern California (United States); Ma, K-L [University of California at Davis (United States); McCorquodale, P [Lawrence Berkeley National Laboratory (United States); Mihalcea, D [Northern Illinois University (United States); Mitchell, C [University of Maryland (United States); Mori, W [University of California at Los Angeles (United States); Mottershead, C T [Los Alamos National Laboratory (United States); Neri, F [Los Alamos National Laboratory (United States); Pogorelov, I [Lawrence Berkeley National Laboratory (United States); Qiang, J [Lawrence Berkeley National Laboratory (United States); Samulyak, R [Brookhaven National Laboratory (United States); Serafini, D [Lawrence Berkeley National Laboratory (United States); Shalf, J [Lawrence Berkeley National Laboratory (United States); Siegerist, C [Lawrence Berkeley National Laboratory (United States); Spentzouris, P [Fermi National Accelerator Laboratory (United States); Stoltz, P [Tech-X Corporation (United States); Terzic, B [Northern Illinois University (United States); Venturini, M [Lawrence Berkeley National Laboratory (United States); Walstrom, P [Los Alamos National Laboratory (United States)

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  16. Scientific Application Requirements for Leadership Computing at the Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Ahern, Sean [ORNL; Alam, Sadaf R [ORNL; Fahey, Mark R [ORNL; Hartman-Baker, Rebecca J [ORNL; Barrett, Richard F [ORNL; Kendall, Ricky A [ORNL; Kothe, Douglas B [ORNL; Mills, Richard T [ORNL; Sankaran, Ramanan [ORNL; Tharrington, Arnold N [ORNL; White III, James B [ORNL

    2007-12-01

    The Department of Energy s Leadership Computing Facility, located at Oak Ridge National Laboratory s National Center for Computational Sciences, recently polled scientific teams that had large allocations at the center in 2007, asking them to identify computational science requirements for future exascale systems (capable of an exaflop, or 1018 floating point operations per second). These requirements are necessarily speculative, since an exascale system will not be realized until the 2015 2020 timeframe, and are expressed where possible relative to a recent petascale requirements analysis of similar science applications [1]. Our initial findings, which beg further data collection, validation, and analysis, did in fact align with many of our expectations and existing petascale requirements, yet they also contained some surprises, complete with new challenges and opportunities. First and foremost, the breadth and depth of science prospects and benefits on an exascale computing system are striking. Without a doubt, they justify a large investment, even with its inherent risks. The possibilities for return on investment (by any measure) are too large to let us ignore this opportunity. The software opportunities and challenges are enormous. In fact, as one notable computational scientist put it, the scale of questions being asked at the exascale is tremendous and the hardware has gotten way ahead of the software. We are in grave danger of failing because of a software crisis unless concerted investments and coordinating activities are undertaken to reduce and close this hardwaresoftware gap over the next decade. Key to success will be a rigorous requirement for natural mapping of algorithms to hardware in a way that complements (rather than competes with) compilers and runtime systems. The level of abstraction must be raised, and more attention must be paid to functionalities and capabilities that incorporate intent into data structures, are aware of memory hierarchy

  17. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    Science.gov (United States)

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  18. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  19. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  20. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  1. Application of advanced electronics to a future spacecraft computer design

    Science.gov (United States)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  2. I - Template Metaprogramming for Massively Parallel Scientific Computing - Expression Templates

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  3. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  4. DOE Advanced Scientific Advisory Committee (ASCAC): Workforce Subcommittee Letter

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Barbara [University of Houston; Calandra, Henri [Total SA; Crivelli, Silvia [Lawrence Berkeley National Laboratory, University of California, Davis; Dongarra, Jack [University of Tennessee; Hittinger, Jeffrey [Lawrence Livermore National Laboratory; Lathrop, Scott A. [NCSA, University of Illinois Urbana-Champaign; Sarkar, Vivek [Rice University; Stahlberg, Eric [Advanced Biomedical Computing Center; Vetter, Jeffrey S. [Oak Ridge National Laboratory; Williams, Dean [Lawrence Livermore National Laboratory

    2014-07-23

    Simulation and computing are essential to much of the research conducted at the DOE national laboratories. Experts in the ASCR ¬relevant Computing Sciences, which encompass a range of disciplines including Computer Science, Applied Mathematics, Statistics and domain Computational Sciences, are an essential element of the workforce in nearly all of the DOE national laboratories. This report seeks to identify the gaps and challenges facing DOE with respect to this workforce. This letter is ASCAC’s response to the charge of February 19, 2014 to identify disciplines in which significantly greater emphasis in workforce training at the graduate or postdoctoral levels is necessary to address workforce gaps in current and future Office of Science mission needs.

  5. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  6. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  7. Reflections about Research in Computer Science regarding the Classification of Sciences and the Scientific Method

    OpenAIRE

    WAZLAWICK, R. S.

    2010-01-01

    This paper presents some observations about Computer Science and the Scientific Method. Initially, the paper discusses the different aspects of Computer Science regarding the classification of sciences. It is observed that different areas inside Computer Science can be classified as different Sciences. The paper presents the main philosophical schools that define what is understood as the Scientific Method, and their influence on Computer Science. Finally, the paper discusses the distinction ...

  8. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Science.gov (United States)

    2011-10-18

    ... Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math... Union (AGU), 2000 Florida Avenue, NW., Washington, DC 20009 FOR FURTHER INFORMATION CONTACT: Melea Baker... INFORMATION: Purpose of the Meeting: The purpose of this meeting is to provide advice and guidance to...

  9. Bio-compute objects - a step towards evaluation and validation of bio-medical scientific computations.

    Science.gov (United States)

    Simonyan, Vahan; Goecks, Jeremy; Mazumder, Raja

    2016-12-14

    The unpredictability of actual physical, chemical, and biological experiments due to the multitude of environmental and procedural factors is well-documented. What is systematically overlooked, however, is that computational biology algorithms are also affected by multiplicity of parameters and have no lesser volatility. The complexities of computation protocols and interpretation of outcomes is only a part of the challenge: there are also virtually no standardized and industry accepted metadata schemas for reporting the computational objects that record the parameters used for computations together with the results of computations. Thus, it is often impossible to reproduce the results of a previously performed computation due to missing information on parameters, versions, arguments, conditions, and procedures of application launch. In this publication we describe the concept of biocompute objects developed specifically to satisfy regulatory research needs for evaluation, validation, and verification of bioinformatics pipelines. We envision generalized versions of biocompute objects called biocompute templates that support a single class of analyses but can be adapted to meet unique needs. To make these templates widely usable, we outline a simple but powerful cross-platform implementation. We also discuss the reasoning and potential usability for such concept within larger scientific community through the creation of a biocompute object database consisting of records relevant to US Food and Drug Administration (FDA). A biocompute object database record will be similar to a GenBank record in form; the difference being -- instead of describing a sequence, the biocompute record will include information related to parameters, dependencies, usage and other related information related to specific computations. This mechanism will extend similar efforts and also serve as a collaborative ground to ensure interoperability between different platforms, industries

  10. Using the Scientific Python ecosystem to advance open radar science

    Science.gov (United States)

    Collis, S. M.; Helmus, J.

    2015-12-01

    The choice of a programming language or environment is rarely made with consideration of its benefits and disadvantages. Often it is something inherited from mentor or enforced by an institution. Python, developed as a "hobby" programming project, has seen increased migration of users from more traditional domain specific environments. This presentation charts our own journey in using the scientific python ecosystem, first as users and then as the developers of a community based toolkit for working with weather radar data, the Python ARM Radar Toolkit, Py-ART. We will highlight how a data model driven design approach can extend the usefulness and reusability of code and act as a bridge between amorphous mathematical algorithms and domain specific data. Finally we will showcase how Python and Py-ART can be used on clusters to tackle pleasantly parallel problems like deriving climatologies swiftly, painlessly and most importantly: reproducibly.

  11. jsGraph and jsNMR—Advanced Scientific Charting

    Directory of Open Access Journals (Sweden)

    Norman Pellet

    2014-09-01

    Full Text Available The jsGraph library is a versatile javascript library that allows advanced charting to be rendered interactively in web browsers without relying on server-side image processing. jsGraph is released under the MIT license and is free of charge. While being highly customizable through an intuitive javascript API, jsGraph is optimized to render a large quantity of data in a short amount of time. jsGraphs can display line, scatter, contour or zone series. Examples can be consulted on the project home page [1]. Customization of the chart, its axis and its series is achieved through simple but comprehensive JSON configurations.

  12. Accelerating Scientific Discovery Through Computation and Visualization III. Tight-Binding Wave Functions for Quantum Dots.

    Science.gov (United States)

    Sims, James S; George, William L; Griffin, Terence J; Hagedorn, John G; Hung, Howard K; Kelso, John T; Olano, Marc; Peskin, Adele P; Satterfield, Steven G; Terrill, Judith Devaney; Bryant, Garnett W; Diaz, Jose G

    2008-01-01

    This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology.

  13. Accelerating Scientific Discovery Through Computation and Visualization III. Tight-Binding Wave Functions for Quantum Dots

    OpenAIRE

    2008-01-01

    This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology.

  14. Recent Advances in Computational Conformal Geometry

    OpenAIRE

    Gu, Xianfeng David; Luo, Feng; Yau, Shing-Tung

    2009-01-01

    Computational conformal geometry focuses on developing the computational methodologies on discrete surfaces to discover conformal geometric invariants. In this work, we briefly summarize the recent developments for methods and related applications in computational conformal geometry. There are two major approaches, holomorphic differentials and curvature flow. Holomorphic differential method is a linear method, which is more efficient and robust to triangulations with lower qua...

  15. ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING: APPLICATION OF COMPUTATIONAL BIOPHYSICAL TRANSPORT, COMPUTATIONAL CHEMISTRY, AND COMPUTATIONAL BIOLOGY

    Science.gov (United States)

    Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...

  16. Large-scale computation at PSI scientific achievements and future requirements

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A.; Markushin, V

    2008-11-15

    Computational modelling and simulation are among the disciplines that have seen the most dramatic growth in capabilities in the 2Oth Century. Within the past two decades, scientific computing has become an important contributor to all scientific research programs. Computational modelling and simulation are particularly indispensable for solving research problems that are unsolvable by traditional theoretical and experimental approaches, hazardous to study, or time consuming or expensive to solve by traditional means. Many such research areas are found in PSI's research portfolio. Advances in computing technologies (including hardware and software) during the past decade have set the stage for a major step forward in modelling and simulation. We have now arrived at a situation where we have a number of otherwise unsolvable problems, where simulations are as complex as the systems under study. In 2008 the High-Performance Computing (HPC) community entered the petascale area with the heterogeneous Opteron/Cell machine, called Road Runner built by IBM for the Los Alamos National Laboratory. We are on the brink of a time where the availability of many hundreds of thousands of cores will open up new challenging possibilities in physics, algorithms (numerical mathematics) and computer science. However, to deliver on this promise, it is not enough to provide 'peak' performance in terms of peta-flops, the maximum theoretical speed a computer can attain. Most important, this must be translated into corresponding increase in the capabilities of scientific codes. This is a daunting problem that can only be solved by increasing investment in hardware, in the accompanying system software that enables the reliable use of high-end computers, in scientific competence i.e. the mathematical (parallel) algorithms that are the basis of the codes, and education. In the case of Switzerland, the white paper 'Swiss National Strategic Plan for High Performance Computing

  17. Advanced Technologies, Embedded and Multimedia for Human-Centric Computing

    CERN Document Server

    Chao, Han-Chieh; Deng, Der-Jiunn; Park, James; HumanCom and EMC 2013

    2014-01-01

    The theme of HumanCom and EMC are focused on the various aspects of human-centric computing for advances in computer science and its applications, embedded and multimedia computing and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. And the theme of EMC (Advanced in Embedded and Multimedia Computing) is focused on the various aspects of embedded system, smart grid, cloud and multimedia computing, and it provides an opportunity for academic, industry professionals to discuss the latest issues and progress in the area of embedded and multimedia computing. Therefore this book will be include the various theories and practical applications in human-centric computing and embedded and multimedia computing.

  18. Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T; Espen, P K; Butler, D M

    2001-02-07

    This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.

  19. Advancing crime scene computer forensics techniques

    Science.gov (United States)

    Hosmer, Chet; Feldman, John; Giordano, Joe

    1999-02-01

    Computers and network technology have become inexpensive and powerful tools that can be applied to a wide range of criminal activity. Computers have changed the world's view of evidence because computers are used more and more as tools in committing `traditional crimes' such as embezzlements, thefts, extortion and murder. This paper will focus on reviewing the current state-of-the-art of the data recovery and evidence construction tools used in both the field and laboratory for prosection purposes.

  20. Cuba: the strategic choice of advanced scientific development, 1959-2014

    CERN Document Server

    Baracca, Angelo

    2016-01-01

    Cuba is continuing attracting the attention of the international scientific community for some important and unexpected achievements in applied science such as health biotechnology. They represent outcomes of the 1959 decision of Cuba to develop an advanced scientific system in order to address the most urgent problems for the development of the country and to overcome the condition of subalternity. This ambitious objective was tackled in a very original way, making a broad and wide-ranging recourse to every effective support and collaboration, with Soviet but also Western scientists and institutions, in addition to a peculiar Cuban inventiveness. Indeed, immediately after the revolution, Cuba developed an advanced and articulated scientific system, and achieved a level of excellence in leading scientific fields, like biotechnology, quite independently from the Soviet Union, which was behind in this field. Even the collapse of the Soviet Union in the early 1990s, that could have put the achievements of the Re...

  1. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  2. Large-scale computation at PSI scientific achievements and future requirements

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A.; Markushin, V

    2008-11-15

    Computational modelling and simulation are among the disciplines that have seen the most dramatic growth in capabilities in the 2Oth Century. Within the past two decades, scientific computing has become an important contributor to all scientific research programs. Computational modelling and simulation are particularly indispensable for solving research problems that are unsolvable by traditional theoretical and experimental approaches, hazardous to study, or time consuming or expensive to solve by traditional means. Many such research areas are found in PSI's research portfolio. Advances in computing technologies (including hardware and software) during the past decade have set the stage for a major step forward in modelling and simulation. We have now arrived at a situation where we have a number of otherwise unsolvable problems, where simulations are as complex as the systems under study. In 2008 the High-Performance Computing (HPC) community entered the petascale area with the heterogeneous Opteron/Cell machine, called Road Runner built by IBM for the Los Alamos National Laboratory. We are on the brink of a time where the availability of many hundreds of thousands of cores will open up new challenging possibilities in physics, algorithms (numerical mathematics) and computer science. However, to deliver on this promise, it is not enough to provide 'peak' performance in terms of peta-flops, the maximum theoretical speed a computer can attain. Most important, this must be translated into corresponding increase in the capabilities of scientific codes. This is a daunting problem that can only be solved by increasing investment in hardware, in the accompanying system software that enables the reliable use of high-end computers, in scientific competence i.e. the mathematical (parallel) algorithms that are the basis of the codes, and education. In the case of Switzerland, the white paper 'Swiss National Strategic Plan for High Performance Computing

  3. Advances in Future Computer and Control Systems v.2

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  4. Advances in Future Computer and Control Systems v.1

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  5. Scientific and high-performance computing at FAIR

    Directory of Open Access Journals (Sweden)

    Kisel Ivan

    2015-01-01

    Full Text Available Future FAIR experiments have to deal with very high input rates, large track multiplicities, make full event reconstruction and selection on-line on a large dedicated computer farm equipped with heterogeneous many-core CPU/GPU compute nodes. To develop efficient and fast algorithms, which are optimized for parallel computations, is a challenge for the groups of experts dealing with the HPC computing. Here we present and discuss the status and perspectives of the data reconstruction and physics analysis software of one of the future FAIR experiments, namely, the CBM experiment.

  6. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    Science.gov (United States)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  7. Reflections about Research in Computer Science regarding the Classification of Sciences and the Scientific Method

    Directory of Open Access Journals (Sweden)

    WAZLAWICK, R. S.

    2010-12-01

    Full Text Available This paper presents some observations about Computer Science and the Scientific Method. Initially, the paper discusses the different aspects of Computer Science regarding the classification of sciences. It is observed that different areas inside Computer Science can be classified as different Sciences. The paper presents the main philosophical schools that define what is understood as the Scientific Method, and their influence on Computer Science. Finally, the paper discusses the distinction between Science and Technology and the degrees of maturity in Computer Science research.

  8. Power-efficient computer architectures recent advances

    CERN Document Server

    Själander, Magnus; Kaxiras, Stefanos

    2014-01-01

    As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Sp

  9. Advanced Computing Architectures for Cognitive Processing

    Science.gov (United States)

    2009-07-01

    bioinformatics, computing forces for molecular dynamics simulations, or to perform floating point operations for linear algebra . Reconfigurable computing...science codes typically involve high precision, very large data sets, and often include linear algebra formulations. Processing these applications on...www.ncbi.nlm.nih.gov/ 77 Bateman A, Birney E, Cerruti L, Durbin R, Etwiller l, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL. The Pfam protein

  10. High throughput computing: a solution for scientific analysis

    Science.gov (United States)

    O'Donnell, M.

    2011-01-01

    Public land management agencies continually face resource management problems that are exacerbated by climate warming, land-use change, and other human activities. As the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) works with managers in U.S. Department of the Interior (DOI) agencies and other federal, state, and private entities, researchers are finding that the science needed to address these complex ecological questions across time and space produces substantial amounts of data. The additional data and the volume of computations needed to analyze it require expanded computing resources well beyond single- or even multiple-computer workstations. To meet this need for greater computational capacity, FORT investigated how to resolve the many computational shortfalls previously encountered when analyzing data for such projects. Our objectives included finding a solution that would:

  11. Scholarly literature and the press: scientific impact and social perception of physics computing

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V

    2014-01-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the scientific impact and social perception of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing would be beneficial to the high energy physics community.

  12. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  13. Multicore Challenges and Benefits for High Performance Scientific Computing

    Directory of Open Access Journals (Sweden)

    Ida M.B. Nielsen

    2008-01-01

    Full Text Available Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexity of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.

  14. Network and computing infrastructure for scientific applications in Georgia

    Science.gov (United States)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  15. Advanced Computing Tools and Models for Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  16. Advances in Computing and Information Technology : Proceedings of the Second International Conference on Advances in Computing and Information Technology

    CERN Document Server

    Nagamalai, Dhinaharan; Chaki, Nabendu

    2013-01-01

    The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, ...

  17. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Stacy J [ORNL; Symons, Christopher T [ORNL

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  18. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    Science.gov (United States)

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  19. Extending the horizons advances in computing, optimization, and decision technologies

    CERN Document Server

    Joseph, Anito; Mehrotra, Anuj; Trick, Michael

    2007-01-01

    Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state-of-the-art in the interface between OR/MS and CS/AI and of the high caliber of research being conducted by members of the INFORMS Computing Society. EXTENDING THE HORIZONS: Advances in Computing, Optimization, and Decision Technologies is a volume that presents the latest, leading research in the design and analysis of algorithms, computational optimization, heuristic search and learning, modeling languages, parallel and distributed computing, simulation, computational logic and visualization. This volume also emphasizes a variety of novel applications in the interface of CS, AI, and OR/MS.

  20. Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment

    CERN Document Server

    Benjamin, Douglas P

    2008-01-01

    The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

  1. StratOS: A Big Data Framework for Scientific Computing

    CERN Document Server

    Stickley, Nathaniel R

    2015-01-01

    We introduce StratOS, a Big Data platform for general computing that allows a datacenter to be treated as a single computer. With StratOS, the process of writing a massively parallel program for a datacenter is no more complicated than writing a Python script for a desktop computer. Users can run pre-existing analysis software on data distributed over thousands of machines with just a few keystrokes. This greatly reduces the time required to develop distributed data analysis pipelines. The platform is built upon industry-standard, open-source Big Data technologies, from which it inherits fast data throughput and fault tolerance. StratOS enhances these technologies by adding an intuitive user interface, automated task monitoring, and other usability features.

  2. A look back: 57 years of scientific computing

    DEFF Research Database (Denmark)

    2012-01-01

    This document outlines my 57-year career in computational mathematics, a career that took me from Poland to Canada and finally to Denmark. It of course spans a period in which both hardware and software developed enormously. Along the way I was fortunate to be faced with fascinating technical cha...... challenges and privileged to be able to share them with inspiring colleagues. From the beginning, my work to a great extent was concerned, directly or indirectly, with computational linear algebra, an interest I maintain even today....

  3. Advanced computational aeroelasticity and multidisciplinary application for composite curved wing

    OpenAIRE

    Kim, Dong-Hyun; Kim, Yu-Sung

    2008-01-01

    This article preferentially describes advanced computational aeroelasticity and its multidisciplinary applications based on the coupled CFD (Computational Fluid Dynamics) and CSD (Computational Structural Dynamics) method. A modal-based coupled nonlinear aeroelastic analysis system incorporated with unsteady Euler aerodynamics has been developed based on the high-speed parallel processing technique. It is clearly expected to give accurate and practical engineering data in the design fields of...

  4. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  5. Advanced Computer Simulations of Military Incinerators

    Science.gov (United States)

    2004-12-01

    models contain 3D furnace and canister geometries and all of the relevant physics and chemistry. The destruction of chemical agent is predicted using...computational chemistry methods, chemical kinetics have been developed that describe the incineration of organo -phosphorus nerve agent (GB, VX) and...States. The chemical warfare agents (CWA) consist of mustard gas and other blister agents as well as organo -phosphorus nerve agents. Incineration was

  6. Intelligent tools for building a scientific information platform advanced architectures and solutions

    CERN Document Server

    Skonieczny, Lukasz; Rybinski, Henryk; Kryszkiewicz, Marzena; Niezgodka, Marek

    2013-01-01

    This book is a selection of results obtained within two years of research per- formed under SYNAT - a nation-wide scientific project aiming at creating an infrastructure for scientific content storage and sharing for academia, education and open knowledge society in Poland. The selection refers to the research in artificial intelligence, knowledge discovery and data mining, information retrieval and natural language processing, addressing the problems of implementing intelligent tools for building a scientific information platform.This book is a continuation and extension of the ideas presented in “Intelligent Tools for Building a Scientific Information Platform” published as volume 390 in the same series in 2012. It is based on the SYNAT 2012 Workshop held in Warsaw. The papers included in this volume present an overview and insight into information retrieval, repository systems, text processing, ontology-based systems, text mining, multimedia data processing and advanced software engineering.  

  7. AVES: A high performance computer cluster array for the INTEGRAL satellite scientific data analysis

    Science.gov (United States)

    Federici, Memmo; Martino, Bruno Luigi; Ubertini, Pietro

    2012-07-01

    In this paper we describe a new computing system array, designed, built and now used at the Space Astrophysics and Planetary Institute (IAPS) in Rome, Italy, for the INTEGRAL Space Observatory scientific data analysis. This new system has become necessary in order to reduce the processing time of the INTEGRAL data accumulated during the more than 9 years of in-orbit operation. In order to fulfill the scientific data analysis requirements with a moderately limited investment the starting approach has been to use a `cluster' array of commercial quad-CPU computers, featuring the extremely large scientific and calibration data archive on line.

  8. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  9. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    Directory of Open Access Journals (Sweden)

    Yizi Shang

    2014-01-01

    Full Text Available This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications.

  10. Computational neuroscience for advancing artificial intelligence

    Directory of Open Access Journals (Sweden)

    Fernando P. Ponce

    2011-07-01

    Full Text Available resumen del libro de Alonso, E. y Mondragón, E. (2011. Hershey, NY: Medical Information Science Reference. La neurociencia como disciplinapersigue el entendimiento del cerebro y su relación con el funcionamiento de la mente a través del análisis de la comprensión de la interacción de diversos procesos físicos, químicos y biológicos (Bassett & Gazzaniga, 2011. Por otra parte, numerosas disciplinasprogresivamente han realizado significativas contribuciones en esta empresa tales como la matemática, la psicología o la filosofía, entre otras. Producto de este esfuerzo, es que junto con la neurociencia tradicional han aparecido disciplinas complementarias como la neurociencia cognitiva, la neuropsicología o la neurocienciacomputacional (Bengio, 2007; Dayan & Abbott, 2005. En el contexto de la neurociencia computacional como disciplina complementaria a laneurociencia tradicional. Alonso y Mondragón (2011 editan el libroComputacional Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications.

  11. New challenges in grid generation and adaptivity for scientific computing

    CERN Document Server

    Formaggia, Luca

    2015-01-01

    This volume collects selected contributions from the “Fourth Tetrahedron Workshop on Grid Generation for Numerical Computations”, which was held in Verbania, Italy in July 2013. The previous editions of this Workshop were hosted by the Weierstrass Institute in Berlin (2005), by INRIA Rocquencourt in Paris (2007), and by Swansea University (2010). This book covers different, though related, aspects of the field: the generation of quality grids for complex three-dimensional geometries; parallel mesh generation algorithms; mesh adaptation, including both theoretical and implementation aspects; grid generation and adaptation on surfaces – all with an interesting mix of numerical analysis, computer science and strongly application-oriented problems.

  12. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  13. Advances in FDTD computational electrodynamics photonics and nanotechnology

    CERN Document Server

    Oskooi, Ardavan; Johnson, Steven G

    2013-01-01

    Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...

  14. Advanced Trace Pattern For Computer Intrusion Discovery

    CERN Document Server

    Rahayu, S Siti; Shahrin, S; Zaki, M Mohd; Faizal, M A; Zaheera, Z A

    2010-01-01

    The number of crime committed based on the malware intrusion is never ending as the number of malware variants is growing tremendously and the usage of internet is expanding globally. Malicious codes easily obtained and use as one of weapon to gain their objective illegally. Hence, in this research, diverse logs from different OSI layer are explored to identify the traces left on the attacker and victim logs in order to establish worm trace pattern to defending against the attack and help revealing true attacker or victim. For the purpose of this paper, it focused on malware intrusion and traditional worm namely sasser worm variants. The concept of trace pattern is created by fusing the attacker's and victim's perspective. Therefore, the objective of this paper is to propose a general worm trace pattern for attacker's, victim's and multi-step (attacker/victim)'s by combining both perspectives. These three proposed worm trace patterns can be extended into research areas in alert correlation and computer forens...

  15. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    Science.gov (United States)

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.

  16. Scientific visualization in computational aerodynamics at NASA Ames Research Center

    Science.gov (United States)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val

    1989-01-01

    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  17. Performance Evaluation of Three Distributed Computing Environments for Scientific Applications

    Science.gov (United States)

    Fatoohi, Rod; Weeratunga, Sisira; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    We present performance results for three distributed computing environments using the three simulated CFD applications in the NAS Parallel Benchmark suite. These environments are the DCF cluster, the LACE cluster, and an Intel iPSC/860 machine. The DCF is a prototypic cluster of loosely coupled SGI R3000 machines connected by Ethernet. The LACE cluster is a tightly coupled cluster of 32 IBM RS6000/560 machines connected by Ethernet as well as by either FDDI or an IBM Allnode switch. Results of several parallel algorithms for the three simulated applications are presented and analyzed based on the interplay between the communication requirements of an algorithm and the characteristics of the communication network of a distributed system.

  18. Parallel computing in genomic research: advances and applications

    Directory of Open Access Journals (Sweden)

    Ocaña K

    2015-11-01

    Full Text Available Kary Ocaña,1 Daniel de Oliveira2 1National Laboratory of Scientific Computing, Petrópolis, Rio de Janeiro, 2Institute of Computing, Fluminense Federal University, Niterói, Brazil Abstract: Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. Keywords: high-performance computing, genomic research, cloud computing, grid computing, cluster computing, parallel computing

  19. Leveraging performance of 3D finite difference schemes in large scientific computing simulations

    OpenAIRE

    De la Cruz, Raúl

    2015-01-01

    Gone are the days when engineers and scientists conducted most of their experiments empirically. During these decades, actual tests were carried out in order to assess the robustness and reliability of forthcoming product designs and prove theoretical models. With the advent of the computational era, scientific computing has definetely become a feasible solution compared with empirical methods, in terms of effort, cost and reliability. Large and massively parallel computational resources have...

  20. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  1. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    Science.gov (United States)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  2. CAS Achicvemcnts in Lens of 2011 "Top 10" Scientific Advances of China

    Institute of Scientific and Technical Information of China (English)

    By SONG Jianlan (Staff Reporter)

    2012-01-01

    As a routine since 2005, at the end of the year 2011,leading scientists in China including Members of the CAS and the Chinese Academy of Engineering, voted to elect the top 10 scientific advances of China in their mind. Remarkably six projects led and completed by CAS scientists ranked into the top 10; and the very top one also received contributions from CAS as a cooperator.

  3. Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational Grids.

    Science.gov (United States)

    Harting, Jens; Chin, Jonathan; Venturoli, Maddalena; Coveney, Peter V

    2005-08-15

    During the last 2.5 years, the RealityGrid project has allowed us to be one of the few scientific groups involved in the development of computational Grids. Since smoothly working production Grids are not yet available, we have been able to substantially influence the direction of software and Grid deployment within the project. In this paper, we review our results from large-scale three-dimensional lattice Boltzmann simulations performed over the last 2.5 years. We describe how the proactive use of computational steering, and advanced job migration and visualization techniques enabled us to do our scientific work more efficiently. The projects reported on in this paper are studies of complex fluid flows under shear or in porous media, as well as large-scale parameter searches, and studies of the self-organization of liquid cubic mesophases.

  4. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  5. High-Precision Floating-Point Arithmetic in ScientificComputation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.

    2004-12-31

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.

  6. Model-Driven Development for scientific computing. Computations of RHEED intensities for a disordered surface. Part I

    Science.gov (United States)

    Daniluk, Andrzej

    2010-03-01

    Scientific computing is the field of study concerned with constructing mathematical models, numerical solution techniques and with using computers to analyse and solve scientific and engineering problems. Model-Driven Development (MDD) has been proposed as a means to support the software development process through the use of a model-centric approach. This paper surveys the core MDD technology that was used to develop an application that allows computation of the RHEED intensities dynamically for a disordered surface. New version program summaryProgram title: RHEED1DProcess Catalogue identifier: ADUY_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 971 No. of bytes in distributed program, including test data, etc.: 3 039 820 Distribution format: tar.gz Programming language: Embarcadero C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 GB Classification: 4.3, 7.2, 6.2, 8, 14 Catalogue identifier of previous version: ADUY_v3_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2394 Does the new version supersede the previous version?: No Nature of problem: An application that implements numerical simulations should be constructed according to the CSFAR rules: clear and well-documented, simple, fast, accurate, and robust. A clearly written, externally and internally documented program is much easier to understand and modify. A simple program is much less prone to error and is more easily modified than one that is complicated. Simplicity and clarity also help make the program flexible. Making the program fast has economic benefits. It also allows flexibility because some of the features that make a program efficient can be traded off for

  7. Media Articles Describing Advances in Scientific Research as a Vehicle for Student Engagement Fostering Climate Literacy

    Science.gov (United States)

    Brassell, S. C.

    2014-12-01

    "Records of Global Climate Change" enables students to fulfill the science component of an undergraduate distribution requirement in "Critical Approaches" at IU Bloomington. The course draws students from all disciplines with varying levels of understanding of scientific approaches and often limited familiarity with climate issues. Its discussion sessions seek to foster scientific literacy via an alternating series of assignments focused on a combination of exercises that involve either examination and interpretation of on-line climate data or consideration and assessment of the scientific basis of new discoveries about climate change contained in recently published media articles. The final assignment linked to the discussion sessions requires students to review and summarize the topics discussed during the semester. Their answers provide direct evidence of newly acquired abilities to assimilate and evaluate scientific information on a range of topics related to climate change. In addition, student responses to an end-of-semester survey confirm that the vast majority considers that their knowledge and understanding of climate change was enhanced, and unsolicited comments note that the discussion sessions contributed greatly to this advancement. Many students remarked that the course's emphasis on examination of paleoclimate records helped their comprehension of the unprecedented nature of present-day climate trends. Others reported that their views on the significance of climate change had been transformed, and some commented that they now felt well equipped to engage in discussions about climate change because they were better informed about its scientific basis and facts.

  8. Computer-Assisted Foreign Language Teaching and Learning: Technological Advances

    Science.gov (United States)

    Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.

    2013-01-01

    Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…

  9. Using Advanced Computer Vision Algorithms on Small Mobile Robots

    Science.gov (United States)

    2006-04-20

    this approach is the implementation of advanced computer vision algorithms on small mobile robots . We demonstrate the implementation and testing of the...following two algorithms useful on mobile robots : (1) object classification using a boosted Cascade of classifiers trained with the Adaboost training

  10. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  11. Advances in computers dependable and secure systems engineering

    CERN Document Server

    Hurson, Ali

    2012-01-01

    Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. In-depth surveys and tutorials on new computer technologyWell-known authors and researchers in the fieldExtensive bibliographies with m

  12. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadooghi, Iman; Hernandez Martin, Jesus; Li, Tonglin; Brandstatter, Kevin; Zhao, Yong; Maheshwari, Ketan; Pais Pitta de Lacerda Ruivo, Tiago; Timm, Steven; Garzoglio, Gabriele; Raicu, Ioan

    2015-01-01

    Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context to price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.

  13. Advanced computational tools for 3-D seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  14. Advances in mobile cloud computing and big data in the 5G era

    CERN Document Server

    Mastorakis, George; Dobre, Ciprian

    2017-01-01

    This book reports on the latest advances on the theories, practices, standards and strategies that are related to the modern technology paradigms, the Mobile Cloud computing (MCC) and Big Data, as the pillars and their association with the emerging 5G mobile networks. The book includes 15 rigorously refereed chapters written by leading international researchers, providing the readers with technical and scientific information about various aspects of Big Data and Mobile Cloud Computing, from basic concepts to advanced findings, reporting the state-of-the-art on Big Data management. It demonstrates and discusses methods and practices to improve multi-source Big Data manipulation techniques, as well as the integration of resources availability through the 3As (Anywhere, Anything, Anytime) paradigm, using the 5G access technologies.

  15. 2014 National Workshop on Advances in Communication and Computing

    CERN Document Server

    Prasanna, S; Sarma, Kandarpa; Saikia, Navajit

    2015-01-01

    The present volume is a compilation of research work in computation, communication, vision sciences, device design, fabrication, upcoming materials and related process design, etc. It is derived out of selected manuscripts submitted to the 2014 National Workshop on Advances in Communication and Computing (WACC 2014), Assam Engineering College, Guwahati, Assam, India which is emerging out to be a premier platform for discussion and dissemination of knowhow in this part of the world. The papers included in the volume are indicative of the recent thrust in computation, communications and emerging technologies. Certain recent advances in ZnO nanostructures for alternate energy generation provide emerging insights into an area that has promises for the energy sector including conservation and green technology. Similarly, scholarly contributions have focused on malware detection and related issues. Several contributions have focused on biomedical aspects including contributions related to cancer detection using act...

  16. Data-driven modeling & scientific computation methods for complex systems & big data

    CERN Document Server

    Kutz, J Nathan

    2013-01-01

    The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret and give meaning to the data in the context of its scientific setting. A specific aim of this book is to integrate standard scientific computing methodswith data analysis. By doing so, it brings together, in a self-consistent fashion, the key ideas from:· statistics,·

  17. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    CERN Document Server

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  18. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    Science.gov (United States)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  19. Advanced sensor-computer technology for urban runoff monitoring

    Science.gov (United States)

    Yu, Byunggu; Behera, Pradeep K.; Ramirez Rochac, Juan F.

    2011-04-01

    The paper presents the project team's advanced sensor-computer sphere technology for real-time and continuous monitoring of wastewater runoff at the sewer discharge outfalls along the receiving water. This research significantly enhances and extends the previously proposed novel sensor-computer technology. This advanced technology offers new computation models for an innovative use of the sensor-computer sphere comprising accelerometer, programmable in-situ computer, solar power, and wireless communication for real-time and online monitoring of runoff quantity. This innovation can enable more effective planning and decision-making in civil infrastructure, natural environment protection, and water pollution related emergencies. The paper presents the following: (i) the sensor-computer sphere technology; (ii) a significant enhancement to the previously proposed discrete runoff quantity model of this technology; (iii) a new continuous runoff quantity model. Our comparative study on the two distinct models is presented. Based on this study, the paper further investigates the following: (1) energy-, memory-, and communication-efficient use of the technology for runoff monitoring; (2) possible sensor extensions for runoff quality monitoring.

  20. RAPPORT: running scientific high-performance computing applications on the cloud.

    Science.gov (United States)

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  1. National Resource for Computation in Chemistry (NRCC). Attached scientific processors for chemical computations: a report to the chemistry community

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The demands of chemists for computational resources are well known and have been amply documented. The best and most cost-effective means of providing these resources is still open to discussion, however. This report surveys the field of attached scientific processors (array processors) and attempts to indicate their present and possible future use in computational chemistry. Array processors have the possibility of providing very cost-effective computation. This report attempts to provide information that will assist chemists who might be considering the use of an array processor for their computations. It describes the general ideas and concepts involved in using array processors, the commercial products that are available, and the experiences reported by those currently using them. In surveying the field of array processors, the author makes certain recommendations regarding their use in computational chemistry. 5 figures, 1 table (RWR)

  2. An expanded framework for the advanced computational testing and simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  3. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence.

    Science.gov (United States)

    Gimeno-Blanes, Francisco J; Blanco-Velasco, Manuel; Barquero-Pérez, Óscar; García-Alberola, Arcadi; Rojo-Álvarez, José L

    2016-01-01

    Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future.

  4. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence

    Directory of Open Access Journals (Sweden)

    Francisco Javier eGimeno-Blanes

    2016-03-01

    Full Text Available Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indexes, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indexes in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indexes which are tackled from the aforementioned viewpoints, namely, heart rate turbulence, heart rate variability, and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future.

  5. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    Science.gov (United States)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  6. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L. [Univ. of Washington, Seattle, WA (United States). Dept. of Computer Science and Engineering

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and execute program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.

  7. Institute for Scientific Computing Research Annual Report for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D; McGraw, J

    2004-02-12

    The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.

  8. Advanced computer graphic techniques for laser range finder (LRF) simulation

    Science.gov (United States)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  9. The application of cloud computing to scientific workflows: a study of cost and performance.

    Science.gov (United States)

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  10. Advanced computer modeling techniques expand belt conveyor technology

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  11. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  12. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  13. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States). Workshop Chair; Dunning, Thom [Univ. of Illinois, Urbana, IL (United States). Workshop Chair

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  14. An evolving infrastructure for scientific computing and the integration of new graphics technology

    Energy Technology Data Exchange (ETDEWEB)

    Fong, K.W.

    1993-02-01

    The National Energy Research Supercomputer Center (NERSC) at the Lawrence Livermore National Laboratory is currently pursuing several projects to implement and integrate new hardware and software technologies. While each of these projects ought to be and is in fact individually justifiable, there is an appealing metaphor for viewing them collectively which provides a simple and memorable way to understand the future direction not only of supercomputing services but of computer centers in general. Once this general direction is understood, it becomes clearer what future computer graphics technologies would be possible and desirable, at least within the context of large scale scientific computing.

  15. Advanced Tele-operation[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M.

    1998-07-01

    Maintenance, repair, and dismantling operations in nuclear facilities have to be performed remotely when high radiation doses exclude hands-on operation, but also to minimize contamination risks and occupational doses to the operators. Computer-aided and sensor-based tele-operation enhances safety, reliability, and performance by helping the operator in difficult tasks with poor remote environmental perception. The objectives of work in this domain are to increase the scientific knowledge of the studied phenomena, to improve the interpretation of data, to improve the piloting og experimental devices during irradiation, to reveal and to understand possible unexpected phenomena occurring during irradiation. This scientific report describes the achievements for 1997 in the area of radiation tolerance for of remote-sensing, optical fibres and optical fibre sensors.

  16. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Mhashilkar, Parag [Fermilab; Tiradani, Anthony [Fermilab; Holzman, Burt [Fermilab; Larson, Krista [Fermilab; Sfiligoi, Igor [UC, San Diego; Rynge, Mats [USC - ISI, Marina del Rey

    2014-01-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  17. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    Science.gov (United States)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  18. Computational Science and Engineering Online (CSE-Online): a cyber-infrastructure for scientific computing.

    Science.gov (United States)

    Truong, Thanh N; Nayak, Manohar; Huynh, Hung H; Cook, Tom; Mahajan, Priya; Tran, LeThuy T; Bharath, Jannu; Jain, Shrish; Pham, Ha B; Boonyasiriwat, Chaiwoot; Nguyen, Nhat; Andersen, Evan; Kim, Yong; Choe, Suengkeol; Choi, Jihoon; Cheatham, Thomas E; Facelli, Julio C

    2006-01-01

    With the expansion of the Internet and World Wide Web (or the Web), research environments have changed dramatically. As a result, the need to be able to efficiently and securely access information and resources from remote computer systems is becoming even more critical. This paper describes the development of an extendable integrated Web-accessible simulation environment for computational science and engineering called Computational Science and Engineering Online (CSE-Online; http://cse-online.net). CSE-Online is based on a unique client-server software architecture that can distribute the workload between the client and server computers in such a way as to minimize the communication between the client and server, thus making the environment less-sensitive to network instability. Furthermore, the new software architecture allows the user to access data and resources on one or more remote servers as well as on the computing grid while having the full capability of the Web-services collaborative environment. It can be accessed anytime and anywhere from a Web browser connected to the network by either a wired or wireless connection. It has different modes of operations to support different working environments and styles. CSE-Online is evolving into middleware that can provide a framework for accessing and managing remote data and resources including the computing grid for any domain, not necessarily just within computational science and engineering.

  19. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  20. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  1. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  2. Computation of the tip vortex flowfield for advanced aircraft propellers

    Science.gov (United States)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  3. MiniGhost : a miniapp for exploring boundary exchange strategies using stencil computations in scientific parallel computing.

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Richard Frederick; Heroux, Michael Allen; Vaughan, Courtenay Thomas

    2012-04-01

    A broad range of scientific computation involves the use of difference stencils. In a parallel computing environment, this computation is typically implemented by decomposing the spacial domain, inducing a 'halo exchange' of process-owned boundary data. This approach adheres to the Bulk Synchronous Parallel (BSP) model. Because commonly available architectures provide strong inter-node bandwidth relative to latency costs, many codes 'bulk up' these messages by aggregating data into a message as a means of reducing the number of messages. A renewed focus on non-traditional architectures and architecture features provides new opportunities for exploring alternatives to this programming approach. In this report we describe miniGhost, a 'miniapp' designed for exploration of the capabilities of current as well as emerging and future architectures within the context of these sorts of applications. MiniGhost joins the suite of miniapps developed as part of the Mantevo project.

  4. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    Science.gov (United States)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  5. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  6. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    Science.gov (United States)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.

  7. Advanced Computer Science on Internal Ballistics of Solid Rocket Motors

    Science.gov (United States)

    Shimada, Toru; Kato, Kazushige; Sekino, Nobuhiro; Tsuboi, Nobuyuki; Seike, Yoshio; Fukunaga, Mihoko; Daimon, Yu; Hasegawa, Hiroshi; Asakawa, Hiroya

    In this paper, described is the development of a numerical simulation system, what we call “Advanced Computer Science on SRM Internal Ballistics (ACSSIB)”, for the purpose of improvement of performance and reliability of solid rocket motors (SRM). The ACSSIB system is consisting of a casting simulation code of solid propellant slurry, correlation database of local burning-rate of cured propellant in terms of local slurry flow characteristics, and a numerical code for the internal ballistics of SRM, as well as relevant hardware. This paper describes mainly the objectives, the contents of this R&D, and the output of the fiscal year of 2008.

  8. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    Science.gov (United States)

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  9. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    Science.gov (United States)

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  10. Advanced intelligent computational technologies and decision support systems

    CERN Document Server

    Kountchev, Roumen

    2014-01-01

    This book offers a state of the art collection covering themes related to Advanced Intelligent Computational Technologies and Decision Support Systems which can be applied to fields like healthcare assisting the humans in solving problems. The book brings forward a wealth of ideas, algorithms and case studies in themes like: intelligent predictive diagnosis; intelligent analyzing of medical images; new format for coding of single and sequences of medical images; Medical Decision Support Systems; diagnosis of Down’s syndrome; computational perspectives for electronic fetal monitoring; efficient compression of CT Images; adaptive interpolation and halftoning for medical images; applications of artificial neural networks for real-life problems solving; present and perspectives for Electronic Healthcare Record Systems; adaptive approaches for noise reduction in sequences of CT images etc.

  11. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  12. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    Science.gov (United States)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  13. Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2015-01-01

    Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.

  14. An Extensible Scientific Computing Resources Integration Framework Based on Grid Service

    Science.gov (United States)

    Cui, Binge; Chen, Xin; Song, Pingjian; Liu, Rongjie

    Scientific computing resources (e.g., components, dynamic linkable libraries, etc) are very valuable assets for the scientific research. However, due to historical reasons, most computing resources can’t be shared by other people. The emergence of Grid computing provides a turning point to solve this problem. The legacy applications can be abstracted and encapsulated into Grid service, and they may be found and invoked on the Web using SOAP messages. The Grid service is loosely coupled with the external JAR or DLL, which builds a bridge from users to computing resources. We defined an XML schema to describe the functions and interfaces of the applications. This information can be acquired by users by invoking the “getCapabilities” operation of the Grid service. We also proposed the concept of class pool to eliminate the memory leaks when invoking the external jars using reflection. The experiment shows that the class pool not only avoids the PermGen space waste and Tomcat server exception, but also significantly improves the application speed. The integration framework has been implemented successfully in a real project.

  15. Penile prosthesis implant: scientific advances and technological innovations over the last four decades

    Science.gov (United States)

    2017-01-01

    Despite introduction of oral phosphodiesterase type 5 inhibitors and intracavernosal vasoactive agents, penile prosthesis implant remains a relevant and desired option with sales of penile prostheses continue to stay high, as many men became refractory to medical therapy and/or seeking a more effective and permanent therapy. There are two types of penile prosthesis implants: inflatable and non-inflatable types, and the inflatable penile implants can be subdivided into single-, two- and three-piece devices. Non-inflatable penile prosthesis (non-IPP) may be referred to as semi-rigid rod or malleable prosthesis. IPP is considered a superior option to malleable prosthesis as it produces penile rigidity and flaccidity that closely replicates a normal penile erectile function. Since the introduction of IPP by Scott in 1973, surgical landscape for penile prosthesis implantation has changed dramatically. Advances in prosthesis design, device technologies and surgical techniques have made penile prosthesis implant a more natural, durable and reliable device. The following article reviews the scientific advances and technological innovation in modern penile prosthesis implants over the last four decades. PMID:28217449

  16. 11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

    CERN Document Server

    Nuyens, Dirk

    2016-01-01

    This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

  17. Recent Advances in Computational Mechanics of the Human Knee Joint

    Directory of Open Access Journals (Sweden)

    M. Kazemi

    2013-01-01

    Full Text Available Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.

  18. Recent advances in computational mechanics of the human knee joint.

    Science.gov (United States)

    Kazemi, M; Dabiri, Y; Li, L P

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.

  19. The Present Conditions of the Advances in Modernizing Scientific and Technical Information Processing in China

    Science.gov (United States)

    Chen, Written By Tongbao; Li, Translated By Guohua

    The trends of modernization (computerization) in information activities were outlined in focussing on the national computer-based information retrieval system, which was pushed by the State Science and Technology Commission in the 6th National Five-Year Plan. Secondary, the Plan to be promoted by the Institute of Scientific and Technical Information of China (ISTIC) as a central and integrated information center in China was also described for the 7th National Five-Year Plan on the occasion of the movement to the new ISTIC building. Finally, author's views on information programs to be further stressed were introduced, which include the production of reference and fact databases in Chinese and English, the consolidation of online network, standardization, etc.

  20. The Zoltan and Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering and Coloring

    Directory of Open Access Journals (Sweden)

    Erik G. Boman

    2012-01-01

    Full Text Available Partitioning and load balancing are important problems in scientific computing that can be modeled as combinatorial problems using graphs or hypergraphs. The Zoltan toolkit was developed primarily for partitioning and load balancing to support dynamic parallel applications, but has expanded to support other problems in combinatorial scientific computing, including matrix ordering and graph coloring. Zoltan is based on abstract user interfaces and uses callback functions. To simplify the use and integration of Zoltan with other matrix-based frameworks, such as the ones in Trilinos, we developed Isorropia as a Trilinos package, which supports most of Zoltan's features via a matrix-based interface. In addition to providing an easy-to-use matrix-based interface to Zoltan, Isorropia also serves as a platform for additional matrix algorithms. In this paper, we give an overview of the Zoltan and Isorropia toolkits, their design, capabilities and use. We also show how Zoltan and Isorropia enable large-scale, parallel scientific simulations, and describe current and future development in the next-generation package Zoltan2.

  1. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D.; Sewell, Christopher (LANL); Childs, Hank (U of Oregon); Ma, Kwan-Liu (UC Davis); Geveci, Berk (Kitware); Meredith, Jeremy (ORNL)

    2016-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sewell, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Meredith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  3. International conference on Advances in Intelligent Control and Innovative Computing

    CERN Document Server

    Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing

    2012-01-01

    In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...

  4. On the Performance of the Python Programming Language for Serial and Parallel Scientific Computations

    Directory of Open Access Journals (Sweden)

    Xing Cai

    2005-01-01

    Full Text Available This article addresses the performance of scientific applications that use the Python programming language. First, we investigate several techniques for improving the computational efficiency of serial Python codes. Then, we discuss the basic programming techniques in Python for parallelizing serial scientific applications. It is shown that an efficient implementation of the array-related operations is essential for achieving good parallel performance, as for the serial case. Once the array-related operations are efficiently implemented, probably using a mixed-language implementation, good serial and parallel performance become achievable. This is confirmed by a set of numerical experiments. Python is also shown to be well suited for writing high-level parallel programs.

  5. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

    Science.gov (United States)

    Fischer, Frank; Kollar, Ingo; Ufer, Stefan; Sodian, Beate; Hussmann, Heinrich; Pekrun, Reinhard; Neuhaus, Birgit; Dorner, Birgit; Pankofer, Sabine; Fischer, Martin; Strijbos, Jan-Willem; Heene, Moritz; Eberle, Julia

    2014-01-01

    Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support…

  6. Advanced Computational Framework for Environmental Management ZEM, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-04

    Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions). To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.

  7. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  8. Advancements in Violin-Related Human-Computer Interaction

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2014-01-01

    Finesse is required while performing with many traditional musical instruments, as they are extremely responsive to human inputs. The violin is specifically examined here, as it excels at translating a performer’s gestures into sound in manners that evoke a wide range of affective qualities...... of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human......-Computer Interaction technologies for the violin are developed in order to allow musicians to explore new methods of creating music. Through this process, the aim is to provide musicians with control systems that let them transcend the interface itself, and focus on musically compelling performances....

  9. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  10. Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Perry, J; McCoy, M; Hopson, J

    2008-04-30

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  11. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  12. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  13. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  14. Advanced Simulation and Computing FY07-08 Implementation Plan Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D; Hale, A; McCoy, M; Hopson, J

    2006-06-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  15. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-04-25

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  16. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  17. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  18. Optical design and characterization of an advanced computational imaging system

    Science.gov (United States)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  19. Reliability of an interactive computer program for advance care planning.

    Science.gov (United States)

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time.

  20. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    Science.gov (United States)

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  1. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  2. Advances in computer technology: impact on the practice of medicine.

    Science.gov (United States)

    Groth-Vasselli, B; Singh, K; Farnsworth, P N

    1995-01-01

    Advances in computer technology provide a wide range of applications which are revolutionizing the practice of medicine. The development of new software for the office creates a web of communication among physicians, staff members, health care facilities and associated agencies. This provides the physician with the prospect of a paperless office. At the other end of the spectrum, the development of 3D work stations and software based on computational chemistry permits visualization of protein molecules involved in disease. Computer assisted molecular modeling has been used to construct working 3D models of lens alpha-crystallin. The 3D structure of alpha-crystallin is basic to our understanding of the molecular mechanisms involved in lens fiber cell maturation, stabilization of the inner nuclear region, the maintenance of lens transparency and cataractogenesis. The major component of the high molecular weight aggregates that occur during cataractogenesis is alpha-crystallin subunits. Subunits of alpha-crystallin occur in other tissues of the body. In the central nervous system accumulation of these subunits in the form of dense inclusion bodies occurs in pathological conditions such as Alzheimer's disease, Huntington's disease, multiple sclerosis and toxoplasmosis (Iwaki, Wisniewski et al., 1992), as well as neoplasms of astrocyte origin (Iwaki, Iwaki, et al., 1991). Also cardiac ischemia is associated with an increased alpha B synthesis (Chiesi, Longoni et al., 1990). On a more global level, the molecular structure of alpha-crystallin may provide information pertaining to the function of small heat shock proteins, hsp, in maintaining cell stability under the stress of disease.

  3. Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Wren, D.J.; Popov, N.; Snell, V.G. [Atomic Energy of Canada Ltd, (Canada)

    2004-07-01

    Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design

  4. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    Science.gov (United States)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  5. Availability measurement of grid services from the perspective of a scientific computing centre

    Science.gov (United States)

    Marten, H.; Koenig, T.

    2011-12-01

    The Karlsruhe Institute of Technology (KIT) is the merger of Forschungszentrum Karlsruhe and the Technical University Karlsruhe. The Steinbuch Centre for Computing (SCC) was one of the first new organizational units of KIT, combining the former Institute for Scientific Computing of Forschungszentrum Karlsruhe and the Computing Centre of the University. IT service management according to the worldwide de-facto-standard "IT Infrastructure Library (ITIL)" [1] was chosen by SCC as a strategic element to support the merging of the two existing computing centres located at a distance of about 10 km. The availability and reliability of IT services directly influence the customer satisfaction as well as the reputation of the service provider, and unscheduled loss of availability due to hardware or software failures may even result in severe consequences like data loss. Fault tolerant and error correcting design features are reducing the risk of IT component failures and help to improve the delivered availability. The ITIL process controlling the respective design is called Availability Management [1]. This paper discusses Availability Management regarding grid services delivered to WLCG and provides a few elementary guidelines for availability measurements and calculations of services consisting of arbitrary numbers of components.

  6. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  7. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  8. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    Science.gov (United States)

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  9. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  10. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  11. Quantitative Computed Tomography and image analysis for advanced muscle assessment

    Directory of Open Access Journals (Sweden)

    Kyle Joseph Edmunds

    2016-06-01

    Full Text Available Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration.

  12. Deadline aware virtual machine scheduler for scientific grids and cloud computing

    CERN Document Server

    Khalid, Omer; Anthony, Richard; Petridis, Miltos; Parrot, Kevin; Schulz, Markus; 10.1109/WAINA.2010.107

    2010-01-01

    Virtualization technology has enabled applications to be decoupled from the underlying hardware providing the benefits of portability, better control over execution environment and isolation. It has been widely adopted in scientific grids and commercial clouds. Since virtualization, despite its benefits incurs a performance penalty, which could be significant for systems dealing with uncertainty such as High Performance Computing (HPC) applications where jobs have tight deadlines and have dependencies on other jobs before they could run. The major obstacle lies in bridging the gap between performance requirements of a job and performance offered by the virtualization technology if the jobs were to be executed in virtual machines. In this paper, we present a novel approach to optimize job deadlines when run in virtual machines by developing a deadline-aware algorithm that responds to job execution delays in real time, and dynamically optimizes jobs to meet their deadline obligations. Our approaches borrowed co...

  13. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  14. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    Science.gov (United States)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  15. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Cameron, K.W.

    1998-11-24

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators, which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.

  16. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs.

  17. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    Science.gov (United States)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  18. Current Advances in the Computational Simulation of the Formation of Low-Mass Stars

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Inutsuka, S; Padoan, P; Tomisaka, K

    2005-10-24

    Developing a theory of low-mass star formation ({approx} 0.1 to 3 M{sub {circle_dot}}) remains one of the most elusive and important goals of theoretical astrophysics. The star-formation process is the outcome of the complex dynamics of interstellar gas involving non-linear interactions of turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations, from the moment they are assembled by turbulent flows to the time they reach stellar densities, spans an enormous range of scales, resulting in a major computational challenge for simulations. Since the previous Protostars and Planets conference, dramatic advances in the development of new numerical algorithmic techniques have been successfully implemented on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star formation with a very large dynamic range. It is now feasible to explore the turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars self-consistently within the same calculation. The increased sophistication of these powerful methods comes with substantial caveats associated with the use of the techniques and the interpretation of the numerical results. In this review, we examine what has been accomplished in the field and present a critique of both numerical methods and scientific results. We stress that computational simulations should obey the available observational constraints and demonstrate numerical convergence. Failing this, results of large scale simulations do not advance our understanding of low-mass star formation.

  19. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsethagen, Todd O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guillen, Zoe C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dirks, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorton, Ian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Yan [Concordia Univ., Montreal, QC (Canada)

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  20. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    Science.gov (United States)

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  1. Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.

    Science.gov (United States)

    Turner, Judith Axler

    1987-01-01

    Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)

  2. Oracle joins CERN Openlab to advance grid computing

    CERN Multimedia

    2003-01-01

    "CERN and Oracle Corporation today announced that Oracle is joining the CERN openlab for DataGrid applications to collaborate in creating new grid computing technologies and exploring new computing and data management solutions far beyond today's Internet-based computing" (1 page).

  3. Multithreaded transactions in scientific computing. The Growth06_v2 program

    Science.gov (United States)

    Daniluk, Andrzej

    2009-07-01

    efficient than the previous ones [3]. Summary of revisions:The design pattern (See Fig. 2 of Ref. [3]) has been modified according to the scheme shown on Fig. 1. A graphical user interface (GUI) for the program has been reconstructed. Fig. 2 presents a hybrid diagram of a GUI that shows how onscreen objects connect to use cases. The program has been compiled with English/USA regional and language options. Note: The figures mentioned above are contained in the program distribution file. Unusual features: The program is distributed in the form of source project GROWTH06_v2.dpr with associated files, and should be compiled using Borland Delphi compilers versions 6 or latter (including Borland Developer Studio 2006 and Code Gear compilers for Delphi). Additional comments: Two figures are included in the program distribution file. These are captioned Static classes model for Transaction design pattern. A model of a window that shows how onscreen objects connect to use cases. Running time: The typical running time is machine and user-parameters dependent. References: [1] A. Daniluk, Comput. Phys. Comm. 170 (2005) 265. [2] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, first ed., Cambridge University Press, 1989. [3] M. Brzuszek, A. Daniluk, Comput. Phys. Comm. 175 (2006) 678.

  4. Proceedings: 1989 conference on advanced computer technology for the power industry

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, B. (ed.)

    1990-07-01

    An EPRI conference to address advanced computer technology was hosted by Arizona Public Service in Scottsdale, Arizona, December 4--6, 1989. Participants represented US and foreign utilities, major electric and computer industry vendors, R D contractors, and consulting firms. These proceedings contain the text of the technical presentations and summaries of the panel discussions. The conference objectives were: to assess modern computer technologies and how they will affect utility operations; to share US and foreign utility experiences in developing computer-based technical products; and to discuss research conducted by EPRI in advanced computer technology on behalf of its utility members. Technical presentations addressed a broad range of computer-related topics: computer-based training; engineering workshops; hypermeida and other advanced user interfaces; networks and communications; expert systems and other decision-support methodologies; intelligent database management; supercomputing architectures and applications; real-time data processing; computerized technology and information transfer; and neural networks and other emerging technologies.

  5. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  6. The Semi-Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    Directory of Open Access Journals (Sweden)

    C.S. Ierotheou

    2001-01-01

    Full Text Available The shared-memory programming model can be an effective way to achieve parallelism on shared memory parallel computers. Historically however, the lack of a programming standard using directives and the limited scalability have affected its take-up. Recent advances in hardware and software technologies have resulted in improvements to both the performance of parallel programs with compiler directives and the issue of portability with the introduction of OpenMP. In this study, the Computer Aided Parallelisation Toolkit has been extended to automatically generate OpenMP-based parallel programs with nominal user assistance. We categorize the different loop types and show how efficient directives can be placed using the toolkit's in-depth interprocedural analysis. Examples are taken from the NAS parallel benchmarks and a number of real-world application codes. This demonstrates the great potential of using the toolkit to quickly parallelise serial programs as well as the good performance achievable on up to 300 processors for hybrid message passing-directive parallelisations.

  7. INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)

    Science.gov (United States)

    Arezzini, S.; Carboni, A.; Caruso, G.; Ciampa, A.; Coscetti, S.; Mazzoni, E.; Piras, S.

    2014-06-01

    The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.

  8. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    Science.gov (United States)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  9. Bio-inspired computational techniques based on advanced condition monitoring

    Institute of Scientific and Technical Information of China (English)

    Su Liangcheng; He Shan; Li Xiaoli; Li Xinglin

    2011-01-01

    The application of bio-inspired computational techniques to the field of condition monitoring is addressed.First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.

  10. II - Template Metaprogramming for Massively Parallel Scientific Computing - Vectorization with Expression Templates

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  11. III - Template Metaprogramming for massively parallel scientific computing - Templates for Iteration; Thread-level Parallelism

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  12. A document-driven method for certifying scientific computing software for use in nuclear safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. Spencer; Koothoor, Mimitha [Computing and Software Department, McMaster University, Hamilton (Canada)

    2016-04-15

    This paper presents a documentation and development method to facilitate the certification of scientific computing software used in the safety analysis of nuclear facilities. To study the problems faced during quality assurance and certification activities, a case study was performed on legacy software used for thermal analysis of a fuel pin in a nuclear reactor. Although no errors were uncovered in the code, 27 issues of incompleteness and inconsistency were found with the documentation. This work proposes that software documentation follow a rational process, which includes a software requirements specification following a template that is reusable, maintainable, and understandable. To develop the design and implementation, this paper suggests literate programming as an alternative to traditional structured programming. Literate programming allows for documenting of numerical algorithms and code together in what is termed the literate programmer's manual. This manual is developed with explicit traceability to the software requirements specification. The traceability between the theory, numerical algorithms, and implementation facilitates achieving completeness and consistency, as well as simplifies the process of verification and the associated certification.

  13. Enhancing e-Infrastructures with Advanced Technical Computing Parallel MATLAB® on the Grid

    CERN Document Server

    Chakravarti, A; Laure, E; Jouvin, M; Philippon, G; Loomis, C; Floros, E

    2008-01-01

    MATLAB® is widely used within the engineering and scientific fields as the language and environment for technical computing, while collaborative Grid computing on e-Infrastructures is used by scientific communities to deliver a faster time to solution. MATLAB allows users to express parallelism in their applications, and then execute code on multiprocessor environments such as large-scale e-Infrastructures. This paper demonstrates the integration of MATLAB and Grid technology with a representative implementation that uses gLite middleware to run parallel programs. Experimental results highlight the increases in productivity and performance that users obtain with MATLAB parallel computing on Grids.

  14. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  15. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    Science.gov (United States)

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  16. The Advance of Computing from the Ground to the Cloud

    Science.gov (United States)

    Breeding, Marshall

    2009-01-01

    A trend toward the abstraction of computing platforms that has been developing in the broader IT arena over the last few years is just beginning to make inroads into the library technology scene. Cloud computing offers for libraries many interesting possibilities that may help reduce technology costs and increase capacity, reliability, and…

  17. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  18. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction Versus Task Structuring

    NARCIS (Netherlands)

    Lazonder, A.W.; Wiskerke-Drost, Sjanou

    2015-01-01

    Several studies found that direct instruction and task structuring can effectively promote children’s ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 5

  19. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  20. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  1. Relaxed resource advance reservation policy in grid computing

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; HU Zhi-gang

    2009-01-01

    The advance reservation technique has been widely applied in many grid systems to provide end-to-end quality of service (QoS). However, it will result in low resource utilization rate and high rejection rate when the reservation rate is high. To mitigate these negative effects brought about by advance reservation, a relaxed advance reservation policy is proposed, which allows accepting new reservation requests that overlap the existing reservations under certain conditions. Both the benefits and the risks of the proposed policy are presented theoretically. The experimental results show that the policy can achieve a higher resource utilization rate and lower rejection rate compared to the conventional reservation policy and backfilling technique. In addition, the policy shows better adaptation when the grid systems are in the presence of a high reservation rate.

  2. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  3. Advances in Physarum machines sensing and computing with Slime mould

    CERN Document Server

    2016-01-01

    This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model...

  4. Center for Advanced Energy Studies: Computer Assisted Virtual Environment (CAVE)

    Data.gov (United States)

    Federal Laboratory Consortium — The laboratory contains a four-walled 3D computer assisted virtual environment - or CAVE TM — that allows scientists and engineers to literally walk into their data...

  5. Building an Advanced Computing Environment with SAN Support

    Institute of Scientific and Technical Information of China (English)

    DajianYANG; MeiMA; 等

    2001-01-01

    The current computing environment of our Computing Center in IHEP uses a SAS (server Attached Storage)architecture,attaching all the storage devices directly to the machines.This kind of storage strategy can't meet the requirement of our BEPC II/BESⅢ project properly.Thus we design and implement a SAN-based computing environment,which consists of several computing farms,a three-level storage pool,a set of storage management software and a web-based data management system.The feature of ours system includes cross-platform data sharing,fast data access,high scalability,convenient storage management and data management.

  6. Advances in computational design and analysis of airbreathing propulsion systems

    Science.gov (United States)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  7. The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.

    2015-12-01

    The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be

  8. Advances in Computing and Information Technology : Proceedings of the Second International

    CERN Document Server

    Nagamalai, Dhinaharan; Chaki, Nabendu

    2012-01-01

    The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, ...

  9. The use of advanced computer simulation in structural design

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.J.; Mole, A. [Arup, San Fransisco, CA (United States); Arkinstall, M. [Arup, Sydney (Australia)

    2005-07-01

    The benefits that can be gained from the application of advanced numerical simulation in building design were discussed. A review of current practices in structural engineering was presented along with an illustration of a range of international project case studies. Structural engineers use analytical methods to evaluate both static and dynamic loads. Structural design is prescribed by a range of building codes, depending on location, building type and loading, but often, buildings do not fit well within the codes, particularly if one wants to take advantage of new technologies and developments in design that are not covered by the code. Advanced simulation refers to the use of mathematical modeling to complex problems to allow a wider consideration of building types and conditions that can be designed reliably using standard practices. Advanced simulation is used to address virtual testing and prototyping, verifying innovative design ideas, forensic engineering, and design optimization. The benefits of advanced simulation include enhanced creativity, improved performance, cost savings, risk management, sustainable design solutions, and better communication. The following 5 case studies illustrated the value gained by using advanced simulation as an integral part of the design process: the earthquake resistant Maison Hermes in Tokyo; the seismic resistant braces known as the Unbonded Brace for use in the United States; a simulation of the existing Disney Museum to evaluate its capacity to resist earthquakes; simulation of the MIT Brain and Cognitive Science Project to evaluate the effect of different foundation types on the vibration entering the building; and, the Beijing Aquatic Center whose design was streamlined by optimized structural analysis. It was suggested that industry should encourage the transfer of technology from other professions and should try to collaborate towards a global building model to construct buildings in a more efficient manner. 7 refs

  10. A Computationally Based Approach to Homogenizing Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J

    2011-02-27

    We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

  11. Workshop on Advancing Experimental Rock Deformation Research: Scientific and Technical Needs

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, Terry E. [Brown Univ., Providence, RI (United States)

    2016-05-31

    A workshop for the experimental rock deformation community was held in Boston on August 16-19, 2012, following some similar but smaller preliminary meetings. It was sponsored primarily by the NSF, with additional support from the DOE, the SCEC, and in-kind support by the USGS. A white paper summarizing the active discussions at the workshop and the outcomes is available (https://brownbox.brown.edu/download.php?hash=0b854d11). Those attending included practitioners of experimental rock deformation, i.e., those who conduct laboratory experiments, as well as users of the data provided by practitioners, namely field geologists, seismologists, geodynamicists, earthquake modelers, and scientists from the oil and gas industry. A considerable fraction of those attending were early-career scientists. The discussion initially focused on identifying the most important unsolved scientific problems in all of the research areas represented by the users that experiments would help solve. This initial session was followed by wide-ranging discussions of the most critical problems faced by practitioners, particularly by early-career scientists. The discussion also focused on the need for designing and building the next generation of experimental rock deformation equipment required to meet the identified scientific challenges. The workshop participants concluded that creation of an experimental rock deformation community organization is needed to address many of the scientific, technical, and demographic problems faced by this community. A decision was made to hold an organizational meeting of this new organization in San Francisco on December 1-2, 2012, just prior to the Fall Meeting of the AGU. The community has decided to name this new organization “Deformation Experimentation at the Frontier Of Rock and Mineral research” or DEFORM. As of May 1, 2013, 64 institutions have asked to be members of DEFORM.

  12. Advanced Simulation and Computing Co-Design Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ang, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoang, Thuc T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Rob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  13. Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohr, Bernd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schulz, Martin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasccci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunst, Holger [Dresden Univ. of Technology (Germany)

    2015-07-29

    The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.

  14. Computing support for advanced medical data analysis and imaging

    CERN Document Server

    Wiślicki, W; Białas, P; Czerwiński, E; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Moskal, P; Niedźwiecki, S; Pałka, M; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Zieliński, M; Zoń, N

    2014-01-01

    We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on the grid and cloud concepts for distributed processing is proposed and critically discussed.

  15. Proceedings: Workshop on Advanced Mathematics and Computer Science for Power Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-08-01

    EPRI's Office of Exploratory Research sponsors a series of workshops that explore how to apply recent advances in mathematics and computer science to the problems of the electric utility industry. In this workshop, participants identified research objectives that may significantly improve the mathematical methods and computer architecture currently used for power system analysis.

  16. Integrated Computer Aided Planning and Manufacture of Advanced Technology Jet Engines

    Directory of Open Access Journals (Sweden)

    B. K. Subhas

    1987-10-01

    Full Text Available This paper highlights an attempt at evolving a computer aided manufacturing system on a personal computer. A case study of an advanced technology jet engine component is included to illustrate various outputs from the system. The proposed system could be an alternate solution to sophisticated and expensive CAD/CAM workstations.

  17. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  18. The impact of advances in computer technology on particle transport Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Rathkopf, J.A. [Lawrence Livermore National Lab., CA (United States); Brown, F.B. [Knolls Atomic Power Lab., Schenectady, NY (United States)

    1992-01-21

    Advances in computer technology, including hardware, architectural, and software advances, have led to dramatic gains in computer performance over the past decade. We summarize these performance trends and discuss the extent to which particle transport Monte Carlo codes have been able to take advantage of these performance gains. We consider MIMD, SIMD, and parallel distributed computer configurations for particle transport Monte Carlo applications. Some specific experience with vectorization and parallelization of production Monte Carlo codes is included. The topic of parallel random number generation is discussed in some detail. Finally, some software issues that hinder the implementation of Monte Carlo methods on parallel processors are addressed.

  19. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  20. Towards Advanced Data Analysis by Combining Soft Computing and Statistics

    CERN Document Server

    Gil, María; Sousa, João; Verleysen, Michel

    2013-01-01

    Soft computing, as an engineering science, and statistics, as a classical branch of mathematics, emphasize different aspects of data analysis. Soft computing focuses on obtaining working solutions quickly, accepting approximations and unconventional approaches. Its strength lies in its flexibility to create models that suit the needs arising in applications. In addition, it emphasizes the need for intuitive and interpretable models, which are tolerant to imprecision and uncertainty. Statistics is more rigorous and focuses on establishing objective conclusions based on experimental data by analyzing the possible situations and their (relative) likelihood. It emphasizes the need for mathematical methods and tools to assess solutions and guarantee performance. Combining the two fields enhances the robustness and generalizability of data analysis methods, while preserving the flexibility to solve real-world problems efficiently and intuitively.

  1. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  2. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  3. Parallel computing in genomic research: advances and applications.

    Science.gov (United States)

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  4. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  5. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-03-24

    Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational

  6. Admixed human embryos and stem cells: legislative, ethical and scientific advances.

    Science.gov (United States)

    Bahadur, G; Iqbal, M; Malik, S; Sanyal, A; Wafa, R; Noble, R

    2008-01-01

    This paper examines the regulatory framework currently governing the creation of animal-human hybrids and chimera embryos in stem cell research, and some of the ethical implications of such research. It discusses the findings of a recent government select committee that considered the topic. It considers the debate around the precise definition of a human embryo, and whether such hybrids therefore fall within the remit of the Human Fertilisation and Embryology Authority. It outlines the advantages of such hybrids, in lessening the need for human egg donors, as well as the moral objections to species boundary violation. It calls for an examination of the scientific benefits of such research to inform debate on the question, and argues for the need to take genuine account of the public's views on this matter.

  7. New Sensors for the Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  8. ObjectMath – An Object-Oriented Language and Environment for Symbolic and Numerical Processing in Scientific Computing

    Directory of Open Access Journals (Sweden)

    Lars Viklund

    1995-01-01

    Full Text Available ObjectMath is a language for scientific computing that integrates object-oriented constructs with features for symbolic and numerical computation. Using ObjectMath, complex mathematical models may be implemented in a natural way. The ObjectMath programming environment provides tools for generating efficient numerical code from such models. Symbolic computation is used to rewrite and simplify equations before code is generated. One novelty of the ObjectMath approach is that it provides a comman language and an integrated environment for this kind of mixed symbolic/numerical computation. The motivation for this work is the current low-level state of the art in programming for scientific computing. Much numerical software is still being developed the traditional way in Fortran. This is especially true in application areas such as machine elements analysis, where complex nonlinear problems are the norm. We believe that tools like ObjectMath can increase productivity and quality, thus enabling users to solve problems that are too complex to handle with traditional tools.

  9. N286.7-99, A Canadian standard specifying software quality management system requirements for analytical, scientific, and design computer programs and its implementation at AECL

    Energy Technology Data Exchange (ETDEWEB)

    Abel, R. [R and M Abel Consultants Inc. (Canada)

    2000-07-01

    Analytical, scientific, and design computer programs (referred to in this paper as 'scientific computer programs') are developed for use in a large number of ways by the user-engineer to support and prove engineering calculations and assumptions. These computer programs are subject to frequent modifications inherent in their application and are often used for critical calculations and analysis relative to safety and functionality of equipment and systems. N286.7-99(4) was developed to establish appropriate quality management system requirements to deal with the development, modification, and application of scientific computer programs. N286.7-99 provides particular guidance regarding the treatment of legacy codes.

  10. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase......-shift keying with balanced direct detection, 10-Gb/s polarization division multiplexed (PDM) quadrature phase-shift keying, 40-Gb/s single-polarization 16-ary quadrature amplitude modulation (16QAM), and 80-Gb/s PDM-16QAM, with coherent intradyne detection, in conjunction with an optimized version...... of the optical shared memory supercomputer interconnect system switch fabric. In particular, we investigate the resilience of the aforementioned advanced modulation formats to the nonlinearities of semiconductor optical amplifiers, used as ON/OFF gates in the supercomputer optical switch fabric under study...

  11. Advanced Computational Methods for Thermal Radiative Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  12. Advanced wellbore thermal simulator GEOTEMP2. Appendix. Computer program listing

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.F.

    1982-02-01

    This appendix gives the program listing of GEOTEMP2 with comments and discussion to make the program organization more understandable. This appendix is divided into an introduction and four main blocks of code: main program, program initiation, wellbore flow, and wellbore heat transfer. The purpose and use of each subprogram is discussed and the program listing is given. Flowcharts will be included to clarify code organization when needed. GEOTEMP2 was written in FORTRAN IV. Efforts have been made to keep the programing as conventional as possible so that GEOTEMP2 will run without modification on most computers.

  13. Advances in Computational Social Science and Social Simulation

    OpenAIRE

    2014-01-01

    Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH". Conferència organitzada pel Laboratory for Socio­-Historical Dynamics Simulation (LSDS-­UAB) de la Universitat Autònoma de Barcelona. Readers will find results of recent research on computational social science and social simulation economics, management, so...

  14. Advanced and intelligent computations in diagnosis and control

    CERN Document Server

    2016-01-01

    This book is devoted to the demands of research and industrial centers for diagnostics, monitoring and decision making systems that result from the increasing complexity of automation and systems, the need to ensure the highest level of reliability and safety, and continuing research and the development of innovative approaches to fault diagnosis. The contributions combine domains of engineering knowledge for diagnosis, including detection, isolation, localization, identification, reconfiguration and fault-tolerant control. The book is divided into six parts:  (I) Fault Detection and Isolation; (II) Estimation and Identification; (III) Robust and Fault Tolerant Control; (IV) Industrial and Medical Diagnostics; (V) Artificial Intelligence; (VI) Expert and Computer Systems.

  15. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  16. Computational Efforts in Support of Advanced Coal Research

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-17

    The focus in this project was to employ first principles computational methods to study the underlying molecular elementary processes that govern hydrogen diffusion through Pd membranes as well as the elementary processes that govern the CO- and S-poisoning of these membranes. Our computational methodology integrated a multiscale hierarchical modeling approach, wherein a molecular understanding of the interactions between various species is gained from ab-initio quantum chemical Density Functional Theory (DFT) calculations, while a mesoscopic statistical mechanical model like Kinetic Monte Carlo is employed to predict the key macroscopic membrane properties such as permeability. The key developments are: (1) We have coupled systematically the ab initio calculations with Kinetic Monte Carlo (KMC) simulations to model hydrogen diffusion through the Pd based-membranes. The predicted tracer diffusivity of hydrogen atoms through the bulk of Pd lattice from KMC simulations are in excellent agreement with experiments. (2) The KMC simulations of dissociative adsorption of H{sub 2} over Pd(111) surface indicates that for thin membranes (less than 10{micro} thick), the diffusion of hydrogen from surface to the first subsurface layer is rate limiting. (3) Sulfur poisons the Pd surface by altering the electronic structure of the Pd atoms in the vicinity of the S atom. The KMC simulations indicate that increasing sulfur coverage drastically reduces the hydrogen coverage on the Pd surface and hence the driving force for diffusion through the membrane.

  17. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-01-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  18. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-09-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  19. Recent advances in computational intelligence in defense and security

    CERN Document Server

    Falcon, Rafael; Zincir-Heywood, Nur; Abbass, Hussein

    2016-01-01

    This volume is an initiative undertaken by the IEEE Computational Intelligence Society’s Task Force on Security, Surveillance and Defense to consolidate and disseminate the role of CI techniques in the design, development and deployment of security and defense solutions. Applications range from the detection of buried explosive hazards in a battlefield to the control of unmanned underwater vehicles, the delivery of superior video analytics for protecting critical infrastructures or the development of stronger intrusion detection systems and the design of military surveillance networks. Defense scientists, industry experts, academicians and practitioners alike will all benefit from the wide spectrum of successful applications compiled in this volume. Senior undergraduate or graduate students may also discover uncharted territory for their own research endeavors.

  20. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    Energy Technology Data Exchange (ETDEWEB)

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  1. Advances in x-ray computed microtomography at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  2. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  3. Experimental and computing strategies in advanced material characterization problems

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy gabriella.bolzon@polimi.it (Italy)

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  4. SCEE 2008 book of abstracts. The 7. international conference on scientific computing in electrical engineering (SCEE 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J.; Costa, L.R.J. (ed.)

    2008-09-15

    SCEE is an international conference series dedicated to Scientific Computing in Electrical Engineering. The 7th International Conference on Scientific Computing in Electrical Engineering (SCEE 2008) in Espoo, Finland, is organized by the Helsinki University of Technology (TKK); Faculty of Electronics, Communications and Automation (ECA); Department of Radio Science and Engineering (RAD); Circuit Theory Group. (SCEE 2008 web site: http://www.ct.tkk.fi/scee2008/). The aim of the SCEE 2008 conference is to bring together scientists from academia and industry with the goal of intensive discussions on modeling and numerical simulation of electronic circuits and of electromagnetic fields. The conference is mainly directed towards mathematicians and electrical engineers. The SCEE 2008 conference has the following four main topics: 1. Computational Electromagnetics (CE), 2. Circuit Simulation (CS), 3. Coupled Problems (CP), 4. Mathematical and Computational Methods (CM). The selection of abstracts in this book was carried out by the Program Committee; each abstract was reviewed by two or three reviewers. The authors of all accepted abstracts were invited to submit an extended full paper, which will be reviewed as well. The accepted full papers will later on be published in a separate post-conference book

  5. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  6. Optimizing Performance of Scientific Visualization Software to Support Frontier-Class Computations

    Science.gov (United States)

    2015-08-01

    assistance with accessing graphics processing unit ( GPU )- enabled nodes on the HPC utility server systems via the Portable Batch System (PBS) batch job... graphics processing unit ( GPU )-enabled and large memory compute nodes. The EnSight client will run on the first allocated node (which is the graphics ...Defense DR Clients distributed rendering clients GPU graphics processing unit HPC high-performance computing HPCMDC High-Performance Computing

  7. Strategies for casualty mitigation programs by using advanced tsunami computation

    Science.gov (United States)

    IMAI, K.; Imamura, F.

    2012-12-01

    1. Purpose of the study In this study, based on the scenario of great earthquakes along the Nankai trough, we aim on the estimation of the run up and high accuracy inundation process of tsunami in coastal areas including rivers. Here, using a practical method of tsunami analytical model, and taking into account characteristics of detail topography, land use and climate change in a realistic present and expected future environment, we examined the run up and tsunami inundation process. Using these results we estimated the damage due to tsunami and obtained information for the mitigation of human casualties. Considering the time series from the occurrence of the earthquake and the risk of tsunami damage, in order to mitigate casualties we provide contents of disaster risk information displayed in a tsunami hazard and risk map. 2. Creating a tsunami hazard and risk map From the analytical and practical tsunami model (a long wave approximated model) and the high resolution topography (5 m) including detailed data of shoreline, rivers, building and houses, we present a advanced analysis of tsunami inundation considering the land use. Based on the results of tsunami inundation and its analysis; it is possible to draw a tsunami hazard and risk map with information of human casualty, building damage estimation, drift of vehicles, etc. 3. Contents of disaster prevention information To improve the hazard, risk and evacuation information distribution, it is necessary to follow three steps. (1) Provide basic information such as tsunami attack info, areas and routes for evacuation and location of tsunami evacuation facilities. (2) Provide as additional information the time when inundation starts, the actual results of inundation, location of facilities with hazard materials, presence or absence of public facilities and areas underground that required evacuation. (3) Provide information to support disaster response such as infrastructure and traffic network damage prediction

  8. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  9. Proceedings: Workshop on advanced mathematics and computer science for power systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esselman, W.H.; Iveson, R.H. (Electric Power Research Inst., Palo Alto, CA (United States))

    1991-08-01

    The Mathematics and Computer Workshop on Power System Analysis was held February 21--22, 1989, in Palo Alto, California. The workshop was the first in a series sponsored by EPRI's Office of Exploratory Research as part of its effort to develop ways in which recent advances in mathematics and computer science can be applied to the problems of the electric utility industry. The purpose of this workshop was to identify research objectives in the field of advanced computational algorithms needed for the application of advanced parallel processing architecture to problems of power system control and operation. Approximately 35 participants heard six presentations on power flow problems, transient stability, power system control, electromagnetic transients, user-machine interfaces, and database management. In the discussions that followed, participants identified five areas warranting further investigation: system load flow analysis, transient power and voltage analysis, structural instability and bifurcation, control systems design, and proximity to instability. 63 refs.

  10. Crossdisciplinary fundamental research--the seed for scientific advance and technological innovation.

    Science.gov (United States)

    Kroto, Harold

    2011-12-28

    As it was earlier in the 1980's, so it is now, fundamental science research is under threat as decisions are made on science funding by people who do not do fundamental research, seem congenitally incapable of understanding what it is and furthermore in the face of countless examples seem blind to how important it has been to the technologies that govern our modern life and will be to the future technologies that we desperately need to develop to survive. In this article some general observations are made on how the fascination for what happens in space and stars was the key trigger that gave birth to Science itself and a particular case is outlined which indicates that this same fascination is still the catalyst of some fundamental breakthroughs today. This article also outlines an archetypal example of the way major breakthroughs are often made by the synergy that comes from cross-disciplinary research in a way which is totally surprising. In this case it started from a curiosity about the quantum mechanical description of molecular dynamics and involved pioneering advances in synthetic organic chemistry which led to the suprising discovery that some exotic carbon molecules were abundant in space and stars. These results initiated an experiment using a new technology that represented a major breakthrough in cluster science. The upshot was totally unpredictable, the birth of a whole new field of Chemistry as well as a paradigm shift in major areas of Nanoscience and Nanotechnology.

  11. CART V: recent advancements in computer-aided camouflage assessment

    Science.gov (United States)

    Müller, Thomas; Müller, Markus

    2011-05-01

    In order to facilitate systematic, computer aided improvements of camouflage and concealment assessment methods, the software system CART (Camouflage Assessment in Real-Time) was built up for the camouflage assessment of objects in multispectral image sequences (see contributions to SPIE 2007-2010 [1], [2], [3], [4]). It comprises a semi-automatic marking of target objects (ground truth generation) including their propagation over the image sequence and the evaluation via user-defined feature extractors as well as methods to assess the object's movement conspicuity. In this fifth part in an annual series at the SPIE conference in Orlando, this paper presents the enhancements over the recent year and addresses the camouflage assessment of static and moving objects in multispectral image data that can show noise or image artefacts. The presented methods fathom the correlations between image processing and camouflage assessment. A novel algorithm is presented based on template matching to assess the structural inconspicuity of an object objectively and quantitatively. The results can easily be combined with an MTI (moving target indication) based movement conspicuity assessment function in order to explore the influence of object movement to a camouflage effect in different environments. As the results show, the presented methods contribute to a significant benefit in the field of camouflage assessment.

  12. Block sparse Cholesky algorithms on advanced uniprocessor computers

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.G.; Peyton, B.W.

    1991-12-01

    As with many other linear algebra algorithms, devising a portable implementation of sparse Cholesky factorization that performs well on the broad range of computer architectures currently available is a formidable challenge. Even after limiting our attention to machines with only one processor, as we have done in this report, there are still several interesting issues to consider. For dense matrices, it is well known that block factorization algorithms are the best means of achieving this goal. We take this approach for sparse factorization as well. This paper has two primary goals. First, we examine two sparse Cholesky factorization algorithms, the multifrontal method and a blocked left-looking sparse Cholesky method, in a systematic and consistent fashion, both to illustrate the strengths of the blocking techniques in general and to obtain a fair evaluation of the two approaches. Second, we assess the impact of various implementation techniques on time and storage efficiency, paying particularly close attention to the work-storage requirement of the two methods and their variants.

  13. Advances in computed radiography systems and their physical imaging characteristics.

    Science.gov (United States)

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  14. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    Science.gov (United States)

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  15. How Novel Algorithms and Access to High Performance Computing Platforms are Enabling Scientific Progress in Atomic and Molecular Physics

    Science.gov (United States)

    Schneider, Barry I.

    2016-10-01

    Over the past 40 years there has been remarkable progress in the quantitative treatment of complex many-body problems in atomic and molecular physics (AMP). This has happened as a consequence of the development of new and powerful numerical methods, translating these algorithms into practical software and the associated evolution of powerful computing platforms ranging from desktops to high performance computational instruments capable of massively parallel computation. We are taking the opportunity afforded by this CCP2015 to review computational progress in scattering theory and the interaction of strong electromagnetic fields with atomic and molecular systems from the early 1960’s until the present time to show how these advances have revealed a remarkable array of interesting and in many cases unexpected features. The article is by no means complete and certainly reflects the views and experiences of the author.

  16. Proceedings: 1989 conference on advanced computer technology for the power industry

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, B. (ed.)

    1990-07-01

    An EPRI conference to address advanced computer technology was hosted by Arizona Public Service in Scottsdale, Arizona, December 4--6, 1989. Participants represented US and foreign utilities, major electric and computer industry vendors, R D contractors, and consulting firms. These Proceedings contain the text of the technical presentations and summaries of the panel discussions. The conference objectives were: to asses modern computer technologies and how they will effect utility operations; to share US and foreign utility experiences in developing computer-based technical products; and to discuss research conducted by EPRI in advanced computer technology on behalf of its utility members. Technical presentations addressed a broad range of computer-related topics: Computer-Based Training, Engineering Workstations, Hypermedia and Other Advanced User Interfaces, Networks and Communications, Expert Systems and Other Decision-Support Methodologies, Intelligent Database Management, Supercomputing Architectures and Applications, Real-Time Data Processing, Computerized Technology and Information Transfer, and Neural Networks and Other Emerging Technologies. In addition, two panel sessions were conducted to provide a forum for utilities to discuss past and future directions of EPRI software, and the future role of engineering workstations in utilities. The results of these two panels are summarized in this paper.

  17. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  18. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  19. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2004-10-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  20. Creating science-driven computer architecture: A new path to scientific leadership

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William; Stevens, Rick; Simon, Horst; Kramer, William; Bailey, David; Johnston, William; Catlett, Charlie; Lusk, Rusty; Morgan, Thomas; Meza, Juan; Banda, Michael; Leighton, James; Hules, John

    2002-10-14

    This document proposes a multi-site strategy for creating a new class of computing capability for the U.S. by undertaking the research and development necessary to build supercomputers optimized for science in partnership with the American computer industry.

  1. Advances and perspectives in lung cancer imaging using multidetector row computed tomography.

    Science.gov (United States)

    Coche, Emmanuel

    2012-10-01

    The introduction of multidetector row computed tomography (CT) into clinical practice has revolutionized many aspects of the clinical work-up. Lung cancer imaging has benefited from various breakthroughs in computing technology, with advances in the field of lung cancer detection, tissue characterization, lung cancer staging and response to therapy. Our paper discusses the problems of radiation, image visualization and CT examination comparison. It also reviews the most significant advances in lung cancer imaging and highlights the emerging clinical applications that use state of the art CT technology in the field of lung cancer diagnosis and follow-up.

  2. From computer-aided to intelligent machining:\\ud Recent advances in computer numerical control machining research

    OpenAIRE

    Gao, James; Lee, Chen-Han; Li, Yingguagan

    2015-01-01

    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and know...

  3. Advanced entry guidance algorithm with landing footprint computation

    Science.gov (United States)

    Leavitt, James Aaron

    -determined angle of attack profile. The method is also capable of producing orbital footprints using an automatically-generated set of angle of attack profiles of varying range, with the lowest profile designed for near-maximum range in the absence of an active heat load constraint. The accuracy of the footprint method is demonstrated by direct comparison with footprints computed independently by an optimization program.

  4. Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference

    CERN Document Server

    Takizawa, Kenji

    2016-01-01

    This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...

  5. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  6. NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals

    CERN Document Server

    Zannoni, Claudio

    2000-01-01

    Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.

  7. Recent advances in operations research in computational biology, bioinformatics and medicine

    OpenAIRE

    Türkay, Metin; Felici, Giovanni; Szachniuk, Marta; Lukasiak, Piotr

    2014-01-01

    The EURO Working Group on Operations Research in Computational Biology, Bioinformatics and Medicine held its fourth conference in Poznan-Biedrusko, Poland, June 26-28, 2014. The editorial board of RAIRO-OR invited submissions of papers to a special issue on Recent Advances in Operations Research in Computational Biology, Bioinformatics and Medicine. This special issue includes nine papers that were selected among forty presentations and included in this special issue after two rounds of revie...

  8. Parallel scientific computing theory, algorithms, and applications of mesh based and meshless methods

    CERN Document Server

    Trobec, Roman

    2015-01-01

    This book is concentrated on the synergy between computer science and numerical analysis. It is written to provide a firm understanding of the described approaches to computer scientists, engineers or other experts who have to solve real problems. The meshless solution approach is described in more detail, with a description of the required algorithms and the methods that are needed for the design of an efficient computer program. Most of the details are demonstrated on solutions of practical problems, from basic to more complicated ones. This book will be a useful tool for any reader interes

  9. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  10. Scientific computation of conservation laws in the calculus of variations and optimal control

    OpenAIRE

    2005-01-01

    We present analytic computational tools that permit us to identify, in an automatic way, conservation laws in optimal control. The central result we use is the famous Noether’s theorem, a classical theory developed by Emmy Noether in 1918, in the context of the calculus of variations and mathematical physics, and which was extended recently to the more general context of optimal control. We show how a Computer Algebra System can be very helpful in finding the symmetries and cor...

  11. Recent Advances in Computational Simulation of Macro-, Meso-, and Micro-Scale Biomimetics Related Fluid Flow Problems

    Institute of Scientific and Technical Information of China (English)

    Y. Y. Yan

    2007-01-01

    Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.

  12. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  13. Computers-for-edu: An Advanced Business Application Programming (ABAP) Teaching Case

    Science.gov (United States)

    Boyle, Todd A.

    2007-01-01

    The "Computers-for-edu" case is designed to provide students with hands-on exposure to creating Advanced Business Application Programming (ABAP) reports and dialogue programs, as well as navigating various mySAP Enterprise Resource Planning (ERP) transactions needed by ABAP developers. The case requires students to apply a wide variety…

  14. 78 FR 59927 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Science.gov (United States)

    2013-09-30

    ... results and lessons learned from the prototypes/case studies for use of molecular, computational, and... advances in biology can inform risk assessment; (2) identify which of the information resources and... Internet. If you submit an electronic comment, EPA recommends that you include your name and other...

  15. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex micr

  16. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    Science.gov (United States)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  17. A first attempt to bring computational biology into advanced high school biology classrooms.

    Directory of Open Access Journals (Sweden)

    Suzanne Renick Gallagher

    2011-10-01

    Full Text Available Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  18. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  19. High performance computing and communications: Advancing the frontiers of information technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

  20. Science gateways for distributed computing infrastructures development framework and exploitation by scientific user communities

    CERN Document Server

    Kacsuk, Péter

    2014-01-01

    The book describes the science gateway building technology developed in the SCI-BUS European project and its adoption and customization method, by which user communities, such as biologists, chemists, and astrophysicists, can build customized, domain-specific science gateways. Many aspects of the core technology are explained in detail, including its workflow capability, job submission mechanism to various grids and clouds, and its data transfer mechanisms among several distributed infrastructures. The book will be useful for scientific researchers and IT professionals engaged in the develop

  1. JavaTech, an Introduction to Scientific and Technical Computing with Java

    Science.gov (United States)

    Lindsey, Clark S.; Tolliver, Johnny S.; Lindblad, Thomas

    2010-06-01

    Preface; Acknowledgements; Part I. Introduction to Java: 1. Introduction; 2. Language basics; 3. Classes and objects in Java; 4. More about objects in Java; 5. Organizing Java files and other practicalities; 6. Java graphics; 7. Graphical user interfaces; 8. Threads; 9. Java input/output; 10. Java utilities; 11. Image handling and processing; 12. More techniques and tips; Part II. Java and the Network: 13. Java networking basics; 14. A Java web server; 15. Client/server with sockets; 16. Distributed computing; 17. Distributed computing - the client; 18. Java remote method invocation (RMI); 19. CORBA; 20. Distributed computing - putting it all together; 21. Introduction to web services and XML; Part III. Out of the Sandbox: 22. The Java native interface (JNI); 23. Accessing the platform; 24. Embedded Java; Appendices; Index.

  2. The Impact of Misspelled Words on Automated Computer Scoring: A Case Study of Scientific Explanations

    Science.gov (United States)

    Ha, Minsu; Nehm, Ross H.

    2016-06-01

    Automated computerized scoring systems (ACSSs) are being increasingly used to analyze text in many educational settings. Nevertheless, the impact of misspelled words (MSW) on scoring accuracy remains to be investigated in many domains, particularly jargon-rich disciplines such as the life sciences. Empirical studies confirm that MSW are a pervasive feature of human-generated text and that despite improvements, spell-check and auto-replace programs continue to be characterized by significant errors. Our study explored four research questions relating to MSW and text-based computer assessments: (1) Do English language learners (ELLs) produce equivalent magnitudes and types of spelling errors as non-ELLs? (2) To what degree do MSW impact concept-specific computer scoring rules? (3) What impact do MSW have on computer scoring accuracy? and (4) Are MSW more likely to impact false-positive or false-negative feedback to students? We found that although ELLs produced twice as many MSW as non-ELLs, MSW were relatively uncommon in our corpora. The MSW in the corpora were found to be important features of the computer scoring models. Although MSW did not significantly or meaningfully impact computer scoring efficacy across nine different computer scoring models, MSW had a greater impact on the scoring algorithms for naïve ideas than key concepts. Linguistic and concept redundancy in student responses explains the weak connection between MSW and scoring accuracy. Lastly, we found that MSW tend to have a greater impact on false-positive feedback. We discuss the implications of these findings for the development of next-generation science assessments.

  3. Implementing Scientific Simulation Codes Highly Tailored for Vector Architectures Using Custom Configurable Computing Machines

    Science.gov (United States)

    Rutishauser, David

    2006-01-01

    The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters

  4. Distributed management of scientific projects - An analysis of two computer-conferencing experiments at NASA

    Science.gov (United States)

    Vallee, J.; Gibbs, B.

    1976-01-01

    Between August 1975 and March 1976, two NASA projects with geographically separated participants used a computer-conferencing system developed by the Institute for the Future for portions of their work. Monthly usage statistics for the system were collected in order to examine the group and individual participation figures for all conferences. The conference transcripts were analysed to derive observations about the use of the medium. In addition to the results of these analyses, the attitudes of users and the major components of the costs of computer conferencing are discussed.

  5. FY05-FY06 Advanced Simulation and Computing Implementation Plan, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baron, A L

    2004-07-19

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapon design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile life extension programs and the resolution of significant finding investigations (SFIs). This requires a balanced system of technical staff, hardware, simulation software, and computer science solutions.

  6. Teaching scientific principles through a computer-based, design-centered learning environment

    Science.gov (United States)

    Wolfe, Michael Brian

    Research on science instruction indicates that the traditional science classroom is not always effective in improving students' scientific understanding. Physics courses, in particular, do not promote the ability to apply scientific principles for many reasons, based on their focus on procedural problem-solving and lab exercises. In this dissertation, I propose the Designing-to-Learn Architecture (DTLA), a design-centered goal-based scenario (GBS) architecture, theoretically grounded in the literature on design-centered learning environments, goal-based scenarios, intelligent tutoring systems and simulations. The DTLA offers an alternative approach to addressing the issues encountered in the traditional science classroom. The architecture consists of an artifact with associated design goals; components with component options; a simulation; a reference database; and guided tutorials. I describe the design of Goin' Up?, the prototype DTL application, serving as the basis for evaluating the effectiveness of the DTLA. I present results of interview and testing protocols from the formative evaluation of Goin' Up?, suggesting that learning outcomes, though not statistically significant, could be improved through DTLA enhancements informed by usage patterns in software sessions. I conclude with an analysis of the results and suggestions for improvements to the DTLA, including additional components to address reflection, provide support for novice designers, and offer tutorial guidance on the analysis of the artifact.

  7. The Python interpreter as a framework for integrating scientific computing software-components

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The focus of the Molecular Simulation Laboratory is to model molecular
    interactions. In particular, we are working on automated docking and molecular visualization. Building and simulating complex molecular systems requires the tight interoperation of a variety of software tools originating from various scientific disciplines and usually developed independently of each other. Over the last ten years we have evolved a strategy for addressing the formidable software engineering problem of
    integrating such heterogeneous software tools. The basic idea is that the Python interpreter serves as the integration framework and provides a powerful and flexible glue for rapidly prototyping applications from reusable software components (i.e. Python packages. We no longer think in terms of programs, but rather in terms of packages which can be loaded dynamically into the interpreter when needed, and instantly extend our framework (i.e. the Python interpreter with new functionality. We have written more than 30 packages (>2500 classes providing support for applications ranging from scientific visualization and visual programming to molecular simulations and virtual reality. Moreover, some of our components have been reused successfully by otherlaboratories for their own research. Applications created from our software components have been distributed to over 15000 users around the world. In this paper we describe our approach and its various applications, discuss the reasons that make this approach so successful, and present lessons learns and pitfalls to avoid in order to maximize the reusability and interoperability of software components.

  8. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  9. 1st International Conference on Computational Advancement in Communication Circuits and Systems

    CERN Document Server

    Dalapati, Goutam; Banerjee, P; Mallick, Amiya; Mukherjee, Moumita

    2015-01-01

    This book comprises the proceedings of 1st International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2014) organized by Narula Institute of Technology under the patronage of JIS group, affiliated to West Bengal University of Technology. The conference was supported by Technical Education Quality Improvement Program (TEQIP), New Delhi, India and had technical collaboration with IEEE Kolkata Section, along with publication partner by Springer. The book contains 62 refereed papers that aim to highlight new theoretical and experimental findings in the field of Electronics and communication engineering including interdisciplinary fields like Advanced Computing, Pattern Recognition and Analysis, Signal and Image Processing. The proceedings cover the principles, techniques and applications in microwave & devices, communication & networking, signal & image processing, and computations & mathematics & control. The proceedings reflect the conference’s emp...

  10. SciCADE 95: International conference on scientific computation and differential equations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report consists of abstracts from the conference. Topics include algorithms, computer codes, and numerical solutions for differential equations. Linear and nonlinear as well as boundary-value and initial-value problems are covered. Various applications of these problems are also included.

  11. User-computer interfaces for scientific communication: the concept of habitable interfaces

    NARCIS (Netherlands)

    Malchanau, Andrei

    2004-01-01

    Developments in computer technology have changed the way we communicate in general and in science in particular. These developments enable the increase in the effectiveness and efficiency of the communication. The actual increase will depend also on the fit between technology and people who are comm

  12. A Dry EEG-System for Scientific Research and Brain–Computer Interfaces

    NARCIS (Netherlands)

    Zander, Thorsten Oliver; Lehne, Moritz; Ihme, Klas; Jatzev, Sabine; Correia, Joao; Kothe, Christian; Picht, Bernd; Nijboer, Femke

    2011-01-01

    Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG) still forms the method of choice in a wide variety of clinical and research applications. In the context of brain–computer interfacing (BCI), EEG recently has become a tool to enhance human–machine int

  13. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  14. The Transition and Adoption to Modern Programming Concepts for Scientific Computing in Fortran

    Directory of Open Access Journals (Sweden)

    Charles D. Norton

    2007-01-01

    Full Text Available This paper describes our experiences in the early exploration of modern concepts introduced in Fortran90 for large-scale scientific programming. We review our early work in expressing object-oriented concepts based on the new Fortran90 constructs – foreign to most programmers at the time – our experimental work in applying them to various applications, the impact on the WG5/J3 standards committees to consider formalizing object-oriented constructs for later versions of Fortran, and work in exploring how other modern programming techniques such as Design Patterns can and have impacted our software development. Applications will be drawn from plasma particle simulation and finite element adaptive mesh refinement for solid earth crustal deformation modeling.

  15. Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects

    Directory of Open Access Journals (Sweden)

    Eduardo Moraes Arraut

    2013-01-01

    Full Text Available In order to create the necessary scientific knowledge for Brazil to understand and deal with the causes and consequences of climate change, the federal government created, in 2007, the Brazilian Network on Global Climate Change Research (Rede CLIMA. Rede CLIMA needs to discuss issues, pose questions, develop methodologies and technological products, find answers, and suggest solutions that are relevant to society. In its first phase, it focused mainly on providing infrastructure and consolidating the sub-networks. Several scientific advances were also achieved, a selection of which are presented in sections focusing on climate modelling, agriculture, energy and water, human development and mobility, biodiversity and ecosystem services, and human health. Now, in its second phase, the objective is to straighten collaboration between sub-networks by means of interdisciplinary projects. It is argued that in order to succeed the Network needs to foster research whose merit is measured not exclusively by academic production.A fim de criar o conhecimento científico necessário para o Brasil entender e lidar com as causas e consequências das mudanças climáticas, o governo federal criou, em 2007, a Rede Brasileira de Pesquisa em Mudanças Climáticas Globais (Rede CLIMA. A Rede CLIMA precisa discutir questões, fazer perguntas, desenvolver metodologias e produtos tecnológicos, encontrar respostas e sugerir soluções que sejam relevantes para a sociedade. Em sua primeira fase, a Rede concentrou-se em fornecer infraestrutura e consolidar suas sub-redes. Houve também vários avanços científicos, alguns dos quais são apresentados em seções focadas em modelagem climática, agricultura, energia e água, desenvolvimento e mobilidade humana, biodiversidade e serviços dos ecossistemas, e saúde humana. Agora, em sua segunda fase, o objetivo é estabelecer colaborações entre sub-redes por meio de projetos interdisciplinares. Argumenta-se que, para

  16. From curve fitting to machine learning an illustrative guide to scientific data analysis and computational intelligence

    CERN Document Server

    Zielesny, Achim

    2016-01-01

    This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence. All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with M...

  17. Eighth SIAM conference on parallel processing for scientific computing: Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This SIAM conference is the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Themes for this conference were: combinatorial optimization; data-parallel languages; large-scale parallel applications; message-passing; molecular modeling; parallel I/O; parallel libraries; parallel software tools; parallel compilers; particle simulations; problem-solving environments; and sparse matrix computations.

  18. New modalities for scientific engagement in Africa - the case for computational physics

    Science.gov (United States)

    Chetty, N.

    2011-09-01

    Computational physics as a mode of studying the mathematical and physical sciences has grown world-wide over the past two decades, but this trend is yet to fully develop in Africa. The essential ingredients are there for this to happen: increasing internet connectivity, cheaper computing resources and the widespread availability of open source and freeware. The missing ingredients centre on intellectual isolation and the low levels of quality international collaborations. Low level of funding for research from local governments remains a critical issue. This paper gives a motivation for the importance of developing computational physics at the university undergraduate level, graduate level and research levels and gives suggestions on how this may be achieved within the African context. It is argued that students develop a more intuitive feel for the mathematical and physical sciences, that they learn useful, transferable skills that make our graduates well-sought after in the industrial and commercial environments, and that such graduates are better prepared to tackle research problems at the masters and doctoral levels. At the research level, the case of the African School Series on Electronic Structure Methods and Applications (ASESMA) is presented as a new multi-national modality for engaging with African scientists. There are many novel aspects to this School series, which are discussed.

  19. Turning text into research networks: information retrieval and computational ontologies in the creation of scientific databases.

    Directory of Open Access Journals (Sweden)

    Flávio Ceci

    Full Text Available BACKGROUND: Web-based, free-text documents on science and technology have been increasing growing on the web. However, most of these documents are not immediately processable by computers slowing down the acquisition of useful information. Computational ontologies might represent a possible solution by enabling semantically machine readable data sets. But, the process of ontology creation, instantiation and maintenance is still based on manual methodologies and thus time and cost intensive. METHOD: We focused on a large corpus containing information on researchers, research fields, and institutions. We based our strategy on traditional entity recognition, social computing and correlation. We devised a semi automatic approach for the recognition, correlation and extraction of named entities and relations from textual documents which are then used to create, instantiate, and maintain an ontology. RESULTS: We present a prototype demonstrating the applicability of the proposed strategy, along with a case study describing how direct and indirect relations can be extracted from academic and professional activities registered in a database of curriculum vitae in free-text format. We present evidence that this system can identify entities to assist in the process of knowledge extraction and representation to support ontology maintenance. We also demonstrate the extraction of relationships among ontology classes and their instances. CONCLUSION: We have demonstrated that our system can be used for the conversion of research information in free text format into database with a semantic structure. Future studies should test this system using the growing number of free-text information available at the institutional and national levels.

  20. Continuum Mechanics using Mathematica® Fundamentals, Applications and Scientific Computing

    CERN Document Server

    Romano, Antonio; Marasco, Addolorata

    2006-01-01

    This book's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. The book covers essential principles and fundamental applications, and provides a solid basis for a deeper study of more challenging and specialized problems related to elasticity, fluid mechanics, plasticity, materials with memory, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes. Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and two appendices * Recent developments highlighted through coverage of more significant applications to areas such as porous media, electromagnetic fields, and phase transitions Continuum Mechanics using Mathematica® is aimed at advanced undergraduates, graduate students, and researchers in applied mathematics, mathematical physics, and engineering. It may ser...

  1. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX

    Directory of Open Access Journals (Sweden)

    Jose-Ignacio Agulleiro

    2015-06-01

    Full Text Available Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX for 3D reconstruction (Agulleiro and Fernandez, 2015 [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  2. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    Science.gov (United States)

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  3. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    Science.gov (United States)

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  4. Development of high performance scientific components for interoperability of computing packages

    Energy Technology Data Exchange (ETDEWEB)

    Gulabani, Teena Pratap [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  5. The digital computer

    CERN Document Server

    Parton, K C

    2014-01-01

    The Digital Computer focuses on the principles, methodologies, and applications of the digital computer. The publication takes a look at the basic concepts involved in using a digital computer, simple autocode examples, and examples of working advanced design programs. Discussions focus on transformer design synthesis program, machine design analysis program, solution of standard quadratic equations, harmonic analysis, elementary wage calculation, and scientific calculations. The manuscript then examines commercial and automatic programming, how computers work, and the components of a computer

  6. An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games

    Science.gov (United States)

    Lara-Cabrera, R.; Cotta, C.; Fernández-Leiva, A. J.

    2014-02-01

    Games constitute a research domain that is attracting the interest of scientists from numerous disciplines. This is particularly true from the perspective of computational intelligence. In order to examine the growing importance of this area in the gaming domain, we present an analysis of the scientific collaboration network of researchers working on computational intelligence in games (CIG). This network has been constructed from bibliographical data obtained from the Digital Bibliography & Library Project (DBLP). We have analyzed from a temporal perspective several properties of the CIG network at the macroscopic, mesoscopic and microscopic levels, studying the large-scale structure, the growth mechanics, and collaboration patterns among other features. Overall, computational intelligence in games exhibits similarities with other collaboration networks such as for example a log-normal degree distribution and sub-linear preferential attachment for new authors. It also has distinctive features, e.g. the number of papers co-authored is exponentially distributed, the internal preferential attachment (new collaborations among existing authors) is linear, and fidelity rates (measured as the relative preference for publishing with previous collaborators) grow super-linearly. The macroscopic and mesoscopic evolution of the network indicates the field is very active and vibrant, but it is still at an early developmental stage. We have also analyzed communities and central nodes and how these are reflected in research topics, thus identifying active research subareas.

  7. Recovery Act: Advanced Interaction, Computation, and Visualization Tools for Sustainable Building Design

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Donald P. [Cornell Univ., Ithaca, NY (United States); Hencey, Brandon M. [Cornell Univ., Ithaca, NY (United States)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  8. Continued rise of the cloud advances and trends in cloud computing

    CERN Document Server

    Mahmood, Zaigham

    2014-01-01

    Cloud computing is no-longer a novel paradigm, but instead an increasingly robust and established technology, yet new developments continue to emerge in this area. Continued Rise of the Cloud: Advances and Trends in Cloud Computing captures the state of the art in cloud technologies, infrastructures, and service delivery and deployment models. The book provides guidance and case studies on the development of cloud-based services and infrastructures from an international selection of expert researchers and practitioners. A careful analysis is provided of relevant theoretical frameworks, prac

  9. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  10. The role of scientific middleware in the future of HEP computing

    CERN Document Server

    CERN. Geneva

    2004-01-01

    In the 18 months since the CHEP03 meeting in San Diego, the HEP community deployed the current generation of grid technologies in a veracity of settings. Legacy software as well as recently developed applications was interfaced with middleware tools to deliver end-to-end capabilities to HEP experiments in different stages of their life cycles. In a series of data challenges, reprocessing efforts and data distribution activities the community demonstrated the benefits distributed computing can offer and the power a range of middleware tools can deliver. After running millions of jobs, moving tera-bytes of data, creating millions of files and resolving hundreds of bug reports, the community also exposed the limitations of these middleware tools. As we move to the next level of challenges, requirements and expectations, we must also examine the methods and procedures we employ to develop, implement and maintain our common suite of middleware tools. The talk will focus on the role common middleware ...

  11. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    Science.gov (United States)

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  12. Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing (Dagstuhl Perspectives Workshop 14022)

    OpenAIRE

    Bremer, Peer-Timo; Mohr, Bernd; Pascucci, Valerio; Schulz, Martin

    2014-01-01

    In the first week of January 2014 Dagstuhl hosted a Perspectives Workshop on "Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing". The event brought together two previously separate communities - from Visualization and HPC Performance Analysis - to discuss a long term joined research agenda. The goal was to identify and address the challenges in using visual representations to understand and optimize the performance of extreme-scale applications running...

  13. Promoting Scientific Spirit to Cultivate Scientific Culture

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Scientific culture is an advanced culture that is based on scientific knowledge and supported by the scientific method, with scientific thinking as its core and scientific spirit as its soul. During the process of modernization, it has profound impacts on human society in terms of values, ethics, mode of thinking, lifestyle and code of conduct, offering human civilization an important ideological source, physical foundation, technological tool and effective carrier.

  14. FluxSuite: a New Scientific Tool for Advanced Network Management and Cross-Sharing of Next-Generation Flux Stations

    Science.gov (United States)

    Burba, G. G.; Johnson, D.; Velgersdyk, M.; Beaty, K.; Forgione, A.; Begashaw, I.; Allyn, D.

    2015-12-01

    Significant increases in data generation and computing power in recent years have greatly improved spatial and temporal flux data coverage on multiple scales, from a single station to continental flux networks. At the same time, operating budgets for flux teams and stations infrastructure are getting ever more difficult to acquire and sustain. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are needed to effectively and efficiently handle the entire process. This would help maximize time dedicated to answering research questions, and minimize time and expenses spent on data processing, quality control and station management. Cross-sharing the stations with external institutions may also help leverage available funding, increase scientific collaboration, and promote data analyses and publications. FluxSuite, a new advanced tool combining hardware, software and web-service, was developed to address these specific demands. It automates key stages of flux workflow, minimizes day-to-day site management, and modernizes the handling of data flows: Each next-generation station measures all parameters needed for flux computations Field microcomputer calculates final fully-corrected flux rates in real time, including computation-intensive Fourier transforms, spectra, co-spectra, multiple rotations, stationarity, footprint, etc. Final fluxes, radiation, weather and soil data are merged into a single quality-controlled file Multiple flux stations are linked into an automated time-synchronized network Flux network manager, or PI, can see all stations in real time, including fluxes, supporting data, automated reports, and email alerts PI can assign rights, allow or restrict access to stations and data: selected stations can be shared via rights-managed access internally or with external institutions Researchers without stations could form "virtual networks" for specific projects by collaborating with PIs from

  15. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  16. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    Science.gov (United States)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to

  17. A Computational Unification of Scientific Law:. Spelling out a Universal Semantics for Physical Reality

    Science.gov (United States)

    Marcer, Peter J.; Rowlands, Peter

    2013-09-01

    The principal criteria Cn (n = 1 to 23) and grammatical production rules are set out of a universal computational rewrite language spelling out a semantic description of an emergent, self-organizing architecture for the cosmos. These language productions already predicate: (1) Einstein's conservation law of energy, momentum and mass and, subsequently, (2) with respect to gauge invariant relativistic space time (both Lorentz special & Einstein general); (3) Standard Model elementary particle physics; (4) the periodic table of the elements & chemical valence; and (5) the molecular biological basis of the DNA / RNA genetic code; so enabling the Cybernetic Machine specialist Groups Mission Statement premise;** (6) that natural semantic language thinking at the higher level of the self-organized emergent chemical molecular complexity of the human brain (only surpassed by that of the cosmos itself!) would be realized (7) by this same universal semantic language via (8) an architecture of a conscious human brain/mind and self which, it predicates consists of its neural / glia and microtubule substrates respectively, so as to endow it with; (9) the intelligent semantic capability to be able to specify, symbolize, spell out and understand the cosmos that conceived it; and (10) provide a quantum physical explanation of consciousness and of how (11) the dichotomy between first person subjectivity and third person objectivity or `hard problem' is resolved.

  18. A dry EEG-system for scientific research and brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Thorsten Oliver Zander

    2011-05-01

    Full Text Available Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG still forms the method of choice in a wide variety of clinical and research applications. In the context of Brain-Computer Interfacing (BCI, EEG recently has become a tool to enhance Human-Machine Interaction (HMI. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, Event-Related Potentials (ERP were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  19. A Dry EEG-System for Scientific Research and Brain–Computer Interfaces

    Science.gov (United States)

    Zander, Thorsten Oliver; Lehne, Moritz; Ihme, Klas; Jatzev, Sabine; Correia, Joao; Kothe, Christian; Picht, Bernd; Nijboer, Femke

    2010-01-01

    Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG) still forms the method of choice in a wide variety of clinical and research applications. In the context of brain–computer interfacing (BCI), EEG recently has become a tool to enhance human–machine interaction. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, event-related potentials (ERP) were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users. PMID:21647345

  20. A Dry EEG-System for Scientific Research and Brain-Computer Interfaces.

    Science.gov (United States)

    Zander, Thorsten Oliver; Lehne, Moritz; Ihme, Klas; Jatzev, Sabine; Correia, Joao; Kothe, Christian; Picht, Bernd; Nijboer, Femke

    2011-01-01

    Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG) still forms the method of choice in a wide variety of clinical and research applications. In the context of brain-computer interfacing (BCI), EEG recently has become a tool to enhance human-machine interaction. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, event-related potentials (ERP) were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  1. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  2. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  3. A computational study of advanced exhaust system transition ducts with experimental validation

    Science.gov (United States)

    Wu, C.; Farokhi, S.; Taghavi, R.

    1992-01-01

    The current study is an application of CFD to a 'real' design and analysis environment. A subsonic, three-dimensional parabolized Navier-Stokes (PNS) code is used to construct stall margin design charts for optimum-length advanced exhaust systems' circular-to-rectangular transition ducts. Computer code validation has been conducted to examine the capability of wall static pressure predictions. The comparison of measured and computed wall static pressures indicates a reasonable accuracy of the PNS computer code results. Computations have also been conducted on 15 transition ducts, three area ratios, and five aspect ratios. The three area ratios investigated are constant area ratio of unity, moderate contracting area ratio of 0.8, and highly contracting area ratio of 0.5. The degree of mean flow acceleration is identified as a dominant parameter in establishing the minimum duct length requirement. The effect of increasing aspect ratio in the minimum length transition duct is to increase the length requirement, as well as to increase the mass-averaged total pressure losses. The design guidelines constructed from this investigation may aid in the design and manufacture of advanced exhaust systems for modern fighter aircraft.

  4. Model-Driven Development for scientific computing. An upgrade of the RHEEDGr program

    Science.gov (United States)

    Daniluk, Andrzej

    2009-11-01

    Model-Driven Engineering (MDE) is the software engineering discipline, which considers models as the most important element for software development, and for the maintenance and evolution of software, through model transformation. Model-Driven Architecture (MDA) is the approach for software development under the Model-Driven Engineering framework. This paper surveys the core MDA technology that was used to upgrade of the RHEEDGR program to C++0x language standards. New version program summaryProgram title: RHEEDGR-09 Catalogue identifier: ADUY_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 21 263 No. of bytes in distributed program, including test data, etc.: 1 266 982 Distribution format: tar.gz Programming language: Code Gear C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 MB Classification: 4.3, 7.2, 6.2, 8, 14 Does the new version supersede the previous version?: Yes Nature of problem: Reflection High-Energy Electron Diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the Molecular Beam Epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Solution method: The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. Reasons for new version: Responding to the user feedback the graphical version of the RHEED program has been upgraded to C++0x language standards. Also, functionality and documentation of the

  5. Computational intelligence in wireless sensor networks recent advances and future challenges

    CERN Document Server

    Falcon, Rafael; Koeppen, Mario

    2017-01-01

    This book emphasizes the increasingly important role that Computational Intelligence (CI) methods are playing in solving a myriad of entangled Wireless Sensor Networks (WSN) related problems. The book serves as a guide for surveying several state-of-the-art WSN scenarios in which CI approaches have been employed. The reader finds in this book how CI has contributed to solve a wide range of challenging problems, ranging from balancing the cost and accuracy of heterogeneous sensor deployments to recovering from real-time sensor failures to detecting attacks launched by malicious sensor nodes and enacting CI-based security schemes. Network managers, industry experts, academicians and practitioners alike (mostly in computer engineering, computer science or applied mathematics) benefit from the spectrum of successful applications reported in this book. Senior undergraduate or graduate students may discover in this book some problems well suited for their own research endeavors. USP: Presents recent advances and fu...

  6. NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education

    CERN Document Server

    Mason, John

    1995-01-01

    The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

  7. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  8. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    CERN Document Server

    Bagnasco, S; Guarise, A; Lusso, S; Masera, M; Vallero, S

    2015-01-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monit...

  9. NATO Advanced Research Workshop on Computational Methods for Polymers and Liquid Crystalline Polymers

    CERN Document Server

    Pasini, Paolo; Žumer, Slobodan; Computer Simulations of Liquid Crystals and Polymers

    2005-01-01

    Liquid crystals, polymers and polymer liquid crystals are soft condensed matter systems of major technological and scientific interest. An understanding of the macroscopic properties of these complex systems and of their many and interesting peculiarities at the molecular level can nowadays only be attained using computer simulations and statistical mechanical theories. Both in the Liquid Crystal and Polymer fields a considerable amount of simulation work has been done in the last few years with various classes of models at different special resolutions, ranging from atomistic to molecular and coarse-grained lattice models. Each of the two fields has developed its own set of tools and specialized procedures and the book aims to provide a state of the art review of the computer simulation studies of polymers and liquid crystals. This is of great importance in view of a potential cross-fertilization between these connected areas which is particularly apparent for a number of experimental systems like, e.g. poly...

  10. The effects of advance organizers according learning styles in computer assisted instruction software on academic achievement

    Directory of Open Access Journals (Sweden)

    Buket Demir

    2011-09-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 This study aims to investigate the effects of advance organizers existing in computer assisted instruction software on academic achievement of the students who have different types of learning styles. Semi–empirical design with Pretest–posttest and with control group was used. The research sample was composed of 131students having Information Technology Course in Süleyman Türkmani Primary School located in Kırşehir in 2010–2011 academic year. Research data was collected by using Kolb’s Learning Style Inventory and Academic Achievement Test (KR–20: 0,82. One way ANOVA and Independent Sample T-Test were conducted on the all data collected and these results were emerged: The existence of advance organizers in a instructional software was affect the the academic achievement of students. There was also difference between the academic achievement of field independent learners whom studied in the computer assisted environment which was both include advance organizer and not include.

  11. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments.

    Science.gov (United States)

    Babiloni, F; Cincotti, F; Marciani, M; Salinari, S; Astolfi, L; Aloise, F; De Vico Fallani, F; Mattia, D

    2009-01-01

    Brain-computer interface (BCI) applications were initially designed to provide final users with special capabilities, like writing letters on a screen, to communicate with others without muscular effort. In these last few years, the BCI scientific community has been interested in bringing BCI applications outside the scientific laboratories, initially to provide useful applications in everyday life and in future in more complex environments, such as space. Recently, we implemented a control of a domestic environment realized with BCI applications. In the present chapter, we analyze the methodological approach employed to allow the interaction between subjects and domestic devices by use of noninvasive EEG recordings. In particular, we analyze whether the cortical activity estimated from noninvasive EEG recordings could be useful in detecting mental states related to imagined limb movements. We estimate cortical activity from high-resolution EEG recordings in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in a region of interest associated with the subjects' Brodmann areas by use of depth-weighted minimum norm solutions. Results show that the use of the estimated cortical activity instead of unprocessed EEG improves the recognition of the mental states associated with limb-movement imagination in a group of healthy subjects. The BCI methodology here presented has been used in a group of disabled patients to give them suitable control of several electronic devices disposed in a three-room environment devoted to neurorehabilitation. Four of six patients were able to control several electronic devices in the domotic context with the BCI system, with a percentage of correct responses averaging over 63%.

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  13. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    Science.gov (United States)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monitoring solution if needed. The heterogeneous accounting information is transferred from the database to the ElasticSearch engine via a custom Logstash plugin. Each use-case is indexed separately in ElasticSearch and we setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service. Moreover, we have developed a billing system for our private Cloud, which relies on the RabbitMQ message queue for asynchronous communication to the database and on the ELK stack for its graphical interface. The Italian Grid accounting framework is also migrating to a similar set-up. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BESIII

  14. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  15. Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR

    OpenAIRE

    Türkay, Metin; Weber, Gerhard-Wilhelm; Blazewicz, Jacek; Rauner, Marion

    2014-01-01

    CEJOR (2014) 22:427–430 DOI 10.1007/s10100-013-0327-2 EDITORIAL Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR Gerhard-Wilhelm Weber · Jacek Blazewicz · Marion Rauner · Metin Türkay Published online: 7 September 2013 © Springer-Verlag Berlin Heidelberg 2013 At the occasion of the 25th European Conference on Operational Research, EURO XXV 2012, July 8–11, 2012, in Vilnius, Lithuania (http://www.euro-2012.lt/), the ...

  16. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrickson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individual work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.

  17. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  18. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  19. The Application of Advancements in Computer Technology to the Control and Safety System of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P. S. W. [AECL CANDU/Sheridan Park Research Community, Ontario (Canada)

    1992-04-15

    The present spatial control algorithm in CANDU reactors is based on flux synthesis from a set of parti-coloured harmonic flux modes. The design of the Rop system is also based on parti-coloured flux shapes, including both normal and abnormal reactor operating conditions. The dependency of the control and safety systems on parti-coloured data was necessitated by the slow CPU and by the scarcity of Ram which were available to the computer systems in the early seventies. Recent advancements in high speed microprocessors and high capacity Ram chips enable the development of the Pmfp computer code, which calculates reactor power distribution on-line, using diffusion theory and in-core self-powered flux detector readings as internal boundary conditions. The Pmfp based control and safety systems do not depend on parti-coloured flux shapes or preconceived reactor operating conditions.

  20. Computational methods to extract meaning from text and advance theories of human cognition.

    Science.gov (United States)

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA.